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ABSTRACT 

Cross-seeding between amyloidogenic proteins in the gut is receiving increasing attention as a 

possible mechanism for initiation or acceleration of amyloid formation by aggregation-prone proteins 

such as αSN, which is central in the development of Parkinson’s disease. This is particularly pertinent 

in view of the growing number of functional (i.e. benign and useful) amyloid proteins discovered in 

bacteria. Here we identify two functional amyloid proteins, Pr12 and Pr17, in fecal matter from 

Parkinson's disease transgenic rats and their wild type counterparts, based on their stability against 

dissolution by formic acid. Both proteins show robust aggregation into ThT-positive aggregates that 

contain higher-order -sheets and have a fibrillar morphology, indicative of amyloid proteins. In 

addition, Pr17 aggregates formed in vitro showed significant resistance against formic acid, 

suggesting an ability to form highly stable amyloid. Treatment with proteinase K revealed a protected 

core of approx. 9 kDa. Neither Pr12 nor Pr17, however, affected αSN aggregation in vitro. Thus, 

amyloidogenicity does not per se lead to an ability to cross-seed fibrillation of αSN. Our results 

support the use of proteomics and formic acid to identify amyloid protein in complex mixtures and 

indicates the existence of numerous functional amyloid proteins in microbiomes. 

 

IMPORTANCE 

The bacterial microbiome in the gastrointestinal tract is increasingly seen as important for human 

health and disease. One area of particular interest is that of neurodegenerative diseases such as 

Parkinson’s which involve pathological aggregation into amyloid of human proteins such as α-

synuclein (αSN). Bacteria are known to form benign or functional amyloid, some of which may 

initiate unwanted aggregation of e.g. αSN in the enteric nervous system through cross-seeding via 

contact with the microbiome. Here we show that the rat microbiome contains several proteins which 

form this type of amyloid aggregate both in vivo and in vitro. Although the two proteins we investigate 

in depth do not directly promote αSN aggregation, our work shows that the microbiome potentially 

harbors a significant number of bacterial amyloid which could play a role in human physiology at 

various levels. 
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INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that affects 1-2% of all 

individuals above the age of 60 [1]. PD is characterized by the loss of dopaminergic neurons in the 

substantia nigra pars compacta (SNpc) of the midbrain and the accumulation of intracytoplasmic 

protein deposits referred to as Lewy bodies (LBs) or Lewy neurites (LNs) [2]. The LBs and LNs have 

been shown to be composed primarily of -sheet-rich amyloid deposits of the intrinsically disordered 

protein α-synuclein (αSN) [3] which is believed to be a key player in the development of PD.  

Within the cell, αSN is found in high concentrations at presynaptic structures [4, 5]. It has 

been suggested that αSN can spread via neuron-to-neuron propagation [6] and progression of sporadic 

PD has been proposed to happen as a caudo-rostral process (moving from the lower brain stem via 

the basal midbrain and forebrain to the cerebral cortex) [2]. Outside the central nervous system (CNS), 

LBs and LNs have also been observed in the enteric nervous system (ENS) in early stages of PD [7]. 

Recently it has even been proposed that there are two subtypes of PD, namely brain-first and body-

first, depending on their place of origin [8]. Spreading from the ENS to the CNS has been suggested 

to happen through the vagus nerve as vagotomised individuals have a decreased risk for subsequently 

developing PD [9], and this has been confirmed in mouse models [10]. Further, enteric neurons 

secrete αSN under neuronal control [11]. Studies in rats have also shown that human αSN, injected 

into the intestinal wall, can be transported to the dorsal motor nucleus of the vagus via the vagal nerve 

[12]. Similarly, injection of recombinant αSN pre-formed fibrils into the gastric wall of mice was 

shown to result in LB pathology in the brainstem, and this was dependent on retrograde transport 

through the vagus nerve [13].  

The great majority of neurons in the ENS is located in the myenteric and submucosal plexuses 

in the wall of the gastrointestinal (GI) tract [14]. Enteric nerve fibers extend through the different 

layers of the GI tract and have been shown to connect directly with enteroendocrine cells (EECs) 

[15]. Both EECs and intestinal epithelial cells express Toll-like receptors (TLRs) 1, 2 and 4 [16] and 

are therefore able to recognize different structures, often referred to as microbe-associated molecular 

patterns (MAMPs), expressed by, e.g., gut bacteria. One example is the extracellular curli fibrils, 

which are aggregates of the CsgA protein produced by Escherichia coli and a wide range of other 

bacterial within the Enterobacteriaceae [17]. These functional amyloid fibrils are recognized by TLR1 

and TLR2 and mediate interleukin 1 production [18]. This suggests that MAMPs produced by 

bacteria in our microbiome could interact with our CNS through the ENS, raising the possibility that 

αSN aggregation could be initiated through contacts with e.g. microbial proteins. In support of the 
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pro-aggregatory role of CsgA, the amount of αSN deposits in aged rats and C. elegans PD models 

was increased after being orally fed with curli-producing E.coli compared to animals that had been 

fed with a curli-deficient E. coli strain [19]. Similar experiments have been performed in an transgenic 

(Tg) mouse model overexpressing αSN and again showed that exposure to curli correlated with 

increased αSN pathology in the gut and brain together with GI and motor deficits [20]. Introducing 

curli-producing E. coli in wild type (WT) mice had no effect on motor functions, suggesting that curli 

works in concert with other predisposing factors (like αSN overexpression) to cause disease [20]. 

Functional bacterial amyloid (FuBA) such as CsgA and its counterpart FapC in Pseudomonas 

species serve multiple roles in bacteria. They are unusually stable and often resist high concentrations 

of surfactant, denaturant or organic acids as well as being resistant to proteolysis. These robust 

properties may explain their ability to strengthen bacterial biofilms mechanically [21, 22] and 

increase their resistance to, e.g., antibiotics [23]. Whether bacterial biofilms are actually formed in 

the (healthy) human GI tract is unclear. Conditions like the high flow rate through parts of the GI 

tract (2-4 h through the small intestine), gastric acid and the production of mucus by goblet cells are 

believed to make it difficult for bacteria to attach to at least the upper part of the digestive tract. 

However, the transit time is markedly longer in the colon (~ 60 h) [24], and some bacteria produce 

hydrolytic enzymes that can break down the glycoproteins in the mucus and use the mucus layer as 

an energy and carbon source [25]. Many bacteria within the GI tract can form biofilm on medical 

devices like feeding tubes [26] and food particles [27]. E. coli strains isolated from the GI tract can 

produce both extracellular cellulose and curli [28]. 

Here we build on the observed correlation between FuBA and αSN aggregation. We analyse 

fecal samples from three transgenic PD rats and three WT rats for the presence of FuBA and their 

possible link to αSN aggregation. Due to the high stability of the FuBA structure, the amyloid state 

is insoluble under most denaturing conditions and only dissociate into monomers at high 

concentrations (80-100%) of formic acid (FA) [29, 30]. Thus, by treating complex samples with 

increasing concentrations of FA and identifying soluble proteins by trypsin digestion and LC-MS/MS 

analysis, potential FuBA can be identified by their markedly increased abundance at high (80-100%) 

FA concentrations [31]. In this way, we identify 365 candidates, which were further analyzed 

bioinformatically to narrow the list to the two most promising candidates (here called Pr12 and Pr17). 

These were expressed recombinantly and examined biophysically, demonstrating significant 

tendencies to form amyloid. However, Pr12/Pr17 seeds did not promote αSN fibrillation. Thus, 

amyloidogenicity per se does not imply an ability to cross-seed fibrillation of αSN.  
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MATERIALS AND METHODS 

Materials 

Fecal samples from three WT rats (WT1, WT2 and WT3) and three BAC-SNCA Tg Parkinson’s 

disease (PD) rats overexpressing human αSN (PD1, PD2 and PD3) [32] were kindly provided by Olaf 

Riess’s lab in Tübingen, Germany. All rats were female, three months old and kept in regular 12 h 

light/dark cycles. All animals had free access to both water and food.  

DNA extraction from WT and PD microbiome samples 

Three WT samples and three PD samples were analyzed. DNA was extracted from the microbiome 

samples with a FastDNA spin kit (MP Biomedicals), following the manufacturers’ instructions. 

Briefly, 50 mg of fecal pellet was subjected to bead beating (4x40 s at 6 m/s with 5 min incubations 

in between) in a Lysing Matrix E tube (MP Biomedicals) using a FastPrep-24 instrument. Protein was 

precipitated, after which DNA was bound to a binding matrix suspension and eluted. DNA 

concentrations were determined with a Qubit dsDNA BR kit and the quality confirmed using gel 

electroporation on a 2200 TapeStation with D1000 Screentapes (Agilent Genomics). 

V1-V3 16S rRNA amplicon sequencing 

All DNA samples were diluted to 5 ng/µL and mixed with barcode adaptors and a master mix 

containing dNTPs, MgSO4 and Platinum® Taq DNA polymerase high fidelity (Thermo Fischer 

Scientific) as previously described [33]. The following PCR conditions were used: 2 min incubation 

at 95°C followed by 30 cycles of [20 s at 95°C, 30 s at 56°C, 60 s at 72°C] and 5 min at 72°C. PCR 

products, now referred to as libraries, were purified using an Agencourt AMPure XP bead solution 

(Beckman Coulter) and a magnetic rack. Concentrations were determined with a Qubit dsDNA HS 

kit and amplification was confirmed on a 2200 TapeStation (Agilent Genomics). 30 ng of each library 

were pooled and submitted for MiSeq sequencing.  

Forward reads were processed using usearch v.11.0.667. Raw fastq files were filtered for phiX 

sequences using -filter_phix, trimmed to 200 bp using -fastx_truncate -trunclen 200, and quality 

filtered using -fastq_filter with -fastq_maxee 1.0. The sequences were dereplicated using -

fastx_uniques with -sizeout -relabel Uniq. Exact amplicon sequence variants (ASVs) were generated 

using -unoise3 [34]. ASV-tables were created by mapping the raw reads to the ASVs using -otutab 

with the -zotus and -strand both options. Taxonomy was assigned to ASVs using -sintax with -strand 

both and -sintax_cutoff 0.8 [35] and the Autotax processed SILVA 138 SSURef Nr99 database [36]. 

The raw sequencing data is available at the SRA with the accession IDs ERR3477180-ERR3477185. 
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Direct identification of functional amyloid proteins in fecal samples by label-free quantitative MS 

Functional amyloids were identified as previously described [31]. In short, 200 mg of each fecal pellet 

also used for DNA extraction were dissolved in 1 mL buffer (10 mM Tris-HCl, pH 8.0) containing 

1X Halt™ protease inhibitor cocktail (Thermo Scientific). Cell lysis was achieved by bead beating in 

a Lysing Matrix E tube (MP Biomedicals) for 4x20 s at 6 m/s with 5 min breaks on ice in between 

beatings. Aliquots of 25 µL were transferred to 18 eppendorf tubes per sample (six different FA 

concentrations in three technical triplicates) before 1 h of lyophilization. Samples were then mixed 

with FA at concentrations of 0% (ultraclean water), 20%, 40%, 60%, 80% and 100% and lyophilized 

overnight. Lyophilized material was resuspended in a special reducing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer [37] and run on AnyKD gels 

(Biorad) for 10 min at 120 V, just allowing the samples to enter the gel. The gels were stained with 

Coomassie Brilliant Blue (CBB) G250. Gel bands were then cut into smaller pieces and reduced in a 

10 mM DTT/0.1 M NH4HCO3 solution for 45 min at 56°C after several washing steps. In each 

washing step the gel pieces were rehydrated with 0.1 M NH4HCO3 for five minutes before addition 

of concentrated acetonitrile (1:1 v/v). Proteins were then alkylated for 30 min at room temperature 

(RT) in a solution of 55 mM iodoacetamide/0.1 M NH4HCO3. Finally, the gel pieces were washed 

thoroughly with 0.1 M NH4HCO3 and 1:1 v/v 0.1 M NH4HCO3/acetonitrile before drying in a vacuum 

centrifuge. In-gel digestion was performed overnight at 37°C by rehydrating the gel particles in 12.5 

ng/µL trypsin in a 0.1 M NH4HCO3 buffer. Peptides were recovered mainly from the overnight buffer 

but also extracted from the gel particles by incubation in 5% FA followed by addition of acetonitrile. 

This extraction was performed twice and all supernatants were pooled and dried by vacuum 

centrifugation overnight. Peptides were reconstituted in 0.1% trifluoroacetic acid and 2% acetonitrile 

and subjected to ultra-performance liquid chromatography (UPLC) tandem mass spectrometry 

analysis by injection and concentration on a trapping column before separation on a separation 

column (Pepmap™ C18, Thermo Scientific) with a gradient of buffer B (100% acetonitrile) of 2% to 

8% during the first minute and then from 8% to 30% in the following 39 min. Buffer B was then 

increased from 30% to 90% within 5 min. The UPLC system was coupled online to a Q Exactive Plus 

mass spectrometer (Thermo Scientific). The mass spectrometry data have been deposited to the 

ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository 

[38] with the dataset identifier PXD014649. 

Data analysis of LC-MS/MS data 

Protein identification and quantification were performed as previously described [31] using the 

MaxQuant v1.5.8.3 software [39] and the label-free quantification (LFQ) algorithm [40]. The search 
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was performed against the NCBI non-redundant protein sequence database. To prevent systematic 

errors, LFQ values were normalized between individual measurements and each protein is identified 

based on at least two detectable peptides. This allows for relative abundances to be compared across 

samples. Amyloid proteins are expected to give a sigmoidal appearance when their relative 

abundances are plotted against FA concentration (with higher FA concentrations, more protein 

monomer will be released from the fibrils and enter the SDS-PAGE gel). With an automated R-

markdown script the data can be separated for each protein and the highest concentration will be 

given a value of 1. Hit proteins should fulfill the following requirements: 60 < f50 < 100, f’(f50) > 

0.025 where f50 is the FA concentration required to depolymerize half of the amyloid fibrils and f’ 

(f50) is the slope of the fit at this concentration [31]. The fit used was: 

𝑓(𝑥) = 1⁄    (I) 

Bioinformatic analysis  

Data analysis of the entire MS dataset were done using R [41]. All proteins were fitted as described 

[31]. We consider a protein to be a hit if at least one of the three triplicates shows a sigmoidal increase 

in abundance with FA concentration. Because well-characterized FuBA systems like Fap in 

Pseudomonas and curli in E. coli all require Sec-dependent secretion of the amyloid proteins, the hits 

were all analyzed by the SignalP 4.1 algorithm [42] to restrict the list to candidates containing a signal 

peptide. RADAR [43], AmylPred2 [44] and Clustal2.1 were used to identify imperfect repeats, 

amyloidogenic amino acid sequences and sequence alignments, respectively. 

Expression and purification of candidate amyloid proteins 

pET30a vectors encoding proteins WP_032523104.1 and OAD22177.1 (referred to as Pr12 and Pr17, 

respectively) were prepared by Genscript. Both proteins were produced without signal peptides 

(residues 1-22 for Pr12 and residues 1-18 for Pr17) but with an N-terminal His6 tag. E. coli 

BL21(DE3) bacteria were transformed with the expression vectors, spread on LB agar plate with 50 

µg/ml kanamycin, grown up 24 h and then transferred to LB medium containing 0.1% glycerol, 50 

µg/ml kanamycin and 4 mM MgSO4. Cells were grown up in an incubator at 37C and 125 rpm and 

induced with 1 mM IPTG at OD600 of 0.6 – 0.8. After 3 hrs, cells were harvested by centrifugation at 

4000 g for 20 minutes. Pellets were suspended in 50 ml of denaturation buffer (8 M GdmCl, 50 mM 

Tris-HCl, pH 8.0) with one protease inhibitor tablet (Roche) per L medium, lysed by slow stirring of 

the GdmCl-cell pellet suspension overnight at 4°C and spun down at ~ 12,500g for 30 min at 15°C. 

The supernatant was incubated with nickel-nitrilotriacetic acid beads (typically 45 ml supernatant to 

5 ml beads) for 1 h at 4°C on rolling table with 60 rpm, after which the beads were packed in an 
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empty PD10 column and washed with washing buffer (8 M GdmCl, 50 mM Tris-HCl, 30 mM 

imidazole, pH 8.0) before elution of the protein into elution buffer (8 M GdmCl, 50 mM Tris-HCl, 

300 mM imidazole, pH 8.0). Protein elution fractions of  2 mL were immediately frozen in liquid 

nitrogen and stored at -80°C.  

Purification and preparation of αSN 

αSN was prepared as described [45] and protein concentration was determined at 280 nm using an 

extinction coefficient of 5,960 M−1 cm−1 and the molecular weight of 14,460 Da after the lyophilized 

αSN had been dissolved in 60 mM Tris buffer, pH 7.4, and filtered through a 0.2 µm filter.  

Thioflavin T (ThT) assays of Pr12 and Pr17 

The two proteins were first desalted into 1X PBS, pH 7.4, and protein concentration was determined 

at 280 nm using extinction coefficients of 14,100 and 14,690 L mol-1 cm-1 for Pr12 and Pr17, 

respectively, based on their amino acid composition. The proteins were then immediately transferred 

to a 96-well Nunc optical bottom plate (Corning) containing 40 µM ThT. Fibrillation was followed 

using 445 nm excitation and 485 nm emission at 37°C on an Infinite Pro 23 (Tecan, Männersdorf) 

plate reader. Due to precipitation issues in 1X PBS, we started desalting the proteins from the elution 

buffer (8 M GdmCl, 50 mM Tris-HCl, 300 mM imidazole, pH 8.0) into 4 M urea in 1X PBS or 60 

mM Tris, pH 7.4 (Pr12) or 8 M urea in 1X PBS, pH 7.4 (Pr17) to keep the proteins monomeric. Using 

Amicon Ultra spin filters (Merck) with a 3 K (Pr12) or 10 K cutoff (Pr17) both proteins were 

concentrated to either 7.5 or 10 mg/mL. The aggregation behaviour of the two proteins (final 

concentration of 0.5 mg/mL) were then investigated in the presence of different urea concentrations 

or at different pH values. Because the proteins had been concentrated in urea, 0.2 M urea (Pr12) or 

0.4 M urea (Pr17) were also present in all ThT assays. The buffers used to investigate pH effects were 

80 mM citric acid (pH 3), 60 mM citric acid (pH 4), 60 mM MES (pH 6), 1X PBS (pH 7.4) and 60 

mM Tris (pH 8).  

Size-exclusion chromatography (SEC) analysis of urea-treated Pr17 

After fibrillation of Pr17 in the presence of increasing [urea], the samples were subjected to size-

exclusion chromatography using a Superose 6 10/300 GL column (GE Healthcare). For each sample, 

the column was equilibrated with a buffer containing the same urea concentration in 1X PBS as the 

sample to be investigated. Then, 500 µL sample was injected and run with a flow rate of 0.5 mL/min 

on an ÄKTA Pure protein purification system (GE Healthcare). Control samples containing ThT 

alone at the lowest (0.4 M urea) and the highest (6 M urea) were also included. 
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Stability studies of Pr12 and Pr17 aggregates 

Pr12 and Pr17 fibrils were produced by desalting the protein directly into 60 mM MES, pH 6, and 

incubating the samples overnight at 37C at 300 rpm. Aggregates were pelleted by centrifugation 

(13,500 rpm, 15 min) in a MicroStar12 table centrifuge (VWR) and washed twice in milli-Q water 

(MQ) before equal volumes of aggregates were aliquoted into new tubes, Pellets were then treated 

with equal amounts of solutions containing increasing [urea] or [FA] and incubated for 10 min at RT 

before pelleted again. 20 µL of the supernatant was then transferred to new tubes and either mixed 

with R loading buffer (the urea-treated samples) or subjected to lyophilization (the FA-treated 

samples). After lyophilization the samples were mixed with 20 µL of a special loading buffer 

containing 8 M urea. Both the urea- and FA-treated samples were analysed with SDS-PAGE and 

quantified with ImageJ (https://imagej.net/). The percentage of solubilized Pr12/Pr17 aggregates was 

normalized to the 100% FA band and fitted to the following equation: 

𝑦𝑑𝑖𝑠𝑠 =
100

1+10
−𝑚𝐹𝐴∙([𝐹𝐴]

50%−[𝐹𝐴])
1.36

   (1) 

where [FA]50% is the FA concentration where half of the aggregates are dissolved, i.e. the two states 

(aggregated state and monomeric state) are equally stable. The m-value, as in conventional protein 

unfolding, is a measure of the potency of the denaturant, here FA [46]. For treatment with proteinase 

K (ProtK), the protein mass in each pellet was first determined by treating one protein pellet with 

100% FA and running this sample on SDS-PAGE together with samples of known concentrations of 

0.1, 0.2, 0.5 and 0.8 mg/mL. Pellets were then treated with different concentrations of ProtK in a 

buffer containing 60 mM Tris and 5 mM CaCl2 (pH 8) and incubated at 37C for 30 min before the 

reactions were stopped by adding concentrated FA (giving a final [FA] of 50%, equal to 13.25 M). 

Samples were lyophilized in a Scanvac Coolsafe freeze dryer (Labogene) and subsequently analyzed 

on SDS-PAGE. 

Cross-interactions between microbiome proteins and αSN 

1 mg/mL αSN was fibrillated in the presence of Pr12 or Pr17 seeds using 40 µM ThT in a 96-well 

plate. A 3 mm glass bead was added to each well, and the program used allowed 300 rpm orbital 

shaking with readings every 1070 s and 600 s shaking between readings. Pr12 and Pr17 seeds were 

prepared by incubation overnight at 37C with slow shaking (300 rpm). Aggregates were then spun 

down (13,500 rpm, 15 min) and washed twice with MQ before aliquoted into new tubes. Aggregates 

were pelleted again, and all supernatant was removed. Concentration in the pellet was determined in 

the same was as described above. To prepare seeds, aggregates of Pr12 and Pr17 were sonicated for 
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3*10 s with 10 s on ice in between using a QSonica Sonicator and subsequently added at 10%, 5% or 

1% (mass/mass) to 1 mg/mL monomeric αSN.  

Transmission Electron Microscopy (TEM) analysis of protein fibrils 

The same Pr12 and Pr17 aggregates used to study aggregate stability were also imaged with TEM. 

Pellets were resuspended in MQ and images were recorded as described [47]. 

Fourier transform infrared (FTIR) spectroscopy of protein fibrils 

FTIR spectra were recorded on a Tensor 27 instrument (Bruker Optics). 2 µl sample was deposited 

on the surface of an attenuated total reflection crystal and dried with nitrogen gas. The system was 

continuously purged with nitrogen gas. Background and water vapor subtractions were performed to 

obtain a straight baseline. The samples were analyzed with OPUS 5.5. Only the amide I region (1600-

1700 cm-1) was used for analysis.  
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RESULTS 

Identification of potential amyloid protein candidates in the rat microbiome  

Several studies have suggested that the human microbiome is changed in PD patients compared to 

healthy controls [48-58]. The object of this study was not to attempt to elucidate statistically 

significant differences between healthy and PD-afflicted rats, but rather to carry out a more general 

assessment of the occurrence of functional amyloid in the microbiome. Nevertheless, given the 

potential involvement of the microbiome in the development of PD, we decided to compare healthy 

rats with a rat model of PD that overexpresses full-length human αSN and develops synucleinopathies 

both in the CNS and the PNS [32]. Microbial community profiling using amplicon primers targeting 

the V1-V3 variable region of the 16S rRNA gene revealed an increased abundance of 

Lachnospiraceae in the PD rats, whereas Lactobacillaceae dominated the WT rats (Fig. 1A). 

However, the relative abundance of most other taxa varied greatly between replicates. Principal 

coordinate and ANOSIM analyses were carried out on the exact amplicon sequence variants (ASVs) 

to investigate if there were a statistical difference between the WT and PD rats (Fig. S1). A separation 

along the first principal coordinate (PCo1) was observed between the WT and PD samples. However, 

the separation was not significant according to the permutations tests on the ordinated data 

(R=0.7037; p-value=0.1; 719 permutations), reflecting the small sample size. Nevertheless, the 

samples provided an opportunity to search for possible FuBA through the differential solubilization 

of proteins at higher concentrations of formic acid, as described in Materials and Methods. 

Protein identification with MaxQuant resulted in the identification of between 447 (sample 

WT3) and 1314 (sample PD2) proteins in each of the six samples (Table S1). The proteins were 

quantified using the LQF algorithm, and their stability towards formic acid was determined as 

described [31]. Comparing all identified proteins from the WT samples with those identified in the 

PD samples showed no obvious distinction between the two phenotypes. Moreover, the LQF results 

were characterized by relatively low reproducibility, as a large fraction of proteins were not identified 

in all replicates, probably due to low abundance (Fig. S2). As the protocol for identification of 

putative functional amyloids requires a large number of replicates with a sigmoidal signature [31], 

comparison between WT and PD samples was inconclusive. Therefore, we decided to manually 

inspect the data and hand-pick the most probable amyloid candidates based on their stability towards 

formic acid and ignore the number of replicates by which they were identified. We identified between 

22 (sample PD3) and 110 (sample PD1) amyloid candidates based on their characteristic sigmoidal 

signature in plots of normalized protein abundance versus FA concentration (Fig. 1B and Table S1). 

Of these 365 proteins, 27 had at least two replicates showing a sigmoidal signature (Table S2). One 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.03.31.438001doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.438001
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

particularly interesting protein is elongation factor Tu (EF-Tu) which appears three times in the PD1 

sample. In fact, EF-Tu appears as a hit 46 times (although in most of the cases only a single replicate 

shows the sigmoidal signature) across all samples and equally divided between PD (22 times) and 

WT samples (24 times) (data not shown). EF-Tu is interesting because the Gallibacterium anatis EF-

Tu (ID: KGQ60852.1) was recently identified as a functional amyloid-forming protein [59], 

indicating that this FA-approach is able to identify amyloid-relevant proteins. Household proteins 

glucose-6-phosphate isomerase (G6PI), 60 kDa chaperonin (60C) and phosphoenolpyruvate 

carboxykinase (PPCK) – which were identified 71, 38 and 143 times, respectively, across all 6 

samples – generally do not show any specific signature across the FA concentration range (Fig. 1C) 

(though a few peptides of PPCK were identified to follow a sigmoidal behavior and consequently led 

to the protein’s inclusion in Table S1). 

Because many functional amyloid systems are dependent on secretion through the Sec 

translocon, all protein hits were analyzed with the three different signal peptide prediction tools 

SignalP 4.1 [42], DeepSig [60] and SignalP 5 [61] and ranked according to the probability of 

containing a signal peptide. From this analysis 11 proteins were identified (Table 1). Out of these 11 

proteins, only three proteins were predicted to contain a signal peptide with all three tools. We decided 

to select two proteins for recombinant expression to investigate their amyloidogenicity 

experimentally. We chose to limit ourselves to proteins predicted to contain a signal peptide by all 3 

signal peptide predictors and to exclude large (> ca. 450 residues) proteins to avoid low recombinant 

expression levels. This left proteins WP_032523104.1 (12 kDa without the 22 aa signal peptide) and 

OAD22177.1 (17 kDa without the 18 aa signal peptide) which we will from now on refer to as Pr12 

and Pr17, respectively. Pr12 was identified in sample PD3 while Pr17 was found in sample PD1. 

According to the Uniprot database Pr12 is a DUF1499 domain-containing protein produced by the 

cyanobacterium Prochlorococcus marinus while Pr17 is a secreted protein produced by the vacuolate 

sulfur bacteria Candidatus Thiomargarita nelsonii. To obtain residue-specific information on the 

potential aggregation of Pr12 and Pr17, we used the TANGO web server software [62] to predict 

aggregation-prone regions. For both proteins it was seen that the signal peptide (SP) gave a high 

aggregation propensity (Fig. 1DE), but interestingly, Pr17 also showed four separated stretches of 8-

12 residues with high aggregation propensity (aggregation propensity value > 5%, dashed line) 

throughout the proteins sequence (Fig. 3b). Both proteins were also investigated for the presence of 

imperfect repeats using the RADAR tool [43]. Whereas no repeats could be found for Pr12, two 

repeats were identified in the Pr17 sequence (Fig. 3b, insert). The repeats showed low conservation 
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but, interestingly, two of the highly amyloidogenic stretches (TAAICAFVT and FVGATGFY) were 

covered by the repeat sequences. 

Pr12 and Pr17 both form ThT-positive aggregates with amyloid characteristics 

It was possible to recombinantly produce both proteins in E. coli at yields of 3.5-4.5 mg/L culture. 

The proteins were then purified to satisfying purity, as visualized by SDS-PAGE, by Ni-NTA 

chromatography via a C-terminal His6 tail (Fig. S3). To analyse the two protein’s propensity to form 

amyloid, we started by analysing their behaviour in a standard ThT fibrillation assay. ThT is a dye 

commonly used to study amyloid fibrillation as it shows a bright fluorescence when bound the 

amyloid fibrils and therefore is a suitable reporter for fibril formation. After desalting into PBS, the 

concentration of the two proteins was measured and aggregation of the two proteins was immediately 

investigated with ThT. Note that when measuring protein concentration directly after desalting, the 

protein solution showed light scattering (tailing of the protein peak at wavelengths > 320 nm), 

indicating protein aggregation (data not shown). An instant increase in ThT signal could be observed 

for both proteins (Fig. 2AB, left panels) but where Pr17 reaches a stable end level, the signal for 

Pr12 starts decreasing after reaching a maximum intensity after  6 hours. No lag phase (which is 

otherwise usually seen during protein fibrillation) was observed for either protein. We note a short 

dip in the fluorescence signal around t = 0 (Fig. S4) which we ascribe to fluorescence quenching as 

the temperature increases to 37oC. FTIR analysis of the resulting fibrils showed a pronounced peak 

around 1622 cm-1 for Pr12 and between 1624-1627 cm-1 for Pr17 (Fig. 2 right panel). Amyloid fibrils 

normally absorb strongly in the 1615-1630 cm-1 region [63] while native -sheets absorb at 

wavenumbers in the 1630-1643 cm-1 range [64]. This indicates that Pr12 and Pr17 aggregates are 

amyloid-like. 

Fibrillation of Pr12 is sensitive to urea 

To avoid premature aggregation of the proteins, the denaturant urea was added to the desalting buffer. 

The two proteins differed somewhat in their urea sensitivity. While  1.5 M urea completely inhibited 

aggregation of Pr12 (Fig. 3A), 0.5 mg/ml Pr17 maintained aggregation up to 2.5 M urea (Fig. 3C). 

Following fibrillation, the samples were spun down and the supernatants were analysed with SDS-

PAGE. For Pr12, a good correlation was seen between the samples showing aggregation (0.2 M, 0.5 

M, and 1 M urea) and the loss of protein from the supernatant (Fig. 3B and Fig. S5). However, for 

Pr17 all protein stayed in solution after centrifugation (data not shown) despite the increase in ThT 

fluorescence seen for the 0.4-2.5 M urea samples. To find out whether the difference in ThT 

fluorescence was caused by the formation of different species of Pr17, we analysed these samples 
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with SEC. The results confirmed that this was the case: Pr17 samples giving high ThT fluorescence 

signals (0.4-2.5 M urea) contained higher order oligomers that eluted from the column together with 

the void volume, while samples with low/no ThT fluorescence signal (4 and 6 M urea) only show the 

Pr17 monomer peak eluting around 17 mL (Fig. 3D). We ascribe the shift in monomer elution peak 

position with rising [urea] to either increased expansion of the protein or reduced interactions with 

the column. This earlier elution is even more pronounced for free ThT which elutes around 37 ml in 

0.4M urea but around 24 ml in 6M urea (Fig. S6A). Interestingly, ThT elution volume and end point 

ThT levels of Pr17 decline in a similar fashion as a function of [urea] (Fig. 3E, red curve). Plotting 

the monomer/oligomer intensity as a function of urea concentration shows a cross-over (i.e. roughly 

equal amounts of both species) at 2.25 M urea (Fig. 3F).  

Pr17 contains four Cys residues (position 32, 42, 87 and 103). SDS-PAGE of the SEC samples under 

both non-reducing (Fig. S6B) and reducing (Fig. S6C) conditions revealed a disulphide-bonded 

dimer band under non-reducing conditions (absent under reducing conditions), which is also seen in 

SEC as a shoulder to the monomer peak (Fig. 3D). Oligomers form a smear in the top part of the non-

reducing gel. Note that the amount of monomer is essentially constant over 0.4-8M urea on the 

reducing gel. This indicates that oligomers and dimers dissociate to monomers when exposed to SDS 

and reducing conditions.  

pH dependence of Pr12 and Pr17 fibril formation 

We also investigated the pH sensitivity of the two proteins’ aggregation in view of the variable pH 

environment encountered in the GI tract. Pr12 showed a rapid increase in fluorescence within a few 

hours, particularly between pH 4-7.4, but again no lag phase could be observed (Fig. 4A). Fibrillation 

was essentially abolished at pH 3 and pH 8. At pH 7.4, the fibrillation curve showed an instant 

increase followed by a decrease after 5 hours. We tested if this was an effect of the buffer by carrying 

out fibrillation in 0-3.5M urea with 60 mM Tris buffer instead of PBS at pH 7.4 but still observed the 

same ‘overshoot’ behaviour (Fig. S7A) though with significant variation between the triplicates (Fig. 

S7B). The solubilisation of Pr12 at higher [urea] in Tris buffer (Fig. S7C) was essentially identical 

to that in PBS buffer (Fig. 3B). A 7-fold replication of aggregation of 0.5 mg/mL Pr12 in 60 mM 

Tris, pH 7.4 showed variation largely in their ThT endpoint (Fig. S7D) although FTIR analysis 

showed identical secondary structure (Fig. S7E). We therefore conclude that the ‘overshoot’ 

behaviour reflects a stochastic aggregation behaviour at this pH to form different levels of higher-

order aggregates (with consequent different levels of precipitation and light-scattering). This indicates 

that Pr12 has a different aggregation mechanism at neutral pH compared to both more basic and more 
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acidic conditions where the aggregation curves are more reproducible. Expasy predicts Pr12 to have 

a theoretical pI of 4.98 which cannot account for the big difference seen between pH 6 and pH 7.4.  

Pr17 aggregation is relatively robust to pH changes and happens at all pH values tested, although only 

to a very small extent at pH 3 (Fig. 4D). The theoretical pI of Pr17 is 4.27. At pH 6, the aggregation 

curves always showed great variation between different experiments and sometimes gave an 

overshoot (Fig. 4D) but with great variation between individual runs (Fig. S8).  

The extent of aggregation was measured by SDS-PAGE of soluble (supernatant) and insoluble (pellet) 

protein after the ThT assay both for Pr12 (Fig. 4B) and Pr17 (Fig. 4E). Pr12 showed very low levels 

of soluble protein between pH 4 and 6, corresponding nicely with the high ThT end levels. At pH 7.4 

and 8 the protein stays soluble despite the initial increase in ThT seen at pH 7.4. Similarly, for Pr17 

after 25 hours fibrillation, we saw very low solubility at pH 3, 4 and 6 and much higher solubility at 

pH 7.4 and pH 8 despite the fact that the end-point ThT levels are identical for pH 4 and pH 8. TEM 

analysis (Fig. 4C and 4F) also showed pH-dependent differences in aggregate structure: at pH 4, both 

proteins formed a mesh of very thin, fibrillar structures while at pH 6, Pr12 showed more amorphous 

aggregates with no apparent fibrils being present and Pr17 showed a mix of fibrils and amorphous 

structures. 

Pr17 aggregates are more stable than Pr12 towards urea and FA but not proteinase K 

The high stability of the FuBA structure ensures that functional amyloids stay insoluble under 

denaturing conditions and only dissociate into monomers at high concentrations (80-100%) of FA 

[29, 30, 65]. We therefore decided to investigate whether Pr12 and Pr17 aggregates show the same 

degree of stability towards denaturants like urea and FA. Aggregates were mixed with increasing 

concentrations of either urea or FA and the supernatant analyzed with SDS-PAGE (Fig. 5AB). By 

normalizing to the 100% FA band (where we assume 100% of the fibrils dissolve) we can determine 

the denaturant concentration required to dissolve half of the fibrils, [den]50%. For Pr17 we determined 

[urea]50% to be  4.4 M (as determined by visual inspection) and [FA]50% to be 32.7  3.7% after 

fitting the data points to a sigmoidal curve. Pr12, in contrast, was highly sensitive towards FA with a 

[FA]50% around 0.1% (Fig. 5B). The [FA]50% value of  30% for Pr17 is only slightly lower than the 

stabilities of [FA]50% of around 50% we normally see for functional amyloids [66]. In contrast, the 

[FA]50% value of 0.1% for Pr12 is similar the [FA]50% value determined for αSN fibrils [66]. Thus in 

vitro aggregates of Pr17 show aspects of a classical functional amyloid protein while Pr12 aggregates 

appear much less stable. 
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We also treated protein aggregates with increasing concentrations of proteinase K (ProtK) to elucidate 

if the aggregates formed by the proteins – especially the more stable Pr17 aggregates – contained a 

protected core. In this case, we would expect to see a clear band on SDS-PAGE after ProtK treatment. 

High concentrations of proteinase K (Pr12/Pr17:protK ratios of 1:1 (m/m) and 1:0.1 (m/m)) resulted 

in a break-down to smaller fragment of  7 kDa for Pr12 (Fig. 5C, fragment II) and  9 kDa for Pr17 

(Fig. 5D) at sample/ProtK mass ratios down to 1:0.01 (lane 4). This indicates a structured core present 

in both protein aggregates. At sample:protK (m/m) ratios of 1:0.001, appr. 40% of Pr12 (Fig. 9c, lane 

3) and 15% of Pr17 (Fig. 9d, lane 4) remained full-length after treatment. Interestingly, for Pr12 a 

slightly bigger fragment of  11 kDa appeared when treated with lower proteinase K concentrations 

(Fig. 5C, lane 4-7). However, the full-length protein still dominated. This 11 kDa fragment is the first 

to be cleaved off (but only to a low degree as no apparent change can be seen in the intensity of the 

full-length protein band) by ProtK and is fully degraded at higher ProK concentrations. The 9 kDa 

fragment of Pr17 appears to be relatively protected from the proteolytic attack when in the aggregated 

structure. However, the intensity of the band is lower at the 1:1 ratio (lane 2) than the 1:0.1 ratio (lane 

3), so it is not completely resistant towards proteolytic degradation. 

Co-incubation of Pr12 and Pr17 with αSN 

To study the effects of Pr12 and Pr17 on fibrillation of αSN, we compared the fibrillation of 

monomeric αSN in the absence and presence of these two proteins. We incubated monomeric αSN 

with seeds made from aggregated Pr12 or Pr17. As seen in Fig. S10, neither Pr17 seeds (left) or Pr12 

seeds (right) had any significant effect on αSN fibrillation which in all cases fibrillated with a lag 

phase of  5 hours. 
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DISCUSSION 

Bacterial biofilm in the GI as a source of functional amyloid 

Functional amyloids such as curli fibrils are often part of bacterial biofilms. Up to 40% of all 

bacteria form biofilms [67] and it therefore comes as no surprise that biofilms and bacterial 

microcolonies have been observed in the human GI tract [68-70] where up to 1011 colony forming 

units (CFU) are found per mL gut content in the colon [71]. In addition, bacterial biofilms have been 

found associated to food particles in faecal samples from healthy individuals [27, 72] and have also 

been visualized directly in mice [73]. To date, however, studies of mucosal biofilms in the GI tract 

are largely limited to diseases like ulcerative colitis [74, 75], peptic ulcer disease [76], Crohn’s disease 

and cases of diarrhea [77].  

Here we sought to identify amyloid proteins in the microbiome of PD Tg rats and their healthy 

WT counterparts. One aspiration was to establish if the PD microbiome was enriched for 

amyloidogenic proteins, which might in turn indicate that microbial products produced in the GI tract 

could play a role in neurodegenerative diseases like Alzheimer’s [78] and Parkinson’s disease [12, 

79] as suggested. However, we observed strikingly similar numbers of hit proteins identified from 

either of the two groups (181 hits for the three PD samples vs 186 hits for the WT) and therefore 

cannot make any definite conclusions in this regard. Two proteins, here referred to as Pr12 and Pr17, 

were identified based on a combination of experimental (formic acid solubility/MS), bioinformatics 

analysis (the presence of a signal peptide and high amyloidogenicity across the amino acid sequence) 

and feasibility (a modest size compatible with recombinant expression). Both proteins were originally 

identified from the PD samples (Pr12 from the PD3 sample and Pr17 from the PD1 sample). The two 

proteins have not been biophysically characterized before but we show that both proteins readily form 

ThT-positive aggregates to some extent at all pH values investigated (pH 3-8). Pr17 even aggregates 

in the presence of high concentrations of urea. The aggregation process, however, did not follow 

classical sigmoidal kinetics which involve an initial lag phase where nuclei are formed and grow [80]. 

The absence of a lag phase is indicative of amorphous aggregation, even though fast amyloid 

formation has also been reported [81, 82]. The aggregates formed at pH 7.4 for both proteins show a 

major band between 1621 and 1627 cm-1 when analysed with FTIR, indicating extended -sheet 

structures like those present in amyloid fibrils. TEM images also revealed worm-like fibril structures 

for both proteins. However, when the stability of the aggregates towards FA was investigated, Pr12 

showed extreme sensitivity and dissolved at very low FA concentrations ([FA]50%  0.1%) while Pr17 

aggregates were more robust and required 32.7% FA for half of the aggregated material to dissolve. 
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This value is lower than the 80-100% required to dissolve functional amyloid fibrils such as CsgA 

and FapC into protein monomers [29, 65] (and also lower than the 50% value used as a criterion when 

searching the MS data for possible hits, cf. Materials and Methods and [31]). However, other 

functional amyloids, such as the TasA fibrils produced by Bacillus subtilis, have also been found to 

dissolve at lower ( 20%) FA concentrations [83] and we therefore cannot exclude that a given protein 

is an amyloid based on the FA stability alone. The presence of several amyloidogenic hotspots and 

two imperfect repeats in the Pr17 sequence further support its robust fibrillation behaviour. 

pH sensitivity of fibrillation and the GI tract 

It is noteworthy that Pr12 and Pr17 behave differently in terms of forming soluble vs insoluble 

aggregates between pH 3 and 8 in view of the great variation of intraluminal pH throughout the GI 

tract [84]. In the stomach, the pH can be as low as 1.5 in the fasting state (though food consumption 

increases this within minutes to around pH 5) [85] but rapidly changes to pH 6 in the duodenum and 

increases further to around neutral at the end of the small intestine. This is followed by a second drop 

to pH 5.7 in the cecum and a final increase to 6.7 when reaching the rectum [84]. Since the bacterial 

count in the stomach is very low (< 103 CFU per mL [86]), we believe that the conditions in the small 

and large intestines (pH values ranging from 5.7 to 7.4) are particularly relevant. 

Perspectives on the role of functional amyloid in PD 

Based on the results presented here, we conclude that Pr17 holds great promise as a novel 

functional amyloid protein while Pr12 instead appears to form less structured -aggregates. The 

presence of a relatively protease-resistant aggregation core indicates however that both proteins are 

able to form regular intermolecular contacts. We speculate that Pr12 might form even more stable 

amyloid fibrils in the presence of co-factors that could be available in vivo. Neither of the two proteins 

had any seeding effect on αSN fibrillation. This, however, does not necessarily mean that the 

microbiome is not involved in the development of PD. First of all, the rats investigated were relatively 

young (3 months) and the signs of disease at this age is still very modest, as evaluated by subtle 

locomotor deficits, reduced ability to discriminate smells and more dot-like appearance of αSN in the 

striatum nerve end terminals [32]. At this age, no deficits in locomotor activity could be detected and 

the amount of insoluble (urea-treated) αSN in most brain regions investigated (olfactory bulb, 

striatum, substantia nigra and hippocampus) was unchanged [32]. 
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TABLES 

Table 1: 11 proteins from the PD microbiome containing at least two replicates with sigmoidal 

solubility curves and predicted to have a signal peptide. 

Protein ID Software with a positive signal peptide 

prediction 

Mature protein length 

(aa) 

OAD22177.1 (Pr17) DeepSig, SignalP 4.1, SignalP 5 170 

SDM27287.1 DeepSig, SignalP 4.1, SignalP 5 480 

WP_032523104.1 (Pr12) DeepSig, SignalP 4.1, SignalP 5 105 

WP_004064712.1 SignalP 4.1, SignalP 5 1475 

WP_010522346.1 SignalP 4.1, SignalP 5 808 

EEZ20481.1 SignalP 5 380 

SFN13323.1 SignalP 4.1 411 

SFR13334.1 SignalP 5 361 

WP_004930518.1 SignalP 4.1 172 

WP_008197585.1 SignalP 5 121 

WP_092476479.1 SignalP 4.1 537 
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FIGURE LEGENDS 

Figure 1. Identification of potential amyloid protein candidates. (A) Percent relative abundance of 

the top 25 bacterial families in wild type (WT) and Parkinson's disease (PD) rats. The data is based 

on V1-V3 ASVs classified based on the AutoTax processed SILVA 138 SSURef Nr99 database [36]. 

Phylum names are provided together with the family names. (B) The eleven hit proteins proposed to 

contain a secretion signal peptide (there are 12 panels because SFN13323.1 is found in both WP1 and 

WT2). Data points can be hidden behind each other in some of the graphs. Not all proteins were 

identified in all three replicates. (C) Examples of negative controls including the household proteins 

glycose-6-phosphate isomerase (G6PI), 60 kDa chaperonin (60C) and phosphoenolpyruvate 

carboxykinase (PPCK). (D) TANGO analysis of Pr12 and (E) Pr17. The vertical red lines show the 

location of the signal peptide (SP). The horizontal dashed line represents an aggregation propensity 

value of 5%. In addition, both protein sequences were analysed with the RADAR tool [43] but 

imperfect repeats could only be identified for the Pr17 sequence (insert in (E)). 

Figure 2. Pr12 and Pr17 readily form ThT-positive aggregates. (a) Pr12 and (b) Pr17 were 

immediately subjected to a ThT fibrillation assay (left panel) after desalting. FTIR (right panel) was 

performed on the pellet after fibrillation and showed cross- characteristic peaks between 1620-1630 

cm-1. 

Figure 3. Fibrillation of Pr12 and Pr17 in the presence of urea. (A) Investigation of Pr12 aggregation 

in the presence of increasing concentrations of urea. (B) Amount of soluble protein left after 

aggregation determined by SDS-PAGE of the supernatants after centrifugation of samples in (A). (C) 

Investigation of Pr17 aggregation in the presence of increasing concentrations of urea followed by 

(D) SEC analysis of the same samples including a control of Pr17 in 8 M urea (to keep it monomeric). 

(E) Correlation between the ThT end levels from (C) and the ThT elution volumes from (D). (F) 

Correlation between the decrease in Pr17 oligomer and the increase in monomeric Pr17 with 

increasing urea concentrations. 

Figure 4. pH dependence of Pr12 and Pr17 aggregation. Pr12 (A) and Pr17 (D) were aggregated in 

the presence of ThT at different pH values and the samples were afterwards separated into soluble 

and insoluble fractions by centrifugation. The soluble part (the supernatant) was analysed with SDS-

PAGE for Pr12 (B) and Pr17 (E). TEM images of Pr12 (C) and Pr17 (F) aggregates formed at either 

pH 4 (top) or pH 6 (bottom).  

Figure 5. Stability investigations of Pr12 and Pr17 aggregates. (A) Aggregates formed by Pr17 were 

dissolved in increasing concentrations of urea (left) or formic acid (right) and the amount of dissolved 
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protein was visualized using SDS-PAGE after lyophilization. Quantification was performed on these 

gels using ImageJ. (B) Aggregates formed by Pr12 were dissolved in increasing concentrations of 

formic acid and dissolved protein was visualized with SDS-PAGE after lyophilization of 20 µL of 

the supernatant. The Pr12 aggregates dissolved at very low formic acid concentrations. Aggregates 

of Pr12 (C) and Pr17 (D) were subjected to digestion with increasing ratios of protein:proteinase K 

up to 1:1 (m/m) followed by SDS-PAGE analysis. 
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Figure 1. Identification of potential amyloid protein candidates. (A) Percent relative abundance of

the top 25 bacterial families in wild type (WT) and Parkinson's disease (PD) rats. The data is based

on V1-V3 ASVs classified based on the AutoTax processed SILVA 138 SSURef Nr99 database

(44). Phylum names are provided together with the family names. (B) The eleven hit proteins

proposed to contain a secretion signal peptide (there are 12 panels because SFN13323.1 is found in

both WP1 and WT2). Data points can be hidden behind each other in some of the graphs. Not all

proteins were identified in all three replicates. (C) Examples of negative controls including the

household proteins glycose-6-phosphate isomerase (G6PI), 60 kDa chaperonin (60C) and

phosphoenolpyruvate carboxykinase (PPCK). (D) TANGO analysis of Pr12 and (E) Pr17. The

vertical red lines show the location of the signal peptide (SP). The horizontal dashed line represents

an aggregation propensity value of 5%. In addition, both protein sequences were analysed with the

RADAR tool (52) but imperfect repeats could only be identified for the Pr17 sequence (insert in

(E)).

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.03.31.438001doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.438001
http://creativecommons.org/licenses/by-nc/4.0/


1624-1627 cm-1

1621-1622 cm-1

A

B

Christensen et al. Figure 2

Figure 2. Pr12 and Pr17 

readily form ThT-positive 

aggregates. (a) Pr12 and (b) 

Pr17 were immediately 

subjected to a ThT fibrillation 

assay (left panel) after 

desalting. FTIR (right panel) 

was performed on the pellet 

after fibrillation and showed 

cross- characteristic peaks 

between 1620-1630 cm-1.
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Christensen et al. Figure 3

Figure 3. Fibrillation of Pr12 and Pr17 in the presence of urea. (A) Investigation of Pr12 aggregation in the presence of 

increasing concentrations of urea. (B) Amount of soluble protein left after aggregation determined by SDS-PAGE of the 

supernatants after centrifugation of samples in (A). (C) Investigation of Pr17 aggregation in the presence of increasing 

concentrations of urea followed by (D) SEC analysis of the same samples including a control of Pr17 in 8 M urea (to keep it 

monomeric). (E) Correlation between the ThT end levels from (C) and the ThT elution volumes from (D). (F) Correlation 

between the decrease in Pr17 oligomer and the increase in monomeric Pr17 with increasing urea concentrations.
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Figure 7. pH dependence of Pr12 and Pr17 aggregation. Pr12 (A) and Pr17 (D) were aggregated in the presence of ThT

at different pH values and the samples were afterwards separated into soluble and insoluble fractions by centrifugation.

The soluble part (the supernatant) was analysed with SDS-PAGE for Pr12 (B) and Pr17 (E). TEM images of Pr12 (C) and

Pr17 (F) aggregates formed at either pH 4 (top) or pH 6 (bottom).
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Christensen et al. Figure 5

Figure 5. Stability investigations of Pr12

and Pr17 aggregates. (A) Aggregates

formed by Pr17 were dissolved in

increasing concentrations of urea (left) or

formic acid (right) and the amount of

dissolved protein was visualized using

SDS-PAGE after lyophilization.

Quantification was performed on these

gels using ImageJ. (B) Aggregates formed

by Pr12 were dissolved in increasing

concentrations of formic acid and

dissolved protein was visualized with

SDS-PAGE after lyophilization of 20 µL

of the supernatant. The Pr12 aggregates

dissolved at very low formic acid

concentrations. Aggregates of Pr12 (C)

and Pr17 (D) were subjected to digestion

with increasing ratios of

protein:proteinase K up to 1:1 (m/m)

followed by SDS-PAGE analysis.
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Table S1: Number of proteins and putative amyloids identified by MS/MS. 
 

PD1 PD2 PD3 WT1 WT2 WT3 

Proteins identified 1214 1314 1145 1048 1183 447 

Putative amyloids 110 49 22 89 73 24 

Putative amyoids (%) 9.1 3.7 1.9 8.5 6.2 5.4 
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Table S2: Proteins with amyloid characteristic formic acid resistance in at least two replicates.  

NCBI accession Description Sample 

CCY16765.1 30S ribosomal protein S10  PD1 

WP_039646517.1 MULTISPECIES: 50S ribosomal protein L11  PD1 

WP_057773609.1 elongation factor Tua PD1 

WP_075126584.1 elongation factor Tua  PD1 

WP_003648636.1 elongation factor Tua  PD1 

WP_093135193.1 molecular chaperone DnaK  PD1 

OFX39478.1 pyruvate:ferredoxin (flavodoxin) oxidoreductase  PD1 

CBL09414.1 hypothetical protein ROI_24490  PD1 

SCH57546.1 Pyruvate%2C phosphate dikinasea  PD1 

WP_004071889.1 flagellin  PD1 

WP_011245737.1 MULTISPECIES: molecular chaperone GroEL  PD1 

WP_016228711.1 formate acetyltransferase  PD1 

WP_084256702.1 L-rhamnose isomerase  WT1 

WP_092969895.1 sn-glycerol-3-phosphate ABC transporter ATP-binding protein 

UgpC  

WT1 

GAP43239.1 DNA-directed RNA polymerase subunit   WT1 

CDD47242.1 putative uncharacterized protein  WT1 

EQB89936.1 hypothetical protein M918_18135  WT1 

CDF42960.1 4-hydroxy-3-methylbut-2-enyl diphosphate reductase/S1 RNA-

binding domain protein  

WT1 

OGH97713.1 Reverse rubrerythrin-1  WT1 

WP_069198253.1 lysine-sensitive aspartokinase 3, partial  WT1 

SDA77697.1 formate C-acetyltransferase  WT1 

WP_004055611.1 ABC transporter ATP-binding protein  WT1 

WP_008391483.1 MULTISPECIES: 50S ribosomal protein L27  WT1 

CCX47505.1 ATP synthase subunit  WT1 

WP_072742756.1 F0F1 ATP synthase subunit  WT2 

WP_074650570.1 pyruvate, phosphate dikinasea  WT2 

WP_009757376.1 phosphoenolpyruvate carboxykinase  WT2 

Note: 
a These proteins, though described by the same name, represent different homologs in the NCBI 

database used as a reference for peptide mapping. 
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SUPPLEMENTARY FIGURES 

Figure S1 

Principal Coordinates Analysis (PCoA) 

based on the Bray-Curtis distance measure 

(108) of 6 samples and 1179 ASVs. Prior to 

the analysis, ASVs that are not present in 

more than 0.01% relative abundance in any 

sample were removed. No initial data 

transformation was applied. The relative 

contribution (eigenvalue) of each axis to the 

total inertia in the data is indicated in 

percent in the axis titles. ANOSIM was used 

to statistically test whether there was a significant difference in the bacterial composition between 

WT and PD rats. The statistics are provided in the plot. 

Figure S2 

 

The occurrence of proteins identified by LQF analysis and their median abundance (log-transformed). 

The x-axis represents the number of replicates where tryptic peptides from a specific protein was 

identified. The two proteins investigated in detail in this study (Pr17 and Pr12) are shown in orange 

and blue, respectively. 
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Figure S3. SDS-PAGE analysis of Ni-NTA purified samples of Pr12 and Pr17.  

 

Figure S4. Blow up of the first 2 h of the signal change in Fig. 5. An initial dip in ThT fluorescence 

around t = 0 is observed for all samples.  
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Figure S5. Supernatants of Pr12 samples after fibrillating 0.5 mg/mL protein in the presence of 

different concentrations of urea. The lanes between 1.5 M and 2 M urea are empty with some spill 

over from the other lanes. 

 

 

Figure S6. (A) Retardation of the ThT elution peak with increasing urea concentrations (and thereby 

increasing viscosity). Pr17 samples from the SEC experiments were analyzed with SDS-PAGE using 

either non-reducing (B) or reducing (C) loading buffer. 
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Figure S7. Aggregation of Pr12 at pH 7.4 in the presence of (A) 0.5-3.5 M urea or (B) 0.2 M urea 

(B) using a 60 mM Tris buffer instead of 1X PBS. (C) Amount of soluble protein left after aggregation 

was quantified by SDS-PAGE. (D) Seven samples containing the same solution of 0.5 mg/mL Pr12 

were fibrillated to check if the differences in ThT end level was a consequence of different aggregate 

structures being formed. (D) The seven samples from panel D gave rise to identical FTIR spectra. 

 

 

Figure S8. Aggregation of Pr17 at different pH values. Blue curves (pH 6) show highly irreproducible 

aggregation kinetics.  
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Figure S9. Dissolution of Pr17 aggregates by incubation with increasing concentrations of formic 

acid (left) or urea (right). 

 

 

Figure S10. No cross-interaction is observed between monomeric αSN and seeds made of (A) Pr17 

and (B) Pr12. 1 mg/mL αSN was fibrillated in the presence of different concentrations (percentage 

mass/mass) of Pr12/Pr17 seeds. The experiments were done in triplicates. 
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