Abstract
Clathrin-mediated endocytosis (CME) is an essential cellular process, which is evolutionarily conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of pharmacological agents that could complement genetics in selectively and reversibly interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor that targets the AP2/β-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells. Here, we study endocytic protein dynamics by live-cell imaging of the fluorescently tagged coat-associated protein Sla1-GFP and demonstrate that TL2 retains its inhibitory activity in S. cerevisiae spheroplasts, thus providing a unique tool for acute and reversible CME modulation in yeast.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* E-mail: mgfbmc{at}ibmb.csic.es (M.I.G.)