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The brain’s functionality is developed and maintained through synaptic plasticity. As synapses undergo plasticity
they also affect each other. The nature of such “codependency” is difficult to disentangle experimentally, because
multiple synapses must be monitored simultaneously. To help understand the experimentally observed phenom-
ena, we introduce a framework that formalises synaptic codependency between different connection types. The
resulting model explains how inhibition can gate excitatory plasticity, while neighbouring excitatory-excitatory
interactions determine the strength of long-term potentiation. Furthermore, we show how the interplay between
excitatory and inhibitory synapses can account for the quick rise and long-term stability of a variety of synaptic
weight profiles, such as orientation tuning and dendritic clustering of co-active synapses. In recurrent neuronal
networks, codependent plasticity produces rich and stable motor cortex-like dynamics with high input sensit-
ivity. Our results suggest an essential role for the neighbourly synaptic interaction during learning, connecting
micro-level physiology with network-wide phenomena.

The remarkable property of synapses to change – synaptic
plasticity – is thought to be the brain’s fundamental mech-

anism for learning, and it has generated a large body of the-
oretical and experimental work1–4. Based on Hebb’s postulate
and early experimental data, theories have focused on the idea
that synapses change solely based on the activity of their pre-
and postsynaptic counterparts5–12, defining synaptic plasticity
as predominantly a local process that is controlled by global
modulatory signals. However, experimental evidence13–22 has
pointed towards learning mechanisms that act non-locally at
the mesoscale, taking into account the activity of multiple syn-
apses and synapse types nearby. For example, excitatory syn-
aptic plasticity (ESP) has long been known to rely on inter-
synaptic cooperativity by way of elevated calcium concentra-
tions from the activation of multiple presynaptic excitatory
synapses17–20. Interestingly, GABAergic, inhibitory synaptic
plasticity (ISP) has also been shown to depend on the activa-
tion of neighbouring excitatory synapses: ISP is blocked when
excitatory synapses are deactivated13,14, and the magnitude of
the changes depends on the ratio of local excitatory and in-
hibitory currents (EI balance)13. Finally, inhibitory currents
can affect ESP, either flipping the direction of efficacy changes
according to the absence or presence of inhibitory currents
in the vicinity of the synapse15,16, or maximising ESP during
local disinhibition23 caused by modulatory inputs24. Long-
term potentiation (LTP) at excitatory synapses has also been
shown to depend on the distance and timing between suc-
cessive LTP inductions of neighbouring excitatory synapses25.
Moreover, Hebbian LTP has been shown to trigger long-term
depression (LTD) at neighbouring synapses21 through a hetero-
synaptic plasticity mechanism. There is currently no unifying
framework to incorporate these experimentally observed inter-
dependencies at the mesoscopic level of synaptic plasticity.

Existing models typically aim to explain, e.g., how cell as-
semblies are formed and maintained26,27. In these studies, local
plasticity rules are typically complemented with non-local pro-
cesses such as normalisation of excitatory synapses27, or mod-
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ulation of inhibitory synaptic plasticity by the average network
activity10, for stability. Moreover, intricate spatiotemporal dy-
namics, such as the activity patterns observed in motor cortex
during reaching movements28, can only be reproduced when
inhibitory connections are optimised (i.e., hand tuned) by it-
eratively changing the eigenvalues of the connectivity matrix
towards stable values29, or learned by non-local supervised al-
gorithms such as FORCE30,31. However, models that rely on
connectivity changes triggered by non-local quantities are usu-
ally based on the optimisation of network dynamics29–31, and
often don’t reflect biologically relevant mechanisms (but see
Kirchner and Gjorgjieva 32 ).

In order to fill the theoretical gap in non-local, mesoscopic
synaptic plasticity rules, we introduce a new model of codepend-
ent synaptic plasticity that takes into account the direct inter-
action between different neighbouring synapses. Our model
can account for a wide range of experimental data on excit-
atory plasticity and receptive field plasticity of excitatory and
inhibitory synapses, and makes predictions for future experi-
ments involving multiple synaptic stimulation. Furthermore,
it provides a mechanistic explanation for experimentally ob-
served synaptic clustering and for how dendritic morphology
plays a role to facilitate the emergence of single (clustered) or
mixed (scattered) feature selectivity. Finally, we show how
naïve recurrent networks can grow into strongly connected,
stable and input sensitive circuits showing amplifying dynam-
ics.

Results

We developed a general theoretical framework for synaptic
plasticity rules which accounts for the interplay between dif-
ferent synapse types during learning. In our framework, ex-
citatory and inhibitory synapses change according to the func-
tions φE(E, I; PRE,POST) and φI(E, I; PRE,POST), respectively
(Fig. 1A). The signature of the codependency between neigh-
bouring synapses is given by E and I, which describe the re-
cent postsynaptic activation of nearby excitatory and inhibit-
ory synapses, respectively. The activity of the synapse’s own
pre- and postsynaptic neurons, i.e., the synapse’s local activ-
ity, is described by the variables PRE and POST, respectively.
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FIG. 1. Codependent synaptic plasticity model. A, Codependent ex-
citatory (top) and inhibitory (bottom) plasticity. Plasticity of a synapse
(highlighted with black contour) depends on the activation of neigh-
bouring excitatory (red) and inhibitory (blue) synapses, together with
local pre- and postsynaptic activity. B, Excitatory weight change, ∆wE,
is a function of the time interval between post and presynaptic spikes,
∆t, and neighbouring synaptic inputs, E and I. C, Excitatory inputs, E,
control Hebbian-LTP (green line; ∆t > 0) and heterosynaptic plasticity
(orange line), which combined (grey line) create a common set point
for the total excitatory input (red dot). D, Inhibitory inputs, I, gate ex-
citatory plasticity (’ESPON’ vs ’ESPOFF’). E, Inhibitory weight change,
∆wI, is a function of ∆t and neighbouring synaptic inputs (as in panel
B). F and G, Synaptic changes in inhibitory synapses as a function of
excitatory (panel F) and inhibitory (panel G) inputs.

We modelled E and I as variables that depend on neighbour-
ing synaptic currents: calcium influx through N-methyl-D-
aspartate (NMDA) channels for E, and chloride influx through
γ-Aminobutyric acid type A (GABAA) channels for I (see Meth-
ods). The impementation of excitatory and inhibitory plasticity
rules vary slightly, as follows below.

Codependent excitatory plasticity model. The rule
φE(E, I; PRE,POST) by which excitatory synaptic efficacies
change is constructed similarly to classic spike-timing depend-
ent plasticity (STDP) models17,33: pre-before-post spike pat-
terns elicit potentiation while post-before-pre elicits depres-
sion (Fig. 1B). In addition, synaptic changes are modulated
by neighbouring excitatory and inhibitory activity such that
the learning rate for potentiation increases linearly with the
magnitude of neighbouring excitatory inputs17,18,20 (Fig. 1C,
green line). This potentially de-stabilising positive feedback,
in which potentiation leads to bigger excitatory currents which
in turn leads to more potentiation, is counterbalanced by in-
cluding an experimentally observed heterosynaptic term10 that
weakens synapses via a quadratic dependency on the neigh-
bouring excitatory currents21,34 (Fig. 1C, orange line). To-
gether, pre-before-post potentiation and and heterosynaptic
weakening form a fixed-point in the dynamics of synaptic
weights. Weak to intermediate excitatory currents elicit syn-
aptic strengthening. Strong currents induce synaptic weaken-
ing (Fig. 1C, grey line). In addition to neighbouring excitatory-
excitatory effects, we constructed the model such that elevated
inhibition blocks excitatory plasticity35: Only when synapses
are disinhibited can excitatory plasticity change synaptic ef-
ficacies (Fig. 1D), but in the presence of inhibitory currents,
excitatory synapses remain fixed.

Codependent inhibitory plasticity model. Inhibitory syn-
apses change according to a function φI(E, I; PRE,POST) that
follows a symmetric STDP curve13,36 (Fig. 1E) – synaptic
changes are scaled according to the temporal proximity of pre-
and postsynaptic spikes. Similar to excitatory plasticity, the
learning-rate of inhibitory plasticity is modulated by neigh-
bouring excitatory and inhibitory activity (Fig. 1F,G). In this
case, when E and I currents are equal (E = I), or when excitat-
ory currents vanish (E = 0)13,14, there is no change in the efficacy
of inhibitory synapses: they remain constant. LTP is induced
when excitatory neighbour currents are stronger than inhib-
itory ones, and vice-versa for LTD. As a consequence, spike
times and neighbouring synaptic currents act together but in
different timescales, short timescales governed by spikes and
long timescale by synaptic currents.

Stability of excitatory currents. We implemented the above
rules in a single leaky integrate-and-fire (LIF) neuron with
plastic excitatory synapses that emulate α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA re-
ceptors, as well as inhibitory (GABAA) synapses (Fig. 2A; see
Methods). We initially kept inhibitory synapses fixed and as-
sessed properties of codependent excitatory plasticity alone.
We found that our model reproduced the classic experimental
results that show the influence of membrane potential depol-
arisation on synaptic efficacy changes, such that LTD-inducing
protocols became LTP-inducing when accompanied by large
postsynaptic depolarisation18 (Fig. 2B). In the experiment, the
switch from LTD to LTP is due to an increase in the magnitude
of excitatory currents through NMDA channels for depolar-
ised states. In our model, larger excitatory inputs currents
translated into an increased variable E, eliciting stronger LTP
(see Fig. 1C). Similarly, the interaction of pre- and postsyn-
aptic spikes can also account for efficacy changes based on the
frequency of spike pair presentations (Fig. 2C). Notably, in our
model, high-frequency of pre- and postsynaptic spike pairs eli-
cited increased LTP (Fig. 2C) due to a direct elevation in excitat-
ory currents (see Fig. 1C). Spike-6,10 or voltage-based7 models
imitate the influence of spike frequency on LTP amplitudes
by reacting to an increase in the postsynaptic firing frequency
and the consequent increase in spike triplets (post-pre-post).
Our model thus varies in the locus of its mechanism: elevated
excitatory currents, i.e., a presynaptic driven effect, instead of
elevated postsynaptic activity.

In our model, the explicit regulation of plasticity via excit-
atory and inhibitory currents can alter amplitude, and direc-
tion, of synaptic change (Fig. S1A-C). The classic frequency-
dependent protocol17, for example, has different effects when
neighbouring excitatory and inhibitory synapses are simultan-
eously activated (Fig. 2D,E), highlighting the different roles
of neighbouring excitation and inhibition. In contrast, in the
traditional spike-6,10 or voltage-based7 learning rules, neigh-
bouring activation do not affect plasticity as long as it does
not influence pre- and postsynaptic spike patterns or the mean
postsynaptic membrane potential, i.e., due to balanced excitat-
ory and inhibitory currents (Fig. S2). Moreover, the set-point
for the total excitatory current onto a dendritic branch, which
emerges from the combination of the Hebbian-LTP and hetero-
synaptic terms, inherent to our rule (see Fig. 1C, red circle), is
determined by the ratio between the learning rate of these two
mechanisms (Fig. 2F). The total excitatory current received by
a neuron, established by this set-point, is independent of ini-
tial excitatory weights and inhibitory input strength (Fig. 2G).
With the same amount of excitation – given by the set-point –
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FIG. 2. Codependent excitatory synaptic plasticity: influence of voltage and firing-frequency, and
excitatory current set-point. A, Schematic of the different configurations of the simulation protocols
used with codependent excitatory synaptic plasticity. Top: Two unidirectly connected excitatory
neurons (used in panels B and C). Middle: Same as top panel but with extra presynaptic inhibitory
and excitatory neurons whose connections are static (used in panels D and E). Bottom: A population
of 800 excitatory (plastic synapses) and 200 inhibitory (static synapses) neurons connected to a
postsynaptic neuron (used in panels F to I). B, Changes in excitatory synapses, ∆wE, as a function
of the postsynaptic depolarisation for a 10-ms pre-before-post protocol at 50 Hz. Experimental data
points from mouse visual cortex18. C, Changes in excitatory synapses, ∆wE, as a function of spike
frequency for a spike-timing dependent plasticity protocol with pre-before-post (10 ms) and post-
before-pre (−10 ms). Experimental data points from rat visual cortex17. Error bars indicate SEM.
D, Same as panel C for different firing-rates of neighbouring excitatory
and inhibitory afferents (colour coded). Plot shows changes in syn-
aptic weight of a single connection while the other two (excitatory and
inhibitory) are kept fixed. Excitatory and inhibitory weight of neigh-
bouring synapses were chosen to keep the initial (before plasticity)
excitatory and inhibitory currents balanced, and thus same average
membrane potential for the same input frequency. E, Weight change
as a function of input frequency (from neighbouring excitatory and
inhibitory synapses; y-axis), and frequency of pairs of spikes (x-axis).
Arrows indicate constant input frequencies used in panel D. F-H, Total
excitatory current (after learning) as a function of the heterosynaptic
learning rate (panel F), initial excitatory weights (panel G), and inhib-
itory weights (panel H). I, Firing-rate of the postsynaptic neuron after
learning of excitatory synapses for different inhibitory weights for the
same simulations in panel H.

the more inhibition a neuron receives, the lower its firing-rate
(Fig. 2H).

EI balance and firing-rate set-point. The dynamics of tra-
ditional spike-based plasticity rules can be approximated by
the firing-rate of pre- and postsynaptic neurons8,26. In these
types of models, stable postsynaptic activity may be achieved
if synaptic weights change towards a firing-rate set-point8,10

that controls the dynamics such that excitatory weights in-
crease when the postsynaptic firing-rate is lower than the set-
point and decrease otherwise10,26. In the same vein, inhibitory
weights decrease for low postsynaptic firing-rates (below the
set-point) and increase for high firing-rates8,37. When both
excitatory and inhibitory synapses are plastic (Fig. 3A), the
fixed-points from both rules must match to avoid a competi-
tion between synapses (Fig. 3B) that would result in synaptic
weights to either diverge or vanish (Fig. 3C). Codependent
inhibitory plasticity does not have such a problem because
there is no firing-rate set-point. Instead, it acts explicitly on
excitatory and inhibitory currents (see Fig. 1F,G, and Methods;
Fig. S1D), allowing various stable activity regimes for a post-
synaptic neuron while avoiding competition with excitatory

plasticity (Fig. 3D). A state of global
balance between excitation and inhib-
ition, defined by average balance with
unspecific correlation between excita-
tion and inhibition for specific input
directions (e.g., sound frequency23),
naturally arises. The complementary
spike-based component of codepend-
ent inhibitory plasticity (see Fig. 1E)
is necessary for the development of
a state of detailed balance, defined
by correlated excitatory and inhibitory
currents for each input direction.

Receptive field plasticity. Sensory
neurons have been shown to respond
more strongly to some features of the
stimuli than others, which is thought
to facilitate recognition, classification,
and discrimination of stimuli. The
shape of a neuron’s response pro-
file, i.e., its receptive field, is a res-
ult of its input connectivity23. Re-
ceptive fields are susceptible to change
when an animal learns38, with strong
evidence supporting receptive field
changes as a direct consequence of
synaptic plasticity39.
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FIG. 3. Codependent inhibitory synaptic plasticity: EI balance
without firing-rate set-point. A, Schematic of the simulations used in
panels C and D. A postsynaptic neuron receives 800 excitatory and 200
inhibitory synapses that undergo plasticity, indicate by ∗. B, Schematic
of changes in synaptic weight, ∆w, as a function of the postsynaptic
neuron’s firing-rate for spike-based models with stable set-points. Top:
Firing-rate set-point from excitatory synaptic plasticity (ESP) is higher
than the one from inhibitory synaptic plasticity (ISP). Bottom: Firing-
rate set-point from ISP is higher than the one from ESP. The interval
between the set-point is defined as ∆r. C, Combination of excitatory10

and inhibitory8 spike-based rules. Top: Firing-rate of a postsynaptic
neuron receiving excitatory and inhibitory inputs. Red and blue lines
indicate the firing-rate set points imposed by the excitatory10 and
inhibitory8 spike-based learning rules, respectively. The parameters
of the learning rules were chosen so that the set-points coincide during
the first and third quarters of the simulation. During the second and
fourth quarters of the simulation, the set-point imposed by the excitat-
ory spike-based learning rule is increased and decreased, respectively.
Middle: Ratio between excitatory and inhibitory currents. Bottom: Av-
erage excitatory (red) and inhibitory (blue) synaptic weights of input
neurons normalised to initial value. D, Same as panel C for the combin-
ation of excitatory spike-based10 and codependent inhibitory synaptic
learning rules. The blue line in the middle panel indicates the balance
set-point imposed by the codependent inhibitory synaptic plasticity.
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excitatory input groups (Fig. S3A) in the absence of inhibition establishes a receptive field profile. C, Continued simulation from panel B. Weights
are stable until inhibition is down-regulated for a 200-millisecond window, indicated by the shaded area and ∗, during which the green pathway
(#4) is activated (Fig. S3B). Consequently, the preferred input pathway switches from #6 (pink) to #4 (green). D, Snapshots of the average synaptic
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by the ? symbols in panel C. E, Experimental data23 shows receptive field profiles of excitatory and inhibitory inputs before (top), as well as 30
minutes (middle) and 180 minutes (bottom) after pairing of non-preferred tone and nucleus basalis activation. Error bars indicate SEM.

To assess the functional consequence of codependent plasti-
city, we studied its performance in receptive field formation for
both excitatory and inhibitory synapses jointly. We simulated
a postsynaptic LIF neuron receiving inputs from 8 pathways
(see Methods) that represent, e.g., different sound frequencies23

(Fig. 4A). In this scenario, inhibitory activity acted as a gat-
ing mechanism for excitatory plasticity, by keeping the learn-
ing rate at a minimum when inhibitory currents were high
(see Fig. 1D). Excitatory input weights could thus only change
during periods of presynaptic disinhibition, i.e., the learning
window (Fig. S3), and were otherwise stable (Fig. 4B,C). In
our simulation, we initially set all excitatory weights to the
same strength. A receptive field profile emerged at excitat-
ory synapses after a specific sequence of strong stimulation
of pathways during the first learning window. The acquired
excitatory receptive profile remained stable (static) for hours
after the learning period (Fig. 4B, top). Inhibitory synapses
changed on a slower timescale (Fig. 4B, bottom) and, due to
the spike-timing dependence of codependent ISP, developed
a co-tuned field with the excitatory receptive field (Fig. 4D,
top). Inspired by experimental work23, we then briefly activ-
ated a non-preferred pathway during a period of disinhibi-
tion (Fig. 4C, top), altering the tuning of excitatory weights
and making the previously non-preferred pathway preferred
(Fig. 4D, middle). This change in tuning happened thanks to
the Hebbian component of the codependent excitatory plas-
ticity rule that induced LTP in the active pathway, and the
heterosynaptic plasticity component triggering LTD in path-
ways that were inactive during the learning window. As be-
fore, inhibitory weights were reshaped by codependent ISP to
a co-tuned field with the most recent excitatory receptive field
(Fig. 4C, bottom), reaching a state of detailed balance3 (Fig. 4D,
bottom). Changes in both excitatory and inhibitory inputs due
to codependent plasticity thus reproduced experimental res-
ults in rat auditory cortex23 (Fig. 4E) without external control.

The formation of stimulus-tuned excitation and co-tuned
inhibition was only successful when the learning rules were
codependent, and the learning rate of inhibitory plasticity was
slow. When excitatory and inhibitory plasticity operated at
similar time scales, inhibitory plasticity prevented excitatory
weights to change during disinhibition (Fig. 5A, top), because

any externally induced decrease in inhibition (disinhibition)
was quickly compensated for by inhibitory plasticity (Fig. 5A,
bottom). When we reduced the level of codependency, excit-
atory weights varied wildly, because the modulatory control
of inhibitory currents over excitatory plasticity did not effect-
ively decrease the learning rate of excitatory plasticity (Fig. 5B,
top). Although a preferred input signal could be momentar-
ily established after the learning window (Fig. 5B, top), the
new preference was soon lost because baseline levels of inhibi-
tion were not blocking ongoing excitatory plasticity. Inhibitory
plasticity quickly compensated the induced disinhibition dur-
ing the learning period (Fig. 5B, bottom), but inhibitory weights
remained unspecific, i.e., without developing a receptive field-
like profile.

Dendritic clustering with single or mixed feature selectivity.
The dendritic tree of neurons is a intricate spatial structure that
can achieve complex neuronal processing in single neurons
that is impossible in single-compartment neuron models40. To
assess how our learning rules affected the dendritic organisa-
tion of synapses, we attached passive dendritic compartments
to the soma of our model. Dendritic membrane potentials
could be depolarised to values well above the somatic spiking
threshold depending on their proximity, i.e., electrotonic dis-
tance, to the soma (Fig. 6A). These super-threshold membrane
potential fluctuations gave rise to larger NMDA and GABAA
current fluctuations in distal dendrites (Fig. 6B). Like in the
single compartmental models, when excitation and inhibition
were unbalanced (i.e., when receiving uncorrelated inputs),
distal dendrites could undergo fast changes due to the current-
induced high learning rates for excitatory plasticity (Fig. 6B,
thick red line). However, when currents were balanced (i.e.,
when receiving correlated excitatory and inhibitory inputs),
larger inhibitory currents gated excitatory plasticity off des-
pite strong excitation, effectively blocking excitatory efficacy
changes in these compartments (Fig. 6B, thick blue line). Ad-
ditionally, the larger distance to the soma, and its consequently
weaker passive coupling (Fig. 6C), meant that distal dendrites
had a smaller influence on the initiation of postsynaptic spikes.

As a consequence of these two effects – location dependent
learning-rates and influence on somatic spike initiation – syn-
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tion similar to Fig. 4B, but with weak inhibitory control over excitatory
plasticity. The learning window is set between t = 10 and t = 10.1
seconds with the same levels of disinhibition and excitatory activation
sequence as in panel A. Baseline levels of inhibitory currents do not
block excitatory plasticity, and thus excitatory weights continuously
change.

apses developed differently according to their somatic prox-
imity (Fig. 6D) and according to the activity of their neigh-
bouring inputs. When the majority of excitatory inputs onto a
dendritic compartment were co-active, i.e., originated from the
same source (representing same stimulus feature such as sound
frequency23), their co-active synapses were strengthened, cre-
ating a cluster of similarly tuned inputs onto a compartment
(Fig. 6D, middle). Uncorrelated, independently active excitat-
ory synapses weakened and eventually faded away (Fig. 6D,
middle). In contrast, when more than a certain number of
excitatory inputs were independent, co-active synapses de-
creased in weight and faded, while independently active ex-
citatory synapses strengthened (Fig. 6D, right). The number
of co-active excitatory synapses necessary for a dendritic com-
partment to develop single-feature tuning varied with somatic
proximity, and whether excitation and inhibition were matched
(Fig. S4). Notably, in the balanced state, substantially more co-
active excitatory synapses were necessary to create clusters
at distal than at proximal dendrites (Fig. 6E), because only
large groups of co-active excitatory synapses could initiate
LTP-inducing pre-before-post spike pairs. Thus, single-feature
selectivity41,42 or mixed selectivity43 emerged in our model
depending on the branch architecture of the dendritic host
structure similar to what has been observed experimentally44,45

(Fig. 6F).

Transient amplification in recurrent spiking networks. Up
to this point we explored the effects of codependent synaptic
plasticity in a single postsynaptic neuron. However, recurrent
neuronal circuits typically amplify instabilities of any synaptic
plasticity rules at play10,47. We thus investigated codepend-
ent plasticity in a recurrent neuronal network of 1250 spik-
ing neurons (see Methods; Fig. 7A). In our model, excitatory
and inhibitory codependent plasticity allowed the network to
self-stabilise in a high-conductance state48, with low effective
neuronal membrane time-constants (Fig. 7B, left), and strong
excitatory connections that were precisely balanced by equally
strong inhibition (Fig. 7B, middle, and Fig. S5). Remarkably, the
network exhibited a wide distribution of baseline firing-rates

(Fig. 7B, right), similar to what has been observed in cortical
recordings in vivo49. To investigate the dynamic behaviour of
the network in response to perturbations, we first analysed the
learned connectivity matrix of the network with regard to the
weights of incoming and outgoing synapses, to identify the
neurons which affect the network most strongly (see Methods;
Fig. 7C). Next, we delivered step-like stimuli to these neur-
ons, to simulate a large sensory stimulus propagating to other
neurons of the network (Fig. 8A,B). We observed several types
of responses, ranging from minimal deflections in firing rate
to large transient responses, either during the delivery of the
stimulus, or in response to its termination. To further quantify
these responses, we calculated the average and the `2-norm of
the population (Fig. 8B). Both these measures confirmed that
the network was in a regime of ’transient amplification’29,50,51,
i.e., a highly responsive state thought to underlie computation-
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FIG. 6. Mixed and single feature selectivity on dendrites depend on
presynaptic correlations and distance between soma and dendrite.
A, Membrane potential fluctuations at distal (top) and proximal (bot-
tom) dendrites during ongoing stimulation. Dashed line shows the
spiking threshold at the soma. B, NMDA (red) and GABAA (blue) cur-
rents as a function of membrane potential. Spiking threshold and reset
are indicated by dotted and dashed lines, respectively. C, Coupling
strength between soma and dendritic branch as a function of elect-
rotonic distance fitted to experimental data46. D, Schematic of the
synaptic organisation onto a dendrite (left). Each line represents a
synapse, with co-active synapses bearing the same colour. Examples
of clustering of co-active (middle) or independent (right) synapses res-
ulting in single or mixed feature selectivity, respectively, at the level
of the dendrite. Line length indicates synaptic weight in arbitrary
units. E, Clustering index as a function of the size of co-active input
group for distal (orange) and proximal (yellow) dendrites with inde-
pendent (top) and matching (bottom) excitatory and inhibitory inputs.
Clustering index is equal to 1 (respectively−1) when only co-active (re-
spectively independent) synapses survived and 0 when all synapses
survived (see Methods). F, Clustering index (colour-coded) as a func-
tion of the size of co-active input group (x-axis) and the distance from
the dendrite to the soma (y-axis) for independent (top) and matching
(bottom) excitatory and inhibitory inputs. Dark green indicates single
feature selectivity while brown indicates mixed feature selectivity.
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FIG. 7. Recurrent network of spiking neurons become highly sens-
itive after learning period with codependent synaptic plasticity.
A, Network of 1000 excitatory and 250 inhibitory neurons. Connec-
tions between excitatory neurons and from inhibitory to excitatory
neurons are plastic (indicated by ∗). During learning, the external
stimulation decreases over time until a state of self-sustained activ-
ity is reached. B, Summary of changes in excitatory neurons, before
(grey) and after (pink) a learning period of 10 hours. Left: Effective
time constant, calculated as the membrane time constant divided by
the sum of all conductances. Error bars indicate SD. Middle: Correl-
ation between excitatory and inhibitory currents. Right: Firing-rate
distribution. C, Excitatory and inhibitory connections before (grey)
and after (pink) learning. Left: Incoming excitatory connections per
excitatory neuron. Neurons are ordered from strongest to weakest
connection after learning. Middle: Incoming inhibitory connections
per excitatory neuron. Neurons are ordered as in the left panel. Right:
Output excitatory connections per excitatory neuron. Neurons are
ordered as in the left panel.

through-population-dynamics52 (Fig. 8B). The trajectory of the
population dynamics in principle component space showed
reliable network wide activity patterns (Fig. 8C) that could be
used to control the activity of a readout network with two
output units to draw digits (Fig. 8D).

Discussion

In this paper we introduced a general framework to describe
synaptic plasticity as a function of local pre- and postsynaptic
interactions, including the modulatory effects of nearby syn-
apses. We built the excitatory and inhibitory plasticity rules
according to experimental observations, such that the effect of
neighbouring synapses could gate, control, and even invert
the direction of efficacy changes13–20,25. Importantly, excitatory
and inhibitory plasticity were constructed such that they strove
towards different fixed points (constant levels of excitatory
currents for excitatory plasticity and EI balance for inhibtory
plasticity), thus collaborating without mutual antagonism.

In our model, inhibition played an important role in con-
trolling excitatory plasticity, allowing us to make several pre-
dictions. First, during periods of disinhibition, inhibitory plas-
ticity has to be slower than excitatory plasticity. A reduc-
tion in the amplitude of inhibitory currents directly increased
the learning rate of excitatory plasticity, thus allowing for a
quick (re-)arrangement of excitatory weights. This effect was
prevented if inhibitory weights could immediately increase
to compensate the disinhibitory effect, establishing a limit for
how fast inhibitory synapses can change. Second, inhibitory
control over excitatory plasticity has to be relatively strong.
The mechanism that allows excitatory weights to quickly re-
organise during periods of disinhibition was also responsible
for long-term stability of such modifications when inhibitory
activity was at baseline levels. Without strong control, excitat-
ory weights constantly changed due to pre- and postsynaptic
activity, drifting away from the synaptic weight pattern estab-

lished during the period of disinhibition. Finally, our model
also predicts that dendrites on which synaptic contacts of both
excitatory and inhibitory presynaptic neurons have uncorrel-
ated activity should likely form a connectivity pattern reflect-
ing single-feature selectivity. In this scenario, the initial con-
nectivity pattern will reflect whether a dendritic region may
respond to only a few or many input features.

In our model, neighbouring excitatory influence on synaptic
plasticity was driven by slow, NMDA-like, excitatory currents,
which were required to elicit LTP at excitatory synapses. As
a direct consequence, the same pattern of pre- and postsyn-
aptic spike times could produce distinctly different weight dy-
namics depending on the levels of postsynaptic depolarisation
(due to an increase in excitatory currents through NMDA chan-
nels caused by the release of the magnesium block53). How-
ever, an increase in excitatory activity can lead to a rise in the
amplitude of excitatory currents (thus also eliciting stronger
LTP), even without depolarisation of the postsynaptic neuron
(when, e.g., inhibition tightly balances excitation). Postsyn-
aptic membrane potential and presynaptic spike patterns thus
independently control the LTP component of excitatory plas-
ticity in our model. This is in line with cooperative view on
synaptic plasticity20, and experimental findings showing that
high-frequency stimulation, which usually elicits LTP, produce
LTD when NMDA ion channels are blocked54. Further experi-
mental data is necessary to disentangle the specific role of ex-
citatory currents and postsynaptic firing frequency in shaping
excitatory synaptic plasticity, and thus unveiling the precise
biological form of codependent plasticity.

The set-point dynamics for excitatory currents can be inter-
preted as a mechanism that normalises excitatory weights by
keeping their total combined weights within a range that guar-
antees a certain level of excitatory currents, similarly to homeo-
static regulation of excitatory bouton size in dendrites55. Our
rule accomplishes this homeostatic regulation through a local
combination of Hebbian-LTP and heterosynaptic weakening,
similarly to what has been reported in dendrites of visual cortex
of mice in vivo21. Our results show how such plasticity can de-
velop a stable, balanced network that amplifies particular types
of input, generating complex spatiotemporal patterns of activ-
ity. These networks developed such that they emulate motor-
like outputs for both average and single trial experiments28,56

without specifically being tuned for it. In our simulations,
the phenomenon of transient amplification emerged as a res-
ult of the network acquiring a stable high conductance state.
This state was established by an autonomous modification of
excitatory weights towards a set-point for excitatory currents,
balanced by inhibition due to the modification of inhibitory
weights towards a regime of precise balance.

Our set of codependent synaptic plasticity rules integ-
rates a number of previously proposed rules that rely on
spike times6,8,10, synaptic current9,57 with implicit voltage
dependence7,58, heterosynaptic weakening10, and neighbour-
ing synaptic activation32,57 in a single theoretical framework.
In addition to amplifying correlated input activity by way of
controlling the efficacy of a synapse, each of the mechanisms in
these previous models may replicate a different facet of learn-
ing. For example, spike-based plasticity rules can maintain a
set of stable firing-rate set-points8,10,26,27. Rules based on local
membrane potentials7, on the other hand, are ideal for spatially
extended dendritic structure, making it possible to detect local-
ised activity, and allowing a spatial redistribution of synaptic
weights to improve, for example, associative memory when
multiple features are learned by a neural network58. Similarly,
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calcium-influx related models9 are ideal to incorporate inform-
ation about presynaptic activation, explaining the emergence
of binocular matching in dendrites57. Neighbouring activa-
tion models32 emulate neurotrophic factors that influence the
emergence of clustering of synapses during development.

We have unified these disparate approaches in a four-
variable model that accounts for the interplay between differ-
ent synapse types during learning and captures a large range
of experimental observations. We have focused only on two
types of synapses, i.e., excitatory-to-excitatory and inhibitory-
to-excitatory synapses in an abstract setting, but the simplicity
of our model allows for the adaptation of a larger number of
synaptic types, including, e.g., modulatory signals present in
three-factor learning rules59. Faithful modelling of a broader
range of influences will require additional experimental work
to monitor multi-cell interactions by way of, e.g., patterns of
excitatory input with glutamate uncaging60 or all optical inter-
vention in vivo61,62. Looking at synaptic plasticity from a hol-
istic viewpoint of integrated synaptic machinery, rather than
as a set of disconnected mechanisms, may provide a solid basis
to understanding learning and memory.
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Methods of
Codependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks

Everton J. Agnes and Tim P. Vogels

Neuron model
Point neuron. In the simulations with a postsynaptic neuron described by a single variable (point-neuron) we used a leaky
integrate-and-fire (LIF) neuron with after-hyperpolarisation (AHP) current and conductance-based synapses. The postsynaptic
neuron’s membrane potential, u(t), evolved according to a first-order differential equation,

τm
du(t)

dt
= − [u(t) − urest] − gAHP(t)[u(t) − EAHP] + RIext(t)

− gAMPA(t)[u(t) − EAMPA] − gGABAA (t)[u(t) − EGABAA ]
− gNMDA(t)HNMDA(u)[u(t) − ENMDA], (S1)

where τm is the membrane time constant (τm = RC; leak resistance times membrane capacitance), urest is the resting membrane
potential, gAHP(t) is the conductance of the AHP channel with reversal potential EAHP, Iext(t) is an external current used to mimic
experimental protocols to induce excitatory plasticity, and gX(t) and EX are the conductance and the reversal potential of the
synaptic channel X, respectively, with X = {AMPA, NMDA, GABAA}. Excitatory NMDA channels were implemented with a
nonlinear function of the membrane potential, caused by a Mg2+ block, whose effect was simulated via the function

HNMDA(u) =
(
1 + aNMDA exp[bNMDA(u − ENMDA)]

)−1 , (S2)

where aNMDA and bNMDA are parameters. The AHP conductance was modelled as

dgAHP(t)
dt

= −
gAHP(t)
τAHP

+ Spost(t), (S3)

where τAHP is the characteristic time of the AHP channel and Spost(t) is the spike train of the postsynaptic neuron,

Spost(t) =
∑

k

δ(t − t∗k,post), (S4)

where t∗k,post is the time of the kth spike of the postsynaptic neuron, and δ(·) is the Dirac’s delta. The synaptic conductance was
modelled as

dgX(t)
dt

= −
gX(t)
τX

+
∑
j∈X

w j(t)S j(t), (S5)

where τX is the characteristic time of the neuroreceptor X. The sum on the right-hand side of Eq. S5 corresponds to presynaptic
spike trains weighted by the synaptic strength w j(t). The presynaptic spike train of neuron j was modelled as

S j(t) =
∑

k

δ(t − t∗k, j), (S6)

where t∗k, j is the time of the kth spike of neuron j. The postsynaptic neuron elicited an action potential whenever the membrane
potential crossed a spiking threshold from below. We simulated two types of threshold: fixed or adaptive.
Fixed spiking threshold. A fixed spiking threshold was implemented as a parameter, uth. When the postsynaptic neuron’s membrane
potential crossed uth from below, a spike was generated and the postsynaptic neuron’s membrane potential was instantaneously
reset to ureset, and then clamped at this value for the duration of the refractory period, τref. All simulations with a single postsynaptic
neuron were implemented with a fixed spiking threshold.
Adapting spiking threshold. For the simulations of the recurrent network we used an adapting spiking threshold, uth(t). When
the postsynaptic neuron’s membrane potential crossed uth(t) from below, a spike was generated and the postsynaptic neuron’s
membrane potential was instantaneously reset to ureset without any additional clamping of the membrane potential (the refractory
period that results from the adapting threshold is calculated below). Upon spike, the adapting spiking threshold, uth(t), was
instantaneously set to u∗th, decaying back to its baseline according to

τth
duth(t)

dt
= −uth(t) + u0

th, (S7)

where τth is the decaying time for the threshold variable, and u0
th is the baseline for spike generation. The maximum depolarisation

of the membrane potential is linked to the reversal potential of NMDA, and thus the absolute refractory period can be calculated
as

τref = τm ln
(

u0
th − u∗th

u0
th − ENMDA

)
, (S8)
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which is the time the adapting threshold takes to decay to the same value as the reversal potential of the NMDA channels. Fig. S6
shows an example of two states that arise from the combination of an adapting threshold and NMDA currents.

Two-layer neuron. The two-layer neuron was simulated as a compartmental model with a spiking soma that receives input from
NB dendritic branches. The soma was modelled as a LIF neuron, and the dendrite as a leaky integrator (without generation of
action potentials). Somatic membrane potential evolved according to

τm
dusoma(t)

dt
= −[usoma(t) − urest] − gAHP(t)[usoma(t) − EAHP] −

NB∑
i=1

Ji[usoma(t) − ui(t)]. (S9)

The soma of the two-layer neuron was similar to the point neuron (Eq. S1), however, synaptic currents were injected on the
dendritic tree, which interacted with the soma passively through the last term on the right-hand side of Eq. S9, Ji being the
conductance that controls the current flow due to connection between the soma and the ith dendrite. In Eq. S9, ui(t) is the
membrane potential of the dendritic branch i. When the somatic membrane potential, usoma(t), crossed the threshold, uth, from
below, the postsynaptic neuron generated an action potential, being instantaneously reset to ureset, and then clamped at this value
for the duration of the refractory period, τref.

Dendritic compartments received presynaptic inputs, as well as a sink current from the soma. The membrane potential of the
ith branch, ui(t), evolved according to the following differential equation,

τm
dui(t)

dt
= − [ui(t) − urest] − Ji[ui(t) − usoma(t)]

− gAMPA,i(t)[ui(t) − EAMPA] − gGABAA ,i(t)[ui(t) − EGABAA ]
− gNMDA,i(t)HNMDA(ui)[ui(t) − ENMDA]. (S10)

Variables gX,i(t), with X = {AMPA, NMDA, GABAA}, were simulated following Eq. S5. Spikes were not elicited in dendritic
compartments, but due to the gating function HNMDA(u) and the absence of spiking threshold, voltage plateaus occurred naturally
when multiple inputs arrived simultaneously on a compartment (Fig. 6A). We simulated two compartments with the same
coupling with the soma, Ji: one whose synapses changed according to the codependent synaptic plasticity model, and one with
fixed synapses that acted as a noise source.

Coupling strength as function of electrotonic distance. The crucial parameter introduced when including dendritic compartments
was the coupling, Ji, between soma and the dendritic compartment i. Steady changes in membrane potential at the soma are
attenuated at dendritic compartments, and this attenuation has been shown to decrease with distance. Without synaptic inputs,
and steady membrane potential at both soma and dendritic compartments, Eqs. S9 and S10 are equal to zero, which results in

Ji =
ai

1 − ai
, (S11)

where ai is the passive dendritic attenuation of the dendritic compartment i,

ai =
ūi − urest

ūsoma − urest
, (S12)

with ūsoma being a constant steady-state held at the soma, and ūi being the resulting steady-state at the dendritic compartment i.
The attenuation is a function of distance as follows,

ai = fa(d) =
d2
∗

d2 , (S13)

where d∗ is a parameter we fitted from experimental data from Gulledge and Stuart 46 (Fig. 6C). We used this fitted parameter
in Eq. S11 to approximate the distance to the soma in Fig. 6F according to the soma-dendrite coupling strength used in our
simulations.

Codependent synaptic plasticity model

The codependent plasticity model is a function on both spike times and input currents. We first describe how synaptic currents are
accounted and then how excitatory and inhibitory plasticity models were implemented. We defined a variable Ei(t) to represent
the process triggered by excitatory currents at the ith dendritic compartment. We considered NMDA currents, which reflect influx
of calcium into the postsynaptic cell, as the trigger for biochemical processes that are represented by the state of Ei(t). Its dynamics
is described by

τE
dEi(t)

dt
= −Ei(t) − cNMDA,i(t), (S14)

where τE is the characteristic time of the excitatory trace and

cNMDA,i(t) = gNMDA,i(t)HNMDA(ui)[ui(t) − ENMDA] (S15)

is the excitatory current flowing through NMDA channels. Inhibitory inputs contributed to the plasticity model through a variable
Ii(t). For the inhibitory trace, we used GABAA currents, which reflect influx of chloride, as the trigger of the process described by
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Ii(t). The inhibitory trace evolved as

τI
dIi(t)

dt
= −Ii(t) + cGABAA ,i(t), (S16)

where τI is the characteristic time of the inhibitory trace, cGABAA ,i is the inhibitory current described as

cGABAA ,i(t) = gGABAA ,i(t)[ui(t) − EGABAA ]. (S17)

The index i is not taken into account for simulations with point-neurons. Notice that both Ei(t) and Ii(t) are in units of voltage
because the conductance is unit-free in our neuron model implementation (Eq. S1).
Codependent excitatory synaptic plasticity. The codependent excitatory synaptic plasticity model is a spike-timing-dependent
plasticity (STDP) model regulated by excitatory and inhibitory inputs through Ei(t) and Ii(t). The weight of the jth synapse onto
the ith dendritic branch, wi j(t), changed according to

dwi j(t)
dt

= φE(Ei(t), Ii(t); S j(t),Spost(t))

=
{[

ALTPx+
j (t)Ei(t) − Ahet yE

post(t)(Ei(t))2
]

Spost(t) − ALTD y−post(t)S j(t)wi j(t)
}

exp
[
−

Ii(t)
I∗

]
, (S18)

where ALTP, Ahet and ALTD are the learning rates of long-term potentiation, heterosynaptic plasticity and long-term depression,
respectively. The additional parameter I∗ defines the amount of control that inhibitory activity imposes onto excitatory synapses.
Variables Spost(t) and S j(t) represent the postsynaptic and presynaptic spike trains, respectively, as described above for the neuron
model (Eqs. S4 and S6). The trace of presynaptic spike train is represented by x+

j (t), and the traces of postsynaptic spike train (with
different time scales) are represented by yE

post(t) and y−post(t). They evolve in time according to

dx+
j (t)

dt
= −

x+
j (t)

τ+
+ S j(t), (S19)

dyE
post(t)

dt
= −

yE
post(t)

τypost
+ Spost(t) (S20)

and
dy−post(t)

dt
= −

y−post(t)

τ−
+ Spost(t). (S21)

For values of inhibitory trace larger than a threshold, Ii(t) > Ith, we effectively blocked excitatory plasticity to mimic complete
shunting of back-propagating action potentials35. We implemented maximum and minimum allowed values for excitatory
weights, wE

max = 1 and wE
min = 10−6, respectively.

Codependent inhibitory synaptic plasticity. Similar to the excitatory learning rule, the codependent inhibitory synaptic plasticity
is a function of spike times and synaptic currents. The weight of the jth inhibitory synapse onto the ith dendritic compartment,
wi j(t), changes over time according to a differential equation given by

dwi j(t)
dt

= φI(Ei(t), Ii(t); S j(t),Spost(t)) = ηEi(t)[Ei(t) − αIi(t)][ypost(t)S j(t) + x j(t)Spost(t)]. (S22)

Parameters η and α control the learning-rate and the balance of excitatory and inhibitory currents, respectively. Variables ypost(t)
and x j(t) are traces of pre and postsynaptic spike-trains, respectively, to create a symmetric STDP-like curve, with dynamics given
by

dypost(t)
dt

= −
ypost(t)
τiSTDP

+ Spost(t) (S23)

and
dx j(t)

dt
= −

x j(t)
τiSTDP

+ S j(t). (S24)

The STDP window is characterised by the time constant τiSTDP. We implemented maximum and minimum allowed values for
inhibitory weights, wE

max = 7 and wE
min = 10−6, respectively.

Experimental fit – Fig. 2B,C. We fitted two data sets with the codependent excitatory synaptic plasticity model to asses its
dependency on voltage, i.e., membrane potential, and on the frequency of pre- and postsynaptic spikes. We used the same
number of pre- and postsynaptic spikes for all our simulations (based on the original experiments). Postsynaptic spikes were
induced by the injection of a current pulse, Iext(t) = 3 nA, for the duration of 2 ms.

For Fig. 2B, additional to the current injected for spike generation, we also injected a constant external current to depolarise the
neuron’s membrane potential. The protocol consisted in pre- and postsynaptic spikes with 10 millisecond interval, pre-before-
post, firing at 50 Hz. The more depolarised the membrane potential, the bigger the effect of the NMDA currents, and therefore
more LTP was induced.

The protocol for Fig. 2C consisted on pre- and postsynaptic spikes with either +10 milliseconds (pre-before-post) or −10
milliseconds interval (post-before-pre) in varying firing-rates: 0.1, 10, 20, 40, and 50 Hz. The increase in presynaptic firing-rate
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caused an increase in NMDA currents which led to strong LTP induction.

Fitting of both protocols was done with brute force parameter sweep on four parameters: ALTP, Ahet, ALTD, and τE.

Stability. The codependent plasticity model has a rich dynamics that involves changes in synaptic weights due to pre- and
postsynaptic spike times, as well as synaptic weight and input currents. In this section we briefly analyse the fixed-points for
input currents and synaptic weights for general conditions of inputs and outputs.

Considering separated dendritic compartments we can write the average change in weights (from Eq. S18, ignoring inhibitory
inputs) as 〈

dwi j(t)
dt

〉
t
=

〈
Spost(t)

[
ALTPx+

j (t)Ei(t) − Ahet yE
post(t)(Ei(t))2

]
− ALTD y−post(t)S j(t)wi j(t)

〉
t

(S25)

=ALTP

〈
x+

j (t)Ei(t)Spost(t)
〉

t
− Ahet

〈
Spost(t)yE

post(t)(Ei(t))2
〉

t
− ALTD

〈
S j(t)y−post(t)wi j(t)

〉
t

(S26)

=ALTP

〈
x+

j (t)Ei(t)Spost(t)
〉

t
− Ahet

〈
Spost(t)

〉
t

〈
yE

post(t)
〉

t

〈
(Ei(t))2

〉
t
− ALTD

〈
S j(t)

〉
t

〈
y−post(t)

〉
t

〈
wi j(t)

〉
t
, (S27)

where 〈·〉t is the average over a long time window, i.e., longer than the timescale of the quantities involved. In Eq. S27 we take
into consideration that presynaptic spike times are not influenced by postsynaptic activity, and thus the average of the products
in the last term on the right-hand side of Eq. S26 is the equal to the product of the averages. Additionally, we assume no strong
correlations between Ei(t) and Spost(t) due to the small fluctuations of the variable Ei(t). Correlations between pre- and postsynaptic
spikes govern the LTP term, and thus cannot be ignored. They also depend on the neuron model, and amount of inhibition a
compartment is receiving.

We can conclude from Eq. S27 that the weights from silent presynaptic neurons will vanish due to the heterosynaptic term. In
our model, these weights can only vanish in moments of disinhibition, when the inhibitory control over excitatory plasticity is
minimum.

For our analysis, we consider that all neurons of the network have nearly stationary firing rates without strong fluctuations.
Therefore, the spike trains can be rewritten as average firing rates,

〈S j(t)〉t = ν j, (S28)

and the traces from the spike trains become
〈x+

j (t)〉t = τ+ν j, (S29)

where ν j is the average firing rate of neuron j. The same is valid for the postsynaptic neuron’s firing rate, as well as all other traces.

We first consider the outcome of the excitatory plasticity rule when LTD is not present, ALTD = 0, which informs us on steady-
state for excitatory currents as a competition between LTP and heterosynaptic plasticity only. In this case, the steady-state of the
system is given by

Ei

∣∣∣
ALTD=0

≈
ALTPτ+ν j

Ahetτypostνpost
= E

max
i . (S30)

This is also the maximum value for excitatory currents for when LTD is present, as LTD can only decrease synaptic weights.
Notice that this fixed-point depends on both pre- and postsynaptic firing-rates, and thus an extra step in necessary to find the
fixed-point. For a recurrent network, we can assume that ν j = νpost and thus

E
max,rec
i =

ALTPτ+

Ahetτypost
. (S31)

Notice that the maximum excitatory current onto a neuron embedded in a recurrent network is independent on firing-rate of pre-
and postsynaptic neurons.

To have an idea of the contribution of LTD for the excitatory inputs, we used a variant of the model in which LTD does not
depend on the weight, wi j(t), and heterosynaptic plasticity does not depend on the postsynaptic trace, yE

post = 1. We thus find that

Ei =
ALTPτ+ν j ±

√(
ALTPτ+ν j

)2
− 4AhetALTDτ−τypostν j

2Ahetτypost
. (S32)

In Fig. 2F we simulated this version of the model with constant presynaptic firing-rate, ν j, and plotted the theory as Eq. S32. To
test the effect of input firing-rate and LTD with weight dependency, we simulated the protocol as in Fig. 2F, but with different
levels of excitatory input, LTD, and inhibitory gating (Fig. S7). These simulations (Fig. S7) show that, although the input has an
effect on the fixed-point of excitatory currents, this effect is minimal compared to the effect of the learning-rates.

Applying the same idea to the codependent inhibitory synaptic plasticity model, we get the following average dynamics for
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the inhibitory weight connecting presynaptic neuron j and the dendritic compartment i,〈
dwi j(t)

dt

〉
t
=

〈
ηEi(t)[Ei(t) − αIi(t)][ypost(t)S j(t) + x j(t)Spost(t)]

〉
t

(S33)

≈ ηEi

[
Ei − αIi

] [
2τiSTDPν jνpost

]
, (S34)

where Ii = 〈Ii(t)〉t. From Eq. S34, we get the steady-state for the inhibitory learning rule, which results in the balance between
excitation and inhibition given by α,

Ei

Ii

= α. (S35)

Synaptic changes for simple spike patterns and fixed excitatory/inhibitory input levels. From Eq. S18 and Eq. S22 we calculated
changes in excitatory and inhibitory synapses for simple spike patterns (Fig. S1). We considered fixed excitatory and inhibitory
inputs, E and I, respectively, and calculated changes in a given excitatory synapse as

∆wE =

[
ALTP exp

(
−

∆tLTP

τ+

)
E − Ahet exp

(
−

∆thet

τy

)
E2
− ALTD exp

(
−

∆tLTD

τ−

)
w0

]
exp

(
−

I
I∗

)
, (S36)

where ∆tLTP is the interval between pre- and postsynaptic spikes (pre-before-post), ∆thet is the interval between two consecutive
postsynaptic spikes, and ∆tLTD is the interval between post- and presynaptic spikes (post-before-pre). In a similar fashion, we
calculated changes at a given inhibitory synapse as

∆wI = ηE (E − αI) exp
(
−
|∆t|
τiSTDP

)
, (S37)

where ∆t is the interval between pre- and postsynaptic spikes, being positive for pre-before-post and negative for post-before-pre
spike patterns.

Inputs

Single output neuron (feedforward network). Presynaptic spike trains for single neurons were implemented as follows. A spike
of neuron j occurs in a given time-step of duration ∆t with probability p j(t) if there was no spike elicited during the refractory
period beforehand, τE

ref for excitatory and τI
ref for inhibitory inputs, respectively, and zero otherwise. For a constant probability

p j(t) = p j the mean firing-rate, ν j, is therefore

ν j =
1
∆t

p j

(
1 − p j

)τX
re f /∆t

≈
1
∆t

p j. (S38)

Different simulation paradigms (or tests) are defined by the input statistics, which are described below. When pathways are
included, the probability of having a presynaptic spike changes over time to create correlations between different presynaptic
inputs.
Constant firing-rate – Fig. 2F-I, Fig. 3, and Fig. S7. When constant background firing-rate was simulated, presynaptic neurons fired
action potentials with probability p j = 5 × 10−5 for excitatory and p j = 10−4 for inhibitory neurons, resulting in ν j ≈ 4.88 Hz for
excitatory and ν j ≈ 9.51 Hz for inhibitory neurons, considering that simulations were implemented with a time step ∆t = 0.1 ms
and that refractory periods were τE

re f = 5 ms and τI
re f = 2.5 ms.

Constant firing-rate – Fig. 2D,E and Fig. S2. To explore how neighbouring neurons would affect plasticity at a given synapse
we simulated the same protocol from the frequency-dependency experiment17 (Fig. 2C) with the addition of one excitatory and
one inhibitory presynaptic neuron active with different firing-rates (Fig. 2D,E). These extra synapses were kept fixed during the
simulation and simulated without refractory period (τE

re f = τI
re f = 0), and we tested different firing-rates (from 0 to 200 Hz). We

simulated the codependent excitatory plasticity rule with (Fig. 2D,E and Fig. S2A) and without (Fig. S2B) inhibitory gating, and
compared with spike-based6,10 (Fig. S2C) and voltage-based7 (Fig. S2D) learning rules (described below).
Variable firing-rate (pathways) for receptive-field plasticity – Fig. 4, Fig. 5, and Fig. S3. For correlated inputs (defined as pathways),
we generated spike trains using an inhomogeneous Poisson process. A pathway is defined as a group of 100 excitatory and
25 inhibitory afferents (spike trains of presynaptic neurons) with two components: a constant background firing-rate and a
fluctuating firing-rate taken from an Ornstein-Uhlenbeck (OU) process as described below. The background firing-rate for all 800
excitatory and 200 inhibitory afferents was given by a probability of pbg

j = 2 × 10−4 for excitatory and pbg
j = 4 × 10−4 for inhibitory

afferents, with respective background firing-rates of νbg
j ≈ 1.98 Hz and νbg

j ≈ 3.96 Hz for excitatory and inhibitory presynaptic
neurons, respectively, considering a time step ∆t = 0.1 ms and refractory periods of τE

re f = 5 ms and τI
re f = 2.5 ms.

The fluctuating firing-rate of the pathway µwas created from an OU process. We used an auxiliary variable, yµ(t), that followed
stochastic dynamics given by

dyµ(t)
dt

= −
yµ(t)
τOU

+ ξµ(t), (S39)

where τOU is the time-constant of the OU process, and ξµ(t) is a random variable drawn from a Gaussian distribution with
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zero-mean and unitary standard deviation. The fluctuating firing-rate was then defined as

νµ(t) = ν∗
[
yµ(t)

]
+
, (S40)

where ν∗ = 250 Hz is the amplitude of the fluctuations and [·]+ is a rectifying function. The probability of a spike generated
because of the fluctuating firing-rate is thus pµj (t) = ∆tνµ(t). The probability of a presynaptic afferent j belonging to pathway µ
due to both background and fluctuating firing-rate was given by

p j(t) = pµj (t) + pbg
j . (S41)

In Fig. 4 we have two learning windows: first to learn the initial receptive field profile (Fig. 4B), and later to learn the new
configuration of the receptive field profile (Fig. 4C). During both learning periods, we set the firing-rate of all inhibitory neurons
to 40% of background firing-rate, and the inactive excitatory pathways to background firing-rate. The first learning period lasts
1.1 seconds and has the following sequence of activation of excitatory groups: 0.5 seconds for pathway number 6, followed by
0.2 seconds of pathway number 7, 0.2 seconds of pathway number 5, 0.1 seconds of pathway number 4, and finally 0.1 seconds of
pathway number 8 (Fig. S3A). The second learning period lasts 0.2 seconds and we only activated pathway number 4 (Fig. S3B).
Activation of a pathway consisted in increasing the firing-rate probability to p j = 0.01, resulting in a firing-rate of νµ ≈ 60 Hz.
Variable firing-rate (pathways) for dendritic clustering – Fig. 6 and Fig. S4. To explore the clustering effect on dendritic compartments we
divided the input spikes in pathways to have co-active or independent presynaptic afferents. We used the same implementation
as for the Variable firing-rate (pathways) for receptive field plasticity above, but we changed the number of afferents per group in
both excitatory and inhibitory presynaptic inputs. A dendritic compartment received 32 excitatory and 16 inhibitory afferents. In
Fig. 6E, Fig. 6F, and Fig. S4 we used two conditions: independent E & I, and matching E & I. In both cases, the number of excitatory
afferents following the same fluctuating firing-rate was increased from 1 (0% co-active group size) to 32 (100% co-active group
size), while the remaining excitatory afferents had independent fluctuating firing-rates. For independent excitatory and inhibitory
inputs (independent E & I), all 16 inhibitory afferents followed independent fluctuating firing-rates. For matching excitatory and
inhibitory inputs (matching E & I), 8 inhibitory afferents followed the same fluctuations in firing-rate as the co-active excitatory
group (of different sizes), while the other 8 inhibitory afferents were independent.
Recurrent network. The simulation with the recurrent network had two parts, the learning period with both excitatory and
inhibitory plasticity active, and the recall period without plasticity mechanisms active.
Learning period. During the beginning of the learning period of T = 10 hours (Fig. S5) we kept the network receiving a minimum
of external input to avoid inactivity. The implementation of presynaptic spike train was as follows. In the beginning of the
simulation (first 1 hour of simulated time), each excitatory neuron of the network received a spike train from one external source
with constant probability p = 0.01 (time step ∆t = 0.1 ms) to mimic 100 presynaptic afferents firing at 1 Hz. We decreased
the probability p = 0.001 for another 1 hour of simulated time, and then set it to zero. External inputs only affected AMPA
conductances to keep the external influence on the network’s dynamics minimal.
Recall period. To elicit transient amplification, we selected specific neurons to receive external input based on the resulted weight
matrix and the neurons’ baseline firing-rate. Before and after stimulation, no external input was implemented, meaning that
the network was in a state of self-sustained activity. During the stimulation period, network neurons were stimulated with
presynaptic spikes with a constant firing-rate with different amplitudes for each of the 5 conditions shown in Fig 8. We ordered
excitatory and inhibitory neurons according to their baseline firing-rate multiplied by total output weight (from maximum to
minimum values), νbg

j

∑NE
i=1 wi j for excitatory and νbg

j

∑N
i=1 wi j for inhibitory neurons, where NE is the total number of excitatory

neurons, and N is the total number of neurons in the recurrent network. We assumed that the bigger the baseline firing-rate
multiplied by the output weight, the bigger the neuron’s influence on the rest of the network.

Considering the the order of maximal (max) to minimal (min) influence we used the following patterns of stimulation. For
condition #1, external firing-rate was decreased from pE

max = 0.1 to pE
min = 0 for excitatory neurons, and followed the opposite order

for inhibitory neurons. For condition #2, external firing-rate was increased from pE
max = 0 to pE

min = 0.1 for excitatory neurons, and
followed the same order for inhibitory neurons. For condition #3, external firing-rate was decreased from pE

max = 0.1 to pE
min = 0

for excitatory neurons, and followed the same order for inhibitory neurons. For condition #4, external firing-rate was increased
from pE

max = 0 to pE
min = 0.1 for excitatory neurons, and followed the opposite order for inhibitory neurons. For condition #5,

external firing-rate was chosen randomly from a uniform distribution between pE
max = 0 and pE

min = 0.1 for excitatory neurons,
and similarly for inhibitory neurons. Notice that the pattern of stimulation that activated excitatory and inactivated inhibitory
neurons with large impact on the network (condition #1), amplification was the largest amongst the conditions, and when the
pattern of stimulation was random (condition #5) the resulting network dynamics had minimum amplification (Fig. 8A,B).

Clustering index for dendritic dynamics - Fig. 6E,F.

We defined the clustering index as

ccluster =
〈wco-active〉 −

〈
windependent

〉
〈wco-active〉 +

〈
windependent

〉 , (S42)

where 〈wco-active〉 is the average of the weights from the co-active excitatory group, and
〈
windependent

〉
is the average of the weights

from all independent groups after learning (see individual weight dynamics in Fig. S4). When ccluster = 1 the excitatory weights
from the co-active group survived after learning, and independent ones vanished, while for ccluster = −1 the opposite happened.
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Both co-active and independent groups survived after learning when ccluster ≈ 0.

Training an output to draw digits

We connected all excitatory neurons of our recurrent network to a two-layer network of nonlinear units. The second layer was
connected to two nonlinear readouts that represented movement in the horizontal x(t) and vertical y(t) directions of a 2D plane.
The dynamics of the ith unit of the first layer (total number of units N1 = 50) was simulated as

h(1)
i (t) = tanh

 NE∑
j=1

W(0)
i j r j(t)

 , (S43)

where Wi j is the connection between neuron j from the network and the ith unit from the first layer and r j(t) is the average
firing-rate of neuron j (over 50 trials, see below). The dynamics of neuron j for an individual trial is given by

dr j(t)
dt

= −
r j(t)
τr

+ r0
j (t) (S44)

with
dr0

j (t)

dt
= −

r0
j (t)

τr
+ Si(t). (S45)

The firing-rate, ri(t), is the spike train of neuron i (Eq. S6) filtered twice (double exponential filter) with the time constant τr = 10
ms. As input to the first layer we used ri(t) which is the average of ri(t) over 50 random trials out of 500 that were simulated. The
second layer received input from the first layer, and the dynamics of the ith unit (total number of units N2 = 25) of the second
layer was simulated as

h(2)
i (t) = tanh

 N1∑
j=1

W(1)
i j h(1)

j (t)

 . (S46)

The two readouts were simulated as x(t) = tanh
(∑N2

i=1 W(2)
xi h(2)

i (t)
)

y(t) = tanh
(∑N1

i=1 W(2)
yi h(2)

i (t)
)
.

(S47)

The time-course of the simulation was divided into 35 bins of equal interval (∆T = 30 ms), and the period after the stimulus
onset was used to train the output weights to draw five digits: 0, 2, 4, 6, and 8, for the five different conditions from Fig. 7 that
resulted from distinct patterns of stimulation. Each training epoch (single digit presentation) was simulated with the average
firing-rate of 50 trials, randomly selected out of 500 to account for the large trial-to-trial variability of the spike patterns of each
trial, mimicking a larger network in which groups of 50 neurons have a similar activity pattern. We used the same activity patterns
fed to the two-layer network, ri(t), to compute the principal components shown in Fig. 8C. All the weights were trained using
gradient descent to minimise the square error between output and the drawing. Fig. 8D shows the average 2D trajectory for each
digit in thick line, and 10 individual epochs in red lines. We did not perform any benchmark test as this is beyond the scope of
this paper.

Comparison to other learning rules

We used spike-based learning rules to explore the balancing mechanisms of the codependent inhibitory synaptic plasticity rule
(Fig. 3). Additionally, we compared the excitatory codependent synaptic plasticity model with a spike- and a voltage-based
learning rule when extra excitatory and inhibitory inputs are received by the postsynaptic neuron (Fig. S2).

Spike-based plasticity rules. We implemented spike-based learning rules that have been developed to impose a set-point for
postsynaptic neurons. In Fig. 3C, we combined excitatory and inhibitory spike-based plasticity rules to show how they can
destructively compete when their firing-rate set-points do not match. In Fig. 3D, we combined an excitatory spike-based plasticity
rule with the codependent inhibitory synaptic plasticity rule to show how the competition is not present when the plasticity
rules dynamics follow fixed-points for different quantities – here ESP imposes a firing-rate set-point while ISP imposes an input
currents set-point. We also compared the spike-based excitatory plasticity rule to the codependent excitatory plasticity rule for
the same protocol in Fig. 2C, but adding activity of an excitatory and an inhibitory neuron with different firing-rates (Fig. S2C).

Spike-based excitatory plasticity rule. The excitatory plasticity rule was based on Pfister and Gerstner 6 and Zenke et al. 10 . We used
a modified version from Zenke et al. 10 to create a stable-fixed point for the postsynaptic firing-rate. The weight from neuron j to
neuron i changes according to

dwi j(t)
dt

= ApreS j(t) + ALTPx+
j (t)yi(t)Si(t) − ALTDx−i (t)S j(t), (S48)

where Apre, ALTP, and ALTD, are the learning rates for the neurotransmitter induced plasticity, long-term potentiation, and long-
term depression, respectively. The spike train of pre- and postsynaptic neurons, S j(t) and Si(t), respectively, are defined by Eq. S6
and Eq. S4. The traces x+

j (t), yi(t), and x−i (t) followed the same dynamics described in Eq. S19, with time constants τ+, τy, and τ−,
respectively. The learning rule described by Eq. S48 has a stable fixed-point for low postsynaptic firing-rate. The stable firing-rate
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set point was given by

νE
0 =

1
2ALTPτ+τy

(
ALTDτ− −

√
A2

LTDτ
2
−
− 4ApreALTPτ+τy

)
. (S49)

To change the firing-rate set-point during the simulation in Fig. 1F, we changed Apre, keeping all the other parameters fixed.
Spike-based inhibitory plasticity rule. The spike-based inhibitory plasticity rule was based on Vogels et al. 8 . This inhibitory plasticity
rule follows a Hebbian-like shape that imposes a postsynaptic firing-rate set-point by balancing excitation and inhibition. An
inhibitory weight from neuron j to neuron i evolved as

dwi j(t)
dt

= η
{
x j(t)Si(t) + [xi(t) − α] S j(t)

}
, (S50)

where η is the learning rate, x j(t) and xi(t) are traces of pre- and postsynaptic spike trains, respectively, and they evolve with the
same time constant τiSTDP. This learning rule is known to result in a stable firing-rate set-point for postsynaptic neurons given by

νI
0 =

α
2τiSTDP

. (S51)

Voltage-based excitatory plasticity rule. We also compared the codependent excitatory synaptic plasticity model with a voltage-
based model for a frequency dependent protocol17 when additional presynaptic activity is included (Fig. S2D). The excitatory
weight of the connection from neuron j to neuron i changed according to

dwi j(t)
dt

= ALTPx j(t) [ui(t) − θ+]+

[
u+

i(t) − θ−
]
+
− ALTD

[
u−i(t) − θ−

]
+

S j(t), (S52)

where ALTP and ALTD are the learning rates for LTP and LTD, respectively, x j(t) is the trace of the presynaptic spike train, θ+ is the
voltage threshold for LTP, θ− is the voltage threshold (for the voltage low pass-filter) for LTP and LTD. The trace of the presynaptic
spike train is given by

dx j(t)
dt

= −
x j(t)
τx

+ S j(t), (S53)

where τx is the time constant for the trace. The voltage-based learning rule depends on the low-pass filter of the membrane
potential, which creates a dependency on the recent history of membrane potential. There are two low-pass filters in the
voltage-based model: one for LTP, u+

i, and one for LTD, u−i, with dynamics given by

τ+
du+

i(t)
dt

= −u+
i(t) + ui(t) (S54)

and

τ−
du−i(t)

dt
= −u−i(t) + ui(t), (S55)

where τ+ and τ− are the time constants for the voltage low-pass filters for LTP and LTD, respectively.
To account for the plasticity inducing effects of the action potential, we modified the LIF neuron model so that it had a short

depolarised period corresponding to the action potential. Following the implementation from the subsection Point neuron - Fixed
spiking threshold, when the membrane potential crossed the threshold, uth from below, the membrane potential was instantaneously
set to uAP = 30 mV, and it was then clamped at this voltage for the duration of the action potential τAP = 2 ms. After the duration
of the action potential, the membrane potential was instantaneously reset to uvolt

reset = −52 mV.

Simulations
All simulations were run with Intel Fortran. Parameters used in simulations are defined in Tables S1, S2, S3, S4, S5, S6, S7, S8, and
S9.
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Parameters

Parameter Symbol Value Figs.

Membrane time constant τm 30 ms 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

Membrane resistance R 100 MΩ 2B-E & S2

Membrane capacitance C 30 nF not explicitly used

Resting potential urest −65 mV 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

AHP reversal potential EAHP −80 mV 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

AMPA reversal potential EAMPA 0 mV 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

GABAA reversal potential EGABAA −80 mV 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

NMDA reversal potential ENMDA 0 mV 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

AHP time constant τAHP 100 ms 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

AMPA time constant τAMPA 5 ms 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

GABAA time constant τGABAA 10 ms 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

NMDA time constant τNMDA 150 ms 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

NMDA parameter 1 aNMDA 0.15 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

NMDA parameter 2 bNMDA −0.08 mV−1 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

Fixed spiking threshold uth −50 mV 2, 3, 4, 5, 6, S2, S4, & S7

Spiking threshold reset u∗th 10 mV 7, 8, S5, & S6

Spiking threshold steady-state u0
th −50 mV 7, 8, S5, & S6

Spiking threshold time constant for excitatory neurons τth 10 ms 7, 8, S5, & S6

Spiking threshold time constant for inhibitory neurons τth 5 ms 7, 8, S5, & S6

Reset potential ureset −60 mV 2, 3, 4, 5, 6, 7, 8, S2, S4, S5, S6, & S7

Refractory period (when spiking threshold is fixed) τref 5 ms 2, 3, 4, 5, 6, S2, S4, & S7

Voltage attenuation between soma and dendritic compartment d∗ 49084.1 µm 6 & S4

Simulation time step ∆t 0.1 ms 2, 3, 4, 5, 6, 7, 8, S2, S3, S4, S5, S6, & S7

TABLE S1. Simulation parameters for the leaky integrate-and-fire neuron.

Parameter Symbol Value Figs.

Excitatory current filter time constant τE 10 ms 2B

Excitatory current filter time constant τE 50 ms 2C-E

Excitatory current filter time constant τE 100 ms 2F-I & 3D

Inhibitory current filter time constant τI 500 ms 2D,E

Inhibitory current filter time constant τI 100 ms 3D

LTP learning rate for codependent ESP ALTP 10 × 10−5 mV−1 2B

LTP learning rate for codependent ESP ALTP 2.5 × 10−3 mV−1 2C-E

LTP learning rate for codependent ESP ALTP 10−5 mV−1 2F-I

Heterosynaptic plasticity learning rate for codependent ESP Ahet 10−6 mV−2 2B

Heterosynaptic plasticity learning rate for codependent ESP Ahet 10−5 mV−2 2C-E

Heterosynaptic plasticity learning rate for codependent ESP Ahet variable (×10−8) 2F

Heterosynaptic plasticity learning rate for codependent ESP Ahet 10−5 mV−2 2G-I

LTD learning rate for codependent ESP ALTD 10−2 2B

LTD learning rate for codependent ESP ALTD 1.2 × 20−2 2C-E

LTD learning rate for codependent ESP ALTD 4 × 10−4 2F-I

Presynaptic trace time constant for codependent ESP τ+ 16.8 ms 2B-I

Postsynaptic trace time constant for codependent ESP τypost 100 ms 2B-E

Postsynaptic trace time constant for codependent ESP τypost N/A 2F-I

Postsynaptic trace time constant for codependent ESP τ− 33.7 ms 2B-I

Inhibitory plasticity learning rate η 10−8 mV−2 3D

Inhibitory balance set-point α 15 3D

Pre- and postsynaptic traces time constant for codependent ISP τiSTDP 20 ms 3D

TABLE S2. Simulation parameters for codependent synaptic plasticity model in Fig. 2 and Fig. 3.
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Parameter Symbol Value Figs.

Neurotransmitter induced plasticity learning rate for spike-based ESP Apre {9.4, 15, 9.4, 5} × 10−3 3C,D

LTP learning rate for spike-based ESP ALTP 10−3 3C,D

LTD learning rate for spike-based ESP ALTD 4.5 × 10−2 3C,D

Presynaptic trace time constant for spike-based ESP τ+ 16.8 ms 3C,D

Postsynaptic trace time constant for spike-based ESP τy 100 ms 3C,D

Postsynaptic trace time constant for spike-based ESP τ− 33.7 ms 3C,D

Spike-based inhibitory plasticity learning rate η 10−3 3C

Spike-based inhibitory plasticity LTD α 0.228 3C

Pre- and postsynaptic traces time constant for codependent ISP τiSTDP 20 ms 3C

TABLE S3. Simulation parameters for spike-based synaptic plasticity models in Fig. 3.

Parameter Symbol Value Figs.

Excitatory current filter time constant τE 10 ms 4 & 5

Inhibitory current filter time constant τI 100 ms 4 & 5

LTP learning rate for codependent ESP ALTP 5 × 10−4 mV−1 4 & 5

Heterosynaptic plasticity learning rate for codependent ESP Ahet 10−8 mV−2 4 & 5

LTD learning rate for codependent ESP ALTD 0.5 4 & 5

Inhibitory gating term for codependent ESP I∗ 60 mV 4

Inhibitory gating term for codependent ESP I∗ 600 mV 5

Inhibitory threshold for codependent ESP Ith 200 mV 4

Inhibitory threshold for codependent ESP Ith 2000 mV 5

Presynaptic trace time constant for codependent ESP τ+ 16.8 ms 4 & 5

Postsynaptic trace time constant for codependent ESP τypost 100 ms 4 & 5

Postsynaptic trace time constant for codependent ESP τ− 33.7 ms 4 & 5

Inhibitory plasticity learning rate η 10−9 mV−2 4 5

Inhibitory balance set-point α 0.94 4 & 5

Pre- and postsynaptic traces time constant for codependent ISP τiSTDP 20 ms 4 & 5

TABLE S4. Simulation parameters for codependent synaptic plasticity model in Fig. 4 and Fig. 5.

Parameter Symbol Value Figs.

Excitatory current filter time constant τE 10 ms 6 & S4

Inhibitory current filter time constant τI 100 ms 6 & S4

LTP learning rate for codependent ESP ALTP 3 × 10−5 mV−1 6 & S4

Heterosynaptic plasticity learning rate for codependent ESP Ahet 6 × 10−9 mV−2 6 & S4

LTD learning rate for codependent ESP ALTD 1.5 × 10−3 6 & S4

Inhibitory gating term for codependent ESP I∗ 50 mV 6 & S4

Inhibitory threshold for codependent ESP Ith N/A 6 & S4

Presynaptic trace time constant for codependent ESP τ+ 16.8 ms 6 & S4

Postsynaptic trace time constant for codependent ESP τypost 100 ms 6 & S4

Postsynaptic trace time constant for codependent ESP τ− 33.7 ms 6 & S4

Inhibitory plasticity learning rate η 10−7 mV−2 6 & S4

Inhibitory balance set-point α 1.75 6 & S4

Pre- and postsynaptic traces time constant for codependent ISP τiSTDP 20 ms 6 & S4

TABLE S5. Simulation parameters for codependent synaptic plasticity model in Fig. 6 and Fig. S4.

Parameter Symbol Value Figs.

Excitatory current filter time constant τE 10 ms 7, 8, & S5

Inhibitory current filter time constant τI 100 ms 7, 8, & S5

LTP learning rate for codependent ESP ALTP 3 × 10−4 mV−1 7, 8, & S5

Heterosynaptic plasticity learning rate for codependent ESP Ahet 1.5 × 10−8 mV−2 7, 8, & S5

LTD learning rate for codependent ESP ALTD 3 × 10−5 7, 8, & S5

Inhibitory gating term for codependent ESP I∗ 200 mV 7, 8, & S5

Presynaptic trace time constant for codependent ESP τ+ 16.8 ms 7, 8, & S5

Postsynaptic trace time constant for codependent ESP τypost 100 ms 7, 8, & S5

Postsynaptic trace time constant for codependent ESP τ− 33.7 ms 7, 8, & S5

Inhibitory plasticity learning rate η 10−8 mV−2 7, 8, & S5

Inhibitory balance set-point α 1.2 7, 8, & S5

Pre- and postsynaptic traces time constant for codependent ISP τiSTDP 20 ms 7, 8, & S5

TABLE S6. Simulation parameters for codependent synaptic plasticity model in Fig. 7, Fig. 8, and Fig. S5.
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Parameter Symbol Value Figs.

Excitatory current filter time constant τE 50 ms S2A,B

Inhibitory current filter time constant τI 500 ms S2A,B

LTP learning rate for codependent ESP ALTP 2.5 × 10−3 mV−1 S2A,B

Heterosynaptic plasticity learning rate for codependent ESP Ahet 10−5 mV−2 S2A,B

LTD learning rate for codependent ESP ALTD 1.2 × 10−2 S2A,B

Inhibitory gating term for codependent ESP I∗ 10 mV S2A

Inhibitory gating term for codependent ESP I∗ N/A S2B

Inhibitory threshold for codependent ESP Ith N/A S2A,B

Presynaptic trace time constant for codependent ESP τ+ 16.8 ms S2A,B

Postsynaptic trace time constant for codependent ESP τypost 100 ms S2A,B

Postsynaptic trace time constant for codependent ESP τ− 33.7 ms S2A,B

TABLE S7. Simulation parameters for codependent synaptic plasticity model in Fig. S2A,B.

Parameter Symbol Value Figs.

Neurotransmitter induced plasticity learning rate for spike-based ESP Apre 0 S2C

LTP learning rate for spike-based ESP ALTP 10−3 S2C

LTD learning rate for spike-based ESP ALTD 4.5 × 10−2 S2C

Presynaptic trace time constant for spike-based ESP τ+ 16.8 ms S2C

Postsynaptic trace time constant for spike-based ESP τy 100 ms S2C

Postsynaptic trace time constant for spike-based ESP τ− 33.7 ms S2C

LTP learning rate for voltage-based ESP ALTP 10−6 mV−2ms−1 S2D

LTD learning rate for voltage-based ESP ALTD 6 × 10−5 mV−1 S2D

Voltage threshold for LTD θ− −52 mV S2D

Voltage threshold for LTP θ+ −55 mV S2D

Presynaptic trace time constant for spike-based ESP τx 15 ms S2D

Voltage trace time constant for voltage-based ESP variable u− i τ− 10 ms S2D

Voltage trace time constant for voltage-based ESP variable u+ i τ+ 150 ms S2D

TABLE S8. Simulation parameters for spike- and voltage-based synaptic plasticity models in Fig. S2C,D.

Parameter Symbol Value Figs.

Excitatory current filter time constant τE 10 ms S7

Inhibitory current filter time constant τI N/A S7A,B

Inhibitory current filter time constant τI 100 ms S7C,D

LTP learning rate for codependent ESP ALTP 10−5 mV−1 S7

Heterosynaptic plasticity learning rate for codependent ESP Ahet variable S7

LTD learning rate for codependent ESP ALTD 10−3 S7A,C

LTD learning rate for codependent ESP ALTD 10−2 S7B,D

Inhibitory gating term for codependent ESP I∗ 60 mV S7A,B

Inhibitory gating term for codependent ESP I∗ N/A S7C,D

Inhibitory threshold for codependent ESP Ith N/A S7

Presynaptic trace time constant for codependent ESP τ+ 16.8 ms S7

Postsynaptic trace time constant for codependent ESP τypost 100 ms S7

Postsynaptic trace time constant for codependent ESP τ− 33.7 ms S7

TABLE S9. Simulation parameters for codependent synaptic plasticity model in Fig. S7.
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Supplementary figures of
Codependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks
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FIG. S1. Contribution of spike times, excitation, and inhibition to weight changes for the codependent synaptic plasticity model. A-C,
Schematics of the sequence of spikes (left), and the resulting weight change for two different spike patterns (middle and right) for codependent
excitatory synaptic plasticity model as a function of the levels of excitation and inhibition during plasticity (Eq. S36). A, Spike triplet: post-pre-post
sequence with fixed pre-before-post spike interval, ∆tLTD, and two examples for intervals between two consecutive postsynaptic spikes, ∆thet.
B, Spike doublet: post-before-pre spike pattern with two different intervals, ∆tLTD. C, Postsynaptic burst with two spikes at different interspike
intervals, ∆thet. D, Same as panel B for codependent inhibitory synaptic plasticity model (Eq. S37).
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FIG. S2. Comparison between synaptic plasticity models. A, Plasticity inducing protocol with pairs of pre-before-post (∆t = +10 ms) and
post-before-pre (∆t = −10 ms) for varying spiking frequencies, and different firing-rates of neighbouring excitatory and inhibitory afferents
(different colours). Plot shows changes in synaptic weight of a single connection while the other two (excitatory and inhibitory) are kept fixed.
Excitatory and inhibitory weight of neighbouring synapses were chosen to keep the initial (before plasticity) excitatory and inhibitory currents
balanced, and thus same average membrane potential for the same input frequency. Experimental data from Sjöström et al. 17 ; spike-based triplet
spike timing-dependent-plasticity model from Pfister and Gerstner 6 , and voltage-based plasticity model from Clopath et al. 7 . Error bars indicate
SEM. B, Weight changes as a function of input frequency (from neighbouring excitatory and inhibitory synapses; y-axis), and frequency of pairs
of spikes (x-axis). Plots from the first column (‘Codependent’) are also shown in Fig. 2D,E.
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FIG. S3. Raster plot of inhibitory (top) and excitatory (bottom) neurons used in the receptive field plasticity simulation (Fig. 4 and Fig. 5A).
A, Input spike patterns before (t < 2 s), during (2 < t < 3.1 s), and after (t > 3.1 s) learning the initial receptive field profile (Fig. 4B and Fig. 5A).
B, Sequence of input spikes for the modification of the initial receptive field profile, before (t < 0.5 s), during (0.5 < t < 0.6 s), and after (t > 0.6 s)
the learning window (Fig. 4C).
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FIG. S4. Evolution of synaptic weights connected to dendritic compartments for matched and independent E & I. A, Weights of co-active
(green) and uncorrelated (grey) excitatory inputs with size of co-active excitatory group and distance of dendritic compartment from the soma
indicated by gs and d, respectively. B, Weights of co-active (green; same activity pattern as co-active excitatory group) and uncorrelated (grey)
inhibitory inputs. Size of co-active inhibitory group was kept fixed at half of the inhibitory population. C, Same as panel A, but when inhibitory
inputs are independent of excitatory ones. D, Same as in panel B, but with no correlation between excitatory and inhibitory inputs.
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FIG. S5. Learning period for the recurrent network (Fig. 7 and Fig. 8). A, Average of recurrent excitatory weights. B, Average of inhibitory
weights onto excitatory neurons. C, Average of excitatory currents onto excitatory neurons. D, Average of inhibitory currents onto excitatory
neurons.
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FIG. S6. Low and high firing-rate states for neurons with adapting spiking threshold and NMDA currents. A, Membrane potential of a neuron
in a hyperpolarised state with low firing-rate. B, Membrane potential of a neuron in a depolarised state with high firing-rate.
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FIG. S7. Steady state excitatory currents of a postsynaptic neuron as a function of heterosynaptic plasticity and input firing-rate. A, Simulation
with weak LTD and weak inhibitory gating. B, Simulation with strong LTD and weak inhibitory gating. C, Simulation with weak LTD and strong
inhibitory gating. D, Simulation with strong LTD and strong inhibitory gating. High heterosynaptic learning-rates caused vanishing of weights
when inputs have higher firing-rate.
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