1 Screening of HLA-A restricted T cell epitopes of SARS-CoV-2 and induction of CD8⁺ T

2 cell responses in HLA-A transgenic mice

- Xiaoxiao Jin^{1#}, Yan Ding^{1#}, Shihui Sun^{2#}, Xinyi Wang¹, Zining Zhou¹, Xiaotao Liu¹,
 Miaomiao Li³, Xian Chen³, Anran Shen⁴, Yandan Wu¹, Bicheng Liu⁴, Jianqiong Zhang¹, Jian
 Li⁵, Yi Yang⁶, Haibo Qiu⁶, Chuanlai Shen^{1,6*}, Yuxian He^{7*}, Guangyu Zhao^{2*}
- ¹Department of Microbiology and Immunology, Medical School of Southeast University,
 Nanjing, Jiangsu, China 210009
- ⁹ ²State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and
- 10 Epidemiology, Beijing, China 100071
- ³Blood Component Preparation Section, Jiangsu Province Blood Center, Nanjing, Jiangsu,
- 12 China 210042
- ⁴ Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing,
 Jiangsu, China 210009
- ⁵ Life Science & Technology School of Southeast University, Nanjing, Jiangsu, China 210096
- ⁶Jiangsu Province Key Laboratory of Critical Care Medicine, Department of Critical Care
- 17 Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu,
- 18 China 210009
- ⁷Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union
 Medical College, Beijing, China 100730
- 21
- 22 Running title: T cell epitopes of SARS-CoV-2 and induction of CD8⁺ T cell responses
- 23
- [#] These authors have equal contributions to this work.
- 25
- 26 * Corresponding authors:
- 27 Chuanlai Shen: <u>chuanlaishen@seu.edu.cn;</u> Yuxian He: <u>yhe@ipb.pumc.edu.cn;</u>
- 28 Guangyu Zhao: guangyu0525@163.com
- 29

30 Abstract

While SARS-CoV-2-specific T cells have been characterized to play essential roles in host 31 immune protection in COVID-19 patients, few researches focus on the functional validation 32 of T cell epitopes and development of vaccines inducing specific T cell responses. In this 33 study, 120 CD8⁺ T cell epitopes from E, M, N, S and RdRp proteins were validated. Among 34 them, 110 epitopes have not been reported previously; 110, 15, 6, 14 and 12 epitopes were 35 highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; 4 epitopes 36 from S protein displayed one amino acid distinct from the current variants of SARS-CoV-2. 37 Thirty-one epitopes restricted by HLA-A2 molecule were used to generate peptide cocktail 38 vaccines in combination with Poly(I:C), R848 or polylactic-co-glycolic acid nanoparticles, 39 which elicited robust specific CD8⁺ T cell responses in wild-type and HLA-A2/DR1 40 transgenic mice. Seven of the 31 epitopes were found to be cross-presented by HLA-A2 and 41 H-2K/D^b molecules. Unlike previous researches, this study established a modified cell 42 co-culture system of DC-peptide-PBL using healthy donor's PBMCs to validate the CD8⁺ T 43 cell epitope on-silicon predicted; provided a library of CD8⁺ T cell epitopes restricted by a 44 series of high-frequency HLA-A allotypes which covering broad Asian populations; identified 45 the HLA-A cross-restrictions of these CD8⁺ T cell epitopes using competitive binding 46 experiments with HMy2.CIR cell lines expressing indicated HLA-A molecules; and initially 47 confirmed the *in vivo* feasibility of 9 or 10-mer peptide cocktail vaccines of SARS-CoV2. 48 These data will facilitate the development of vaccines inducing antiviral CD8⁺ T cell 49 50 responses.

51 Key words: SARS-CoV-2; T cell epitope; HLA-A; Vaccine

2 / 58

52 Introduction

The highly contagious COVID-19 has spread worldwide at an unprecedentedly quick speed 53 since its first identification at December 2019, leading to an ongoing global pandemic¹. As 22 54 of April, 2021, there have been more than 143 million confirmed cases and over 3.0 million 55 deaths. Although relentless efforts have been paid in effective vaccine race, there are still 56 many risks for a long-term immune protection², since host immunity to Severe Acute 57 Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has not been fully understood. Currently, 58 most vaccines focus on the induction of neutralizing antibodies against spike (S) protein of 59 SARS-CoV-2^{3,4}, which can block the virus from entering and infecting human cells, helping 60 the immune system to clear the virus and to prevent future infections⁵. However, researchers 61 have found that circulating antibodies to SARS-Cov-2 declined rapidly and persisted only 62 63 around seven months. And, certain patients who are asymptomatic or mildly symptomatic do not have detectable neutralizing antibodies⁶. In addition, growing incidence of COVID-19 64 re-infections emerges since the first reported re-infection in August, 2020. This suggests that 65 neutralizing antibodies cannot offer long-term protection. Furthermore, SARS-CoV-2 66 constantly undergoes mutations as it spread from person to person. Therefore, more studies 67 are needed to determine whether the current vaccines will be still effective against the virus 68 quasispecies. 69

It has been studies that T cells, especially CD8⁺ T cells, also play a critical role in the defense of many viral infections⁷. Increasing evidences indicate that T cell responses are important in the immune response against SARS-CoV-2, and may mediate long-term protection⁸⁻¹². The specific T cells showed a highly activated cytotoxic phenotype in the acute

phase that correlated with various clinical markers of disease severity, whereas the 74 convalescent-phase specific T cells were multifunctional and showed a stem cell-like memory 75 phenotype in the mild and asymptomatic patients¹²⁻¹⁹. Moreover, intensive expansion of 76 highly cytotoxic T cells was associated with convalescence in moderate patients¹⁹. 77 SARS-CoV-2-specifific T cells were detectable in antibody-seronegative exposed family 78 members and convalescent individuals with a history of asymptomatic and mild $COVID-19^{12}$. 79 As a result, T cell immunity would be critical in the pathogenesis and immune protection 80 mechanism of COVID-19, thus providing a potential way to develop long-term effective 81 vaccines and treatments²⁰. However, thus far limited information is available about the 82 vaccines inducing T cell immune protections against SARS-CoV-2. Very recently, 83 SARS-CoV-2 T cell epitopes restricted by H-2^d and H-2^b molecules were identified, and three 84 of which were used to generate the venezuelan equine encephalitis replicon particles (VRP) 85 expressing single T cell epitope²¹. This VRP vaccine induced robust CD4⁺ or CD8⁺ T cell 86 responses, which mediated more rapid viral clearance than neutralizing antibodies and 87 decreased the extent of lung pathological changes in Ad5-ACE2-tranduced and 88 SARS-CoV-2-infected mice²¹, indicating the potential of T cell epitope vaccine. In addition, 89 HLA-DR-restricted peptides cocktail vaccine from Tubingen University of Germany has been 90 enrolled in phase I clinical trial (NCT04546841). Whether the 9- or 10-mer peptides cocktail 91 restricted by HLA class I molecule can induce SARS-CoV-2 sepcific CD8⁺ T cell responses in 92 vivo remains unknown. 93

Identification of T cell epitopes in SARS-CoV-2 proteins can contribute greatly to the development of T cell epitope vaccines and precise evaluation of host cellular immunity. However, most studies have utilized pools of predicted or overlapping peptides spanning the
sequences of different SARS-CoV-2 proteins ²²⁻²⁸. The functionally validated T cell epitopes
are still limited and have thus far come from only a few laboratories^{10, 11, 29-32}. These T cell
epitopes are presented only by several HLA class I or II molecules and the precise HLA
restrictions of each epitope needs to be further defined.

To screen more CD8⁺ T cell epitopes which cover more predominant HLA-A allotypes 101 and more SARS-CoV-2 proteins, here we dedicated to the mapping of HLA-A-restricted 102 epitopes from envelope proteins (E), membrane protein (M), nucleocapsid protein (N), spike 103 glycoprotein (S) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Four 104 hundred and nine epitopes, which restricted by nine high-frequency HLA-A allotypes, were 105 on-silicon predicted and selected. Then the immunogenicity and HLA-A cross-restrictions of 106 107 120 epitopes were validated by DC-peptide-PBL co-culture experiments using healthy donors' PBMCs and competitive binding experiments with HMy2. CIR cell lines expressing indicated 108 HLA-A molecules. Thirty-one epitope peptides restricted by HLA-A2 molecule were used to 109 generate the 9- or 10-mer peptide cocktail vaccines in combination with Poly(I:C), R848 or 110 polylactic-co-glycolic acid nanoparticles (PLGA-NPs), which induced robust SARS-CoV-2 111 specific CD8⁺ T cell responses in HLA-A2/DR1 transgenic mice and wild-type mice. 112

113

114 Results

115 1. HLA-A restricted 409 T cell epitopes were on-silicon predicted and selected from 116 SARS-CoV-2 proteins

117 SARS-CoV-2 T cell epitopes, which restricted by nine high-frequency HLA-A allotypes

(HLA-A*02:01, A*11:01, A*24:02, A*02:06, A*02:07, A*33:03, A*30:01, A*02:03, or 118 A*11:02) with the total gene frequency of around 87% in Chinese population 119 (http://www.allelefrequencies.net), were predicted from four structural protein (E, M, N, S) 120 and one non-structural protein (RdRP) using five epitope predication tools (IEDB-ANN, 121 IEDB-SMM, SYFPEITHI, EPIJEN, NetMHC and ConvMHC). For each HLA-A molecule 122 and each protein, one to twenty 9- or 10-mer peptides with the highest score (highest affinity) 123 were selected as candidate epitopes. A total of 409 peptides restricted by indicated HLA-A 124 molecules were finally selected as candidate epitopes with the number of 45, 63, 71, 130, and 125 100 from E, M, N, S and RdRp proteins, respectively. Among them, 139 indicated epitopes 126 are common or highly homologous epitopes cross-presented by several HLA-A molecules, 127 thus finally only 270 indicated candidate epitope peptides (9-mer or 10-mer) were synthesized 128 129 for further identification (Table S1).

130 2. Immunogenicity of 120 candidate epitopes was validated by DC-peptide-PBL 131 co-culture experiments

In order to validate the immunogenicity of candidate epitopes, PBMCs from healthy blood 132 donors were collected and HLA-A alleles were identified. DCs were induced for 7 days and 133 then coincubated with candidate epitope peptides and autologous PBL for 14 days. Cells were 134 harvested and stimulated by corresponding candidate peptides for another 16 hours followed 135 by IFN-y intracellular staining (ICS) and flow cytometry. In some DC-peptide-PBL co-culture 136 wells, the autologous PBLs were prelabeled with CFSE. After 14-day co-cultures, the cells 137 were harvested followed by flow cytometry to detect the proliferation percentage of CD8⁺ T 138 cell. When the frequency of IFN- γ^+ T cells in CD3⁺/CD8⁺ T cell population increased by more 139

than 100% compared with the negative control or proliferation percentage of $CD8^+$ T cells in CD3⁺/CD8⁺ T cell population increased by more than 20% compared with the negative control, the candidate epitope peptide in the co-culture well was identified as positive peptide with immunogenicity.

To evaluate whether this procedure is sensitive for identification of peptide 144 immunogenicity, several reference peptides were tested using this DC-peptide-PBL co-culture 145 procedure. These HLA-A restricted T cell epitopes derived from hepatocellular carcinoma 146 (HCC)-associated tumor antigens (HCC 1-1, HCC 1-2, HCC 5-3, HCC 5-4, HCC 5-5) or from 147 hepatitis B virus antigens (HBV 111, HBV 118) have been validated as real-world epitopes 148 previously in-house by using HCC patients' PBMCs or chronic hepatitis patient's PBMCs 149 (manuscript submitted). They can effectively stimulate the patient's fresh PBMCs to produce 150 151 IFN- γ in *ex vivo* 20-hour co-culture as detected by ELISPOT assay. Here, they were also defined as positive peptides in DC-peptide-PBL co-cultures using healthy donor's PBMCs as 152 detected by intracellular IFN- γ staining and CFSE proliferation analyses, meanwhile the weak 153 positive reference peptides (HCC 1-1, HCC 1-2) were defined as negative peptides here 154 (Figure 1). 155

After the PBMC samples from 156 healthy donors were tested, a total of 120 candidate epitope peptides of SARS-CoV-2 have been defined as antigenic T cell epitopes by using the DC-peptide-PBL procedure, which indicating that they can elicit naive peptide-specific CD8⁺ T cells to activate and produce IFN- γ or proliferate after 14 days co-stimulation. Some candidate epitope peptides have been validated in several healthy donor' PBMCs. 110 of 120 positive epitopes have not been reported previously. The detailed data of all positive peptides

162	were summarized in Table 1. Of them, the number of epitopes derived from E (75aa), M
163	(222aa), N (419aa), S (1273aa) and RdRp (932aa) proteins is 18, 27, 12, 36, and 27,
164	respectively, with a relatively bias distribution. The density of CD8 ⁺ T cell epitopes per 10 aa
165	is 2.40, 1.216, 0.286, 0.283, and 0.290, respectively. Their sequence homology between
166	SARS-CoV-2 and other HCoVs were aligned and exhibited in Table S2. Of the 120 validated
167	SARS-CoV-2 CD8 ⁺ T cell epitopes, 110, 15, 6, 14 and 12 epitopes were highly homologous
168	(0-2 amino acids deviation) with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively.
169	The common epitopes with common-cold HCoVs mainly locate in RdRp protein (39/47). In
170	addition, 4 epitopes displayed one amino acid distinct from the current mutant variants, such
171	as D50 and D82 for B.1.1.7, D82 for B.1.351 and P.1, D78 for B.1.617, and D53 for Denmark
172	Variant (Table S2).

Figure S1 showed the phenotypes of mature DC as verified by flow cytometry. Figure 2 presented the IFN- γ ICS flow plots and CD8⁺ T cell proliferation flow plots of partial positive peptides. All flow plots of 120 positive peptides were displayed in Figure S2 and S3.

176 3. Binding affinity and cross-binding of positive epitope peptides with HLA-A allotypes

HMy2.CIR is a human B lymphocyte strain with HLA class I antigen deficiency, which does
not express HLA-A and B molecules and only expresses trace HLA-Cw4. To assess the
affinity of the positive peptides with the corresponding HLA-A molecules, the transfected
HMy2.CIR cell lines expressing indicated HLA-A molecules (HLA-A2402, A0203, A0201,
A0206, A1101, A3303, A0101, or A3001) were generated firstly, sorted by flow cytometry,
and identified by sequencing. The purity of these transfected CIR cell lines after sorting was
80% to 94% (Figure S4).

Then, the unlabeled positive peptides of SRAS-CoV-2 competed with fluorescent-labeled 184 reference peptides for binding with the corresponding HLA-A molecules onto indicated 185 transfected cell lines for 24 hours. As the FACS data showed, most positive peptides could 186 result in a left shift of the fluorescent peak of reference peptide (Figure S5). According to the 187 IC50, peptides were classified into three categories. Binding affinity was high when IC50 was 188 less than 5 μ M, intermediate when between 5 μ M and 15 μ M, and low or no binding when 189 more than 15 µM. Table 2 exhibited the binding affinity of each tested peptides with 190 associated HLA-A molecules. These data also revealed the cross-binding of indicated peptide 191 with different HLA-A allotypes (Table 3). Surprisingly, all epitopes derived from E protein 192 displayed low affinity with corresponding HLA-A allotypes in this HLA-A competitive 193 binding assay (Table 3), but these data are inconsistent with the results from DC-peptide-PBL 194 195 costimulation and vaccine immunization in HLA-A2/DR1 transgenic mice.

4. The peptide cocktail vaccines induced robust specific CD8⁺ T cell responses in HLA-A2/DR1 transgenic mice

To determine whether these peptides which was validated by DC-peptide-PBL co-culture 198 experiments can stimulate T cell responses in vivo, 31 positive epitope peptides restricted by 199 HLA-A2 molecule (HLA-A0201, A0203, A0206, A0207) were grouped into 4 peptide pools 200 (Table S3) and were used to generate peptide cocktail vaccines in three formulations: the 201 peptides-encapsulated PLGA-NPs/peptides 202 and -surface coupled (Vaccine A), R848/peptides (Vaccine B), and poly I:C/peptides (Vaccine C) (Table S4). Additionally, T2 203 cell binding assay was used to define the affinity of the 31 epitopes with HLA-A0201 204 molecule. T2 cells were incubated with indicated peptide or no peptide and β2-microglobulin 205

for 16 hours. Then, peptide-induced up-regulation of HLA-A0201 expression on T2 cells was 206 measured by PE-labeled anti-HLA-A2.1 antibody staining and flow cytometry (Figure S6). 207 According to the fluorescence index (FI), 18 epitopes showed high affinity (FI > 1.0), 7 208 epitopes displayed intermediate affinity (1.0 > FI > 0.5), and 6 epitopes exhibited low or no 209 binding (FI ≤ 0.5) with HLA-A0201 molecules (Table S5). Finally, HLA-A0201^{+/+}/DR1^{+/+} 210 transgenic and H-2- β 2m^{-/-}/I-A β ^{-/-} C57BL/6 mice were immunized with the three vaccines 211 respectively. After three rounds in vivo stimulation, splenocytes of primed mice were tested 212 for peptide-specific T cell responses by IFN- γ -ELSPOT, IFN- γ -ICS and IFN- γ -ELISA. 213 The 31 positive peptides were grouped into eight pools (Table S3) according to their 214 derived proteins and the features of acid and alkalinity. Then splenocytes from each mouse 215 were coincubated with each peptides pool or PBS for 20 hours in 96-well PVDF membrane 216 plate and followed by IFN- γ -ELSPOT assay. The total spot forming unit (SFU) in 2×10⁵ 217 splenocytes from each mouse in the three vaccine groups was 400-500 times more than that 218 from control group (Figure 3A). Interestingly, splenocytes in all vaccine groups showed 219 almost the strongest T cell responses to E protein and weakest T cell responses to N protein 220 relative to other antigens (Figure 3B). Figure 4 presented the spots of ELISPOT assay from all 221 mice. Two irrelevant $CD8^+$ T cell epitope peptides (AFP₁₅₈₋₁₆₆ and AFP₄₂₄₋₄₃₂) were used as 222 antigen-irrelevant control groups and obtained the negative results similar to that in no 223 peptide group. 224

To further confirm the results from ELISPOT assay and the specific $CD8^+$ T cell responses, IFN- γ intracellular cytokine staining was performed. The 31 positive peptides were grouped into five pools (Table S3) according to their derived proteins. Then splenocytes from

each mouse were coincubated with each peptides pool or PBS for 16 hours in 48-well plate 228 and followed by another 6 hours coincubation with BFA/Monensin mixture. The resulting ICS 229 showed that the frequencies of IFN- γ^+ in CD3⁺CD8⁺ T cell populations from the three vaccine 230 groups were about 20-30 times higher than that in control mice (Figure 3C). Splenocytes in 231 vaccine A group showed the strongest CD8⁺ T cell responses to RdRP while splenocytes in 232 vaccine C group showed the strongest CD8⁺ T cell responses to E protein (Figure 3D). Figure 233 5 presented the flow plots for ICS from all mice. Also, two irrelevant CD8⁺ T cell epitope 234 peptides (AFP₁₅₈₋₁₆₆ and AFP₄₂₄₋₄₃₂) were used and obtained the results similar to the no 235 236 peptide group.

Furthermore, ELISA was carried out to quantify IFN- γ in the supernatant after the splenocytes were incubated with each of the five peptide pools or PBS in 48-well plate for 72 hours. Accumulations of IFN- γ in the supernatant of the three vaccine groups were about 15-30 times higher than that in control group (Figure 6A), which is consistent with the results of ELISPOT and ICS. Splenocytes in all three vaccine groups showed relatively stronger responses to RdRP protein (Figure 6B).

Taken together, these results indicated that all three forms of epitope peptide cocktail vaccines can stimulate robust specific CD8⁺ T cell responses in HLA-A2/DR1 transgenic mice, implying the potential of these validated SARS-CoV-2 T cell epitopes to be applied in vaccine development. Of note, the mouse-3 in Vaccine B group (R848/peptide vaccine) showed only weak or no T cell responses as detected by ELSPOT, ICS and ELISA. This failure may be due to the weak reactivity of entire T cell repertoire since the SFU of 2×10^5 splenocytes was much less than other primed mice after stimulated by mitogen PHA as detected by ELISPOT (70 vs. 832.2 \pm 328.9). In order to further confirm the *in vivo* results, Vaccine C (poly I:C/peptides) immunization experiment was repeated in the HLA-A0201^{+/+}/DR1^{+/+} transgenic and H-2- β 2m^{-/-}/I-A β ^{-/-} C57BL/6 mice and induced similar trend of robust CD8⁺ T cell responses compared to control group.

5. The peptide cocktail vaccine induced CD8⁺ T cell responses in wild-type C57BL/6 mice

To investigate whether the HLA-A2 molecules-restricted 9 or 10-mer peptides can also be 256 cross-presented by mouse H-2K/D^b molecules, the wild-type C57BL/6 mice were immunized 257 with vaccine C (peptide pool-v1, pool-v2, pool-v3 and pool-v4 mixed with poly I:C). After 258 three rounds of *in vivo* stimulation according to the timeline in HLA-A2/DR1 transgenic mice, 259 splenocytes from primed C57BL/6 mice were detected by ICS. The frequencies of IFN- γ^+ T 260 cells in CD3⁺/CD8⁺ populations were 4-7 times higher in the 2 of 4 vaccination mice than that 261 in the control group (Figure 6C). The robust CD8⁺ T cell responses were mainly against the 262 epitopes from M, N and S protein (Figure 6D). Figure 7A presented the flow plots of all mice. 263 Also, two irrelevant CD8⁺ T cell epitope peptides (AFP₁₅₈₋₁₆₆ and AFP₄₂₄₋₄₃₂) were used and 264 obtained the results similar to the no peptide group. 265

To further identify the epitopes cross-presented by mouse H-2K/D^b molecules, the splenocytes from primed Vaccine mouse-2 and Vaccine mouse-3 were coincubated with each of the 31 positive epitope peptides and followed by ICS. Flow cytometric data showed that 7 of 31 epitope peptides (A5, B1, B2, B6, C2, D6 and D13) can activate the primed splenocytes with a frequency of IFN- γ^+ T cells in CD3⁺/CD8⁺ population two times higher than that of no *ex vivo* stimulation group (Figure 7B).

272 6. T cell epitope-based peptide cocktail vaccines do not lead to visible organ toxicity

To uncover whether the peptide-based vaccine immunizations cause organ toxicity, the heart, liver, lung and kidney from each mouse were checked at day 28 after the mice were inoculated three times with Vaccine A, Vaccine B or Vaccine C. The organs were immersed and stained with Hematoxylin-Eosin. As the scanning copy showed, no visible organ toxicity was found in all organs in each group (Figure S7).

278

279 **Discussion**

SARS-CoV-2 has seriously hazarded public health and the economic development all over the 280 word. Many people are suffering from the physical symptoms or the adverse impacts caused 281 by this major epidemic disease. Despite of great efforts made by scientists around the world, 282 the epidemic situation is still out of control. COVID-19 vaccine development is of major 283 importance, but mainly biased towards neutralizing antibody protection with generally less 284 effective at eliciting CD8⁺ T cell responses, which faces possible risk in clearing virus and in 285 preventing from infection. Informed by protective immunity observed in natural infection, 286 people have known that vaccine approaches that elicit antiviral SARS-CoV-2 specific CD4⁺ 287 and CD8⁺ T cells in coordination with neutralizing antibodies will generate more robust and 288 durable protective immunity^{20, 33}. As known, memory T cell responses can persist for 6-17 289 years after SARS-CoV infection^{10, 34} and, in mice, protect against lethal virus challenge³⁵. In 290 contrast, memory B cells live short in host^{34, 35}. 291

However, only several reports are thus far available about the vaccine candidate T cell epitopes that have been validated by functional experiments. 408 CD8⁺ T cell epitopes

on-silicon predicted were applied in multiplexed peptide-MHC tetramer staining to detect the 294 PBMCs from 30 convalescent COVID-19 patients, then 132 positive reactions were obtained 295 with the validation of 42 CD8⁺ T cell epitopes presented by 6 HLA allotypes (HLA-A0101, 296 A0201, A0301, A1101, A2402 and B0702)³². Prackar et al tested the binding stability of 777 297 CD4⁺ and CD8⁺ T cell epitopes that were predicted to be good binders across 11 MHC 298 allotypes using an *in vitro* peptide MHC stability assay, and found that 174 peptides can stably 299 bind to the HLA allotypes (HLA-A0101, A0201, A0301, A1101, A2402, B4001, C0102, 300 C0401, C0701, C0702, DRB10401), of which 126 have not been reported previously³¹. After 301 14-day cocultures of predicted epitope pools with PBMCs from healthy individuals, 142 302 $CD4^+$ T cell epitopes were defined by immunofluorescence spot assay (FluoroSpot)³⁰. 303 Furthermore, using genome-wide screening technology (T-Scan), 29 CD8⁺ T cell epitopes 304 were identified, and presented by 6 different HLA allotypes (A0201, A0101, A0301, A1101, 305 A2402, B0702)²⁹. Thus far, the validated SARS-CoV-2 T cell epitopes, especially CD8⁺ T cell 306 epitopes, are still limited and few epitopes have been used in vivo as vaccines. More 307 importantly, these validated epitopes are only presented by a few HLA allotypes which can 308 not cover a broad population in indicated geographical regions. This may hamper the 309 development of T cell epitope vaccines and the precise evaluation on herd cellular immune 310 protection. 311

Unlike the previous researches about T cell epitopes of SARS-CoV-2, this study has four points of worth noting. First, this study focus on a series of high-frequency HLA-A allotypes which gather a total HLA-A allele frequency of around 87% in Chinese population while 79%, 78%, 63%, 59.5%, 49.5% and 46.5% in Southeast Asia, Northeast Asia, Indonesia, South

America, Europe North America populations. respectively 316 and (http://www.allelefrequencies.net). Since T cell epitopes spread across the proteome of 317 SARS-CoV-2 in a relatively equal distribution⁹, here four structural proteins and the RdRp 318 consisted of nsp7, nsp8 and nsp12 were screened for the identification of CD8⁺ T cell epitopes 319 cross-restricted by the high-frequency HLA-A allotypes. This study has provided a library of 320 $CD8^+$ T cell epitopes that not only covers broad antigenic targets recognized by 321 SARS-CoV-2-specific CD8⁺ T cell clones, but also fits to the Asian herd genetic 322 characteristics of HLA molecules, thus will facilitate the development of SARS-CoV-2 323 vaccines inducing antiviral CD8⁺ T cell responses for Asian populations. 324

Second, this study established a modified cell co-culture system of DC-peptide-PBL 325 using healthy donor's PBMCs to validate the immunogenicity of CD8⁺ T cell epitope 326 on-silicon predicted. The most reliable and valuable method to validate the immunogenicity 327 of candidate T cell epitopes is the detection of epitope-specific memory T cell clones in the 328 PBMCs or other cell samples from COVID-19 patients or convalescent humans. However, it 329 is less practicable in current China due to the difficulty obtaining clinical blood samples. So, 330 an alternative approach using PBMCs from unexposed humans was used here. The DC-T or 331 peptide-PBMC co-culture procedures using healthy donor's PBMCs have been generally used 332 to validate the CD4⁺ T cell epitopes by the exogenous antigen presenting mechanism³⁰. In this 333 study, DC-T and peptide-PBMC experiments were integrated as DC-peptide-PBL 334 co-stimulation system, and initially applied for the validation of CD8⁺ T cell epitopes. DCs 335 were induced from the healthy donors' PBMCs, and coincubated for 14 days with candidate 336 epitope peptides and autologous PBLs. In this co-culture system, the 9-mer or 10-mer 337

peptides are maintained in culture media at a high concentration of 20 µg/mL during 14 days, 338 and may be engulfed by DCs and cross-presented to CD8⁺ T cell by HLA-A molecules, or 339 directly bind to the HLA-A molecules onto DCs and B cells followed by activation of naive 340 CD8⁺ T cells or SARS-CoV-2 cross-reactive memory CD8⁺ T cells. This presumption was 341 verified at least in part by the positive results of DC-peptide-PBL experiments in this study. 342 Many candidate epitope peptides can increase the frequency of IFN- γ^+ CD8⁺ T cells by 3-5 343 times in this co-culture system. Compared with the ICS, the detection of CD8⁺ T cell 344 proliferation by using CSFE-prelabeled PBLs is less sensitive. Of note is that the healthy 345 donor's DC-T in vitro co-cultures usually can increase peptide-specific CD4⁺ T cells by 346 around 10 times since the exogenous antigen procession and presentation mechanism³⁰. More 347 interestingly, 44 (36.66%) of the 120 validated CD8⁺ T cell epitope peptides can also 348 simultaneously activate CD4⁺ T cells with the 2-6 times increase of IFN- γ^+ /CD4⁺ T cell 349 frequency or CD4⁺ T cell proliferation (data not shown). The underlying mechanism remains 350 to be further elucidated. 351

In order to further confirm the sensitivity and reliability of this co-culture system, some 352 reference CD8⁺ T cell epitope peptides, which were derived from HCC-associated tumor 353 antigens or from hepatitis B virus antigens and have been validated as real-world epitopes 354 previously in-house by using HCC patients' PBMCs or chronic hepatitis patient's PBMCs, 355 were tested in this system and achieved positive results. In addition, HLA-A molecule 356 competitive binding experiments also were used to confirm the binding affinity of the 120 357 positive peptides with corresponding HLA-A molecules onto HMv2.CIR cell lines. The 358 results are mostly consistent in that of DC-peptide-PBL experiments except the epitopes 359

derived from E protein, and further identified the HLA-A restrictions and cross-restrictions of each epitope peptides. Furthermore, the robust CD8⁺ T cell responses elicited by the HLA-A2-binding peptide cocktails in HLA-A2/DR1 transgenic mice also indicated the *in vivo* immunogenicity of representative epitope peptides validated by this DC-peptide-PBL procedure.

For this study, the third point different from previous researches is that the HLA-A 365 cross-restrictions of 120 positive CD8⁺ T cell epitopes were further identified by using 366 HLA-A molecule competitive binding experiments with HMv2.CIR cell lines expressing 367 indicated HLA-A molecules. As known, one T cell epitope can be presented by several HLA 368 allotypes with distinct binding affinity. The HLA molecule restrictions and cross-restrictions 369 of most SARS-CoV-2 T cell epitopes previously reported have not been elucidated, but only 370 371 have been affirmed by on-silicon prediction and mere guesswork according to the donor's HLA allele genotypes^{29, 30, 32}. 372

More importantly, this study initially confirmed the in vivo feasibility of 9 or 10-mer 373 peptide cocktail vaccines of SARS-CoV2. As known, HLA class II molecule restricted 374 peptides (15 or 16-mer long) can induce CD4⁺ T cell responses in vivo. For SARS-CoV2, 375 HLA-DR restricted peptides cocktail vaccine from Tubingen University of Germany has been 376 enrolled in phase I clinical trial (NCT04546841). However, few 9-mer or 10-mer CD8⁺ T cell 377 epitope peptides have been directly used in vivo as peptide vaccines. For tumor 378 immunotherapy, tumor neoantigen peptide vaccines and mRNA vaccines have recently 379 achieved robust T cell responses and encouraging clinical outcome^{36, 37}. In clinical trials of 380 melanomas^{38, 39} and non-small cell lung cancers⁴⁰, the survival of patients was significantly 381

prolonged and the recurrence rate was reduced. Patrick A. Ott³⁸ identified up to 20 neoantigen 382 peptides restricted by HLA-A or B allotypes from each melanoma patient using whole-exome 383 sequencing of matched tumor and normal cell DNA and RNA sequencing of the tumor. 384 Herein, the long peptides (with the length of 15–30 amino acids containing individual CD8⁺ T 385 cell epitope) rather than 9-mer or 10-mer peptides were synthesized and mixed with TLR3 386 agonist poly-ICLC to generate personal tumor neoantigen peptide vaccines. Of 6 vaccinated 387 melanoma patients, 4 had no recurrence at 25 months post-vaccination, while 2 with 388 progressive disease were subsequently treated with anti-PD-1 therapy and experienced 389 complete tumor regression. The long peptide vaccines elicited expansion of the repertoire of 390 neoantigen-specific T cells in each patient, but most were CD4⁺ T cells rather than CD8⁺ T 391 cells. In this study, 31 short peptides of SARS-CoV-2 CD8⁺ T cell epitope (with the length of 392 393 9-10 amino acids) were synthesized and mixed with R848, poly (I:C) or PLGA-NPs followed by immunizations in HLA-A2/DR1 transgenic mice and WT mice. The resulting data, for the 394 first time to our knowledge, provide the experimental evidences that human MHC class I 395 molecule-restricted short peptide cocktail vaccines can induce robust SARS-CoV2 specific 396 CD8⁺ T cell responses *in vivo*. 397

Using patients' PBMCs could only test whether the candidate peptide can be recognized by memory T cells *ex vivo*, while using healthy donor' PBMCs only test whether the candidate peptides can elicit naïve T cells *in vitro*. Whether the candidate peptide is also able to activate naïve T cells *in vivo* is a better criterion to judge it as an ideal vaccine candidate peptide. As compared with the Ad5-ACE2-transduced and SARS-CoV-2-infected BALB/c and C57BL/6 mice²¹, HLA transgenic mice integrated with human HLA class I and II alleles

are more suitable for preclinical study of the vaccine. HLA-A*02:01 is one of the most 404 common HLA class I alleles in the world, thus HLA-A*02:01 transgenic mice (HHD mice) 405 have been generally used in identifying HLA-A0201-restricted epitopes and in evaluating 406 peptide vaccines $^{41-43}$. Herein, the HLA-A0201^{+/+}/DR1^{+/+}/H-2- β_2 m^{-/-}/IA $\beta^{-/-}$ C57BL/6 mice 407 were used in which the 9-mer or 10-mer peptides cocktail vaccines only can be presented by 408 HLA-A2 or DR1 molecules, not by any H-2^b molecules, which indicated that this mouse 409 model is more suitable to mimic the in-human antigen procession and presentation 410 mechanism, without the interference caused by mouse H-2 molecules presentation. However, 411 similar to the DC-peptide-PBL co-culture system, the detailed in vivo mechanism by which 412 the exogenous 9 or 10-mer peptides elicit naive CD8⁺ T cells activation remains unclear. 413

The 120 CD8⁺ T cell epitopes spread across the E, M, N, S, and RdRp proteins of SARS-CoV-2 with a bias distribution. Notably, the shortest E protein presented the highest density of CD8⁺ T cell epitope (2.400/10aa), two times relative to M protein (1.216/10aa), while N, S and RdRp proteins exhibited a similar low density (0.286, 0.283, 0.290 per 10aa) in this study. These data are discriminated with other findings in which T cell epitopes relatively equally distributed across the proteome of SARS-CoV-2⁹.

Of the unexposed cohorts from the United States, Netherlands, Germany, Singapore, and United Kingdom, 20-50% could detect specific memory $CD4^+$ T cells that showed cross-reactivity to SARS-CoV-2 antigens, but the frequency was about 10 times lower (0.1% vs.1%) than that of those infected with SARS-CoV-2, presumably due to the common T cell epitopes between SARS-CoV-2 and common-cold HCoVs^{8, 9, 30, 44}. In addition, long-lasting memory T cells reactive to N protein of SARS-CoV can be detected in 2020 in the

convalescent individuals with a history of SARS-CoV infection in 2003, and showed robust 426 cross-responses against N protein of SARS-CoV-2¹⁰. In this study, depending on the sequence 427 homologous alignment of SARS-CoV-2 with SARS-CoV, common-cold HCoVs, and current 428 mutant variants of SARS-CoV-2, most epitopes (110) were common CD8⁺ T cell epitopes of 429 SARS-CoV. Additionally, 15, 6, 14 and 12 epitopes were also highly homologous (0-2 amino 430 acids deviation) with OC43, NL63, HKU1, and 229E, respectively, which are mainly derived 431 from in RdRp protein (39/47). These theoretical data support the previous findings in 432 unexposed humans, but are contradictory with the previous research in which CD8⁺ T cells 433 generally do not cross-react with epitopes in the four common cold HCoVs²⁹. Further 434 detection using these homologous epitope peptides in unexposed cohort is needed. More 435 importantly, of which 120 validated CD8⁺ T cell epitopes of SARS-CoV-2, only 4 epitopes 436 437 from S protein displayed one amino acid distinct from the five wide-spread virus variants while the one amino acid deviation at position 1, 3, 5 or 6 may or may not change epitope 438 immunogenicity, suggesting the advantage of T cell epitope cocktail vaccine over the B cell 439 epitope vaccine producing neutralizing antibody on the antiviral protections against mutant 440 SARS-CoV-2. 441

In summary, 120 kinds of CD8⁺ T cell epitopes derived from E, M, N, S, and RdRp proteins of SARS-CoV-2 and restricted by a series of high-frequency HLA-A allotypes were identified and validated. Among them, 110 and 47 epitopes are highly homologous with SARS-CoV and common-cold HCoVs respectively, 4 epitopes are distinct from current variants of SARS-CoV-2 with one amino acid substitution. HLA-A2-restricted 31 epitopes were generated as short peptide cocktail vaccines and triggered robust CD8⁺ T cell responses

448	in HLA-A2/DR1 transgenic C57BL/6 mice and wild-type C57BL/6 mice. 7 epitopes were
449	found to be cross-presented by HLA-A2 and H-2K/ D^b molecules. Whether these $CD8^+$ T cell
450	responses elicited by the peptides could facilitate virus clearance will be studies further.

451

452 Materials and methods

453 **1. Preparation of PBMCs and HLA-A gene typing**

The white blood cell filter trays after red blood cells preparation of healthy blood donors were gotten from Blood Component Preparation Section of Jiangsu Province Blood Center. Then white blood cells were collected from the white blood cell filter tray and PBMCs were isolated by density-gradient centrifugation using Ficoll-Paque. The fresh PBMCs were either used directly or cryopreserved in -80 °C until further test. HLA-A alleles were identified by PCR-sequencing-based tying. The human samples collection and use has been approved by Clinical Ethics Committee of Affiliated Zhongda hospital of Southeast University.

461 **2. Mice**

Female HLA-A*02:01/DR1 transgenic and H-2-β₂m^{-/-}/IAβ^{-/-} C57BL/6 mice at 10 weeks were 462 generous gifts from Academy of Military Medical Sciences. Female C57BL/6 mice at 10 463 weeks of age were purchased from the Comparative Medicine Center of Yangzhou University 464 (Yangzhou, China). Mice were maintained at the specific pathogen-free Animal Centre of 465 Southeast University (Nanjing, China). Animal welfare and experimental procedures were 466 performed in accordance with the Guide for the Care and Use of Laboratory Animals 467 (Ministry of Science and Technology of China, 2006) and were approved by the Animal 468 Ethics Committee of Southeast University. 469

470 **3. On-silicon prediction of T cell epitopes and peptide synthesis**

T cell epitopes spanning E, M, N, S, and RdRP proteins of SARS-CoV-2 (Wuhan strain) and 471 presented by different HLA-A molecules were on-silicon predicted using five epitope 472 predication tools and seven types of algorithms (IEDB-ANN, IEDB-SMM, SYFPEITHI, 473 EPIJEN, NetMHC and ConvMHC). For each HLA-A molecule and for each protein. one to 474 twenty 9-mer or 10-mer peptides with the highest score (highest affinity) as predicted by at 475 least two tools were selected as candidate epitopes to be identified. The peptides were 476 synthesized from China Peptides Co., Ltd with a purity above 95% defined by HPLC 477 purification and mass spectrometry, and were used in cellular functional experiments. 478 Lyophilized peptides were reconstituted at a stock concentration of 2mg/mL in DMSO-PBS 479 solution. 480

481 **4. DC-peptide-PBL co-culture experiment**

Fresh PBMCs were suspended in serum-free RPMI 1640 and were allowed to adhere to 482 culture flask for 2 hours in 5% CO₂ at 37°C. Non-adherent cells (PBLs) were then removed 483 and were cryopreserved at -80°C until further use. The resulting adherent cells were cultured 484 in RPMI 1640 with 10% FCS, 1% penicillin/streptomycin, recombinant human GM-CSF 485 (rhGM-CSF, 1000IU/mL, PrepoTech) and recombinant human IL-4 (rhIL-4, 500IU/mL, 486 PrepoTech). At day 3 and day 5, half of the medium was replaced with fresh complete 487 medium containing the cytokines with the same final concentration detailed above. At day 5, 488 LPS (1µg/mL, sigma) was added to induce mature DCs (mDCs). At day 7, mature DCs 489 (mDCs) were collected and were identified by flow cytometry (FACS Calibur, BD Bioscience) 490 with FITC-labeled anti-CD83, anti-CD80, anti-CD86, anti-HLA-DR and PE-labeled 491

anti-HLA-ABC and anti-CD1a, respectively. mDCs were incubated with single peptide 492 (20µg/mL, which corresponding to the HLA-A allele of indicated healthy donor) in serum 493 free RPMI 1640 in 48-well plate (5×10⁴ cells/well) for four hours in 5% CO₂ at 37°C, then the 494 PBLs from the same donor (recovered one day ago, and prelabeled with CFSE or not) were 495 added into the well $(1 \times 10^6 \text{ cells/well})$ for further 14-day co-culture. Recombinant human IL-2 496 (20 IU/mL) was added at day 11. At day 14, the corresponding peptide (20µg/mL) was added. 497 At day 17, rhIL-2 was added again (10 IU/mL). At day 21, cells were harvested and followed 498 by ICS or T cell proliferation assay. 499

500 5. Intracellular IFN-γ staining of stimulated T cells

Cells from the DC-peptide-PBL co-cultures were harvested and coincubated with 501 corresponding peptide (20µg/mL) or no peptide (negative control) for 16 hours in serum- free 502 RPMI-1640 medium in 48-well plate at 37°C and 5% CO2. After that, BFA/Monensin mixture 503 was added to the cells for another 6 hours culture. Cells were then harvested, washed, blocked 504 with human FcR Blocking Reagent (MACS) for 20 min at 4°C and were stained with 505 FITC-labeled anti-CD3 and APC-labeled anti-CD8 antibodies for 30 min at 4 °C. After 506 washing, cells were fixed and permeabilized following the protocol and were further 507 incubated with PE-anti-human IFN- γ (4S.B3) (BD) for another 30 min at 4°C followed by 508 flow cytometry. The frequencies of IFN- γ^+ cells in CD3⁺/CD8⁺ populations were calculated. 509

510 6. **CD8⁺ T cell proliferation assay**

In the DC-peptide-PBL co-culture, PBLs were pre-stained with CFSE. Briefly, PBLs were
thawed, washed, and labeled with CFSE at a final concentration of 1.5μM for 20 min at 37°C.

513 After washing, the CFSE-prelabeled PBLs were seeded into DC-peptide-PBL co-culture well

and incubated for 14 days. At day 22, cells were harvested and blocked with human FcR Blocking Reagent (MACS) for 20 min, then stained with PE-labeled anti-CD3 and APC-labeled anti-CD8 antibodies for 30 min at 4° C for further analysis on the flow cytometry. The proliferation percentage of CD8⁺ T cells in CD3⁺/CD8⁺ population was analyzed according to the reduction of CFSE-staining brightness.

519 7. Generation of HMy2.CIR cell lines expressing indicated HLA-A molecule

Total mRNA was extracted from the PBMCs of the healthy donor with indicated HLA-A alleles, the cDNA of each HLA-A allele was amplified using PCR and followed by the routine construction of pcDNATM3.1/myc-His(-)A recombinant plasmid. After electrotransfection, the cell lines stably expressing indicated HLA-A molecule was screened by G418. Then the cell lines were stained with fluorescence-labeled monoclonal antibody W6/32 against HLA-ABC or anti-HLA-A24, the high-expression cells were then sorted using flow cytometry and followed by pure culture and sequencing analyses.

527 8. HLA-A molecule competitive binding assay

A set of plasmid-transfected HMy2.CIR cell lines expressing indicated HLA-A molecule were 528 generated in house and sorted by flow cytometry. The cell lines were then used in the 529 competitive peptide binding assay according to the references⁴⁵. Briefly, the CIR cell lines 530 expressing indicated HLA-A molecule were washed with acid buffer (0.131M citric acid and 531 0.061M sodium phosphate Na₂HPO₄, PH3.3, 0.22µm filtered) for 1 min, and then neutralized 532 by IMDM medium containing 0.5%BSA. Cells were washed, seeded into 96-well U culture 533 plate $(1 \times 10^5 \text{ cells}/100 \mu \text{L/well})$ with β_2 -m (1µg/mL). Then 25µL unlabeled peptide to be tested 534 (5µM or 15µM) and 25µL fluorescent-labeled reference peptide (300nM) were added into the 535

well and coincubated for 24h at 4°C. The reference peptides used in this research were 536 FLPSDK(FITC)FPSV (for HLA-A0201, A0203 and A0206), YVNVNK(FITC)GLK (for 537 HLA-A1101 and A3303), EYLVSK(FITC)GVW (for A2402), YLEPAK(FITC)AKY (for 538 A0101) and ASRELK(FITC)VSY (for A3001). The plate was centrifuged at 600rpm for 5min 539 at room temperature (RT). Cells were washed twice with 100µL cold 0.5% BSA-PBS. Finally, 540 cells were resuspended with 150µL PBS and transferred to the flow tube and further analyzed 541 with flow cytometry. Fluorescence polarization (FP) sample is the FP value for the sample, 542 while the minimum FP free is the FP value for free FITC-labeled reference peptide, and the 543 maximum reaction FP no is the FP value for FITC-labeled reference peptide without 544 unlabeled competitor peptide. Competitive binding (%) = [1-(FP sample-FP free) / (FP no))545 -FP free)] \times 100%. IC50 is the concentration of unlabeled peptide required to inhibit the 546 547 binding of labeled reference peptide by 50%, which is calculated from the competitively binding inhibition (%) of the sample at 5µM and 15µM. Binding affinity of unlabeled peptide 548 with indicated HLA-A molecule is assessed by IC50. IC50<5µM means high binding affinity, 549 between 5-15µM means intermediate binding affinity, more than 15µM means low binding 550 affinity or no binding affinity. 551

552 9. Preparation of peptide pools for vaccine immunization

Validated antigenic peptides restricted by HLA-A2 molecules (including A0201, A0203,
A0206, A0207) were reconstituted in ideal solution before use at a final concentration of
555 5mg/mL for vaccine immunization and 2mg/mL for T cell response detection. Totally 31
antigenic peptides (9-mer or 10-mer) were grouped into four pools (pool-v1 to v4) for vaccine
immunization (Table S3). For IFN-γ-ELISPOT assay, the 31 antigenic peptides were grouped

into eight pools according to their derived protein and the feature of acid and alkalinity (Table S3). For IFN- γ ICS and ELISA, the 31 antigenic peptides were grouped into five pools according to their derived proteins (Table S3).

561 **10. T2 cell binding assay**

To assess the affinity of HLA-A2-restricted epitope peptides with HLA-A0201 molecule, 562 peptide-induced up-regulation of HLA-A0201 expression on T2 cells was measured. Briefly, 563 T2 cells were incubated with single peptide of the 31 epitopes ($50\mu g/mL$) or CMVpp $65_{495-503}$ 564 peptide (NLVPMVATV, 50µg/mL, as positive control) or OVA257-264 peptide (SIINFKEL, 565 50µg/mL, as negative control) or no peptide and 3µg/mL β 2-m for 16 hours at 37 °C and 5% 566 CO₂. Then T2 cells were stained with PE-labeled anti-HLA-A2.1 antibody for 30 min at 4 °C 567 followed by flow cytometry. The fluorescence index (FI) was calculated as follows: FI = 568 569 (mean PE fluorescence with the given peptide - mean PE fluorescence without peptide)/ (mean PE without peptide). FI > 0.5 was the criteria of peptides with affinity while peptides 570 with FI > 1 were regarded as high-affinity epitopes. $FI \le 0.5$ means low affinity or no binding. 571

572 11. Preparation of PLGA-NPs/peptides vaccine

Peptides-encapsulated PLGA-NPs were prepared freshly using the double-emulsion solvent evaporation method. To equal the amount of peptides in PLGA-NPs/peptides vaccine to the PolyI:C/peptides vaccine and R848/peptides vaccine, the loading efficiency of the PLGA-NPs was calculated before vaccination, then the PLGA-NPs carrying single peptide pool were prepared for future injections (one injection/mouse, 3 mice). Briefly, 60 mg of PLGA with or without single peptide pool (575µg/pool, 72-82 µg/peptide) was dissolved in 15mL of dichloromethane followed by ultrasonic dispersion for 30s at 40% amplitude to get the

primary emulsion. Then, the primary emulsion was added into 150mL of 1% polyvinyl 580 alcohol and sonicated for another 90 s to form the secondary emulsion. The resulting 581 emulsion was added into 300mL of 0.5% PVA solution drop by drop with incessant magnetic 582 stir to allow the evaporation of the dichloromethane. Four hours later, the solution was 583 collected and centrifuged at 6,000 rpm for 5 min. The supernatant was harvested and was 584 ultracentrifuged twice at 12,000 rpm for 10 min. The resulting PLGA-NPs were dispersed in 585 deionized water and were further mixed with EDC and NHS solution for 1 h to allow surface 586 activation of -COOH. After washing, the solution was added dropwise in 1% PEI with a 587 magnetic stirrer for 4 hours at RT. Then, PEI-conjugated NPs were then collected and 588 coincubated with single peptide pool (575µg/pool, 72-82 µg/peptide) in sterile PBS overnight 589 at 4°C on a rotator. Finally, the peptides-encapsulated and - surface coupled 590 591 PLGA-NPs/peptides vaccine was collected and preserved at 4 °C for further use.

592 12. Preparation of Poly I:C/peptides and R848/peptides vaccines and mice immunization

At day 0, mice were injected subcutaneously as the primary immunization. After that, booster 593 immunizations were applied at day 7 and 21. At day 28, mice were executed for further study. 594 The amount of each peptide for each inoculation was 10µg/mouse per time point, so, the 595 amount of each peptide pool was 70 or 80µg/mouse/time point. Each mouse was inoculated 596 with four peptide pools per time point. Each peptide pool was inoculated at one injection site 597 (subcutaneously at tail root, back of the neck and around the groin). Twelve female 598 HLA-A2/DR1 transgenic mice were randomly divided into four groups. The immunization 599 groups, vaccines formula and vaccination scheme were described in Table S4. 600

601 13. ELISPOT and ICS

96-well PVDF-membrane microplates (Merck&Millipore) were coated with anti-IFN-y 602 capture monoclonal antibody (BD) at 4°C overnight, and were washed and blocked. Spleen 603 cells $(2 \times 10^{5}/100 \mu L)$ of primed mice were added into each well, together with single peptide 604 pool (2µg/well for each peptide), PHA (10µg/mL as positive controls), irrelevant epitope 605 peptides (HLA-A2-restricted AFP₁₅₈₋₁₆₆ and A24-restricted AFP₄₂₄₋₄₃₂, 2µg/well for each 606 peptide as no-specific control) or no peptide (negative control). After incubation for 20 h at 607 37 °C and 5% CO₂, the plates were washed and then incubated with biotinylated anti-IFN- γ 608 detecting antibody (BD) for 2h at RT. The plates were washed and then incubated with the 609 streptavidin-conjugated HRP (BD) for 1h at RT. After washing the plates, AEC solution (BD) 610 was used as the color developing agent and the developed spots were imaged and enumerated 611 with professional plate reader. 612

613 Additionally, Spleen cells of primed mice were incubated with single peptide pool (20µg/mL for each peptide), PHA (10µg/mL), irrelevant epitope peptides (AFP₁₅₈₋₁₆₆ and 614 AFP₄₂₄₋₄₃₂, 20µg/mL for each peptide) or no peptide for 16 hours in serum-free RPMI-1640 615 medium in 48-well plate at 37°C and 5% CO2. After that, BFA/Monensin mixture was added 616 to the cells for another 6-hour culture. Cells were then harvested, washed, blocked with 617 anti-mouse CD16/CD32 for 20 minutes at 4°C and were stained with FITC-labeled anti-CD3 618 and PE-labeled anti-CD8 antibodies for 30 min at 4 °C. After washing, cells were fixed and 619 permeabilized following the protocol and were further incubated with APC-anti-mouse IFN-y 620 (XMG1.2) (BD) for another 30 min at 4°C followed by flow cytometry. The frequencies of 621 IFN- γ^+ cells in CD3⁺/CD8⁺ populations were calculated. 622

623 14. ELISA

Spleen cells were incubated with single peptide pool ($16\mu g/mL$ for each peptide) or no peptide (negative control) in 48-well plate for 3 days at 37°C and 5% CO₂. Then, the supernatants were collected for ELISA. The mouse IFN- γ detection ELISA kit (Dakewe, China) was used to quantify the IFN- γ in supernatants according to manufactor's protocol.

628 15. Hematoxylin-eosin staining

629 28 days after primary immunization, the heart, liver, lung and kidney from executed mice 630 were immersed in 4% paraformaldehyde overnight. After that, individual lobes of organs' 631 biopsy material were placed in processing cassettes, dehydrated through a serial alcohol 632 gradient, and embedded in paraffin wax blocks. 5-µm-thick tissue sections were dewaxed in 633 xylene, rehydrated through decreasing concentrations of ethanol, and washed in PBS. Then 634 hematoxylin and eosin staining was carried out routinely.

635

636 Acknowledgement

This work was supported by National Nature Science Foundation of China (82041006) and
COVID-19 Emergency Research Fund of Zhejiang University of China (2020XGZX021).
The sponsors had no role in study design, data collection and analysis, preparation of the
manuscript, or decision to submit the article for publication.

641

642 Author Contributions

C.S., Y.H. and G.Z. designed and supervised the research. X.J. and Y.D. performed the main
experiments of this study. S.S. performed the transgenic mice experiments. X.W. and Z.Z.
assisted in the PBMC preparation, cell cultures and flow cytometry and consequent data

646	ana	alysis. X.L. performed the HLA genotyping and assisted in the generation of HMy2.CIR
647	cel	l lines expressing indicated HLA-A allotypes. A.S and Y.W assisted in the preparation of
648	pej	otide cocktail vaccines and mice immunizations. M.L. and X.C collected healthy donors'
649	blc	ood samples and separated the PBMCs. J.L. and B.L. assisted in the on-silicon prediction of
650	epi	topes and affinity analysis with HLA-A molecules. C.S. and X.J. wrote the manuscript
651	wi	th discussions from all authors. Y.H., J. Z and H.Q. analyzed and organized the whole data
652	and	assisted in the revision of manuscript.
653		
654	Co	nflict of Interests
655	Th	e authors declare no competing financial interests related to this study.
656		
657	Re	ferences
658	1.	Reche, P. A. Potential Cross-Reactive Immunity to SARS-CoV-2 From Common Human
659		Pathogens and Vaccines. Front. Immunol. 11, 586984 (2020).
660	2.	Chen, Z. et al. T and B cell Epitope analysis of SARS-CoV-2 S protein based on
661		immunoinformatics and experimental research. J. Cell. Mol. Med. 25, 1274-1289 (2021).
662	3.	Jeyanathan, M. et al. Immunological considerations for COVID-19 vaccine strategies.
663		Nat. Rev. Immunol. 20, 615-632(2020).
664	4.	Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516-527 (2020).
665	5.	Addetia, A. et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in
666		Humans during a Fishery Vessel Outbreak with a High Attack Rate. J. Clin. Microbiol. 58,
667		e02107-02120 (2020).

- 668 6. Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2
- 669 infections. Nat. Med. 26, 1200-1204 (2020).
- 670 7. Schmidt, M. E. et al. The CD8 T Cell Response to Respiratory Virus Infections. Front.
- 671 Immunol. **9**, 678 (2018).
- 8. Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with
 COVID-19. Nature 587, 270-274 (2020).
- 9. Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans
- with COVID-19 Disease and Unexposed Individuals. Cell **181**, 1489-1501 (2020).
- 10. Le, B. N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS,
- and uninfected controls. Nature **584**, 457-462 (2020).
- 678 11. Peng, Y. et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by
- SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21,
 1336-1345 (2020).
- 681 12. Sekine, T. et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic
 682 or Mild COVID-19. Cell 183, 158-168 (2020).
- 13. Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress
- 684 syndrome. The. Lancet. Respiratory. Medicine. 8, 420-422 (2020).
- 14. Wang, F. et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19
 Pneumonia. J. Infect. Dis. 221, 1762-1769 (2020).
- 15. Jiang, Y. et al. COVID-19 pneumonia: CD8(+) T and NK cells are decreased in number
- but compensatory increased in cytotoxic potential. Clin. Immunol. **218**, 108516 (2020).
- 16. Rodriguez, L. et al. Systems-Level Immunomonitoring from Acute to Recovery Phase of

690 Severe COVID-19. Cell. Rep. Med. 1, 100078 (2020).

- 691 17. Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct
 692 immunotypes with therapeutic implications. Science 369, 6508 (2020).
- 18. Meckiff, B. J. et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive
- 694 CD4(+) T Cells in COVID-19. Cell **183**, 1340-1353 (2020).
- Example 19. Zhang, J. Y. et al. Single-cell landscape of immunological responses in patients with
 COVID-19. Nat. Immunol. 21, 1107-1118 (2020).
- 697 20. Sauer, K. et al. An Effective COVID-19 Vaccine Needs to Engage T Cells. Front.
- 698 Immunol. 11, 581807 (2020).
- 21. Zhuang, Z. et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J.
 Exp. Med. 218, e20202187 (2021).
- 22. Anand, R. et al. Computational perspectives revealed prospective vaccine candidates from
- five structural proteins of novel SARS corona virus 2019 (SARS-CoV-2). PeerJ 8, e9855
 (2020).
- 23. Saha, R. et al. Designing a next generation multi-epitope based peptide vaccine candidate
 against SARS-CoV-2 using computational approaches. 3. Biotech. 11, 47 (2021).
- 24. Singh, H. et al. Designing spike protein (S-Protein) based multi-epitope peptide vaccine
- against SARS COVID-19 by immunoinformatics. Heliyon 6, e05528 (2020).
- 25. Behmard, E. et al. Immunoinformatic design of a COVID-19 subunit vaccine using entire
 structural immunogenic epitopes of SARS-CoV-2. Sci. Rep. 10, 20864 (2020).
- 710 26. Banerjee, S. et al. Immuno-informatics approach for multi-epitope vaccine designing
- 711 against

SARS-CoV-2. bioRxiv

- 712 https://www.biorxiv.org/content/10.1101/2020.07.23.218529v3 (2020).
- 713 27. Noorimotlagh, Z. et al. Immune and bioinformatics identification of T cell and B cell
- epitopes in the protein structure of SARS-CoV-2: A systematic review. Int.
- 715 Immunopharmacol. **86**, 106738 (2020).
- 716 28. Cun, Y. et al. COVID-19 coronavirus vaccine T cell epitope prediction analysis based on
- distributions of HLA class I loci (HLA-A, -B, -C) across global populations. Hum. Vaccin.
 Immunother. 17, 1097-1108 (2021).
- 719 29. Ferretti, A. K. et al. Unbiased Screens Show CD8+ T Cells of COVID-19 Patients
- Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein.
- 721 Immunity **53**, 1095-1107 (2020).
- 30. Mateus, J. G. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed
 humans Science 370, 89-94 (2020).
- 724 31. Prachar, M. et al. Identification and validation of 174 COVID-19 vaccine candidate
 725 epitopes reveals low performance of common epitope prediction tools. Sci. Rep. 10,
 726 20465 (2020).
- 32. Kared, H. et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19
 individuals. J. Clin. Invest. 131, e145476 (2021).
- 33. Rydyznski, M. C. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute
 COVID-19 and Associations with Age and Disease Severity. et al. Cell 183, 996-1012
 (2020).
- 34. Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with
 severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186,

- 734 7264-7268 (2011)
- 735 35. Channappanavar, R. et al. Virus-specific memory CD8 T cells provide substantial
 736 protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol.
- **88**, 11034-11044 (2014).
- 36. Alcazer, V. et al. Neoepitopes-based vaccines: challenges and perspectives. Eur. J. Cancer.
 108, 55-60 (2019).
- 37. Sahin, U. T. Personalized vaccines for cancer immunotherapy. Science 359, 1355-1360
 (2018).
- 38. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma.
 Nature 547, 217-221 (2017).
- 39. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic
 immunity against cancer. Nature 547, 222-226 (2017).
- 40. Li, F. et al. Rapid tumor regression in an Asian lung cancer patient following personalized
- neo-epitope peptide vaccination. Oncoimmunology **5**, e1238539 (2016).
- 41. Wang, B. et al. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of
 SARS-CoV spike protein. Blood 104, 200-206 (2004).
- 42. Lacey, S. F. et al. Characterization of immunologic properties of a second HLA-A2
- epitope from a granule protease in CML patients and HLA-A2 transgenic mice. Blood 118,
 2159-2169 (2011).
- Takagi, A. et al. Identification of HLA-A*02:01-restricted candidate epitopes derived
 from the non-structural polyprotein 1a of SARS-CoV-2 that may be natural targets of
- 755 CD8(+) T cell recognition in vivo. J. Virol. **Dec 2**, 01837-20 (2020).

34 / 58

756	44. Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19
757	patients with acute respiratory distress syndrome. Sci. Immunol. 5, eabd2071 (2020).
758	45. Tsuboi, A. et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes
759	with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer. Immunol.
760	Immunother. 51 , 614-620 (2002).
761	
762	Supplementary information is available at Cellular and Molecular Immunology's website.
763	
764	Figure legends
765	Figure 1: Reference epitope peptides were tested in the DC-peptide-PBL co-culture
766	system. The HLA-A restricted HCC 1-1, HCC 1-2, HCC 5-3, HCC 5-4, HCC 5-5, HBV 111
767	and HBV 118 peptides, which have been validated as real-world epitopes previously in-house
	and TDV TTo peptides, which have been variated as real-world epitopes previously in-house
768	by using HCC patients' or chronic hepatitis patient's PBMCs and ELISPOT assay, were
768 769	
	by using HCC patients' or chronic hepatitis patient's PBMCs and ELISPOT assay, were
769	by using HCC patients' or chronic hepatitis patient's PBMCs and ELISPOT assay, were co-cultured with DC and PBLs from healthy donor's PBMCs for 14 days. As detected by both
769 770	by using HCC patients' or chronic hepatitis patient's PBMCs and ELISPOT assay, were co-cultured with DC and PBLs from healthy donor's PBMCs for 14 days. As detected by both IFN- γ ICS and CFSE proliferation analyses, the weak positive reference peptides (HCC 1-1
769 770 771	by using HCC patients' or chronic hepatitis patient's PBMCs and ELISPOT assay, were co-cultured with DC and PBLs from healthy donor's PBMCs for 14 days. As detected by both IFN- γ ICS and CFSE proliferation analyses, the weak positive reference peptides (HCC 1-1 and HCC 1-2, SFUs/2×10 ⁵ PBMCs <10) were defined as negative peptides while other
769 770 771 772	by using HCC patients' or chronic hepatitis patient's PBMCs and ELISPOT assay, were co-cultured with DC and PBLs from healthy donor's PBMCs for 14 days. As detected by both IFN- γ ICS and CFSE proliferation analyses, the weak positive reference peptides (HCC 1-1 and HCC 1-2, SFUs/2×10 ⁵ PBMCs <10) were defined as negative peptides while other positive reference peptides (SFUs/2×10 ⁵ PBMCs >15) were identified as immunogenic

Figure 2: Immunogenicity of candidate epitopes was validated by DC-peptide-PBL co-culture experiments. DCs were induced for 7 days from healthy donor's PBMCs, then

coincubated with candidate epitope peptides and autologous PBLs for 14 days. Cells were 778 harvested and stimulated by corresponding candidate peptides for another 16 hours followed 779 by IFN-y ICS. In some co-culture wells, the DC and peptides were co-cultured with 780 CFSE-prelabeled PBLs for 14 days, and cells were then harvested to detect the proliferation 781 percentage of CD8⁺ T cell. (A) Representative flow plots of IFN-γ ICS. The data in horizontal 782 coordinates mean the frequency of IFN- γ^+ T cells in CD3⁺/CD8⁺ T cell population. (B) 783 Representative flow plots of CFSE staining. The data in horizontal coordinates mean the 784 proliferation percentage of $CD8^+$ T cells in $CD3^+/CD8^+$ T cell population. 785

Figure 3: T cell epitope peptide cocktail vaccines elicited robust CD8⁺ T cell responses in 786 transgenic mice. 31 positive epitope peptides restricted by HLA-A2 molecule were used to 787 generate peptide cocktail vaccines in three formulations, and followed by three-round 788 789 immunizations of HLA-A2/DR1 transgenic C57BL/6 mice. Then, splenocytes were collected 7 days after the last booster and ex vivo stimulated with distinct peptide pools according to 790 single protein overnight, followed by IFN- γ ELISPOT and IFN- γ ICS. (A) Total IFN- γ SFUs 791 responding to all peptide pools in each mouse. (B) Deconvolution of the total SFUs in each 792 mouse from A into the single SARS-CoV-2 proteins. (C) Total frequency of IFN- γ^+ T cells 793 reacting to all peptide pools in $CD3^+CD8^+$ T cell population in each mouse. (D) 794 Deconvolution of the total frequency in each mouse from C into the single SARS-CoV-2 795 proteins. Control group: N.S and PLGA-NPs; Vaccine A group: PLGA-NPs/peptides vaccines; 796 Vaccine B group: R848/peptides vaccines; Vaccine C group: poly I: C/peptides vaccines. 797

Figure 4: IFN-γ ELISPOT responses against the individual peptide pools. Splenocytes
 from each primed mouse were harvested 7 days after the last booster and *ex vivo* stimulated

800 with 8 different peptide pools covering the 31 epitope peptides or with AFP peptides 801 (AFP₁₅₈₋₁₆₆, AFP₄₂₄₋₄₃₂) as irrelevant control, or without peptide as negative control, and 802 followed by IFN- γ ELISPOT.

Figure 5: Flow plots of IFN- γ ICS responding to the individual peptide pools. Splenocytes from each primed mouse were harvested 7 days after the last booster and *ex vivo* stimulated with 5 different peptide pools according to single protein or with AFP peptides (AFP₁₅₈₋₁₆₆, AFP₄₂₄₋₄₃₂) as irrelevant control, or without peptide as negative control, and followed by IFN- γ ICS. The data in left upper quadrant mean the frequencies of IFN- γ^+ T cells in CD3⁺/CD8⁺ cell populations.

Figure 6: T cell epitope peptide cocktail vaccines elicited robust CD8⁺ T cell responses as 809 detected by IFN-y ELISA in transgenic mice and by IFN-y ICS in WT mice. Splenocytes 810 811 from each primed HLA-A2/DR1 tansgenic C57BL/6 mice were harvested 7 days after the last booster and ex vivo stimulated with 5 different peptide pools according to single protein or 812 without peptide for 3 days. Then supernatants were collected and followed by IFN-y ELISA. 813 (A) Total IFN- γ level responding to all peptide pools in each mouse. (B) Deconvolution of the 814 total IFN- γ level in each mouse from A into the single SARS-CoV-2 proteins. Similarly, 815 wild-types C57BL/6 mice were divided into two groups and were immunized three times with 816 the Poly I:C/peptides vaccines prepared using the 31 validated epitope peptides or normal 817 saline, respectively. Splenocytes were then collected 7 days after the last booster and ex vivo 818 stimulated with 5 different peptide pools overnight, followed by IFN-y ICS. (C) Total 819 frequency of IFN- γ^+ T cells reacting to all peptide pools in CD3⁺CD8⁺ T cell population in 820 each mouse. (D) Deconvolution of the total frequency in each mouse from C into the single 821

822 SARS-CoV-2 proteins.

Figure 7: Flow plots of IFN-y ICS responding to the individual peptide pools after WT 823 824 mice immunizations. (A) Splenocytes from each primed WT mouse were harvested 7 days after the last booster and *ex vivo* stimulated with 5 different peptide pools according to single 825 protein or with AFP peptides (AFP₁₅₈₋₁₆₆, AFP₄₂₄₋₄₃₂) as irrelevant control, or without peptide 826 as negative control, and followed by IFN-y ICS. The data in left upper quadrant mean the 827 frequencies of IFN- γ^+ T cells in CD3⁺/CD8⁺ cell populations. (B) 7 of 31 epitopes restricted 828 by HLA-A2 were identified to be cross-presented by H-2K/D^b molecules. Splenocytes from 829 each primed WT mouse were harvested as described and ex vivo stimulated with single 830 peptide, or without peptide as negative control, and followed by IFN- γ ICS. The epitopes 831 were identified as immunogenic peptides when the frequency of IFN- γ^+ T cells in CD3⁺/CD8⁺ 832 833 cell population increased by more than 100% compared with the negative control. Representative flow plots of the 7 positive epitopes were shown. 834

Figure S1: Generation of mature mDC from adherent monocytes. PBMCs from healthy 835 donors were seeded into culture flask and the monocytes adhered for 2 h as described in the 836 Methods section. After washing out the non-adherent cells in both systems, the cells were 837 cultured for 5 days with 1,000 IU/mL GM-CSF and 500 IU/mL IL-4. Then the immature DCs 838 were matured with 1µg/mL LPS for another 48 hours. Immature DCs and mature DCs were 839 stained for CD1a, CD80, CD83, CD86, HLA-ABC and HLA-DR. The unstained and stained 840 populations in the histograms are shown in grey and black, respectively. (A) Phenotype of 841 immature DCs on day 5. (B) Phenotype of mature DCs on day 7. 842

843 Figure S2: 120 epitopes were validated by DC-peptide-PBL co-culture experiments

38 / 58

(IFN-γ ICS flow plots). DCs were induced for 7 days from healthy donor's PBMCs, then coincubated with candidate epitope peptides and autologous PBLs for 14 days. Cells were harvested and stimulated by corresponding candidate peptides for another 16 hours followed by IFN-γ ICS. The presented are flow plots for each positive epitope peptide. The data in horizontal coordinates mean the frequency of IFN- γ^+ T cells in CD3⁺/CD8⁺ T cell population.

Figure S3: 120 candidate epitopes were validated by DC-peptide-PBL co-culture experiments (CFSE staining flow plots). DCs were coincubated with candidate epitope peptides and CFSE-prelabeled PBLs for 14 days. Cells were then analyzed by flow cytometry. The presented are flow plots for each positive epitope peptide. The data in horizontal coordinates mean the proliferation percentage of CD8⁺ T cells in CD3⁺/CD8⁺ T cell population.

855 Figure S4: Eight kinds of HMy2.CIR cell lines expressing one indicated HLA-A allotype.

The transfected HMy2.CIR cell lines expressing HLA-A2402, A0203, A0201, A0206, A1101, A3303, A0101, or A3001 were generated, respectively, and then sorted by flow cytometry followed by pure culture and sequencing analyses. The purity of CIR-A2402 cells was 94.1% after being sorted with FITC-anti-A24 staining. The purity of CIR-A0203 cell was 84.3% after being sorted with PE-anti-HLA-ABC (W6/32) or PE-anti-HLA-A2.1 staining. The purities of CIR-A0201/0206/1101/3303/0101/3001 were all more than 80% after being sorted with PE-anti-HLA-ABC staining.

Figure S5: Binding affinity of 120 validated epitopes with HLA-A allotypes as defined by
HLA-A molecule competitive binding experiments. A series of unlabeled epitope peptides
of SRAS-CoV-2 were coincubated, at 5µM and 15µM respectively, with fluorescent-labeled

reference peptides and CIR cell lines expressing the corresponding HLA-A molecules for 24 hours. Then the competitively binding inhibition (%) of the epitope peptide at 5μ M and 15μ M was calculated by measuring the CIR cells fluorescence strength. Shown are the histograms of two concentrations (5μ M and 15μ M). Black solid line was the histogram of 5μ M test peptide; dotted line was the histogram of 15μ M, test peptide; black filled line was the maximal fluorescence (FITC-labeled reference peptide without competitive peptides) while the lightest gray line was the negative control (background fluorescence with 1640 alone).

873 Figure S6: Affinity of HLA-A2-restricted epitope peptides with HLA-A0201 molecule as

detected by T2 cell binding assay. T2 cells were incubated with single peptide of the 31 epitopes, or with CMVpp65₄₉₅₋₅₀₃ peptide as positive control, OVA₂₅₇₋₂₆₄ peptide as negative control, or no peptide and β 2-m for 16 hours, then followed by PE-labeled anti-HLA-A2.1 antibody staining to test the up-regulation of HLA-A0201 molecules onto T2 cells. The fluorescence index (FI) was calculated with flow cytometry.

Figure S7: The peptide cocktail vaccines have no visible toxicity on the organs. Seven days after the last booster, all mice were executed. Heart, liver, lung and kidney were taken out, immersed and were finally stained with Hematoxylin-Eosin. No obvious pathological damage was found in all organs in all groups. The representative HE staining of heart, liver, lung and kidney in each mouse from four groups were exhibited in (A), (B), (C) and (D), respectively.

885

886

887

888

Table 1: 120 SARS-CoV-2 T cell epitopes validated by DC-peptide-PBL co-stimulation

890 experiments.

Epit	On-silicon	В	lood donoi	: 1	В	lood dong	or 2]	Blood don	or 3
ope	HLA-A restriction	A allele	Method	Enhance%	A allele	Method	Enhance%	A allele	Method	Enhance%
A1	0201, 0207, 0206, 2402	0201/6843	CFSE	24.4%	3101/0207	IFN-γ	130.0%	1101/0201	IFN-γ	120.7%
A3	0201, 0203, 1101, 1102	0201/2402	IFN-γ	314.2%						
A4	0201, 0207, 0203	0201/3303	IFN-γ	116.2%	6801/3303	IFN-γ	436.6%	2402/0207	IFN-γ	137.3%
A5	0201, 0203	0201/3303	IFN-γ	589.2%	0201/3001	IFN-γ	650.2%	6801/3303	IFN-γ	728.8%
A6	0207, 0206	0206/0207	IFN-γ	198.5%	1101/0206	IFN-γ	263.0%			
A7	0207	0206/0207	IFN-γ	253.8%						
A9	0206	0206/1101	IFN-γ	163.2%	0206/0203	IFN-γ	131.7%	1101/0206	IFN-γ	666.0%
A10	0203	0203/3101	IFN-γ	109.1%						
A12	1101, 1102, 3303	1101/3001	CFSE	22.1%	0201/1101	IFN-γ	158.5%	3303/1101	IFN-γ	263.0%
A16	1101, 3303	0201/1101	CFSE	40.8%						
A18	1102, 3303, 3001	1101/3101	IFN-γ	119.1%						
A19	1102	1101/3101	IFN-γ	102.9%	1101/2402	CFSE	22.3%			
A20	2402	2402/2601	IFN-γ	543.9%	2402/2402	IFN-γ	146.1%			
A21	2402	2402/2601	IFN-γ	1154.4%	2402/2402	IFN-γ	153.2%			
A22	2402	2402/2601	IFN-γ	378.9%						
A23	2402	2402/2601	IFN-γ	303.5%	2402/2402	IFN-γ	135.5%			
A25	3001	1101/3001	CFSE	129.2%						
A26	3001	1101/3001	CFSE	39.5%	1101/3001	IFN-γ	291.0%			
B1	0201, 0206, 0203	0201/3303	IFN-γ	110.8%	0201/3001	IFN-γ	222.9%	6801/3303	IFN-γ	398.0%
B2	0201, 0206, 0203, 0207	0201/0101	IFN-γ	128.1%						
В3	0201, 0207, 0206	0201/3001	IFN-γ	407.3%						
B4	0201, 0206	0201/3001	IFN-γ	216.6%						
B6	0201, 0207, 0203	0203/0207	IFN-γ	242.1%	0201/1101	CFSE	35.7%	2402/0207	IFN-γ	164.8%
B10	0207	0207/0206	IFN-γ	888.7%	3101/0207	IFN-γ	120.0%	2402/0207	IFN-γ	123.8%
B11	0206	0206/1101	IFN-γ	154.5%	0206/3201	CFSE	25.8%	1101/0206	IFN-γ	307.0%
B12	0206	1101/0206	CFSE	22.5%	1101/0206	IFN-γ	104.0%			
B15	0203	0203/3101	IFN-γ	416.5%		1				

DIC	0202	0202/2001	OFOF	04.70/		1			1	
B16	0203	0203/3001	CFSE	24.7%						
B17	0203	0203/3101	IFN-γ	122.7%						
B18	1101, 1102	1101/3001	CFSE	79.0%						
B20	1101, 1102, 3303	0201/1101	CFSE	33.4%						
B21	1101, 1102	0201/1101	CFSE	55.4%						
B23	1101, 1102, 3303	3303/1101	IFN-γ	431.5%						
B26	2402	2402/2402	IFN-γ	214.5%	2402/2601	IFN-γ	277.2%			
B28	2402	2402/3303	IFN-γ	214.5%						
B29	2402	2402/3303	IFN-γ	500.0%	2402/2402	IFN-γ	341.8%	6801/3303	IFN-γ	142.5%
B30	2402	2402/3303	IFN-γ	362.7%						
B31	2402	2402/2402	IFN-γ	129/0%	2402/2402	IFN-γ	139.0%			
B34	3303	3303/3001	IFN-γ	102.1%						
B35	3303	3303/1101	IFN-γ	148.2%						
B36	3001	1101/3001	CFSE	54.9%	1101/3001	IFN-γ	374.0%			
B37	3001	1101/3001	CFSE	34.9%	3001/2402	IFN-γ	110.5%	1101/3001	IFN-γ	191.0%
B38	3001	2402/3001	IFN-γ	186.8%						
B40	3001	1101/3001	IFN-γ	140.0%						
B41	3001	1101/3001	IFN-γ	425.0%						
C 1	0201, 0206, 0203	0201/1101	CFSE	30.0%						
C3	0201, 0206, 0203	0201/2402	IFN-γ	270.9%						
C10	0206	0206/1101	CFSE	25.9%						
C12	0206	0206/3201	CFSE	20.8%						
C16	0206	0206/1101	IFN-γ	187.7%						
C17	0203	0203/3101	IFN-γ	157.4%						
C27	1101	1101/1101	CFSE	40.1%						
C35	2402	2402/2601	IFN-γ	144.0%						
C45	3303	1101/3303	IFN-γ	181.1%						
C46	3303	1101/3303	IFN-γ	100.0%						
C47	3303	1101/0101	IFN-γ	223.8%						
C49	1102	0201/1101	IFN-γ	1663.3%						
D2	0201, 0206, 0203	0201/1101	IFN-γ	122.3%						
D5	0207, 0206, 1102	0206/1102	IFN-γ	479.2%						
D6	0201, 0207	0201/2402	CFSE	105.5%	0201/0101	IFN-γ	106.9%			
D12	0201, 0207, 0206	0201/0201	CFSE	23.4%						
D13	0201, 0203	0201/2402	IFN-γ	1001.3%						

D17 D26	0207, 0203	0206/0207	IENI						
D26			IFN-γ	112.3%					
1	0206	0201/0207	CFSE	29.9%					
D30	0203	0203/0206	CFSE	34.6%	0203/0207	IFN-γ	145.3%		
D31	0203	0203/0206	CFSE	33.5%					
D32	0203	0203/0206	CFSE	33.3%					
D33	0203, 0206	0203/0206	CFSE	28.0%					
D34	1101/1102	1101/0101	IFN-γ	117.2%					
D38	1101, 1102	1101/0101	IFN-γ	105.9%					
D40	1101, 1102, 3001	1101/3303	IFN-γ	100.0%					
D41	1101	1101/0101	IFN-γ	268.0%					
D42	1101, 0206, 0201	1101/0101	IFN-γ	128.4%	1101/1101	CFSE	47.6%		
D46	1102	0201/1101	IFN-γ	458.6%					
D47	1102	0201/1101	IFN-γ	179.9%					
D48	1102, 3303	0201/1101	IFN-γ	166.9%	3303/1101	IFN-γ	117.8%		
D50	1102	0201/1101	IFN-γ	242.0%					
D52	2402	2402/3001	IFN-γ	241.7%					
D53	2402, 3303	2402/3001	IFN-γ	460.8%	3303/1101	IFN-γ	275.5%		
D55	2402	2402/0207	IFN-γ	110.2%					
D56	2402	2402/2601	IFN-γ	266.9%					
D62	2402	2402/3001	IFN-γ	182.4%					
D64	2402	0201/2402	IFN-γ	144.9%					
D65	3001	0101/3001	CFSE	20.8%					
D71	3001	0301/3001	IFN-γ	132.9%					
D72	3001, 1102, 0201, 0207	3303/1101	IFN-γ	157.7%					
D76	3303	1101/0101	IFN-γ	346.7%					
D77	3303, 1102	3303/1101	IFN-γ	109.5%	3303/0203	IFN-γ	102.9%		
D78	3303, 0203, 0206	3303/1101	IFN-γ	101.4%					
D79	3303, 1101, 0207, 2402	3303/1101	IFN-γ	175.8%					
D80	3303, 1102, 0201, 0207	3303/1101	IFN-γ	148.2%					
D81	3303, 1102, 0203	3303/1101	IFN-γ	149.6%					
D82	3303, 1102	3303/1101	IFN-γ	101.7%					
R4	0201	0201/1101	IFN-γ	107.8%	0201/3201	CFSE	47.3%		

R5	0201, 0203	0201/3201	CFSE	107.8%	0201/0101	IFN-γ	117.5%		
R6	0201, 0207, 0206, 0203	0201/3201	CFSE	49.3%					
R8	0201	0201/0101	IFN-γ	113.2%					
R9	0201, 0206, 0203	0201/0101	IFN-γ	107.0%					
R10	0201	0201/2402	IFN-γ	104.3%					
R11	0201	0201/3001	IFN-γ	203.6%	0201/1101	IFN-γ	104.4%		
R12	0201	0201/3001	IFN-γ	147.0%	0201/0101	IFN-γ	188.6%		
R13	0201	0201/3001	IFN-γ	147.0%	0201/1101	IFN-γ	126.9%		
R14	0201, 0203	0201/0101	IFN-γ	133.3%					
R15	0201	0201/2402	IFN-γ	218.4%					
R17	0207	0207/0206	IFN-γ	103.0%					
R23	0206	2402/0207	IFN-γ	109.4%					
R24	0203	0203/0206	CFSE	60.8%					
R30	1101	1101/3001	CFSE	110.2%	0201/1101	CFSE	38.7%		
R32	1101/1102	0201/1101	CFSE	29.3%					
R34	1101, 3001	0201/1101	CFSE	20.0%	1101/3101	IFN-γ	122.1%		
R35	1101, 1102	1101/3101	CFSE	24.9%					
R38	1101, 3303	0201/1101	CFSE	50.2%					
R39	1101, 1102, 3001	0201/1101	CFSE	54.3%					
R40	1101, 3001	0201/1101	CFSE	39.7%	0201/1101	CFSE	19.5%		
R41	1101, 3303	0201/1101	CFSE	53.3%					
R42	1101	0201/1101	CFSE	21.0%					
R43	1101, 3303	1101/3001	CFSE	41.9%	0201/1101	CFSE	34.5%		
R44	1101, 1102	0201/1101	CFSE	37.6%	0201/1101	CFSE	24.8%		
R47	2402	2402/3303	IFN-γ	339.8%					
R48	2402	2402/3303	IFN-γ	309.6%					

Note 1: **CFSE:** After DC-peptide-CFSE-prelabeled PBLs co-cultures, the proliferation percentage of CD8⁺ T cells in CD3⁺/CD8⁺ population was analyzed according to the reduction of CFSE-staining brightness. **IFN-** γ : After DC-peptide-PBLs co-cultures, the frequency of IFN- γ^+ /CD8⁺ T cells in CD3⁺/CD8⁺ population was analyzed by flow cytometry. **Enhance%:** The increased percentage when the frequency of IFN- γ^+ /CD8⁺ T cells or proliferation percentage of CD8⁺ T cells in the DC-peptide-PBL co-culture wells was compared with that in the DC-PBL co-culture well without peptide. Note 2: The previously reported epitopes include C1, C35, C49, D34, D46, D47, D48, D52, D53 and R32.

Table 2: Affinity of SARS-CoV-2 CD8⁺ T cell epitopes with HLA-A allotypes as detected by

899	HLA-A competitive bi	nding experiments	using HMy2.CIR cell lines.

HLA-A	Epitope	Affinity	5µM Competitive inhibition%	15μM Competitive inhibition%	Epitope	Affinity	5µM Competitive inhibition%	15μM Competitive inhibition%
A*0201	R12	high	91.70%	91.10%	R6	low/no	13.40%	23.70%
	R8	high	85.50%	89.90%	D5	low/no	10.00%	37.80%
	B1	high	80%	88.20%	A5	low/no	9.40%	6.20%
	R10	high	75.80%	92.80%	R13	low/no	8.66%	28.90%
	R15	high	70.80%	93.80%	D80	low/no	6.38%	5.25%
	В3	high	66.10%	74.40%	D42	low/no	5.93%	6.72%
	R9	high	64.80%	89.50%	D72	low/no	5.93%	6.38%
	R5	high	58.70%	89.10%	A4	low/no	4.80%	4.00%
	R11	inter	47.80%	86.40%	R14	low/no	4.50%	13.30%
	B2	inter	42.10%	83.70%	A1	low/no	3.30%	2.90%
	R4	inter	40.40%	78.30%	A3	low/no	1.90%	1.40%
	B6	inter	33.00%	65.90%	D13	low/no	0.70%	1.20%
	D2	inter	24.50%	55.00%	C1	low/no	0	10.30%
	D12	low/no	20.10%	32.60%	C3	low/no	0	7.10%
	B4	low/no	16.70%	20.70%	D6	low/no	0	2.10%
A*1101	D38	high	80.70%	87.70%	D48	low/no	34.38%	48.05%
	D41	high	80.38%	89.72%	D50	low/no	32.38%	43.38%
	R43	high	79.50%	89.20%	B23	low/no	32.30%	41.00%
	R32	high	73.90%	89.40%	R41	low/no	31.90%	46.20%
	R30	high	72.60%	84.90%	B18	low/no	21.55%	34.38%
	D34	high	67.70%	84.70%	D82	low/no	20.72%	38.22%
	B20	high	61.88%	55.88%	A16	low/no	18.38%	19.22%
	D72	high	58.05%	76.05%	D77	low/no	15.72%	29.38%
	D40	high	56.70%	82.60%	D42	low/no	14.70%	47.80%
	D47	high	53.38%	67.72%	A12	low/no	14.38%	15.00%
	R42	high	50.20%	75.20%	R38	low/no	12.10%	47.10%
	R44	inter	47.60%	81.4	B21	low/no	10.55%	29.38%
	C49	inter	47.38%	74.22%	D79	low/no	10.22%	25.22%
	D81	inter	0.4238	52.22%	R34	low/no	10.00%	25.90%
	D46	inter	34.38%	52.22%	D80	low/no	4.22%	5.55%
	R40	inter	30.70%	67.10%	A19	low/no	0.20%	2.60%
	C27	inter	28.00%	54.40%	A18	low/no	0	4.00%
	R39	inter	23.70%	53.60%				
	R35	inter	22.50%	52.30%				
A*3303	D80	high	86.40%	97.40%	B23	low/no	21.26%	34.07%
	D76	high	75.40%	94.20%	B21	low/no	20.36%	46.43%

	R34	high	72.50%	91.00%	R38	low/no	18.79%	42.61%
	D77	high	64.20%	81.80%	D53	low/no	14.94%	35.87%
	R43	high	60.81%	65.75%	D33 D48	low/no	13.39%	43.28%
	D82	high	49.40%	75.90%	C46	low/no	10.90%	42.80%
	B34	inter	41.26%	54.29%	A18	low/no	8.90%	11.15%
	D79	inter	33.10%	62.70%	B35	low/no	8.10%	41.40%
	D79 D81	inter	16.00%	74.00%	B33 B20	low/no	7.10%	14.74%
	C47	inter	9.90%	60.20%	A12	low/no	6.65%	0.00%
	R41	inter	8.00%	51.15%	D78	low/no	3.30%	20.30%
	A16	low/no	42.61%	46.43%	C45	low/no	0.00%	20.30%
A *0202	D30		82.80%	91.80%	B16		38.10%	38.00%
A*0203		high			D17	low/no	21.83%	
	R24	high	61.30%	78.80%		low/no		43.31%
	B17	high	57.00%	70.50%	C3	low/no	11.44%	28.39%
	B15	high	50%	54.00%	B6	low/no	6.43%	46.41%
	D5	high	70.87%	83.76%	R6	low/no	5.84%	8.10%
	R5	high	60.37%	81.49%	A4	low/no	4.64%	8.94%
	R9	high	59.30%	81.61%	A5	low/no	5.24%	11.09%
	D2	high	53.45%	55.36%	D81	low/no	4.64%	6.79%
	B2	high	51.90%	68.84%	D78	low/no	3.93%	3.21%
	D33	inter	42.30%	81.20%	D31	low/no	0	14.80%
	B1	inter	37.82%	57.74%	A10	low/no	0	0
	R14	inter	37.10%	65.74%	D32	low/no	0	0
	D13	inter	25.29%	55.48%				
	C17	inter	21.70%	51.30%				
	C1	inter	20.39%	54.54%				
A*0206	D26	high	52.30%	68.10%	C10	low/no	17.08%	31.68%
	R23	inter	39.30%	50.10%	D12	low/no	17.08%	29.07%
	B3	inter	42.63%	57.11%	A1	low/no	16.30%	16.95%
	D2	inter	41.72%	63.49%	C1	low/no	15.91%	21.77%
	B1	inter	41.20%	60.37%	A6	low/no	15.51%	13.30%
	B2	inter	37.29%	54.89%	R6	low/no	14.73%	18.64%
	D33	inter	35.72%	68.19%	C16	low/no	12.65%	13.69%
	R9	inter	30.12%	73.53%	C3	low/no	12.65%	13.30%
	C12	low/no	19.43%	36.25%	D42	low/no	9.26%	12.78%
	B4	low/no	18.77%	14.34%	D78	low/no	8.47%	8.34%
	B11	low/no	18.30%	43.40%	A9	low/no	0	10.20%
	B12	low/no	17.00%	32.60%				
A*2402	B30	high	88.65%	91.49%	B28	low/no	18.00%	28.20%
	R47	high	88.50%	88.70%	A22	low/no	10.70%	29.30%
	B26	high	83.60%	82.60%	D52	low/no	6.25%	24.78%
	B31	high	81.10%	86.30%	A1	low/no	5.60%	7.20%
	D55	high	73.07%	78.50%	A20	low/no	5.30%	21.30%
	B29	high	70.10%	74.90%	C35	low/no	2.80%	10.10%

	D53	high	59.85%	62.21%	A23	low/no	1.20%	1.20%
	R48	inter	40.10%	51.00%	A19	low/no	0.00%	0.00%
	D62	inter	37.53%	75.19%	A21	low/no	0.00%	0.00%
	D64	inter	35.05%	69.41%	D 79	low/no	0.00%	0.00%
	D56	low/no	30.21%	45.80%				
A*0207	A7	high	68.52%	69.58%	R6	low/no	35.22%	48.64%
	B2	high	63.58%	64.64%	D72	low/no	32.87%	41.69%
	R17	high	57.11%	62.75%	D80	low/no	20.64%	47.93%
	B6	high	56.40%	60.87%	D79	low/no	18.75%	29.58%
	A6	high	54.99%	62.05%	D17	low/no	16.40%	21.11%
	В3	high	54.99%	63.34%	D5	low/no	11.46%	44.64%
	A1	inter	45.22%	50.16%	B10	low/no	2.40%	0.00%
	D6	low/no	46.40%	48.05%	D12	low/no	0.00%	0.00%
	A4	low/no	36.40%	40.40%				
A*3001	D65	high	75.62%	79.92%	D72	inter	44.70%	62.45%
	D71	high	72.12%	65.13%	R34	inter	31.53%	54.11%
	B40	high	63.52%	72.12%	R40	low/no	38.25%	29.92%
	B41	high	60.30%	60.30%	A26	low/no	37.18%	18.90%
	B36	high	60.03%	73.20%	D40	low/no	36.91%	42.55%
	B37	high	54.11%	60.03%	A25	low/no	20.51%	33.15%
	B38	inter	49.54%	61.91%	A18	low/no	15.94%	35.83%
	R39	inter	46.05%	55.46%				

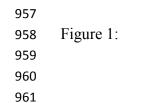
Note: IC50 is the concentration of unlabeled peptide required to inhibit the binding of labeled reference peptide by 50%, which is calculated from the competitively binding inhibition (%) of the sample at 5μ M and 15μ M.

Binding affinity of unlabeled peptide with indicated HLA-A molecule is assessed by IC50.

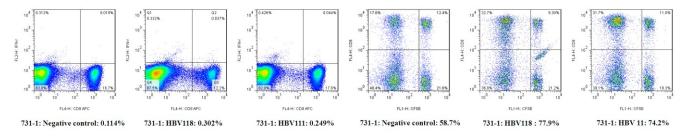
904 IC50 $<5\mu$ M means high binding affinity, between 5-15 μ M means intermediate binding affinity,

more than 15μ M means low binding affinity or no binding affinity.

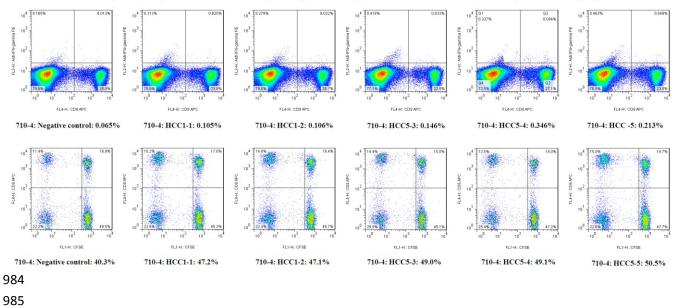
- 906
- 907
- 908
- 909
- 910
- 911
- 912
- 913


914 Table 3: HLA-A restrictions of the 120 SARS-CoV-2 epitopes

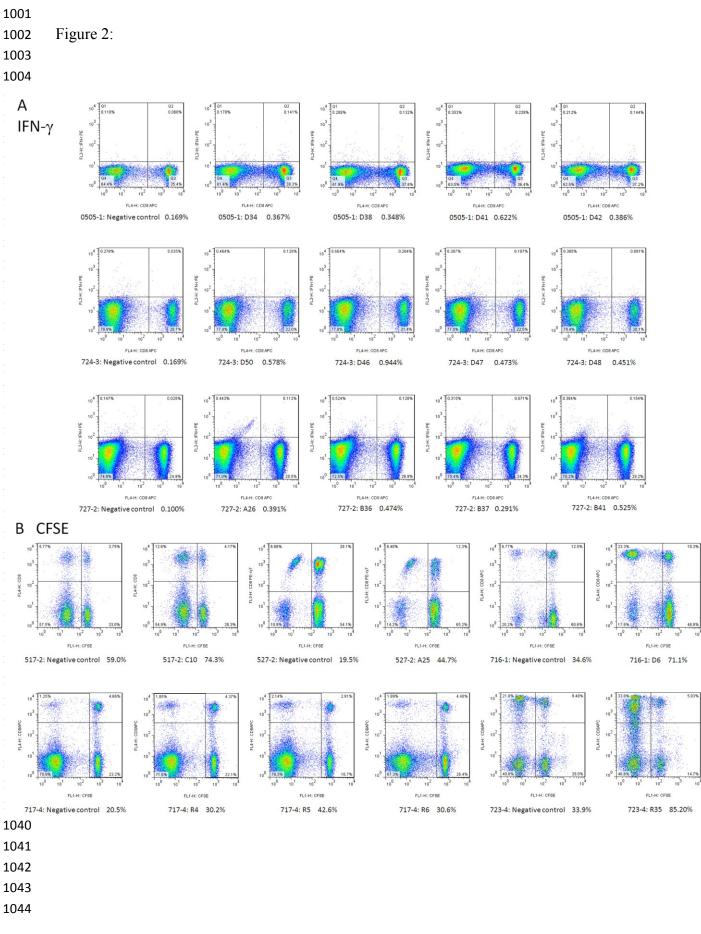
Epitope	On-silicon prediction	CIR cel	l lines HLA-A comp	etitive binding assay	No test
		High affinity	Inter affinity	low/no affinity	
. 1	A0201,A0207,A0206,		4.0207		
A1	A2402		A0207	A0206 >A2402 >A0201	
A3	A0201			A0201	
A4	A0201, A0207, A0203			A0207>A0201 > A0203	
A5	A0201, A0203			A0201>A0203	
A6	A0207, A0206	A0207		A0206	
A7	A0207	A0207			
A9	A0206			A0206	
A10	A0203			A0203	
A12	A1101, A1102, A3303			A1101 > A3303	A1102
A16	A1101, A3303			A3303 > A1101	
A18	A1102, A3303, A3001			A3001>A3303 > A1101	
A19	A1102			A1101	A1102
A20	A2402			A2402	
A21	A2402			A2402	
A22	A2402			A2402	
A23	A2402			A2402	
A25	A3001			A3001	
A26	A3001			A3001	
B1	A0201, A0206, A0203	A0201	A0206 >A0203		
B2	A0201, A0206, A0203, A0207	A0207>A0203	A0201 > A0206		
B3	A0201, A0207, A0206	A0201>A0207	A0206		
B4	A0201, A0206			A0206 >A0201	
B6	A0201, A0207, A0203	A0207	A0201	A0203	
B10	A0207			A0207	
B11	A0206			A0206	
B12	A0206			A0206	
B15	A0203	A0203			
B16	A0203			A0203	
B17	A0203	A0203			
B18	A1101, A1102			A1101	A1102
B20	A1101, A1102, A3303	A1101		A3303	A1102
B21	A1101, A1102			A1101	A1102
B23	A1101, A1102, A3303			A1101 > A3303	A1102
B26	A2402	A2402			
B28	A2402			A2402	
B29	A2402	A2402			
B30	A2402	A2402			


B31	A2402	A2402			
B34	A3303	112102	A3303		
B35	A3303		113505	A3303	
B36	A3001	A3001		13505	
B30 B37	A3001	A3001			
B38	A3001	115001	A3001		
B30 B40	A3001	A3001	115001		
B40	A3001	A3001			
C1	A0201, A0206, A0203	AJUUT	A0203	A0206 >A0201	
C1 C3	A0201, A0206, A0203		A0203	A0206 > A0203 > A0201	
C10	A0201, A0200, A0203			A0206 A0205 A0201	
C10 C12	A0206			A0206	
C12 C16	A0206			A0206	
			A 0202	A0200	
C17 C27	A0203 A1101		A0203		
	A1101 A2402		AIIUI	A2402	
C35					
C45	A3303			A3303	
C46	A3303		A 2202	A3303	
C47	A3303		A3303		A 1100
C49	A1102	4.0202	A1101		A1102
D2	A0201, A0206, A0203	A0203	A0206 >A0201	A 02075 A 0201	
D5	A0201, A0207, A0203	A0203		A0207>A0201	
D6	A0201, A0207			A0207>A0201	
D12	A0201, A0207, A0206		A0206	A0201>A0207	
D13	A0201, A0203		A0203	A0201	
D17	A0207, A0203	4.0007		A0203>A0207	
D26	A0206	A0206			
D30	A0203	A0203			
D31	A0203			A0203	
D32	A0203			A0203	
D33	A0203, A0206		A0203 >A0206		
D34	A1101, A1102	A1101			A1102
D38	A1101, A1102	A1101			A1102
D40	A1101, A1102, A3001	A1101		A3001	A1102
D41	A1101	A1101			
D42	A1101, A0206, A0201			A1101>A0206>A0201	
D46	A1102		A1101		A1102
D47	A1102	A1101			A1102
D48	A1102, A3303			A1101 > A3303	A1102
D50	A1102			A1101	A1102
D52	A2402			A2402	
D53	A2402, A3303	A2402		A3303	
D55	A2402	A2402			

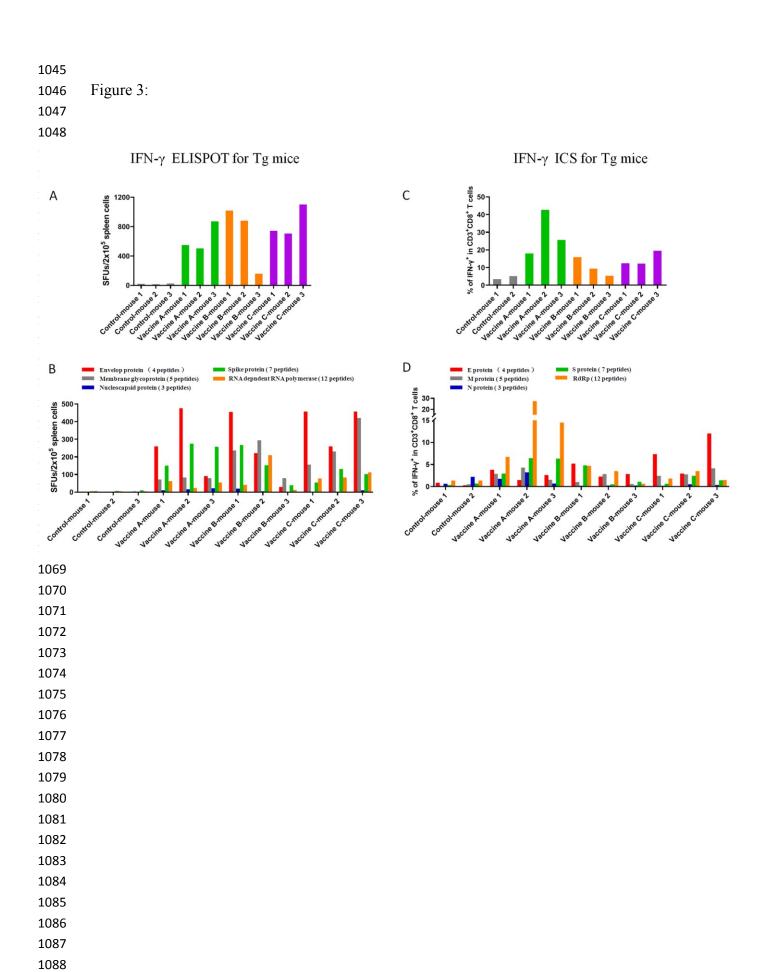
D56	A2402			A2402	
D62	A2402		A2402		
D64	A2402		A2402		
D65	A3001	A3001			
D71	A3001	A3001			
D72	A3001,A1102,A0201, A0207	A1101	A3001	A0207>A0201	
D76	A3303	A3303			
D77	A3303, A1102	A3303		A1101	A1102
D78	A3303, A0203, A0206			A0206 > A0203 > A3303	
D79	A3303, A1101, A0207, A2402		A3303	A0207>A1101 > A2402	
D80	A3303,A1102,A0201, A0207	A3303		A0207>A0201 > A1101	A1102
D81	A3303, A1102, A0203		A1101 > A3303	A0203	A1102
D82	A3303, A1102	A3303		A1101	A1102
R4	A0201		A0201		
R5	A0201, A0203	A0203 > A0201			
R6	A0201,A0207,A0206, A0203			A0207>A0206>A0201> A0203	
R8	A0201	A0201			
R9	A0201, A0206, A0203	A0201 > A0203	A0206		
R10	A0201	A0201			
R11	A0201		A0201		
R12	A0201	A0201			
R13	A0201			A0201	
R14	A0201, A0203		A0203	A0201	
R15	A0201	A0201			
R17	A0207	A0207			
R23	A0206		A0206		
R24	A0203	A0203			
R30	A1101	A1101			
R32	A1101, A1102	A1101			A1102
R34	A1101, A3001, A3303	A3303	A3001	A1101	
R35	A1101, A1102		A1101		A1102
R38	A1101, A3303			A3303 > A1101	
R39	A1101, A1102, A3001		A1101		A1102
R40	A1101, A3001		A1101	A3001	
R41	A1101, A3303		A3303	A1101	
R42	A1101	A1101			
R43	A1101, A3303	A1101 > A3303			
R44	A1101, A1102		A1101		A1102
R47	A2402	A2402			

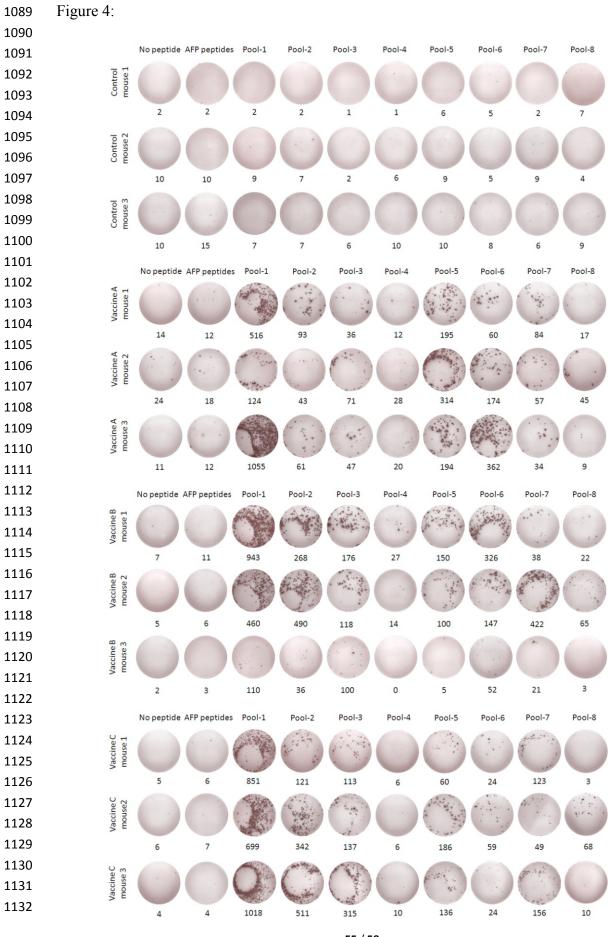

Γ	R48	A2402	A2402		
915		I	· · · · · · · · · · · · · · · · · · ·		L1
	Mate	The III A A melecule	a bichlichted in red displayed up of	Cinity with indicated onits	
916			es highlighted in red displayed no af	minity with indicated epito	pes.
917	···> '	means the affinity fron	n high to low.		
918					
919					
920					
921					
922					
923					
924 925					
925 926					
927					
928					
929					
930					
931					
932					
933					
934					
935					
936 937					
938					
939					
940					
941					
942					
943					
944					
945					
946					
947					
948 949					
949 950					
951					
952					
953					
954					
955					
956					
			51 / 58		

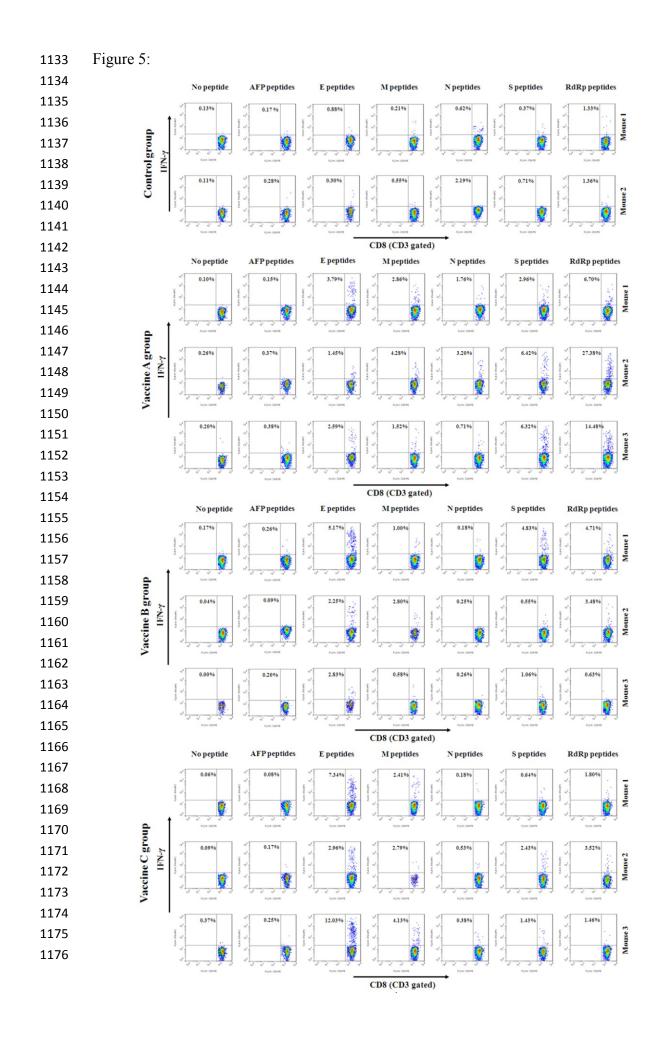
HBV positive reference peptides (HBV111, HBV118)

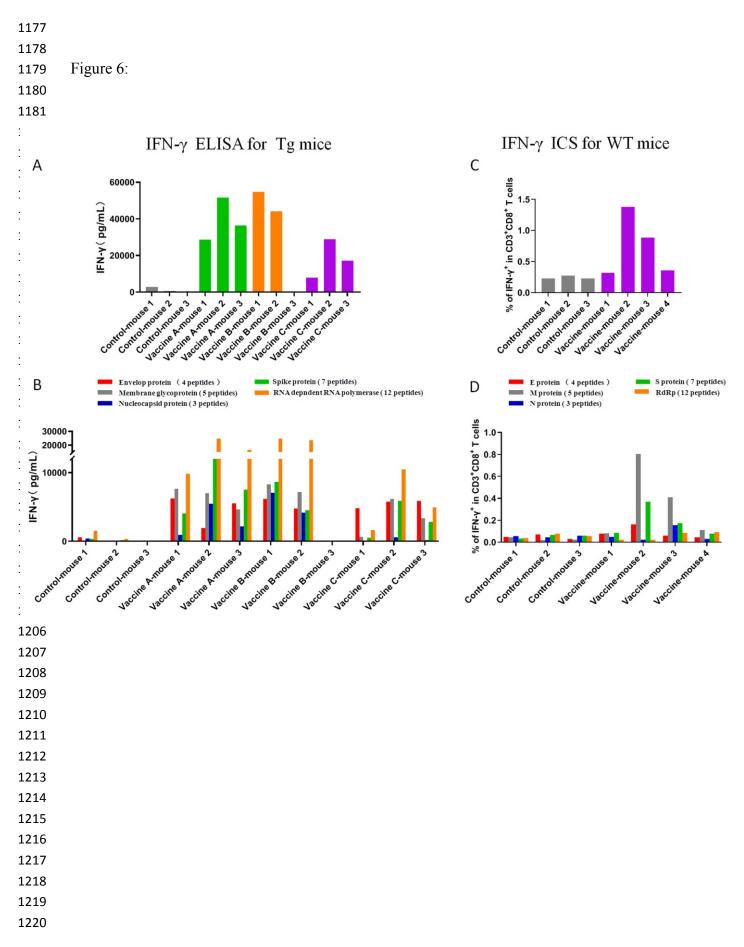


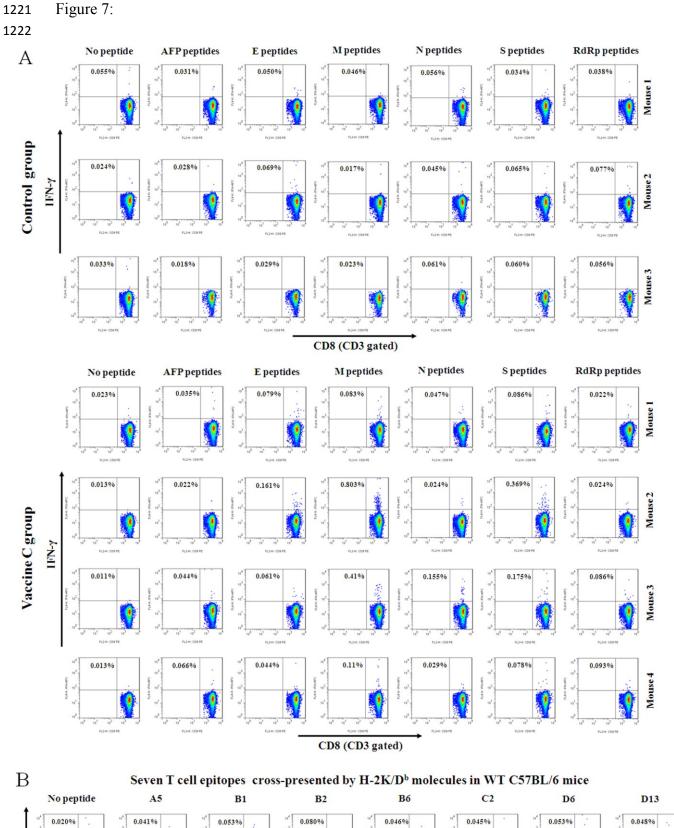
HCC weak positive (HCC1-1, HCC1-2) and positive (HCC5-3, HCC5-4, HCC5-5) reference peptides

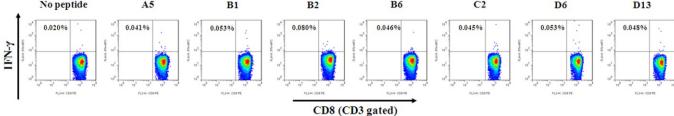



bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438020; this version posted May 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438020; this version posted May 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.




bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438020; this version posted May 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



55 / 58

