
 

 

1 

 

Disentangling the roles of inter and intraspecific variation on leaf trait 
distributions across the eastern United States 
 
Sergio Marconi1,2, Benjamin G. Weinstein2, Jeremy W. Lichstein3, Stephanie A. Bohlman1, Aditya 
Singh4, Ethan P. White2 
 
1School of Forest, Fisheries, & Geomatics Sciences, University of Florida, Gainesville, Florida, 
USA 
2Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 
USA 
3Department of Biology, University of Florida, Gainesville, Florida, USA 
4Department of Agricultural & Biological Engineering, University of Florida, Gainesville, FL 32611, 
USA 

 
*Sergio Marconi 
 
Email:  sergio.marconi@weecology.org 
 
Author Contributions: Sergio Marconi, Ben Weinstein and Ethan White designed the 
experiment and developed the methods; Sergio Marconi performed the analysis; Ethan White, 
Jeremy Lichstein, Aditya Singh and Stephanie Bohlman supervised the work, helped with 
experimental design and advice on data analysis and technical aspects. All authors contributed to 
editing the manuscript.  
 
Competing Interest Statement: No conflict of interests.  
 
 
Keywords: leaf traits, intra-species variability, multilevel joint-distribution, cross-scale. 
 

Abstract 

Functional traits are central to how organisms perform and influence ecosystem function. 
Although phylogenetic constraints and environmental conditions are both known to affect trait 
distributions, data limitations have resulted in large scale studies modeling traits either as species 
weighted averages (ignoring intraspecific variation) or as a function of the environment (ignoring 
phylogenetic constraints). As a result, large scale predictions for trait distributions do not include 
key drivers, likely resulting in biased predictions, and cannot be used to assess the relative 
contributions of inter- and intraspecific variation.  
To address these limitations, we developed a joint model integrating phylogenetic and 
environmental information to understand and predict the distribution of eight leaf traits across the 
eastern United States. This joint model explained 68% of trait variation, outperforming both 
species-only and environment-only models, with variance attributable to phylogeny alone (23%), 
the environment alone (18%), and their overlapping effects (26%). The importance of 
phylogenetic constraints and the environment varied by trait, with some traits associated 
predominantly with environmental variation and others with phylogeny.  
To make predictions more continuously across the eastern USA we combined this model with 
data from the large-scale Forest Inventory and Analysis survey to estimate traits for ~1.2 million 
trees. The combined model exhibited significant deviations in predictions from both species-only 
and environment-only models with variation in the direction and magnitude of these differences 
among ecoregions. These predictions demonstrate the importance of modeling both intra- and 
interspecific variation to understand and predict large scale gradients in species and ecosystem 
traits. 
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Significance Statement 

Large scale trait studies typically rely on species level average trait values, but recent research 
suggests that intra-species variation plays a key role in the ecology of species across their range 
of distribution. We developed a new continental scale approach that integrates inter- and intra-
specific variation on leaf traits by leveraging the interaction between the environment and the 
phylogenetic relationships across species. Using this approach to make predictions for over a 
million trees covering the Eastern United States shows that combining intra- and inter-species 
variation is crucial for capturing patterns at the continental scale. This approach represents a 
novel state of the art method with the potential to become the new standard for understanding 
traits at large scales. 
 
 
Introduction 

Global change is expected to cause extensive changes in terrestrial ecosystems, driving 
unprecedented redistribution of plant species and their associated traits (Pecl et al., 2017, Diaz, 
S., and M. Cabido, 2001). Plant functional traits are involved in key ecosystem processes from 
local community assembly (McGill et al., 2006, Sterck et al., 2011) to global land-surface 
biogeochemical cycles, and these processes are interconnected across scales (Reichstein et al., 
2014, Peaucelle et al., 2019). Biotic interactions, micro-climate, and soil conditions can affect 
species co-occurrence and influence local trait distributions (Bruelheide et al., 2018, Simpson et 
al., 2016), and variation in climate within species ranges can affect realized niches and drive 
plastic trait responses (Chave, 2013). Given their central role across multiple levels of 
organization, understanding and predicting how traits vary within and among species across 
different scales and environments is essential for monitoring and conserving present and future 
ecosystem function (Violle et al., 2014).  
Plant traits vary geographically through a combination of interspecific shifts in species 
abundances and intraspecific trait variation (Valladares et al., 2014, Münzbergová et al., 2017). 
Fully understanding how traits respond to the environment across wide geographic areas requires 
approaches that integrate both of these sources of trait variation. However, this is challenging 
because individual level trait data are geographically and taxonomically limited, making it hard for 
traditional methods to identify the relative importance of intra- and interspecific trait variation at 
broad spatial scales (Henn et al., 2018). In addition, to effectively predict broad-scale geographic 
patterns requires the ability to make predictions for species not included in trait datasets but 
widely distributed across the continent. Nonetheless, most current approaches to understanding 
and predicting large scale trait variation circumvent these limitations by focusing on either 
environmental predictors (ignoring species effect on traits) or species-level trait averages 
(ignoring the environment).  
Environmental models develop empirical relationships between trait values and environmental 
variables, either ignoring species identity (e.g., Ordonez et al., 2009) or treating it as a random 
effect (e.g., Moles et al. 2014). This approach does not directly model known phylogenetic signals 
in traits variation driven by biological, physical, and historical constraints (Wright et al., 2004, 
Anderegg et al., 2018), instead assuming that the environmental model implicitly captures 
relevant changes in species distribution and abundance. Moreover, because the information 
about species identity is missing from predictions, these models cannot be used to explicitly 
identify the amount of traits variation uniquely ascribable to inter- intra species (but see Moles et 
al. 2014) and potentially yield biased predictions for assemblage level trait values unless the 
environmental model fully captures relevant shifts in species abundance.  
Due to these limitations, it has been suggested that species-level models are more informative 
than modeling the relationship between environment and traits directly (Clark, 2016; Yang et al., 
2018, Swenson et al., 2010, Zhang et al., 2018). Species-level models assume that 
environmental drivers affect trait distributions indirectly by shaping community structure and 
species abundance and therefore that species distributions are the best predictor of traits and 
associated ecosystem function. These approaches estimate large scale trait distributions using 
community weighted means based on species-level average trait values (Swenson 2010, Clark 
2016, Wieczynski et al., 2019, Swenson 2017, Stahl et al., 2014) or broad plant functional types 
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(Butler et al., 2017). These models can be used to make predictions for traits over large areas by 
leveraging large scale forest vegetation surveys (e.g., forest inventories). However, this approach 
ignores intraspecific variation, which can be larger than interspecific variation for broadly 
distributed species (Niinemets, 2015, Messier et al., 2017).  
The above approaches have made important contributions to our understanding of trait variation, 
but neither approach explicitly incorporates both key drivers. This limitation potentially results in 
biased predictions and prevents assessment of the relative importance of inter- and intraspecific 
variation on trait distributions across a continuum of geographical scales. To address this 
limitation, we developed a model that combined species phylogenetic information (from the Tree 
of Life; Hinchliff et al., 2015) and environmental drivers (climate, elevation, slope and terrain 
aspect) with large scale leaf trait data from the National Ecological Observatory Network (NEON) 
(National Ecological Observatory Network, 2020). We jointly modeled eight leaf traits: nitrogen 
(N%), carbon (C%), chlorophyll A (ChlA%), chlorophyll B (ChlB%), carotenoids (Crt%), leaf mass 
per area (LMA, g m-2), lignin (%) and cellulose (%). We compared this combined model to models 
based on only environmental drivers or only species information. We integrated the combined 
model with USA Forest Inventory and Analysis (FIA)(USDA Forest Service, 2001, Smith et al., 
2002) and Daymet data (Thornton et al., 2018) to make predictions for ~1.2 million trees across 
the eastern USA, compared these predictions to species-only and environment-only approaches 
to assess the influence of model differences on large scale prediction, and analyzed the relative 
contribution of environmental factors and phylogeny to quantifying leaf trait variation across 
ecoregions. 
 
Results and Discussion 
Model evaluation. We built the species, environment, and combined models using leaf trait data 
from NEON and evaluated their explanatory power using the Bayesian R2 of the predicted values 
for 88 out-of-sample test trees. For all 8 leaf traits, the combined species and environment model 
explained the largest amount of variance in the held-out test data (average R2 across the 8 traits 
= 0.64), substantially outperforming both the environment-only (average R2 = 0.35) and species-
only (average R2 = 0.52) models (Figure 1, Figure S.2). The combined model had the highest 
performance for predicting LMA (R2 = 0.84) and the lowest performance for predicting ChlA (R2 = 
0.53). Uncertainty in predictions was accurately estimated across all traits, with mean 95% 
coverage values ranging from 94.3% to 98.8% (Figure S.3). The importance of different 
environmental drivers also varied among traits, supporting an important role of climate in driving 
leaf economics in local communities (Ordoñez et al. 2009). Precipitation and temperature were 
mainly important for traits involved in photosynthesis (N%, Chlorophyll A, B and Carotenoids), 
generally having a positive effect on their concentration (with the exception of Chlorophyll B, 
Figure S.4). Net radiation showed a negative effect on N%, while vapor pressure generally had a 
negative effect on pigments but positive on traits associated with leaf toughness and durability 
(cellulose, lignin and C%). Elevation was the most important topographic predictor and the 
strongest environmental driver of LMA patterns (Figure S.4), consistent with previous studies 
(Reich & Oleksyn, 2004, Hedin 2004, Poorter et al., 2009, Kitajima et al.,2016). The joint model 
structure also captured the strong correlations among LMA and N% widely described by the leaf 
economics spectrum (Reich et al, 1997, Wright et al., 2004). A hierarchical clustering of traits 
based on model residuals supported two major trait classes (Figure S.5): traits mainly involved in 
photosynthesis (Croft et al., 2017) and traits involved in leaf structure. 
 
Role of species and environmental effects in predicting traits. We used variance partitioning 
on the out-of-sample test data to explore the relative contributions of inter- and intraspecific trait 
variation. Variance uniquely explained by species effects is by definition independent of 
environmental effects and thus represents pure interspecific variation. Similarly, variance uniquely 
explained by environmental drivers is independent of species effects (i.e., shifts in species 
composition) and thus represents intraspecific trait variation. Variance explained by the combined 
species-environment model but not uniquely ascribable to either species or environmental effects 
may include variation that could be explained by either species or environmental effects alone, as 
well as variation that can only be explained by a combined approach. Variance explained by non-
combined approaches (i.e., species-only or environment only models) is difficult to interpret, 
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because these approaches ignore the joint variance component, do not allow for variance 
partitioning and may therefore overestimate the pure species and pure environmental variance 
components. On average, interspecific variation (pure species effect) accounted for 29% of the 
total explained trait variation across the 8 traits, intraspecific variation (pure environment effect) 
accounted for 12%, and joint species-environment effects accounted for 23%.  
The relative importance of inter- and intraspecific effects varied widely among traits. Species 
effects explained most of the variation in N% and LMA. For these traits, often used in large scale 
species and trait distribution studies, species distributions may contain more information about 
traits than direct predictions from the environment, as previously suggested by species- average 
models. In contrast, the intraspecific component of the model accounted for as much or more of 
the variance than the interspecific one for pigments and also uniquely explained a non-negligible 
amount of variance for C% and lignin. Note that our analysis only quantifies intraspecific variation 
in upper canopy (sun-lit) leaves across space, and thus does not include intraspecific variation 
from sun to shade across canopy light gradients (Osnas et al., 2018, Niinemets et al., 2015). 
Furthermore, 62% of species in our analysis were only sampled within a single NEON site, thus 
representing only a small fraction of the true environmental range. Thus, our analysis likely 
underestimates the true level of intraspecific trait variation. 
 
Model transferability. To determine the appropriateness of using the model to make predictions 
outside of NEON sites, we tested the performance of the combined model on novel locations and 
novel species using independent data from the Botanical Information and Ecology Network 
(BIEN) (Enquist et al., 2009) and a subset of TRY (Kattge et al., 2020) leaf trait datasets. These 
datasets include trait data on LMA, N% and C% for 62 species, including 27 species not present 
in the training data (Figure S.1, supplement S1). The combined model showed good 
transferability to other data sources (mean R2 = 0.54, 95% coverage = 91%, Figure S.6). The 
inclusion of full phylogenetic relationships in addition to environmental predictors yielded 
successful model transfer to species not sampled at NEON sites (mean R2 = 0.4, 95% coverage 
= 94%, Figure 2). This was possible because phylogenetic relationships allow for borrowing 
strength from closely related species sampled across a wider geographic range (Evans et al., 
2016). The model is therefore suitable for large scale application.  
 
Predicting large scale trait variation. To understand large scale variation in traits using our 
combined model and to compare it to the species-only and environment-only approaches, we 
integrated each of the three models with data on tree species abundance and topographic data 
from ~30,000 Forest Inventory and Analysis (FIA) plots (~1.2 million trees) and climate data from 
DayMet (Figure 3, S.7, S.8, S.9) to predict leaf traits across the eastern USA. Predictions from 
the combined model differed from species- and environment-only models at scales ranging from 
ecoregions to the entire eastern USA (Figure 4). These differences were complex, with different 
regions exhibiting shifts of different magnitudes and directions from either species- or 
environment-only approaches (Figure 4, Figure S.10, Supplement 4). 80% of ecoregion-trait-
model combinations exhibited significant differences in predicted plot level traits between the 
combined and species- or environment-only models (p < 0.0001 in paired t-tests). These results 
showed that neither predictions from species-only nor environment-only produced traits 
distributions statistically overlapping with the combined model, suggesting that both species and 
environment contain non-overlapping biological information at large scales. Also, 93% of 
ecoregion-trait combinations exhibited different trait distributions predicted by the species-only 
and environment-only models (p < 0.0001 in a paired t-test), suggesting that in most cases the 
environment and species affects traits distribution in different ways and magnitude. This 
demonstrates the importance of a combined modeling approach for prediction as well as 
inference. 
In addition to improving plot level trait predictions, one of the essential reasons for including both 
environmental drivers and species information in large scale trait models is that this combined 
approach allows for predictions of intraspecific variation (Figure 5). Species-level models, by 
definition, do not account for intraspecific variation; and although environment-only models 
include intraspecific variation, they also include trait variation due to shifts in species composition. 
This interspecific variation must be separated from intraspecific variation to predict the latter. The 
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joint-hierarchical structure of our model makes this possible for hundreds of unique species-trait 
combinations. This is important because the predicted degree of intraspecific variation varied 
widely in both form and magnitude across species. For example, the magnitude of intraspecific 
variation in N% ranged from less than 10% of the total observed N% variation for species with 
limited geographic ranges (e.g., Populus heterophylla, Sabal palmetto, and Gleditsia aquatica), to 
~17% for conifers with broader geographic ranges (e.g. Pinus palustris, Pinus taeda and Pinus 
echinata), to over 60% of the total variation for broadleaf species wide-ranging across the eastern 
USA (like Cercis canadensis, Betula lenta, and Carpinus caroliniana).  
The response of N% to temperature varied from the globally observed bell-shaped pattern (Reich 
& Oleksyn, 2004) to no relationship (only 91 out of 180 species showed meaningful relationships) 
and varied in range and magnitude depending on the species (Figure 5a, Figure S.11). While 
evaluating the accuracy of large scale predictions of intraspecific variation is challenging due to 
data limitations, the combined model produced realistic ranges of intraspecific variation when 
compared with available independent data for widely distributed species. Specifically, the 
intraspecific variation of N% predicted from the combined model showed ranges similar to those 
observed in independent data for three of the most widespread and abundantly sampled species 
in the NEON, FIA and TRY datasets (Abies balsamea, Acer rubrum, and Fagus grandifolia). For 
these species (Figure 5b-d), the combined model predictions showed N% covering a large range 
of values (1.12 N% on average), comparable to the average difference between evergreen 
needleleaf and broadleaf deciduous species in eastern USA (1.13 from NEON field data). This 
intraspecific variation holds fundamental information about how trees adapt to different 
environmental conditions (Albert et al., 2010, Henn et al., 2018) and is not captured by 
approaches relying only on species average trait values or only on the environment with no 
information about species.   

 
Conclusions and Implications. Both species and environmental effects are fundamental to 
understanding the drivers and distribution of plant traits and their response to global change. 
Combining species and environmental effects in a single model is challenging due to raw data 
limitations. However, as we show here, a combined approach is possible with available large 
scale datasets and results in better prediction than models using either species average traits or 
the environment in isolation. Our results show that both interspecific variation driven by shifts in 
species’ abundances and intraspecific variation related to the environment play key roles in 
shaping trait distributions at near-continental scales. The influence of these different components 
varies by species, trait, and ecoregion. Capturing this complexity requires models that account for 
intra- and interspecific trait variation, as in our combined modeling approach. This advance in 
large scale trait modeling was made possible by recent increases in open data on traits, 
phylogeny, and forest composition. Our approach overcomes previous data limitations by 
integrating these different sources of biological information to create a single integrated model for 
making large scale predictions of leaf traits that can be applied to species not included in the 
training data. This transferability relies on phylogenetic and environmental signals in the trait data. 
The advances in large scale prediction provided by our combined modeling approach should 
enable future work aiming to better understand the causes and ecosystem-level consequences of 
intra- and interspecific trait variation across space and time. 
 
Materials and Methods 

Data. We used provisional data from the National Ecological Observatory Network (NEON), the 

Botanical Information and Ecology Network (BIEN) and TRY to link information on leaf traits, 
species identity, and approximate locations for individual trees. We used Foliar Physical and 
Chemical Properties (DP1.10026.001)( and Vegetation Structure data (DP1.10098.001) from 
NEON to build joint trait distribution models with environmental drivers (climate and topography) 
alone, phylogenetic drivers (species identity and phylogeny) alone, and both (combined model). 
Linking the two different NEON datasets produced individual tree data with stem geolocation and 
measures of eight leaf traits (LMA, chlorophyll A and B, carotenoids, lignin, cellulose, C, N) for 
542 trees in 21 sites across the USA (Figure S.1). Since foliar trait concentrations can vary 
significantly with phenology and position within the canopy (Niinemets et al., 2015), foliar samples 
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were collected at the yearly “peak of greenness” season and from the sunlit portion of the canopy. 
We tested the  generalizability of our approach outside of NEON sites by evaluating it on 
independent (out of sample) data available from the Botanical Information and Ecology Network 
(BIEN) and the TRY dataset (Kattge et al., 2020, Appendix S1). These two datasets provide 
measures for a subset of traits including C, N and LMA for a total of 223 individual trees. We used 
data from the Open Tree of Life (Redelings BD, Holder, 2017) to measure phylogenetic distance 
between species. Data for environmental drivers included average monthly climate data from 
1995 to 2015 (Appendix S1) extracted from Daymet (Thornton et al., 2018) and topographic 
variables (i.e. elevation, slope and aspect) reported in the NEON and FIA datasets. For three 
common eastern USA tree species (Acer rubrum, Fagus grandifolia, and Abies balsamea), we 
used all publicly available leaf N% data from the TRY database (Kattge et al., 2020) to quantify 
intraspecific variation in leaf N% across each species’ geographic range within the USA. We 
selected these three species for the following reasons: (1) Abies balsamea is the needleleaf 
species with the most leaf N% data in TRY for the USA; (2) Fagus grandifolia is the broadleaf 
species with the most leaf N% data in TRY for the USA; and (3) Acer rubrum occurs throughout 
much of the eastern USA in a wide variety of habitats (e.g., from xeric to mesic; Burns and 
Honkala 1990) and has abundant leaf N% data in TRY. We used forest survey data from the 
Forest Inventory and Analysis (FIA) database (https://www.fia.fs.fed.us/) to estimate trait 

distributions for all individual trees surveyed in the FIA across the eastern USA from 2016 to 
2019. We used Lv.3 ecoregions and Lv. 2 ecoprovinces as defined by the Environmental 
Protection Agency (McMahon 2001, Omernik et al., 2014) to analyze traits distribution at different 
scales.  
Overview of Models. Here, we briefly summarize the statistical modeling framework. Additional 
details are in Appendix S2. We modeled the joint multivariate distribution of the eight leaf traits 
(the response variables) using three different approaches: (1) Environment-only model using 
climate and topography as fixed effects; (2) Phylogeny-only model using species as random 
effects, with covariances among the random effects structured by the phylogenetic tree for all 
woody species detected in the FIA; (3) Combined model including both environmental and 
species/phylogenetic effects. In the environment-only and combined models, environmental 
effects were fit using a generalized additive modeling approach, which allows for taking into 
account non-linear relationships between independent and dependent variable In the species-
only and combined models, phylogenetic relationships across species were modeled by including 
species as a random effect and calculating their correlation structure from cross-species 
cophenetic distance (Paradis et al., 2019). The distance matrix was used to estimate the 
correlation structure across species and genuses, allowing for borrowing strength from widely 
sampled species to rare or unsampled taxa (de Villemeruil & Nakagawa, 2014). We used 
multivariate normal families, simple splines, and weakly informative priors in all cases (Appendix 
S2). To reduce the number of climate predictors and to avoid problems with collinearity, we 
calculated a specific PCA for each climate variable (net radiation, precipitation, vapor pressure, 
maximum and minimum temperature) using a 30 years’ time series of monthly averages, from 
1985 to 2015. We used the first component of each PCA as climate variables in the environment-
only and combined models. To quantify uncertainty in predictions we used the Bayesian R2 
(Gelman et al., 2018). We used variance partitioning to quantify the relative effects of 
environment and phylogeny on intra- and interspecific trait variation. See additional methods 
details in Appendix S1-S3. Code for reproducing analyses is available on Zenodo 
(https://zenodo.org/badge/latestdoi/353383665). 

 
Acknowledgments 
This work was supported by the Gordon and Betty Moore Foundation’s Data-Driven Discovery 
Initiative through grant GBMF4563 to E. P. White and by the National Science Foundation 
through grant 1926542 to E. P. White, S. A. Bohlman, A. Zare, D. Z. Wang, and A. Singh; by the 
NSF Dimension of Biodiversity program grant (DEB-1442280) and USDA/NIFA McIntire-Stennis 
program (FLA-FOR-005470) to S. A. Bohlman; by the University of Florida Biodiversity Institute 
(UFBI) and Informatics Institute (UFII) Graduate Fellowship to Sergio Marconi. There was no 
additional external funding received for this study.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438064doi: bioRxiv preprint 

https://www.fia.fs.fed.us/
https://doi.org/10.1101/2021.04.01.438064
http://creativecommons.org/licenses/by/4.0/


 

 

7 

 

 
 
References 
 

1. Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.C., Clark, 
T.D., Colwell, R.K., Danielsen, F., Evengård, B. and Falconi, L., 2017. Biodiversity 
redistribution under climate change: Impacts on ecosystems and human well-being. 
Science, 355(6332), p.eaai9214 

2. Diaz, S., and M. Cabido. 2001. Vive la difference: plant functional diversity matters to 
ecosystem processes. Trends in Ecology & Evolution 16:646–655. 

3. McGill, B.J., Enquist, B.J., Weiher, E. and Westoby, M., 2006. Rebuilding community 
ecology from functional traits. Trends in ecology & evolution, 21(4), pp.178-185. 

4. Reichstein, M., Bahn, M., Mahecha, M.D., Kattge, J. and Baldocchi, D.D., 2014. Linking 
plant and ecosystem functional biogeography. Proceedings of the National Academy of 
Sciences, 111(38), pp.13697-13702. 

5. Peaucelle, M., Bacour, C., Ciais, P., Vuichard, N., Kuppel, S., Peñuelas, J., Belelli 
Marchesini, L., Blanken, P.D., Buchmann, N., Chen, J. and Delpierre, N., Covariations 
between plant functional traits emerge from constraining parameterization of a terrestrial 
biosphere model. Global Ecology and Biogeography. 

6. Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, 
S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F. and Kattge, J., 2018. Global trait–
environment relationships of plant communities. Nature ecology & evolution, 2(12), 
p.1906. 

7. Simpson, A.H., Richardson, S.J. and Laughlin, D.C., 2016. Soil–climate interactions 
explain variation in foliar, stem, root and reproductive traits across temperate forests. 
Global Ecology and Biogeography, 25(8), pp.964-978. 

8. Chave, J., 2013. The problem of pattern and scale in ecology: what have we learned in 
20 years?. Ecology letters, 16, pp.4-16. 

9. Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J. and Kattge, J., 2014. The emergence 
and promise of functional biogeography. Proceedings of the National Academy of 
Sciences, 111(38), pp.13690-13696. 

10. Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito‐Garzón, 

M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya, D.E. and Nicotra, A.B., 2014. The 
effects of phenotypic plasticity and local adaptation on forecasts of species range shifts 
under climate change. Ecology letters, 17(11), pp.1351-1364. 

11. Münzbergová, Z., Hadincová, V., Skálová, H. and Vandvik, V., 2017. Genetic 
differentiation and plasticity interact along temperature and precipitation gradients to 
determine plant performance under climate change. Journal of Ecology, 105(5), pp.1358-
1373. 

12. Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud, K., Maitner, B.S., 
Michaletz, S.T., Pötsch, C., Seltzer, L., Telford, R.J. and Yang, Y., 2018. Intraspecific trait 
variation and phenotypic plasticity mediate alpine plant species response to climate 
change. Frontiers in Plant Science, 9, p.1548. 

13. Ordoñez, Jenny C., et al. "A global study of relationships between leaf traits, climate and 
soil measures of nutrient fertility." Global Ecology and Biogeography 18.2 (2009): 137-
149. 

14. Moles, A.T., Perkins, S.E., Laffan, S.W., Flores‐Moreno, H., Awasthy, M., Tindall, M.L., 

Sack, L., Pitman, A., Kattge, J., Aarssen, L.W. and Anand, M., 2014. Which is a better 
predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 
25(5), pp.1167-1180. 

15. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-
Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M. and Flexas, J., 2004. The worldwide 
leaf economics spectrum. Nature, 428(6985), p.821. 

16. Anderegg, L. D., Berner, L. T., Badgley, G., Sethi, M. L., Law, B. E., & HilleRisLambers, 
J. (2018). Within‐species patterns challenge our understanding of the leaf economics 

spectrum. Ecology letters, 21(5), 734-744. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.438064
http://creativecommons.org/licenses/by/4.0/


 

 

8 

 

17. Clark, J. S. (2016). Why species tell more about traits than traits about species: predictive 
analysis. Ecology, 97(8), 1979-1993. 

18. Yang, J., Cao, M. and Swenson, N.G., 2018. Why functional traits do not predict tree 
demographic rates. Trends in ecology & evolution, 33(5), pp.326-336 

19. Swenson, N. G., & Weiser, M. D. (2010). Plant geography upon the basis of functional 
traits: an example from eastern North American trees. Ecology, 91(8), 2234-2241. 

20. Zhang, Y.J., Sack, L., Cao, K.F., Wei, X.M. and Li, N., 2017. Speed versus endurance 
tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal 
declines. Scientific reports, 7, p.42085. 

21. Wieczynski, D.J., Boyle, B., Buzzard, V., Duran, S.M., Henderson, A.N., Hulshof, C.M., 
Kerkhoff, A.J., McCarthy, M.C., Michaletz, S.T., Swenson, N.G. and Asner, G.P., 2019. 
Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the 
National Academy of Sciences, 116(2), pp.587-592. 

22. Swenson, N.G., Weiser, M.D., Mao, L., Araújo, M.B., Diniz‐Filho, J.A.F., Kollmann, J., 

Nogués‐Bravo, D., Normand, S., Rodríguez, M.A., García‐Valdés, R. and Valladares, F., 

2017. Phylogeny and the prediction of tree functional diversity across novel continental 
settings. Global Ecology and Biogeography, 26(5), pp.553-562. 

23. Stahl, U., Reu, B. and Wirth, C., 2014. Predicting species’ range limits from functional 
traits for the tree flora of North America. Proceedings of the National Academy of 
Sciences, 111(38), pp.13739-13744. 

24. Niinemets, Ü., Keenan, T.F. and Hallik, L., 2015. A worldwide analysis of within‐canopy 

variations in leaf structural, chemical and physiological traits across plant functional 
types. New Phytologist, 205(3), pp.973-993. 

25. Messier, J., Lechowicz, M. J., McGill, B. J., Violle, C., & Enquist, B. J. (2017). 
Interspecific integration of trait dimensions at local scales: The plant phenotype as an 
integrated network. Journal of Ecology, 105(6), 1775– 1790. 
https://doi.org/10.1111/1365-2745.12755 

26. Hinchliff, Cody E., et al. "Synthesis of phylogeny and taxonomy into a comprehensive 
tree of life." Proceedings of the National Academy of Sciences 112.41 (2015): 12764-
12769.  

27. National Ecological Observatory Network. 2020. Provisional data downloaded from 
http://data.neonscience.org on 2 Jan 2020. Battelle, Boulder, CO, USA 

28. USDA Forest Service, 2001. Forest Inventory and Analysis National Core Field Guide, 
Volume I: Field Data Collection Procedures For Phase 2 Plots, Version 1.5. US 
Department of Agriculture, Forest Service, Washington, DC. 

29. Smith, W.B., 2002. Forest inventory and analysis: a national inventory and monitoring 
program. Environmental pollution, 116, pp.S233-S242. 

30. Thornton, M.M., P.E. Thornton, Y. Wei, B.W. Mayer, R.B. Cook, and R.S. Vose. 2018. 
Daymet: Annual Climate Summaries on a 1-km Grid for North America, Version 3. ORNL 
DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1343 

31. Ordoñez, Jenny C., et al. "A global study of relationships between leaf traits, climate and 
soil measures of nutrient fertility." Global Ecology and Biogeography 18.2 (2009): 137-
149. 

32. Reich, P.B., Oleksyn., J., 2004. Global patterns of plant leaf N and P in relation to 
temperature and latitude. Proceedings of the National Academy of Sciences, 101 (30) 
11001-11006; DOI: 10.1073/pnas.0403588101 

33. Hedin, L.O., 2004. Global organization of terrestrial plant–nutrient interactions. 
Proceedings of the National Academy of Sciences, 101(30), pp.10849-10850. 

34. Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. and Villar, R., 2009. Causes and 
consequences of variation in leaf mass per area (LMA): a meta‐analysis. New 

phytologist, 182(3), pp.565-588. 
35. Kitajima K, Wright SJ, Westbrook JW (2016) Leaf cellulose density as the key 

determinant of inter- and intra-specific variation in leaf fracture toughness in a species-
rich tropical forest. Interface Focus 6:20150100. 

36. Reich, P.B., Walters, M.B. & Ellsworth, D.S. (1997). From tropics to tundra: Global 
convergence in plant functioning. Proc. Natl. Acad. Sci. U.S.A., 94, 13730–13734. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438064doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.01.438064
http://creativecommons.org/licenses/by/4.0/


 

 

9 

 

37. Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B. and Staebler, R.M. (2017), Leaf 
chlorophyll content as a proxy for leaf photosynthetic capacity. Glob Change Biol, 23: 
3513-3524. doi:10.1111/gcb.13599 

38. Osnas, J.L., Katabuchi, M., Kitajima, K., Wright, S.J., Reich, P.B., Van Bael, S.A., Kraft, 
N.J., Samaniego, M.J., Pacala, S.W. and Lichstein, J.W., 2018. Divergent drivers of leaf 
trait variation within species, among species, and among functional groups. Proceedings 
of the National Academy of Sciences, 115(21), pp.5480-5485. 

39. Enquist, B.J., Condit, R., Peet, R.K., Schildhauer, M. and Thiers, B., 2009. The Botanical 
Information and Ecology Network (BIEN): Cyberinfrastructure for an integrated botanical 
information network to investigate the ecological impacts of global climate change on 
plant biodiversity. Salt Lake City, UT: iPlant Collaborative. 

40. Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., 
Werner, G.D., Aakala, T., Abedi, M. and Acosta, A.T., 2020. TRY plant trait database–
enhanced coverage and open access. Global change biology. 

41. Evans, M.E., Merow, C., Record, S., McMahon, S.M. and Enquist, B.J., 2016. Towards 
process-based range modeling of many species. Trends in Ecology & Evolution, 31(11), 
pp.860-871. 

42. Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P. and 
Lavorel, S., 2010. Intraspecific functional variability: extent, structure and sources of 
variation. Journal of Ecology, 98(3), pp.604-613. 

43. Burns, R.M. & Honkala, B.H. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. 
Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, 
DC. 

44. McMahon, G., Gregonis, S. M., Waltman, S. W., Omernik, J. M., Thorson, T. D., Freeouf, 
J. A., ... & Keys, J. E. (2001). Developing a spatial framework of common ecological 
regions for the conterminous United States. Environmental Management, 28(3), 293-316. 

45. Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous United States: 
evolution of a hierarchical spatial framework. Environmental management, 54(6), 1249-
1266. 

46. Paradis, E., Blomberg, S., Bolker, B., Brown, J., Claude, J., Cuong, H.S. and Desper, R., 
2019. Package ‘ape’. Analyses of phylogenetics and evolution, version, 2(4). 

47. De Villemeruil P. & Nakagawa, S. (2014) General quantitative genetic methods for 
comparative biology. In: Modern phylogenetic comparative methods and their application 
in evolutionary biology: concepts and practice(ed. Garamszegi L.) Springer, New York. 
pp. 287-303. 

48. Gelman, Ben Goodrich, Jonah Gabry & Aki Vehtari. (2018). R-squared for Bayesian 
regression models, The American Statistician. 
https://doi.org/10.1080/00031305.2018.1549100. 

 
 
Figures and Tables 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.01.438064doi: bioRxiv preprint 

https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1101/2021.04.01.438064
http://creativecommons.org/licenses/by/4.0/


 

 

10 

 

 
 
Figure 1. Variance partitioning between pure species, pure environmental (intraspecific 
variation), and joint species-environment effects based on the R2 for independent validation data. 
Pure environmental variation is independent of species variation, and vice versa. Joint variation is 
jointly explained by both species and environmental effects and cannot be uniquely ascribed to 
either. LMA is leaf dry mass per area, and all other traits are % mass 
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Figure 2. Observed vs. predicted values from the combined model for (a) LMA (g m-2), (b) N%, 
and (c) C%, either assuming phylogenetically-structured covariance among species random 
effects (azure), or assuming independent species random effects (orange). Ellipses are 95% 
confidence ellipses. (d) RMSE (normalized by standard deviation) showing the difference 
between accounting for (azure) or ignoring (orange) phylogenetic relationships when predicting 
traits from untrained species. 
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Figure 3. Trait distributions across the eastern USA for leaf structural (LMA, lignin, cellulose and 
%C), macro-nutrient (N%) and pigment (carotenoids, chlorophyll A and B) traits. Values represent 
species-abundance-weighted trait averages at each FIA plot (n = 30,331 plots). 
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Figure 4. Divergence in N% between the combined model and the species-only (a) and 
environment-only (b) models. Dots represent FIA plots where predicted N% was higher in the 
combined (blue), environment (orange), or species (green) model, or plots where little to no 

divergence (p > 0.0001) was found (white). (c-f) Examples of divergence patterns in four 
ecoregions (see the outlined ecoregions in a-b, labeled c-f according to their corresponding 

histogram): divergence between the combined model and the environmental model (yellow) or 
the species model (green). Vertical black line represents FIA plots where the divergence from the 

combined model is 0. (c) combined, species, and environment models capturing similar 
information (ΔN%~ 0); (d) species and environment models similar to each other but diverging 

from the combined model; (e-f) divergence among all three models.  
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Figure 5. Intraspecific variation of predicted leaf N% for tree species in eastern USA. (a) Trends 
of the median N% prediction vs. maximum temperature for the 91 species showing significant 
effect of temperature on N% distribution (the darkness of the curve increases with the strength of 
the relationship between N% and temperature). Trends are estimated using GAMs and may be 
prone to artifacts at the extremes of their tails. (b-d) Geographic patterns and range of 
intraspecific N% for two widespread deciduous broadleaf (Acer rubrum and Fagus grandifolia) 
and one widespread needleleaf evergreen (Abies balsamea) tree species. Mean (points) and 
99% intraspecific ranges (lines) in b-d are from: TRY data (within the eastern USA), NEON data 
(within the eastern USA), the combined model, and random error from the species-only model. 
Red crosses represent geolocation of TRY field data. 
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