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The transport of macromolecules and nanoscopic particles to a target cellular site is a crucial
aspect in many physiological processes. This directional motion is generally controlled via active
mechanical and chemical processes. Here we show, by means of molecular dynamics simulations
and an analytical theory, that completely passive nanoparticles can exhibit directional motion when
embedded in non-uniform mechanical environments. Specifically, we study the motion of a pas-
sive nanoparticle adhering to a mechanically non-uniform elastic membrane. We observe a non-
monotonic affinity of the particle to the membrane as a function of the membrane’s rigidity, which
results in the particle transport. This transport can be both up or down the rigidity gradient,
depending on the absolute values of the rigidities that the gradient spans across. We conclude that
rigidity gradients can be used to direct average motion of passive macromolecules and nanoparti-
cles on deformable membranes, resulting in the preferential accumulation of the macromolecules in
regions of certain mechanical properties.

Introduction

The targeted transport of nano-objects is of
great interest for numerous applications, ranging
from engineering novel nanomaterials to designing
efficient strategies for the delivery of nanoparti-
cles. A multitude of approaches can be employed
to manipulate the transport of nanoscopic objects
to specific destinations in living and synthetic mat-
ter. For example, cells use motor proteins to trans-
port macromolecules and organelles across the cy-
toplasm [1, 2]. Viruses use cellular pH gradients
for cellular entry and uncoating [3]. In a syn-
thetic context, electric, thermal, and chemical gra-
dients can be used to artificially direct the motion
of molecular cargoes within nanochannels [4–7] or
on surfaces [8].

A commonly observed method to guide trans-
port involves the usage of rigidity gradients. Per-
haps the best known example of such transport
is durotaxis, which was first observed in cells and
was defined as the tendency of living cells to mi-
grate towards regions of higher stiffness [9]. Ex-
isting physical models attribute this phenomenon
either to rigidity-dependent persistence of motion,
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implying that cells sense and adapt to the absolute
rigidity of the underlying substrate, or to gradient-
dependent forces, implying that cells sense rigidity
gradients on the scale of a single cell [10–12]. In
both cases – in the former more subtly than in the
latter – energy is implied to be required to drive
directed motion.

Rigidity-guided migration is, however, not only
restricted to active systems, but has also been ob-
served in a range of passive nanoscopic scenarios.
Gradients in the rigidity or in the strain field of
a substrate have been used to orient motion of
graphene nanosheets [13] and nanoflakes [14]. Wa-
ter droplets can undergo reverse durotaxis, mi-
grating towards softer regions of a surface to in-
crease wetting [15], whereas non-wetting droplets
undergo regular durotaxis for the opposite reason
[16]. Analogously, polymer droplets tend to mi-
grate to stiffer surfaces, where their Van der Waals
energy is minimised [17]. All these passive systems
share a similarity: the nano-object migrates as to
increase its contact with the underlying substrate
and lower the system’s potential energy.

In this paper, we study the durotactic motion of
passive nanoscopic objects diffusing on deformable
membranes. Biological membranes have a diverse
composition and contain different species of phos-
pholipids and proteins [18], whose expression on
the cell surface can exhibit spatio-temporal depen-
dence [19, 20]. This can possibly result in non-



FIG. 1: Illustration of a hard spherical nanopar-
ticle on an elastic membrane that contains two
halves of different rigidities. The right half has a
greater bending rigidity than the left half. The mem-
brane is described as a triangulated elastic surface,
where the bending rigidity is controlled by the dihedral
potential between adjacent triangles (1-2-3 and 2-3-4).
The diameter of the nanoparticle is σNP = 10σ, where
σ is the simulation unit of length and the diameter of
one membrane bead. See Methods for details.

uniform mechanical properties across its surface
[21, 22]. Such lateral stiffness heterogeneities have
been observed in vivo and in vitro, for instance
in protozoa [23, 24], red blood cells [25, 26], T-
cells [27], rat neurons and HeLa cells [28]. In
these systems, the variation in the elastic mod-
uli (which may differ by as much as a factor of
15 [23]) is thought to be functional for the cell.
Heterogeneity has been attributed to the chemi-
cal composition of the membrane, to the mechan-
ics of the underlying cytoskeleton, and to their
mutual interplay [29–32]. Recent computational
work has reported that a nanoparticle bound to
a microphase-separated multi-component mem-
brane exhibits preference for a given phase, as a
consequence of different bending rigidities between
the two phases [33]; also, membrane elasticity has
been proposed to influence the persistence of mo-
tion of a nanoparticle that actively cleaves the un-
derlying substrate via the so-called burnt bridge
mechanism [34].

The key idea in the present paper is that stiff-
ness inhomogeneity alone, even in the absence of
any active mechanism, might direct the dynamics
of macromolecules bound to the membrane and
lead to their preferential accumulation in regions
of optimal rigidity. The aim of this paper is to un-
derstand the physics of this effect from first princi-
ples and to propose it as a novel sorting mechanism
in its own right. We use molecular dynamics sim-
ulations to study the preferential localisation of a
hard spherical nanoparticle on a non-homogeneous
elastic membrane. We place an adhering nanopar-
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FIG. 2: Nanoparticle’s time-averaged coordina-
tion number and adhesion energy as a func-
tion of bending rigidity of a uniform membrane.
The nanoparticle contact with the membrane follows a
non-monotonic pattern, with a maximum at a value of
Kb ∼ 2 kBT . Four different regimes appear, described
in the text. The shaded area indicates the standard
deviation of the adhesion energy distribution.

ticle on a fluctuating membrane divided in two
halves of different bending rigidities, as shown in
Fig. 1. We show that a difference in the values of
the bending rigidity between the two regions of the
membrane is sufficient to drive the nanoparticle’s
localisation to one side. We provide a theoreti-
cal underpinning for this phenomenon, based on
free energy calculations and analytical estimates.
Depending on the absolute values of the two rigidi-
ties, we observe motion both up and down the
rigidity gradient, thereby effectively demonstrat-
ing both regular and negative durotaxis.

Results and Discussion

Adhesion non-monotonically depends on
the bending rigidity. To investigate how the
substrate’s stiffness influences the preferential lo-
calisation of a nanoparticle, we first placed the
nanoparticle on uniform membranes of different
rigidities, Kb, varied between Kb = 0.01 kBT and
Kb = 500 kBT . For every set of simulations,
we tracked the average nanoparticle coordination
number, defined as the number of membrane parti-
cles within range of interaction with the nanoparti-
cle, as well as the total adhesion interaction energy
between the membrane and nanoparticle.

The nanoparticle’s adherence to the membrane
is influenced by the balance of three terms: the
energetic cost of locally deforming the membrane,
the energy gain due to the adhesion of the
nanoparticle, and an entropic effect related to
membrane fluctuations. Depending on the value
of the bending rigidity, the contact between the
nanoparticle and the membrane exhibits four
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distinct regimes as shown in Fig. 2. For low
values of the bending rigidity, the membrane
is conspicuously corrugated and its fluctuations
hinder full contact with the particle (regime
I). As the rigidity is increased, the membrane
fluctuations are gradually suppressed and the
nanoparticle can be wrapped more by the mem-
brane, leading to a substantial increase in the
coordination number and in the absolute value of
the total adhesion energy (regime II). At values
of Kb above ∼ 2 kBT , the mechanical cost of
deforming the membrane overcomes the adhesion
term, resulting in decreased adherence (regime
III). The entropic term can be neglected at high
rigidities. For very high values of the bending
rigidity, the local membrane deformation imposed
by the nanoparticle is prohibitively costly and the
coordination number eventually saturates at a low
value (regime IV). These results show that there
is an optimal value of the bending rigidity that
maximises the adherence of the nanoparticle dif-
fusing on the surface of a fluctuating membrane.
We expect this non-monotonic behaviour of the
adhesion interaction to have a direct impact on
the preferential localisation of the nanoparticle on
the membrane.

Nanoparticle localisation is strongly influ-
enced by the stiffness gradient. According to
the previous observations, a nanoparticle adsorbed
on an inhomogeneous membrane should preferen-
tially migrate to regions where the adhesion is
maximised in order to minimise the system’s to-
tal energy, thus resulting in a form of durotaxis.
We test this hypothesis by placing the nanoparti-
cle on a membrane divided in two halves of dif-
ferent rigidities (as illustrated in Fig. 1). We ex-
pect that the local bending rigidity will influence
the statistical partitioning of the particle between
the two membrane regions. Fig. 3 illustrates how
the preference of the nanoparticle for either side of
the membrane changes depending on the rigidity
of each surface. Here, the nanoparticle localisa-
tion is quantified by counting the time spent by
the particle on each side of the membrane. The
nanoparticle shows substantial preference for one
side of the membrane.

In particular, we distinguish two different
durotactic regimes, depending on the bending
rigidity Ksoft of the softer region. For small Ksoft,
the entropic effects seem to dominate over the
energy ones and the nanoparticle preferentially
localises on the rigid side (top half of Fig. 3). In
this case, the particle follows a proper durotactic
motion, displaying a tendency to migrate towards
stiffer regions. Conversely, if Ksoft is larger, the
preference will be reversed (bottom half of Fig. 3).
These findings are in agreement with the variation
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FIG. 3: Partitioning of the nanoparticle between
the rigid and the soft region of the membrane.
tsoft and tstiff are the amounts of time spent by the
particle on each of the two surfaces, of rigidity Ksoft

and Kstiff respectively. As shown by the drawings,
values of tstiff/tsoft above 1 indicate preferential affinity
for the stiff side, and vice versa. For each curve, Ksoft

is fixed (see legend).

of the nanoparticle’s average adherence shown in
Fig. 2. The particle will have greater preference
for states that maximise its contact with the
membrane. As such, nanoparticles will exhibit a
tendency to migrate to regions of rigidity closer
to the value of maximum adherence (∼ 2 kBT )
observed in Fig. 2. The non-monotonic behaviour
of the curves in the top half of Fig. 3 (proper
durotactic regime) also qualitatively follows the
trend in adherence: the partitioning shifts slightly
in favour of the softer region for large Kstiff , as
wrapping favours very soft membranes compared
to very stiff (Fig. 2). Altogether, these results
demonstrate that adherence greatly influences the
particle’s motion on an inhomogeneous membrane.

Free energy analysis. To better understand
how adherence (Fig. 2) and, more importantly,
durotaxis (Fig. 3) depend on the bending rigidity
of the membrane, we outline a simple analytical
model to study the free energy of adhesion. This
free energy can be directly compared to our earlier
results, since the ratio of time spent on either side
of the membrane should be proportional to the ex-
ponential of the free energy difference between the
stiff-bound and soft-bound state. In other words,
given any two values of rigidity κsoft and κstiff [53],
the nanoparticle partitioning will depend only on
∆Fsoft→stiff = F (κstiff)− F (κsoft). The key obser-
vation is that we can choose as a reference state to
measure free energies the one in which the parti-
cle is unbound from either half of the membrane:
we call F (κ) the free energy the system gains if a
previously detached nanoparticle is absorbed onto
a membrane of rigidity κ, with κ = κstiff or κsoft.

The approach we use to compute the free en-
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ergy is the following (see Methods for mathemati-
cal details). We aim at writing a constrained free
energy, depending explicitly on the amount of ad-
hered surface A; the minimum of this constrained
free energy will then give the optimal wrapping
and the equilibrium free energy value. Now, F
includes a bending term Ebending ∝ κA, an adhe-
sion term Eadhesion ∝ −A, and an entropic term
−TS. A fourth term, related to membrane ten-
sion, could be inserted; however, the simulated
membrane is effectively tensionless and can only
sustain local transient stretching, so we neglect
surface tension in our thermodynamic treatment.
For simplicity, we restrict ourselves to the limit
of strong adhesion. While the energetic terms
Ebending and Eadhesion are easily written down in
a coarse grained fashion neglecting fluctuations
(Methods Eqs. (5) and (6)), a correct evaluation
of the entropy of a generic confined membrane is a
more challenging undertaking [35–37]. We assume
that bound membrane beads, which are strongly
confined close to the nanoparticle surface, only
fluctuate along the confinement axis. This allows
us to estimate the amplitude δh of these fluctu-
ations by invoking the equipartition theorem and
using a quadratic expansion of the adhesion po-
tential around its minimum. We notice that adhe-
sion strongly suppresses fluctuations: in particu-
lar, short-wavelength modes tend to be controlled
by bending, both when the nanoparticle is bound
to the membrane and in the unbound reference
state; on the contrary, long-wavelength modes are
suppressed in the bound state more than in the
reference state, due to adhesion. The entropy dif-
ference is then computed within the approxima-
tion that beads fluctuate independently from each
other and perpendicularly to the surface. This
gives a 1D-ideal-gas-like entropy contribution, that
is proportional to the number of bound beads (i.e.
to the adhered surface A) and depends on the ratio
of bending rigidity versus adhesion energy (Meth-
ods Eqs. (8), (12) and (14)).

Interestingly, this simplified model can repro-
duce the results of our simulations and help us
make sense of the entropic effects. In Fig. 4 we
show the free energy resulting from the minimiza-
tion process, broken down in its three components.
For low bending rigidity values (I), entropy lim-
its wrapping, as observed in simulations (Fig. 2),
and counterbalances adhesion energy. As rigid-
ity increases (II), if wrapping stays minimal, the
fluctuations of the reference unbound state de-
crease, until they have the same amplitude as in
the bound state and the entropy loss due to ad-
hesion vanishes. As a result the system can af-
ford a larger adhered surface A. As A gets larger,
though, new bound large-wavelength modes be-
come available, which are suppressed by adhesion
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FIG. 4: Free energy F as a function of bending
rigidity κ, within the analytical approximation.
Dashed and dotted lines correspond to bending energy
Ebending, adhesion energy Eadhesion (representing also
the wrapped area A), and entropic term −TS (where
S is entropy). The sum of these three terms is the total
free energy F . The adhesion energy, which is directly
proportional to the adhered surface A, reproduces the
trend from Fig. 2. See Methods for details.

more than they would be in the unbound state.
This yields a new source of entropy loss, which
limits the growth in the adhered surface and sets
the optimal wrapping. Increasing κ further (III),
the bending energy per unit surface becomes com-
parable with (or larger than) the adhesion energy
per unit surface and bending becomes more and
more unfavourable. At the same time, entropy
loses relevance. This is because the cutoff between
adhesion-limited and bending-limited modes gets
shifted to wavelengths that become unphysically
larger than

√
A, so that all available modes are

now bending-limited. Consequently, the entropy
difference S between a bound and an unbound
membrane gradually goes to zero. In this regime,
optimal wrapping is dominated by a competition
between bending energy and adhesion energy and
can only decrease with κ, until the point (IV)
where A becomes as small as possible (virtually
just one point of nanoparticle-membrane contact).

This analysis demonstrates that the free en-
ergy curve (thus including entropic effects) follows
the same qualitative trend as the adhesion energy
curve, clarifying why the durotactic behaviour ob-
served in Fig. 3 can be explained with the nanopar-
ticle’s preference for the higher membrane wrap-
ping (Fig. 2). In addition, since tstiff/tsoft =
e−[F (κstiff )−F (κsoft)]/kBT , the logarithmic partition-
ing curves shown for given Ksoft in Fig. 3 probe
precisely F (κ). In particular, for each curve, a dif-
ferent κsoft (or Ksoft) is taken as zero-energy refer-
ence, so that each curve represents a different part
of F from Fig. 4.

The shape of the free energy from Fig. 4
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FIG. 5: Durotaxis is caused by a net force acting at the interface, not by rigidity-dependent kinetics.
(a) and (b) Potential of mean force (free energy) across the direction of the stiffness gradient (x). The softer region
(left-hand side) has bending rigidity Ksoft = 0.5 kBT (a) and Ksoft = 5 kBT (b). The insets show the average
force fx acting on the nanoparticle: fx > 0 means that the particle is pushed toward positive x values, and
vice versa. The bending rigidities of the rigid side are in the legend. (c) Diffusion coefficient of the nanoparticle,
moving without constraints on a uniform membrane, projected on the xy plane (parallel to the average membrane
position).

is robust against changes in the size R of the
particle, with its minimum point κmin growing
roughly as R2 and its minimum value F (κmin)
as R. Similarly, increasing adhesion deepens and
shifts the minimum to the right, presumably up to
a point (never reached in our simulations) where
the particle is fully wrapped.

Mechanical mechanisms and kinetics. To
provide an additional comparison with our the-
ory, we measure the potential of mean force for
a membrane-bound nanoparticle crossing the in-
terface between two regions of different rigidities,
by means of umbrella sampling (see Methods).
Adopting similar settings as in Fig. 3, we fix the
rigidity of the softer side and vary that of the stiffer
side. In the case of low Ksoft = 0.5 kBT , the free
energy decreases significantly when passing to the
stiff side of the membrane (Fig. 5a). This find-
ing is consistent with the trend observed for the
same Ksoft in Fig. 3. The free energy difference
∆Fsoft→stiff corresponds to the difference in poten-
tial of mean force between positive and negative x,
far from the interface. It exhibits non-monotonic
behaviour that matches the one observed in Fig. 4,
displaying a deep minimum at intermediate values
of bending rigidity Kstiff ' 10 kBT . Interestingly,
the free energy difference favours the stiff side even
at very large Kstiff , as there is some non-zero ad-
hesion present at the particle-membrane contact
even in that case: this indicates a limit of the an-
alytical model, whose continuous treatment of ad-
hesion assumes zero energy gain at infinite rigidity.
In the case of a larger Ksoft = 5 kBT (Fig. 5b) the
free energy increases in value when passing from
the soft to the stiff side, again in agreement with
the corresponding curve of Fig. 3.

Figs. 5a-b show that the change in free energy
occurs on a length scale comparable to the diam-
eter of the nanoparticle (10σ). More explicitly,
their insets represent the spatial distribution of the
average force fx acting on the nanoparticle along
the direction of the gradient x. These plots show
that the particle experiences a pulling force in the
direction of lower free energy, or maximum wrap-
ping, every time it approaches the rigidity gra-
dient. This force is the microscopic mechanism
behind the passive durotaxis we observe, falling
in the category of gradient-sensing mechanisms.
These have been shown – albeit in the different
context of cell durotaxis [12] – to be more effi-
cient than absolute-rigidity-sensing mechanisms,
also called durokinetic because they only rely on
the fact that kinetic parameters depend on the lo-
cal rigidity [38]. To assess the potential copres-
ence of a durokinetic process, we computed the
projected 2D nanoparticle diffusion coefficient D
(Fig. 5c). Durokinesis predicts motion in the di-
rection of larger diffusivity, which is roughly pro-
portional to the persistence time: we would there-
fore expect D to first grow and then decrease with
stiffness. This is not the case; besides, its increase
is limited to a factor < 2, much smaller than in
related studies [12, 38]. We conclude that kinet-
ics cannot be the dominant durotactic mechanism
here, in agreement with thermodynamic consider-
ations detailed in the Conclusions.

The rigidity dependence of the projected diffu-
sion coefficient is however interesting in its own
right [39]. It does not trivially follow wrapping;
instead, it decreases monotonically starting from
its free-particle value, as rigidity decreases. This
is qualitatively consistent with purely geometric
effects attributed to surface corrugation [40, 41].
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FIG. 6: Partitioning of a collection of particles. a) Ratio between average number of particles on the stiff
and on the soft side. The considered bending rigidities are specified on each bar. The results are averaged over
100 simulation repeats. b) Probability distribution of nanoparticles on a membrane in which rigidity is increased
step-wise along x, from one end to another, in an exponential manner. A section of a simulation snapshot
highlights rigidity increments on the membrane and shows accumulation of particles in its central region.

Durotaxis of multiple nanoparticles. The
observed single-particle durotactic behaviour can
lead to collective migration of multiple membrane-
adsorbed particles. However, membrane-mediated
interactions between multiple particles can render
the resulting behaviour more complex. As a proof
of principle, we explore the collective preferential
migration of an ensemble of nanoparticles adhered
on the inhomogeneous membrane. To do so, we
place 36 identical particles uniformly on the mem-
brane surface (corresponding to a projected sur-
face packing fraction φ ' 0.28) and we measure
partitioning. The particles are allowed to diffuse
freely across the membrane regions and they in-
teract with each other through volume exclusion.
As shown in Fig. 6a, multiple particles behave in
a manner analogous to what was observed for a
single particle (Fig. 3). For low soft-side rigidity,
they prefer transferring to the rigid side (first two
bars in Fig. 6a); in case of similar values of bending
rigidity, no significant preference for either surface
is observed (third bar); for large soft-side rigid-
ity, particles migrate to the softer side (fourth
bar). These observations suggest that collective
transport of macromolecules can be achieved solely
through gradients in the local environment’s bend-
ing rigidity.

To further investigate whether more intricate
rigidity gradients can induce a certain degree of
localisation on the membrane, we engineer a mem-
brane in which the bending rigidity increases grad-
ually, logarithmically, from Kb = 0.1 kBT at one
end to Kb = 100 kBT at the other. The nanopar-
ticles statistically accumulate in the central region
(Fig. 6b) which coincides with the values at which
free energy in minimized (Figs. 4 and 5), or, equiv-
alently, average adhesion is maximised (Fig. 2).

This finding suggests that gradients in membrane
rigidity are sufficient to bias local concentration of
particles on soft membranes. We propose this as a
relevant mechanism to sort proteins on membranes
or to guide diffusion of macromolecules to their
target locations during physiological processes, or
in artificial setups.

Conclusions

We demonstrated that rigidity gradients can
provide an intrinsic driving force for guiding the
motion of passive spherical nanoparticles on de-
formable non-uniform membranes. This behaviour
originates purely from the minimisation of the sys-
tem’s free energy, causing a net force where the
rigidity is non-uniform: it is not a consequence
of a rigidity-dependent persistence of motion, as
was proposed for cellular durokinesis [38]. In-
deed, durokinesis concerns non-equilibrium sys-
tems, whose activity is hidden in the stochastic
equations of motion (see [42] for a general discus-
sion). Our system is instead intrinsically passive
and must behave according to standard statisti-
cal mechanics, irrespective of the kinetics. This
mechanism leads to more efficient transport [12],
realised by gradient sensing on the nanoparticle
scale. The fact that motion follows the direction
of maximum wrapping carries analogies with cell
durotaxis, where in some cases stronger adhesion
is observed on stiffer substrates [11].

We observed a non-monotonic dependence in
the particle’s average adhesion to the membrane.
In particular, in the regime of most biologically rel-
evant bending rigidity (∼ 20 kBT ), we found that
the particle migrates toward softer surfaces, con-
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trary to what is expected for durotaxis observed
in cellular systems.

This non-monotonic dependence was explained
by the competition between three terms: the en-
tropic effects which are relevant on very soft mem-
branes, the energetic gain from adhesion, and me-
chanical effects due to membrane bending which
penalise local deformations. A deeper understand-
ing of our findings was provided by free energy cal-
culations, both in simulations and with the help of
an analytical theory. In particular, we proposed
a simple model to account for the entropic term,
whose dependence on the bending rigidity is highly
nontrivial and incorporates two competing effects.
On the one hand, increasing rigidity decreases the
entropy lost upon adhesion, because it reduces
fluctuations in the unconstrained membrane. On
the other hand, for this reason, a higher rigidity
allows for an increase in wrapping, which in turn
unlocks longer-wavelength adhesion-limited modes
and increases the entropy difference again. This
feedback mechanism controls the free energy.

Finally, we showed that gradients in rigidity are
enough to drive spontaneous oriented motion of
many particles. This phenomenon might serve as
a method to direct macromolecules toward specific
functional sites on the cellular surface. Rigidity
gradients have recently been shown to affect phase
separation in a 3D elastic medium, comparable to
the cytoskeleton [43, 44]: our results suggest that
they might also act as a passive particle-sorting
mechanism in a 2D environment. In particular,
given the high sensitivity of the free energy with re-
spect to particle size – it scales as the square of the
particle radius – the mechanism might prove espe-
cially efficient in segregating single proteins from
dimers or larger aggregates, serving a purpose sim-
ilar to phase separation phenomena. Moreover,
these findings could have potential impact on the
development of nanodevices that involve the trans-
port of molecular cargoes to a targeted region, for
instance in the development of artificial drug de-
livery systems.
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Methods

A. Simulation details

The simulated system consists of a colloidal
nanoparticle placed on a fluctuating elastic mem-
brane, as shown in Fig. 1. The membrane con-
tains 7832 beads placed on the nodes of a triangu-
lated hexagonal mesh. The membrane beads and
nanoparticle have a diameter σ and σNP = 10σ
respectively. The membrane beads are intercon-
nected via harmonic springs, obeying to the fol-
lowing potential:

Ustretching(r) = Ks(r − rB)2 , (1)

with stretching constant Ks = 18 kBT/σ2 and
equilibrium bond length rB = 1.23σ. The mem-
brane bending rigidity is controlled by the follow-
ing dihedral potential between the opposite ver-
tices of triangles sharing an edge (Fig. 1):

Ubending(φ) = Kb(1 + cosφ) , (2)

where φ is the corresponding dihedral angle, and
Kb is the harmonic constant that controls the
membrane’s bending rigidity. In our simulations,
we explore a wide range of values of Kb, between
0.01 kBT and 500 kBT .

Besides the stretching and bending terms, mem-
brane beads interact with each other via a repul-
sive Weeks-Chandler-Andersen (WCA) potential
[45] to impose self-avoidance:

UWCA(r) = 4ε0

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
, (3)

with a radial cutoff of rc = 21/6 σ. ε0 is set to
5 kBT .

The nanoparticle interacts with the membrane
via a truncated-shifted Lennard-Jones potential:

Vattr(r) = 4εnp

[( b
r

)12

−
( b
r

)6]
+ 0.927εnp , (4)

where b = 5.5σ and εnp = 10 kBT . A radial cutoff
of rc = 6.5σ is used. The parameters were finely
tuned to prevent the full wrapping and subsequent
engulfment of the nanoparticle and to allow it to
diffuse laterally on the membrane surface.

The simulation box is initialised with sides of
length Lx = Ly = 100σ and Lz = 40σ. Pe-
riodic boundary conditions are applied in the x
and y direction and the box is kept fixed in the
z direction. In simulations involving a hetero-
geneous membrane (Figs. 1, 3, 6, and insets of
5a-b), Lennard-Jones walls with potential depth
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ε = 10 kBT confine the nanoparticle to the sim-
ulation box, preventing it from crossing the peri-
odic boundaries. These walls do not interact with
the membrane beads. To compute partitioning
(Fig. 3), we consider time spent in the region of
space more than ∼ 10σ away from the soft-stiff
interface and more than 10σ away from the closer
x wall, in order to reduce boundary effects (this re-
gion is 30σ long on either side of the membrane).
In simulations involving a homogeneous membrane
(Figs. 2 and 5c), the walls only act in the z direc-
tion, so the nanoparticle can diffuse in the xy plane
to neighbouring image cells. Unwrapped trajecto-
ries are then used to compute mean square dis-
placements and diffusion coefficients.

The simulations were run in the isoenthalpic-
isobaric (NPH) ensemble, with a zero lateral pres-
sure and at constant temperature. In order to
replicate the stochastic dynamics of the real sys-
tem, we used a Langevin thermostat with fric-
tion coefficient γ = 1m/τ0, where m is the
particle mass (equal to m0 for membrane beads
and to 100m0 for the nanoparticle) and τ0 =√
m0σ2/kBT the natural time unit of the simu-

lation. The simulation time step was taken to be
τs = 0.008 τ0. The simulations were equilibrated
for a time of at least 300 000 τs and further run for
5 000 000 τs (2 000 000 τs for the main Figs. 5a-b
and for Fig. 6). In order to gather enough statis-
tics, each set of simulations was run for a number
of different initial velocity random seeds: 300 for
Fig. 2, at least 200 for Fig. 3, 400 for the insets of
Fig. 5a-b, 500 for Fig. 5c, and 100 for Fig. 6.

To compute potentials of mean force (main
Figs. 5a-b), we used theWeighted Histogram Anal-
ysis Method [46] with a harmonic restraint of con-
stant kbias = 1 kBT/σ

2, over 50 equally spaced
windows, each of them being simulated for 20 dif-
ferent random seeds.

We used the LAMMPS molecular dynamics soft-
ware to run the simulations [47, 48] and the
OVITO software to visualise trajectory files [49].

B. Theoretical model

The constrained free energy F (A), for a given
value A of membrane surface adhered to the
nanoparticle, can be obtained as the sum of the
following terms.

The bending energy is

Ebending(A) = 2κ
A

R2
, (5)

where κ is the bending rigidity, R is the radius
of the nanoparticle plus the radius of a membrane
bead, and the factor 2 accounts for both directions
of curvature.

The adhesion energy is

Eadhesion(A) = −εnA , (6)

where n is the surface density of beads on the
membrane, and ε is the average energy gain per
bead when adhered to the nanoparticle surface.

The surface energy term is due to an adhesion-
induced stretching of the membrane. It reads

Esurface(A) = τ
A2

4πR2
, (7)

where τ is the surface tension. Adhesion can in-
deed stretch a membrane, shaping an unbound
disk of membrane into a spherical cap, with an
area increase that is quadratic in the bound area
A. This term is effectively irrelevant in our simu-
lations, that are performed at constant zero pres-
sure.

The entropic contribution represents in a quali-
tative manner the decrease in entropy due to ad-
hesion and consequent confinement of membrane
beads close to the nanoparticle. It is computed as

S(A) = nA log

(
δh

δh0

)
, (8)

within a 1D-ideal-gas approximation for mem-
brane beads, as far as motion perpendicular to the
membrane surface is concerned. δh is the typical
amplitude of fluctuations for a bound membrane
surface A, while δh0 is the same quantity for a
surface A of the reference (unbound) membrane.
Lengths δh and δh0 are estimated in the following
way. First we write down a constrained Helfrich
Hamiltonian. For the bound state, this reads

H(A) =

∫
A

(κ
2

(∇2h)2 + τ(∇h)2 + αεn2h2
)

dxdy ,

(9)
where h is the distance of the membrane at (x, y)
from its ground-state surface xy. The first term in
parentheses represents (microscopic) bending, the
second surface tension, and the third is a quadratic
expansion of the adhesion potential around its
minimum, with α = 62 · 22/3 ' 100 if the con-
sidered potential is a Lennard-Jones with energy
parameter ε. For the unbound reference state, the
Hamiltonian reads the same, except for the last
term which is obviously not present (α = 0). Writ-
ing h by means of a Fourier series allows us to com-
pute thermal averages 〈h2

q〉 (or 〈h2
0q〉 for the un-

bound state) through the equipartition theorem:

〈h2
q〉 =

kBT

A (κq4 + τq2 + αεn2)
. (10)

From here it is clear that the role of adhesion
is to penalise small wavenumbers q = |q|, i.e.,
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in a tensionless membrane (τ = 0), wavelengths
shorter than 4

√
κ/(αεn2). We then integrate 〈h2

q〉
for wavelengths ranging from the size of a bead√

1/n to the size of the adhered membrane por-
tion

√
A: this integral provides an upper-bound

estimate for the square of the typical fluctuation
amplitude δh (or δh0), at a given wrapped area A.
The result is

δh2

kBT
=

(
atan 8π2κn+τ√

4ακn2ε−τ2
− atan Aτ+8π2κ

A
√

4ακn2ε−τ2

)
2π
√

4ακn2ε− τ2
.

(11)
For τ = 0, this can be expanded as follows:

δh2

kBT
=



π (nA− 1)

αεAn2
if κ� κ1

1

8n
√
αεκ
− π

αεn2A
if κ1 � κ� κ2

nA− 1

16π3nκ
if κ� κ2

,

(12)
with

κ1 =
αε

16π4
' ε

16
,

κ2 =
αεA2n2

16π4
' εA2n2

16
.

(13)

In practice: for κ � κ1, all fluctuation modes are
adhesion-dominated; for κ1 � κ � κ2, fluctua-

tions are limited by adhesion on a wavelength
√
A,

but by bending on a shorter wavelength
√

1/n; at
larger κ, all permitted fluctuations are bending-
dominated. For the reference unbound state, it is
always [50, 51]

δh2
0

kBT
=
nA− 1

16π3nκ
, (14)

since κ1 and κ2 from Eq. (13) go to 0, as α goes to
0. Fluctuations can only be bending-dominated in
this case.

Now, given Eqs. (12) and (14), the entropy of
the adhered state with respect to the free one
is provided by Eq. (8). A comparison between
Eqs. (12) and (14) shows that the entropy gain
is maximal, in absolute value, for small κ, and de-
creases to 0 as κ approaches κ2.

Fig. 4 is obtained by numerically minimising
the total constrained free energy, resulting from
the sum of (5), (6), (7) and (8), with respect to
the bound surface A; then, the total free energy
is computed, together with its bending, adhesion
and entropic terms, for such optimal value of A.
In the calculation, we use parameters meant to
represent our molecular dynamics simulations:
n−1/2 = 1.14σ (where σ is the Lennard-Jones
length unit), R = 6.17σ, ε = 0.7 kBT , and
τ = 10−3 kBT/σ
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