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Background: Single-cell Assay for Transposase Accessible
Chromatin using sequencing (scATAC-seq) measures genome-
wide chromatin accessibility for the discovery of cell-type spe-
cific regulatory networks. ScATAC-seq combined with single-
cell RNA sequencing (scRNA-seq) offers important avenues for
ongoing research, such as novel cell-type specific activation
of enhancer and transcription factor binding sites as well as
chromatin changes specific to cell states. On the other hand,
scATAC-seq data is known to be challenging to interpret due
to its high number of zeros as well as the heterogeneity de-
rived from different protocols. Because of the stochastic lack
of marker gene activities, cell type identification by scATAC-seq
remains difficult even at a cluster level.

Results: In this study, we exploit reference knowledge obtained
from external scATAC-seq or scRNA-seq datasets to define ex-
isting cell types and uncover the genomic regions which drive
cell-type specific gene regulation. To investigate the robust-
ness of existing cell-typing methods, we collected 7 scATAC-seq
datasets targeting mouse brain for a meta-analytic comparison
of neuronal cell-type annotation, including a reference atlas gen-
erated by the BRAIN Initiative Cell Census Network (BICCN).
By comparing the area under the receiver operating charac-
teristics curves (AUROCs) for the three major cell types (in-
hibitory, excitatory, and non-neuronal cells), cell-typing perfor-
mance by single markers is found to be highly variable even
for known marker genes due to study-specific biases. How-
ever, the signal aggregation of a large and redundant marker
gene set, optimized via multiple scRNA-seq data, achieves the
highest cell-typing performances among 5 existing marker gene
sets, from the individual cell to cluster level. That gene set also
shows a high consistency with the cluster-specific genes from in-
hibitory subtypes in two well-annotated datasets, suggesting ap-
plicability to rare cell types. Next, we demonstrate a compre-
hensive assessment of scATAC-seq cell typing using exhaustive
combinations of the marker gene sets with supervised learning
methods including machine learning classifiers and joint clus-
tering methods. Our results show that the combinations using
robust marker gene sets systematically ranked at the top, not
only with model based prediction using a large reference data
but also with a simple summation of expression strengths across
markers. To demonstrate the utility of this robust cell typing ap-
proach, we trained a deep neural network to predict chromatin
accessibility in each subtype using only DNA sequence. Through
model interpretation methods, we identify key motifs enriched
about robust gene sets for each neuronal subtype.

Conclusions: Through the meta-analytic evaluation of scATAC-
seq cell-typing methods, we develop a novel method set to exploit
the BICCN reference atlas. Our study strongly supports the

value of robust marker gene selection as a feature selection tool
and cross-dataset comparison between scATAC-seq datasets to
improve alignment of scATAC-seq to known biology. With this
novel, high quality epigenetic data, genomic analysis of regu-
latory regions can reveal sequence motifs that drive cell type-
specific regulatory programs.
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Background
High-throughput single-cell RNA sequencing (scRNA-seq)
data has emerged as a major tool for cell type discovery and
characterization in the mammalian brain (1–4). In comple-
ment, the analysis of epigenetic profiles has attracted atten-
tion because of its potential to elucidate the regulatory net-
work underlying cell-type dependent expression differences.
Assay for Transposase-Accessible Chromatin using sequenc-
ing (ATAC-seq) is a primary method used to detect the epige-
netic footprint of chromatin location (5). Through the inser-
tion of barcode sequences by the Tn5 transposase, ATAC-seq
can detect accessible genomic regions and infer the strength
of gene activity or the location of transcriptional regulators,
such as enhancers, promoters, or transcription factor bind-
ing sites. As a result, the comparison of single cell ATAC-
seq (scATAC-seq) peak regions across different cell types
provides information about cell-type specific regulatory net-
works (6–9). Due to its high throughput and feasibility, large-
scale reference ATAC-seq atlases have been constructed for
diverse targets such as immune or neuronal cells (10–12).
ScATAC-seq for mouse brain data has been also successfully
applied to identify candidate cell-type specific enhancer re-
gions (13, 14). While most scATAC-seq studies detected only
a limited number of cell types compared to scRNA-seq stud-
ies because of coverage and throughput limitations, Li, et al.
recently determined 160 subtypes from scATAC-seq profiles
alone, suggesting the potential of scATAC-seq for the analy-
sis of highly heterogeneous and diverse brain cell types (15).
To infer the cell-type specific regulatory network from
scATAC-seq profiles, it is essential to assign each chromatin
accessibility profile to a cell type, either through known
marker genes or by mapping to cell types inferred from tran-
scriptome data. For that purpose, the gene activity profile is
estimated in the scATAC-seq analysis by summing the read
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counts around the transcription start site (TSS) or gene body
of each gene to make it comparable to the transcriptome
reference. However, the gene activity is known to imper-
fectly match to transcriptome profiles because it ignores com-
plex regulation mechanisms by distant or condition-specific
enhancers (11) and it is simultaneously affected by experi-
mental limitations such as sparseness and binary-like signals.
These latter problems arise directly from scATAC-seq’s prin-
ciple, which measures the insertion of barcode sequences into
accessible regions on the entire genome. While bulk ATAC-
seq aggregates the signals for a group of cells, scATAC-seq
measures each cell independently. As each cell contains a
limited number of chromosome copies (e.g., 2 for diploid
organisms), the barcode insertions for each genomic locus
are observed as nearly binary (0, 1, or 2) signals across en-
tire genomic regions for scATAC-seq analysis. Alternatively,
cell-type specific profiles can be obtained directly by using
recombinase driver lines (1), potentially coupled with micro-
dissection of a specific region (16, 17). However, such ap-
proaches require laborious work for each driver line and each
sample measures only one cell type, resulting in an inevitable
large batch effect problem. Therefore, to analyze a cell-type
specific regulatory system from scATAC-seq data, we need
to find a computational mapping of associating gene activity
profiles of each single cell with known biological references.

Another challenge for the robust identification of cell types
for epigenetic profiles is the heterogeneity of scATAC-
seq datasets due to the diversity of experimental pro-
tocols. There are several protocols developed for the
scATAC-seq analysis, such as single-cell combinatorial in-
dexing ATAC-seq (sci-ATAC-seq), droplet single-cell as-
say for transposase-accessible chromatin using sequencing
(dscATAC-seq), or further dscATAC-seq with combinato-
rial indexing (dsciATAC-seq). Each dataset is affected by a
study-specific batch effect due to technology, as evidenced
by the difference of the distribution in terms of library qual-
ity and proportion of TSS fragments (18). Because of such
differences in protocol, the performances of computational
pipelines for scATAC-seq clustering have been observed be
varied (19). It remains an unmet challenge to simply charac-
terize factors driving performance.

In this study, we carried out a comprehensive benchmark of
cell-type classification based on seven scATAC-seq data ob-
tained from mouse brain with a variety of protocols. We col-
lected marker sets from individual studies, as well as a set of
robust markers inferred from multiple scRNA-seq datasets.
In a broad evaluation of marker sets, learning methods, and
datasets, we found that careful selection of marker genes
largely drives performance; usefully, this occurs to such a de-
gree that if an adequately strong marker set is selected, simple
aggregation of the gene-specific scATAC-seq signal charac-
terizes cell-type remarkably well. This finding provides an
important basis for future data integration and downstream
applications. In order to demonstrate the utility of marker-
based selection, we used the pseudo-bulk scATAC-seq pro-
files of jointly labeled cells to train a deep convolutional neu-
ral network (CNN) to classify which cell types are accessible

for an input DNA. Through model interpretation, we high-
light learned motifs that are enriched about robust biomarker
gene sets for each cell type, revealing a novel view of cell
type-specific regulatory programs in the motor cortex.

Results
Individual marker gene activity cannot produce practi-
cal or reproducible predictions at cluster or single-cell
level. Figure 1A shows a general scATAC-seq analysis work-
flow, in which the process of cell typing at either cluster or
smaller resolution level is essential to analyze a cell-type spe-
cific regulatory network based on the knowledge about exist-
ing cell types. To infer the cell-type information for scATAC-
seq profiles, the chromatin accessibility around the TSS of
each gene, called gene activity, is compared with a list of
known marker genes or associated with an existing reference
data that is already well characterized. We consider two lev-
els of cell typing: at the cluster level or at the individual cell
level. The cell-typing process is considered to be more robust
and reliable when applied to averaged profiles over clustered
cells because the averaging of gene activity profiles reduces
the influence of stochastic noise, the sparsity of the dataset,
and the requirement of computational resources. When a cell
type is inferred for each cluster, however, the resolution of
cell typing is limited to the size of clusters. This matters par-
ticularly for brain scATAC-seq analyses, which intrinsically
contain potentially hundreds of cell types and clusters are ex-
pected to contain several finer grained cell types.
In fact, the disparity in terms of the number of cells and clus-
ters for the heterogeneous datasets suggests that cluster-level
annotation is inadequate since it is quite likely to depend
on pipeline variation which is not held constant. Table 1 is
the summary of our compendium of mouse brain datasets
(mainly from cortical regions). Because the datasets are re-
lying on different experimental protocols and computational
pipelines, the number of clusters is highly variable (9 to 36
clusters) and the clusters vary in their granularity, from ma-
jor cell types, such as inhibitory (IN), excitatory (EX), and
non-neuronal (NN) cell types (Fig. 1B), to more detailed cell
types, such as Pvalb or Vip within inhibitory neuronal cells.
To evaluate the cell-typing performance beyond the differ-
ence of scATAC-seq dataset properties, we first evaluated the
cell-type classification accuracy among the most well defined
categories: IN, EX, and NN cell types for the seven scATAC-
seq datasets. To measure consistency (and define "true" la-
bels), we used the annotations for each cluster of each dataset
provided by the authors. Since information with respect to
these cell-type information is essential to know the function
of a variety of neuronal cells, 6 out of 7 datasets are pub-
lished or personally provided with the metadata about these
cell types at cluster-level. Among the seven datasets, two
datasets from Chen et al. (20) and Zhu et al. (21) are obtained
by a joint profiling methodology for chromatin accessibility
and transcriptome, and coupled with scRNA-seq data. The
BICCN dataset is also accompanied with the scRNA-seq and
snRNA-seq reference datasets (4). We selected the scRNA-
seq data based on SMART-seq v4 as a transcriptome refer-
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(A) General workflow of  scATAC-seq cell typing

(B) Dataset: 7 mouse brain scATAC-seq data
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Fig. 1. A workflow of scATAC-seq analysis and the seven scATAC-seq dataset used in this study. (A) A general workflow of scATAC-seq cell typing using a reference gene list
or another omics dataset. (B) tSNE mapping of 7 scATAC-seq datasets used in this study. Each cell is colored depending on the assigned cell type from three major cell types;
blue for non-neuronal cell (NN), green for inhibitory neuron (IN), and orange for excitatory neuron (EX). For the dataset without a cell-type annotation from (13), the total read
count of each cell is shown by a different color. (C) The AUROC distribution of major cell-type classification for the BICCN scATAC-seq dataset using the gene activity of each
single gene. The AUROCs lower than 0.5 are converted into the opposite direction so that all AUROCs are no less than 0.5 by the formula max(1.0−AUROC, AUROC). (D),
(E), and (F) The top 1,000 features for cell-type classification of the BICCN dataset based on different features or different problems. (D) Cell-typing for each cell using a single
gene activity. (E) Cell-typing for each cluster using a single gene activity from the averaged profile. (F) Cell-typing for each cell using an accessibility of each 5kb genomic
bin at cell-level annotation. The inset plot shows the − log10(p-value) after Bonferroni multiple correction computed by Fisher’s exact test from the binarized accessibility for
each genomic bin.

ence atlas in this study.

Figure 1C shows the performance of major cell-type classifi-
cation using the activity of each single gene for the BICCN
dataset, the largest scATAC-seq atlas in our collection, at the
individual cell level. The mode of the AUROC distributions
ranges from 0.5 to 0.6 with a heavy tail and this pattern is
consistent for all three cell types. This indicates that most
genes do not substantially and consistently increase their ac-
tivity in a specific cell type. In Figure 1D, we extracted the
top 1,000 genes for each cell-type classification and fewer
than 200 genes achieved an AUROC greater than 0.625. On

the other hand, for predictions at the cluster-level, the AU-
ROCs of top 1,000 genes are substantially higher than those
for individual cell prediction (Fig. 1E). It should be noted
cell-level and cluster-level classification have different sam-
ple sizes (number of cells vs number of clusters), leading to
a step-wise aspect for cluster-level performance. Neverthe-
less, this difference in tendency is consistent with previous
studies of scRNA-seq in which a few hundred genes could be
obtained as reliable markers (1) while the number of genes
detected in neuronal and non-neuronal cells are known to be
different in thousands of genes at bulk-level because of mul-
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tiple factors such as real marker genes and their co-expressed
genes (22).

In addition to gene-level accessibility analysis, the read
counts of each genomic bin can be also used as a feature
for cell-type prediction as used in the previous studies (14).
By computing the AUROCs for cell-typing based on each
genomic bin activity at cell-level classification, the number
of features whose AUROC is substantially higher than ran-
dom (0.5) is much smaller than that based on gene activity
(Fig. 1F). Since the read count data is sparser and almost bi-
nary for each genomic bin, we also computed p-values for
Fisher’s exact test instead of AUROC to evaluate the enrich-
ment of the binarized read counts in each cell type. While the
most of AUROCs are around 0.5, more than 6.39 % of bins
had p-values smaller than 0.05 after Bonferroni correction
for three major cell types (inset in Fig. 1F). Our results sug-
gest that aggregating across either bins or cells can improve
the potential of cell-type prediction accuracy by decreasing
the sparsity and the noise underlying the dataset. Moreover,
none of the single features predicts cell types with a satisfac-
tory precision at the individual cell level.

Next, by comparing the prediction performance in other
datasets, we examined the reproducibility of cell-type predic-
tion performances using AUROC and confirmed whether the
tendency of cell-type classification performance is preserved
for each gene beyond a study-specific batch effect. Figure 2A
shows the AUROCs of each gene activity from the BICCN
dataset and the 5 other author-annotated datasets for the case
of IN cell-type prediction at individual cell-level. Overall, the
scatter plots show a positive correlation with a large variance
and specific outlier signals in some of the comparisons. Such
dataset-specific dropouts potentially contribute to the study-
specific batch effects.

We then computed the Spearman’s correlation coefficients
of AUROC scores for all pairs of datasets as a measure of
reproducibility of cell-typing based on each single feature,
focusing on IN cell-type classification (Fig. 2B-D). In most
comparisons, we found that AUROC scores were positively
correlated, with some notable exceptions, in particular for
the Cusanovich and Zhu datasets. The BICCN, Lareau, and
Chen dataset produced only a non-negative correlation with
all other datasets, indicating the potential of a large scATAC-
seq atlas. On the other hand, the Cusanovich and Zhu datasets
showed a lower correlation compared to others. While we did
not apply any correction for batch effects in this study, two
datasets may require a special normalization to estimate gene
activity enrichment. It may be possible that the mixture of
different cell types are more frequent and the heterogeneity
of each cluster is higher in those datasets because they con-
tain a smaller number of clusters. In fact, the Cusanovich
dataset was sampled from whole brain tissues and contains
more non-neuronal cell types compared to other datasets. Al-
though the AUROCs computed in this study are only for se-
lected cell types related with brain function such as neuronal
cells, microglia, or oligodendrocytes, the results of the clus-
tering may be affected by the existence of a variety of non-
neuronal cells, such as B cells or T cells.

Compared to the cell-level classification, the correlation coef-
ficients of cluster-level classification are comparable or even
lower (e.g., comparisons involving BICCN dataset), sug-
gesting that the enrichment of high-performance features at
cluster-level is only weakly reproducible across the datasets.
We also tested the reproducibility of the AUROCs for each
genomic bin. After selecting the bins where signals are de-
tected in both datasets, the correlation coefficients are com-
puted in the same way as for gene activities. We found that
all pars whose correlation coefficients for gene activities were
substantially positive showed lower correlation coefficients
for genomic bin activities. In addition, compared to gene ac-
tivity, most of the AUROCs for the classification based on
genomic bins were closer to 0.5, implying that random corre-
lation can be easily introduced if a small number of features
of higher AUROCs produced irreproducible tendencies. In
conclusion, the performance of cell-typing by a single fea-
ture such as gene activity or genomic bin is highly variable
at both individual cell and cluster-level across scATAC-seq
datasets.

A redundant marker set constructed from multiple
scRNA-seq data enables robust cell typing for hetero-
geneous scATAC-seq datasets. While cell typing is gen-
erally performed using the expression profile of only a lim-
ited number of marker genes, performance is unstable for
multiple single-cell sequencing data, as the gene activity may
be stochastically missing, regardless of the importance of the
gene for cell-type specific functions. This leads to the idea
that a redundant marker gene set including the genes co-
expressed with the marker genes would be able to capture
the subtle signal from scATAC-seq datasets, effectively over-
coming stochastic dropout by aggregating information over
functionally related genes. To examine the efficiency of re-
dundant marker gene sets for the meta-analytic integration of
brain scATAC-seq data, we collected five marker gene sets
established for single-cell sequencing data, named SF, CU,
TA, TN, and SC. TA and TN are marker sets constructed in
previous studies of mouse brain scRNA-seq analysis, (23)
and (1), respectively. CU is defined in one of the previous
scATAC-seq analyses used in this study (9). SF and SC are
constructed as a robust marker gene set learned from multiple
scRNA-seq data in the BICCN collection (4). SC is a subset
of the SF marker set to have the same number of genes as the
CU marker set to assess the importance of the size of gene
sets independently of the marker gene selection process. Fig-
ure 3A shows the overlap of the various marker gene sets. We
found that smaller gene sets such as CU and SC do not have
any exclusive marker genes and all markers are contained in
at least another marker set. Note that the CU marker set was
defined based on one of our test datasets, while the construc-
tion of SF and SC marker sets did not use the information of
any of our test scATAC-seq datasets.
To investigate the efficiency of individual genes included in
the marker lists for the cell-type classification, we computed
the AUROCs of IN cell-type prediction for the genes of each
marker set. In theory, these marker genes are expected to be
up-regulated and result in AUROCs higher than 0.5 (called
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Fig. 2. Consistency of cell-type classification by each single feature across the datasets. (A) Scatter plots of the AUROCs of IN cell-type classification within the BICCN
dataset (y-axis) and other 5 scATAC-seq datasets (x-axis). (B), (C), and (D) Spearman’s correlation coefficients of the AUROCs based on each gene activity for cell-level
annotation (B), averaged gene activity for each cluster (C), and signal activity for each 100kb genomic bin (D).

positive, hereafter) within a corresponding cell-type sample
while marker genes for other cell types are likely to be down-
regulated and tend to show a lower AUROC (negative). As
shown in Figure 3B, the AUROCs of genes are substantially
higher than 0.5 except for several negative markers show-
ing an AUROC around 0.5. These distributions are dras-
tically different from those of all genes as they are highly
skewed at 0.5. To evaluate the reproducibility of the AU-
ROCs for marker genes and others, we computed the average
AUROCs across the datasets for each cell-type classification,
along with the minimum and maximum AUROC (Fig. 3C).
For all cell-type predictions, a long plateau is observed at the
average AUROC 0.5 with a large variance across the datasets,
suggesting that most of the genes are not repeatedly observed
to be either positive or negative for a specific cell type in
scATAC-seq data. By focusing on the marker genes, how-
ever, two distinctive groups appear in the average AUROC
rankings; one is ranked at the top and another is at the bot-
tom in the average AUROC ranking. Although all genes are
expected to be positive markers and have an AUROC higher
than 0.5, the distribution of the bottom group ranges across
0.5, indicating that these genes effectively act as either a pos-
itive or a negative marker depending on the dataset. This re-
sult suggests that this group suffers from study-specific batch
effects or weak and ambiguous signals, which stochastically
leads to a negative prediction performance. Moreover, we ex-
amined the significance of the AUROC consistency by com-
paring the BICCN and Lareau datasets, whose correlation
coefficient for the entire gene set is highest (0.72) among
all pairs of the datasets (Fig. 2B). To evaluate the consis-
tency of marker gene activities, the gene sets for the three
cell types are aggregated to one set so that the positive and
negative marker genes should be included. We then com-
puted Spearman’s correlation coefficients of the AUROCs for
each marker set between the BICCN and Lareau datasets. Al-

though all marker sets showed a higher correlation coefficient
compared to the set of all genes (SF: 0.931, CU: 0.921, TA:
0.779, TN: 0.851, and SC: 0.880), each marker set consists
of a different number of genes. Therefore, we also computed
a p-value for each marker set by comparing the correlation
coefficient with correlation coefficients obtained for 10,000
randomly sampled gene sets of the same size. As a result,
only the p-value of SF (p-value<5e-5) is significantly lower
after multiple correction (n = 5), indicating that the corre-
lation of SF marker gene set is significantly higher than a
random gene selection across the datasets. In conclusion, by
focusing on marker genes, we can greatly increase the repro-
ducibility of cell-type classification in scATAC-seq data.

Measuring the enrichment of marker gene activity en-
ables a robust and practical cell-type classification. To
further improve cell typing, we now consider the integration
of information across multiple-gene activities, such as marker
gene sets. To address this problem in a practical workflow
of scATAC-seq analysis, we evaluated the performance of
cluster-level annotation based on two cell-typing strategies.
The first and qualitative way utilizes a cluster-specific gene
list obtained by comparing each cluster with all other clus-
ters. The second and quantitative way aggregates the signals
of gene activity.
To carry out a cell-type classification using a list of
cluster-specific genes, we computed the Jaccard index for
each marker set with cluster-specific genes obtained by
Wilcoxon’s rank sum test using a Scanpy library (24). For
each dataset, we scaled the Jaccard scores into the range of
[0,1] for each cell type first, and within each cluster across
three cell types. Using the vector of normalized Jaccard
scores, we computed AUROCs for each cell type classifica-
tion against the reference true cell-type labels for the clusters.
In Figure 4A, the AUROCs of each marker set are shown as a
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Fig. 3. Performance and reproducibility of marker gene activity for cell-type classification. (A) The size and overlap of 5 marker gene lists for the IN cell type used in this
study. The biomarker set determined in (9) (referred to as CU) is used as a scATAC-seq oriented biomarker set while those from (23) and (1) (TA and TN) are selected as
the representatives of scRNA-seq oriented biomarker sets. Additionally, the gene sets SF and SC are newly constructed using six scRNA-seq datasets obtained in a BICCN
project detailed in (4). The SF set contains top 100 genes that were robust for scRNA-seq cell typing as a biomarker for each cell type while the SC marker only contains the
top genes as much as each CU set. (B) The distribution of AUROCs of the IN cell-type classification within the BICCN dataset using the gene activity of 5 marker gene sets.
(C) The distribution of mean, min, and max AUROCs for three cell-type classification using the estimated gene activity across the six scATAC-seq datasets with the information
of marker gene annotation. The solid line shows the average of the AUROCs for the six datasets while the top and bottom of gray lines correspond to the maximum and
minimum of AUROCs for each gene. The top, middle, and bottom panel indicate the AUROCs for NN, IN, and EX cell-type classification. In the bottom rectangle of each
panel, short vertical bars are shown at the location of genes listed in the marker set for each cell type.

function of the number of top cluster-specific genes selected
(shown in the x-axis). The larger the number of cluster-
specific genes is, the higher the AUROCs of prediction are
for all marker sets. However, the classification based on the
SF marker set shows a sudden increase of the AUROCs to
0.8-0.9 only with around top 100 cluster-specific genes. In-
terestingly, most of the marker sets except for TA reached
around 0.8 for the classification of IN cell type. This result
suggests that even a few genes are enough to accurately anno-
tate the IN cell-type group while additional genes can further
improve the accuracy of cell typing. We also compared the
AUROCs with those based on marker sets inferred from each
dataset (Supplementary Fig. 2). Although the dataset-derived
gene sets produced higher performances in some settings, the
SF marker set produced higher AUROCs compared to most
of the gene sets and is observed to show the most stable ap-
plicability independent from the cell-type difference.

Although cell-type annotation using a cluster-specific gene

list is a simple and effective approach which is widely used
for single-cell datasets, it is possible that important marker
genes cannot be properly detected as top cluster-specific
genes if cells from the same cell type are distributed into mul-
tiple clusters. To avoid such failure, we also made quanti-
tative cell-type predictions by computing the enrichment of
marker gene activities by averaging the gene activities for
each marker set, then summarized performance as AUROCs
(Fig. 4B). For cell-level annotations, we computed AUROCs
from individual cell profiles, while for cluster-level annota-
tions we used the average profiles of the cells that belong
to the same cluster. As a result, we expect the performance
of cell-level annotation to be generally lower than that of
cluster-level annotation. While there are only small differ-
ences in AUROCs for the cluster-level classification, the SF
marker set outperformed at individual cell-level classification
with a median AUROC around 0.85. Moreover, to show the
robustness of marker set performance without a class imbal-
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Fig. 4. Performance of cluster-level annotation based on qualitative and quantitative cell-typing strategies. (A) AUROCs of major cell-type classification for six scATAC-seq
datasets at cluster-level. For each cluster, a top group of cluster-specific genes is selected based on Wilcoxon’s rank sum test within each dataset (shown in x-axis). Then
a Jaccard index is computed for three cell types by calculating the intersection of the top cluster-specific genes and each biomarker set and normalized into the range (0, 1)
among the three cell types. Finally, the normalized Jaccard indices obtained from all annotated clusters are used as a feature vector to compute AUROCs for NN, IN, and
EX cell types (corresponding to the left, center, and right panel, respectively). (B) Boxplots of AUROCs of NN (shown at left) and IN (right) cell-type classification within each
dataset for the 6 datasets using an aggregated gene-activity signal of the genes listed in each biomarker set. In each panel, the left-most and right-most boxplots represent
the raw prediction accuracy of cell-level and cluster-level annotation while other boxplots showed the results of down-sampling for 300 samples, in which 100 average gene
activities of each cell type are obtained for randomly sampled cells of the size shown in x-axis (also see the Method section). The average AUROCs of 100 trials are shown
for down-sampled simulation data with replacement as a representative performance. (C) The heatmaps of normalized Jaccard indices for SF marker sets and all clusters
from seven scATAC-seq datasets. The left panel shows the scores for the SF sets of major three cell types. Two panels shown at right represent the scores for the subtypes
of inhibitory neurons (top) and excitatory neurons (bottom).

ance problem, we constructed simulation data of 100 average
profiles for each major cell type over a specific number of
cells randomly sampled from the original datasets. To reduce
random effects, the average results of cell-type classification
over 100 trials were shown for each dataset. In Figure 4B, the
AUROCs are shown to gradually improve with the number of
cells used to construct the average profiles. Along with the
increase of the AUROCs, the order of marker sets is almost
consistent and the SF marker set is found to show the most
stable prediction accuracy for both cell-type classification. In
summary, we found that a redundant and robust marker gene
set constructed in a meta-analytic way could improve the ro-
bustness of the major cell-type classification at a variety of
cluster levels.
In addition to the three major cell types, we can use the SF
marker sets to perform rare cell- or sub-type classification.
As shown in Figure 4A, the up-regulation of normalized Jac-
card scores are consistently associated with the correct cell
type annotation. For the prediction of the subtypes of in-
hibitory and excitatory neurons, we first extracted two groups

with the higher Jaccard scores for either of IN or EX marker
sets (Fig. 4C). Then, we computed the number of overlapped
genes again between each SF subtype marker set and cluster-
specific genes. While each subtype marker set appears to be
exclusively enriched in some part of the clusters, we could
not validate the predictions in all datasets since some lack an-
notation at this level of specificity (highlighting the utility of
classifiers that can be applied uniformly to these data). Thus,
the cell-typing performance of several inhibitory subtypes
(e.g., Sst, Pvalb, Sncg, Vip, and Lamp5) were validated for
the BICCN and Chen datasets, which both contain the clus-
ters associated with those subtypes. In the BICCN dataset,
the AUROCs of Sst and Pvalb subtypes are 1.0 and these clus-
ters are considered to be distinctive within the BICCN dataset
by comparinig with SF subtype marker sets. On the other
hand, the AUROCs for Sncg, Vip, and Lamp5 result in rel-
atively low AUROCs (0.454, 0.722, and 0.685 respectively)
because there was only one BICCN cluster corresponding to
the three inhibitory cell subtypes of Sncg, Vip, and Lamp5 at
the resolution we used. In the Chen dataset, the AUROCs of
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Sst, Pvalb, and Vip of inhibitory subtypes are 0.9545, 1.0, and
0.97727 using SF subtype marker sets. Since the SF marker
sets were constructed independently from the scATAC-seq
datasets, the use of subtype marker sets is a promising to
enable robust cell typing even for neuronal subtypes at the
cluster-level. Furthermore, by carefully examining the con-
sistency of the signals in Figure 4C, some clusters with the
cell-type labels are observed to show enrichment for multiple
marker sets. This suggests the heterogeneity of those clusters
and our cell typing at individual cell level would be applica-
ble to detect such rare cell populations. Finally, the clusters
of the Preissl dataset, whose "true" labels are not available in
this study, also show an exclusive signal enrichment for the
SF major cell- and sub-type marker sets. This, too, indicates
their applicability to labelling unknown clusters.

Comprehensive assessment of supervised cell-type
classification and marker sets reveals the efficiency
of robust marker gene sets and consensus predic-
tion across multiple datasets. To determine the degree
to which robust markers facilitate cell type annotation when
combined with more sophisticated prediction methods, we
performed a comprehensive assessment of scATAC-seq cell-
type classification at the individual cell level. This assess-
ment was to address the question whether the suitable feature
selection based on marker genes is still critical, past differ-
ences in the datasets, training dataset, or prediction meth-
ods. We applied a variety of supervised learning methods
for scATAC-seq, such as raw signal aggregation (as used in
the previous section), machine learning (ML) classifiers, and
joint clustering methods. Importantly, raw signal aggregation
of the marker set is the only method that does not require
a reference dataset as training data. On the one hand, this
provides scope for methods with more parameter optimiza-
tion to improve performance; on the other hand, this may
reduce robustness. As ML classifiers, we applied four differ-
ent classifiers (e.g., Logistic regression, support vector ma-
chine(SVM)) and trained them using the BICCN scRNA-seq
data (RNA atlas) or other scATAC-seq datasets (Consensus).
As joint clustering methods developed for the integration of
scRNA-seq (and scATAC-seq), BBKNN (25) and Seurat (26)
were selected. Further details on optimization and evalua-
tion are described in Method section (also see Supplementary
Fig. 3).
Figure 5A shows the summary of the AUROCs for NN cell-
type classification at individual cell level. The prediction per-
formance highly depends on the dataset quality or similarity:
when the quality is low, no single method or training con-
dition seemed to work at a practical level. In Figure 5B,
the top 10 combinations in terms of average AUROCs are
extracted. Most of the combinations are based on ML op-
timized on the Consensus although also included are some
combinations trained on RNA atlas. The two best methods
are the Logistic regression classifier trained on all genes, and
Alternate Lasso trained on SF marker genes. With respect
to the marker sets selected, SF and TN gene sets are domi-
nant within the top 10 combination, suggesting the utility of
larger marker sets as a feature selection method against the

dataset-dependent variability.
Next, the prediction performances for IN cell-type classifica-
tion are visualized (Fig. 5C). Unlike the result of NN cell-
type classification, the AUROCs of the top and bottom com-
binations are clearly distinct due to differences in training
datasets. The combinations based on Consensus training or
raw signal aggregation show apparently higher AUROCs than
those using RNA atlas. As previously, the top 10 combina-
tions exploit combinations involving the SF and TN marker
sets as well as all genes with ML classifiers. Indeed, even
simple raw signal aggregation method from the SF marker
gene sets is ranked as the second best method, broadly in
the range defined by the best-performing methods (Fig. 5D).
Additionally, we examined the classification performance us-
ing a transcriptome-based reference from the same sample
(named RNA training) for IN cell-type classification. By ap-
plying two joint profiling data as a test dataset, the potential
of the scRNA-seq reference can be characterized in more de-
tail. Figure 5E shows the top 10 combinations that performed
best joint profiling datasets. The top 5 ranks are occupied by
methods of ML classifiers optimized by Consensus training
data, in addition to raw signal aggregation for the SF marker
gene set.
In summary, our comprehensive assessment strongly sug-
gests that consensus training using other scATAC-seq data
and simple aggregation of large marker sets are compara-
bly powerful for major cell-type classification. Although
optimization based on the reference scRNA-seq was less
powerful for the classification of neuronal cells, training
on the joint-profiled scRNA-seq shows a comparable pre-
diction performance. More importantly, in all cases, the
choice of marker genes most strong characterized the per-
formance of a method/data/feature combination, suggesting
the wide-applicability of robust marker gene sets for integra-
tive analyses and interpretation of the resultant cell-type spe-
cific ATAC-seq profiles for regulatory inference, as described
next.

Robust cell annotations enhance the specificity of mo-
tif analysis for rare cell population. To investigate the
motifs associated with cis-regulation of each cell-type, we
performed a deep CNN analysis on the BICCN scATAC-seq
data and then interpreted the model to identify motifs en-
riched near robust biomarker gene sets for each cell-type.
Specifically, we generated a dataset that consists of cell-type
specific pseudo-bulk profiles by aggregating the scATAC-seq
signals for each cell-type. This bolsters the statistics often
lacking in individual cells, but maintains the same accessi-
ble chromatin sites required for good cell type-specific infer-
ence. The pseudo-bulk profiles for each cell-type was used
to generate a dataset that consists of 5kb DNA with a cor-
responding label that specifies whether the DNA is accessi-
ble or not for cell-types identified at the finest cluster-level
in the BICCN dataset (see Methods). We constructed a cus-
tom CNN with a Basset-like architecture (27), consisting of
3 convolutional layers followed by a fully-connected hidden
layer, and trained it to take DNA as input and simultaneously
predict chromatin accessibility across each cell-type. We
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Fig. 5. Comprehensive comparison of cell-type classification at individual cell level using a combination of marker genes and supervised learning methods. (A) and (B)
AUROCs of six datasets and those average for NN cell-type classification at each cell level for all demonstrated combinations (A) and top 10 combinations according to the
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average AUROCs. This result contains the combinations using available scRNA-seq data of each dataset as a training data.

found that the CNN’s classification performance on test data
(i.e. all data from held-out chromosomes: 1, 3, and 5) had
good predictive power with an area under the precision-recall
curve (AUPR) of 0.539 on average across each cell-type –
this is a significant improvement upon DeepSea’s AUPR of
0.444 across 125 chromatin accessibility datasets (28), most
of which derive from cell lines.

For model interpretability, we performed filter visualization
and attribution methods, both of which are common tech-
niques in genomics (29). To identify statistically significant
matches to known motifs, we compared filter representations
against the 2020 JASPAR vertebrates database (30) using
Tomtom, a motif comparison search tool (31). We found

that 36% of the filters match known motifs, which is seem-
ingly a low number considering that when applying a simi-
lar network to the Basset dataset, our CNN yields a higher
match fraction of about 62% (32). Since the Basset dataset
consists of 161 chromatin accessibility datasets, which are
mainly from well-studied cell lines and tissues, one possibil-
ity is that some of the motifs learned by the CNN are not
found in the JASPAR database, which are comprehensive but
not complete.

Attribution methods reveal the importance of each nucleotide
in a given sequence on model predictions. Using an attribu-
tion method called saliency analysis (33), which takes the the
gradient of a given class prediction with respect to the in-
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Fig. 6. Motif analysis of BICCN scATAC-seq pseudo-profiles. (A-E) Sequence logos of saliency maps from a CNN model trained at the sub-cell type level: (A) Lamp5, (B)
Vip, (C) Sncg, and (D) Vip. Only 210 positions out of 5kb is shown for visual clarity. The known motifs from the JASPAR database are annotated with a box above each
saliency plot, labelled with a putative motif name and JASPAR ID. (E) Venn diagram of motifs enriched in each cell type. The filter representations are shown, while the cell
type-specific motif enrichment was determined with TF-MoDISCo and the motif annotations were given by statistically significant matches to the JASPAR database using
Tomtom.

puts, we can generate sequence logos of the importance of
each nucleotide in a given sequence (see Methods). Within
the 5kb binned sequences, we often find that small patches
within the attribution maps highlight known motifs either
alone (Fig. 6A), in combinations with their reverse compli-

ments (Fig. 6B-C), and with other partners (Fig. 6D). At-
tribution methods can footprint learned motifs that are im-
portant for model predictions at a single-nucleotide resolu-
tion. However, they have to be observed on an individual
basis, which requires manually curating the recurring pat-
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terns genome-wide. To aggregate enriched patterns within
the attribution maps, specifically nearby marker gene sets,
we used TF-MoDISCo (34), a clustering tool that splits at-
tribution maps into smaller segments called seqlets, clusters
these seqlets, and provides an averaged representation for
each cluster. We performed a separate TF-MoDISCo anal-
ysis using default parameters for each cell type. The TF-
MoDISCo representations cannot be directly compared to the
motifs in the JASPAR database, so we manually compared
the TF-MoDISCo representations with the filter representa-
tions to link them to known motifs. The high correspondence
of TF-MoDISCo-derived motifs to the convolutional filters
provided further validation that our CNN has learned robust
motif representations.
Figure 6E highlights a Venn diagram of the motifs enriched
in different cell types: Lamp5, Vip, and Sncg. There are
many motif representations that were shared between all 3
cell types, including NFIC, MYOG, DBP, and FOSL1. Vip
and Lamp5 had many unique motifs enriched near marker
genes, while Sncg only had a single enriched motif identified
by TF-MoDISCo. This is consistent with the strong overlaps
among these cell-types within the observed transcriptional
hierarchy, where there is mixing across types when defined
purely by expression clusters (35). We note that filter rep-
resentations have many hits to known motifs and there are
many proteins that bind to similar binding sites. The names
of the motifs that are used in Figure 6E represent the best
matching motif hits. A full list of the motif matches for each
filter is provided as Supplementary data 5. We also found
that many TF-MoDISCo cluster representations, which were
also supported by convolutional filter representations, do not
have any correspondence to a known motif in the JASPAR
database – these were labelled by just their filter name. This
was expected to an extent as the JASPAR database is not com-
plete and the ability to analyze cell type-specific regulatory
regions with in the brain emerged recently with the advent of
scATAC-seq data.

Discussion
ScRNA-seq has proven to be a remarkably effective technol-
ogy for the characterization of cell-types within the brain,
shedding new light on decades old questions regarding the
form, function, and organization of cell-types (36). In turn,
the complexity of the brain has made it one of the strongest
use cases for single cell technologies. While typing and char-
acterization have been major success stories, understanding
the regulatory basis of the observed cell-types remains an im-
portant challenge (6). Epigenetic profiling technologies, such
as scATAC-seq present a likely route forward, but important
questions remain. Our work offers answers to some of these
questions through a wide-ranging meta-analytic evaluation of
scATAC-seq data and a careful demonstration of the practical
value of marker gene feature selection, finally yielding cell-
type specific motif representations for cell-types “purified”
from within heterogeneous scATAC-seq data.
One of our important contributions is to demonstrate just
how effective marker gene selection can be. This has long

been a mainstay of wet-lab biology but typically focused on
specificity, rather than comprehensiveness (37). In contrast,
high-throughput single-cell methods have generally preferred
methods that rely on information distributed across a large
fraction of genes. Our analysis suggests that a middle ground
of picking redundant marker sets satisfies a number of im-
portant constraints: high performance, simple generalization,
and straightforward interpretability. While we see dramatic
differences from dataset to dataset, feature selection appears
to be the critical determinant for accurate cell-typing, as op-
posed to more complicated modeling of the way those fea-
tures interact (which is less likely to generalize). Because
marker sets can be derived from high performing scRNA-seq
data, we exploit all the existing success of cell-typing efforts
there to inform the interpretation of scATAC-seq data. Impor-
tantly, the utility of feature selection for consistent annotation
is likely to remain even as wet-lab technology improvements
(such as paired scRNA-seq and scATAC-seq) will make clus-
tering cells within a given dataset less challenging. The im-
portance of marker set selection is also highlighted by the
improved interpretability it offered when we turned to mod-
eling the cell-type specific regulatory programs through deep
learning.
To predict chromatin accessibility across different cell-types
from just the DNA sequence, CNNs have demonstrated a re-
markable ability (27, 28, 38). ScATAC-seq provides an op-
portunity to study cell-type specific regulatory programs in
heterogeneous tissues, such as the immune cells (39) and the
brain (this study), using CNNs. By “purifying” scATAC-seq
data using robust cell typing, the accessibility signal becomes
more reliable. This may explain why our CNN yields im-
proved performance both in classification accuracy and in-
terpretable motif representations. Since there are many ac-
cessible sites that are shared across different cell-types, these
“overlapping” regions may not necessarily contain the infor-
mation we desire, that is to know which motifs drive cell-type
specific regulation. Hence, it remains a challenge to decipher
which motifs are relevant for cell-type specificity. Our ap-
proach was to explore the enrichment of motifs nearby robust
marker gene sets that are cell-type specific, which shifts the
distribution of transcription factors that are learned genome-
wide to the ones that regulate genes of a given cell-type. In-
deed this approach reveals many known motifs (and some
putative novel ones). Moving forward, it would be benefi-
cial to follow up this work to try to decipher which proteins
bind to these motifs in each cell-type and explore which other
genes they regulate (that are not in the robust gene set).

Conclusions
In this study, we examined the usability of biomarker gene
sets for scATAC-seq cell-typing at a variety of levels of gran-
ularity. We found that a redundant and robust marker gene set
produced high performance at resolutions from cell to cluster
level. Moreover, our comprehensive assessment of mouse
brain scATAC-seq data revealed that careful feature selec-
tion via marker gene sets could improve neuronal and non-
neuronal cell-type prediction when incorporated with more
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sophisticated supervised learning methods. We also demon-
strated the potential power of this approach once heteroge-
nous data has been partitioned into “cleaned” pseudo-bulk
profiles. The resultant cell-type specific pseudo-bulk profiles
can be used to train a CNN model to learn a relationship be-
tween input DNA sequence and its accessibility for a given
cell-type – we showed this with the BICCN dataset. Inter-
preting the trained CNN revealed learned motifs that were
enriched near the biomarker gene sets in a subtype-specific
manner, suggesting the existence of cell-type specific reg-
ulation in the motor cortex. The straightforward feasibil-
ity of using robust biomarker gene sets for accurate subtype
cell-typing within scATAC-seq data opens up many impor-
tant downstream possibilities, most clearly condition- and
subtype-specific regulatory network discovery, as demon-
strated in our own deep learning analysis.

Methods
Mouse brain scATAC-seq datasets. From the BICCN col-
lection, we obtained sci-ATAC-seq data which consists of 4
batches with a transcriptome reference of SMART-seq v4
scRNA-seq data (the cell number after filtering is 6,278)
for mouse primary motor cortex region (4). Both datasets
are available from the BICCN data portal https://
biccn.org. Moreover, we collected scATAC-seq datasets
of mouse brain published on Gene Expression Omnibus
(GEO). Specifically, read count matrices and metadata of 6
scATAC-seq studies were downloaded from GEO. The cor-
responding GEO ids of the collected studies are GSE100033
(13), GSE111586 (9), GSE123576 (18), GSE127257 (40),
GSE126074 (20), and GSE130399 (21). From the Paired-seq
datasets of GSE130399, the one for an adult mouse cerebral
cortex sample is only applied in this study. To convert read
counts to gene activities, we used the gene structure infor-
mation from an Ensembel GTF file for GRCm38 as of Nov.
2018. Each genomic feature in the original study was then as-
signed to the closest TSS found in the GTF file. A gene activ-
ity estimation was carried out by summing the read counts of
all assigned features within the 10kb upstream or downstream
from the TSS of all transcripts of the same gene id. For the
datasets whose feature is peak-based, the locations of each
peak center were used to associate each feature and gene. A
general pre-processing, filtering, clustering, and detection of
cluster-specific genes was performed on a SCANPY platform
(24).

Marker gene set. We collected the existing marker gene sets
established for single-cell sequencing data and additionally
constructed a new robust marker set using multiple scRNA-
seq data from the BICCN for sparse scATAC-seq data. TA
and TN are the marker sets constructed in the previous stud-
ies of mouse brain scRNA-seq analysis, (23) and (1), respec-
tively. CU is defined in one of the previous scATAC-seq anal-
yses (9). Note that this dataset is also used in this study and
this may give the advantage for the CU marker set during the
performance assessment. SF and SC are constructed as a ro-
bust marker gene set learned from multiple scRNA-seq data

in the BICCN collection (see also (4)). The SF marker set is
made to select top 100 genes which are optimized to predict
cell types accurately based on the training datasets of mul-
tiple scRNA-seq datasets including a reference scRNA-seq
used in this study. On the other hand, SC is a subset of SF
but limited to have the same number of genes with that of CU
to assess the importance of the number genes, not the way of
marker gene selection. The overlap of each marker gene is
shown in Supplementary Figure 1.

Assessment of cell-typing for scATAC-seq. We per-
formed a comprehensive assessment of cell-typing for six
well-annotated scATAC-seq datasets using a different com-
bination of supervised learning method, training set, and
marker gene set. A graphical outline is shown in Supple-
mentary Figure 3.

Supervised learning methods. The methods used in this
study are classified into three categories: raw expression,
ML classifiers, and joint clustering methods. Raw expres-
sion methods predict each cell type based on the Raw ex-
pression scores computed by summing the read counts for
the genes included in each biomarker gene set. This method
is the only method that does not require any training dataset
except for a marker gene set. ML classifier methods con-
sist of four popular ML classifiers applicable to a supervised
learning of scATAC-seq cell-typing. Specifically, SVM, ran-
dom forest, logistic regression with L1 regularization (Logis-
tic regression), and a variant of logistic LASSO “Alternate
Logistic LASSO” (41) are included in this category, which
is expected to be more robust for sparse data. Due to the
limitation of computational resources, only Logistic regres-
sion was carried out for the prediction using all genes and
other three classifiers were applied with the feature selection
based on the marker gene set. The last category is a joint
clustering method, in which a test and training dataset is re-
analyzed independently, then jointly clustered two datasets to
associate each cell in the test set with the annotated cells in
the training dataset. We chose Seurat (26) and BBKNN (25)
for a comparison referring the results of the previous study
of an integrated analysis of single-cell atlases (42). To com-
pute AUROCs from the results of BBKNN, we implemented
own script to compute the scores for a cell-type prediction by
counting the nearest-neighbor cells for each cell type.

Training set. The training set is applied in four different
ways. Raw expression methods use gene activity profiles
from the test scATAC-seq dataset only for selected biomarker
genes. Consensus methods use the scATAC-seq datasets ex-
cept for the one used as a test set. For this prediction, the pre-
diction scores are computed by the classifiers trained on each
training set. Those scores are averaged to compute the fi-
nal prediction scores after normalization within each dataset.
RNA atlas methods use the BICCN scRNA-seq data as a
training set to optimize the parameters or infer the nearest-
neighbor cells. For the datasets based on joint profiling meth-
ods, we also carried out an ML-based supervised learning us-
ing scRNA-seq from the same dataset, named “RNA” train-
ing.
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Gene set selection. In addition to the five marker gene sets
collected from the previous studies, we performed the super-
vised learning with all detected genes if an optimization pro-
cess is feasible. Specifically, supervised learning based on all
genes were demonstrated for Logistic regression from ML
classifiers and both joint clustering methods.

Supervised learning by machine learning classifiers.
To carry out supervised learning, we implemented a work-
flow of optimization of ML classifiers using a scikit-learn
library. The parameters used for each classifier are as fol-
lows: degree is 3 and kernel is set to an rbf kernel for SVM,
n_estimators is set to 100 for RF, and C is set to 1.0 (de-
fault) for Logistic regression. Other parameters are set to
the default values. For Alternate Lasso, we implemented an
original classification function in which the best and alternate
predictors are averaged with different weights. In this study,
we extracted top n predictors at maximum and summed their
predictions with the weight 1/n, where n is set to 5.

Joint clustering methods for an integrative analysis
of single-cell omics datasets. BBKNN was applied to the
pair of scATAC-seq and the BICCN scRNA-seq dataset after
applying a general normalization for the scRNA-seq dataset
by a Scanpy function “normalize_per_cell”. The parameter
for k-nearest neighbor used in the BBKNN algorithm was set
to k = 5,10,20,30 with and without a graph trimming option.
We also run Seurat v3.2.2 to align the same dataset combi-
nations as used for BBKNN. The alignment of two datasets
was done via FindTransferAnchors and TransferData func-
tions using canonical correlation analysis by setting a param-
eter reduction=‘cca’.

Sequence analysis of accessible sites with deep learn-
ing.

Data for binary classification. Given the 5kb bins, each of
which contain a single bulk accessibility profile value, we bi-
narized each label with a threshold of 0.02, above which is
given a positive label and below is given a negative label.
We then filtered sequences with no positive labels across all
classes. Sequences were converted to a one-hot representa-
tion with 4 channels (one for each nucleotide: A, C, G, T)
and a corresponding label vector with either a 0 for nega-
tive labels or 1 for positive labels. We split the data into a
validation set (chromosomes 7 and 9; N = 24,908), test set
(chromosomes 1, 3, and 5; N = 14,670), and training set (all
other chromosomes; N = 274,689).

Model. Our CNN model takes as input a 1-dimensional
one-hot-encoded sequence with 4 channels, then processes
the sequence with three convolutional layers, a fully-
connected hidden layer, and a fully-connected output layer
that have sigmoid activations for binary predictions. Each
convolutional layer consists of a 1D cross-correlation opera-
tion followed by batch normalization (43), and a non-linear
activation function. The first layer used an exponential acti-
vation, which was previously found to encourage first layer
filters to learn interpretable motif representations and also

improves the overall interpretability with attribution methods
(32); while the rest used a rectified linear unit. The first con-
volutional layer employs 200 filters each with a size of 19
and a stride of 1. The second convolutional layer employs
300 filters each with a size of 9 and a stride of 1. And the
third convolutional layer employs 300 filters each with a size
of 7 and a stride of 1. All convolutional layers incorporate
zero-padding to achieve the same output length as the inputs.
First two convolutional layers are followed by max-pooling
layer of window size 10, and the last one followed by a global
average pooling layer. The fully-connected hidden layer em-
ploys 512 units with rectified linear unit activations. Dropout
(44), a common regularization technique for neural networks,
is applied during training after each convolutional layer, with
a dropout probability set to 0.2 for convolutional layers and
0.5 for fully-connected hidden layers.

Training. All models were trained with mini-batch stochas-
tic gradient descent (mini-batch of 100 sequences) with
Adam updates (45) with a decaying learning rate using a bi-
nary cross-entropy loss function. The initial learning rate was
set to 0.001 and decayed by a factor of 0.3 if the model per-
formance on a validation set (as measured by the Pearson cor-
relation) did not improve for 7 epochs. Training was stopped
when the model performance on the validation set does not
improve for 25 epochs. Optimal parameters were selected by
the epoch which yields the highest Pearson correlation on the
validation set. The parameters of each model were initialized
according to Glorot initialization (46).

Filter visualisation. To visualise first layer filters, we
scanned each filter across every sequence in the test set. Se-
quences whose maximum activation was less than a cutoff of
50% of the maximum possible activation achievable for that
filter in the test set were removed (27, 47). A subsequence
the size of the filter centred about the max activation for each
remaining sequence and assembled into an alignment. Sub-
sequences that are shorter than the filter size due to their max
activation being too close to the ends of the sequence were
also discarded. A position frequency matrix was then created
from the alignment and converted to a sequence logo using
Logomaker (48).

Saliency analysis. To test interpretability of trained mod-
els, we generate saliency maps (33) by computing the gradi-
ents of the predictions with respect to the inputs. Saliency
maps were multiplied by the query sequence (times inputs)
and visualised as a sequence logo using Logomaker (48).
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Tables
Table 1. Seven scATAC-seq datasets. C represents a combinatorial indexing method while Joint does a joint profiling method for scATAC-seq and scRNA-seq. *: A novel
cluster assignment is estimated by Leiden clustering using Scanpy library. †: Inhibitory and excitatory clusters are inferred according to Slc17a7 and Gad2 activity following
the description in (18).

BICCN Preissl Cusanovich Lareau Chen Spektor Zhu
Cell number 110,013 16,767 5,081 46,653 5,081 13,766 15,191

(after filtering)
Cluster 21 36* 12 27 23 26 9
Pipeline SnapATAC snATAC TF-IDF chromVAR cisTopic Monocle Seurat

+Seurat
Original DR Yes No Yes No Yes No Yes
Annotation Yes No Yes Yes † Yes Yes Yes
Peak or bin 1,000 bp Peak 5,000 bp Peak Peak Gene 1,000 bp

Protocol C C C C + Droplet Joint C Joint
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Supplementary Figure 1. Histograms of 5 marker gene sets used in this study and their intersection sizes.
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Supplementary Figure 2. AUROCs of cluster-level cell-type classification by computing normalized Jaccard scores for top
cluster-specific genes and marker gene sets. As a marker set, the AUROCs of top 1,000 cell-type specific genes derived from
each dataset for non-overlapping datasets are compared with those of the SF marker gene sets across all well-annotated datasets.
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Supplementary Figure 3. A workflow of a comprehensive assessment of scATAC-seq cell-type classification at an individual
cell level.

Supplementary Figure 4. Deep learning analysis workflow. The CNN model was trained to take DNA sequence as input
and predict the sequence’s accessibility in each cell type. Model interpretability is accomplished by visualizing filters layer
convolutional filters and by cell-type specific saliency analysis for a given sequence. Each can be used to visualize motif
features extracted by the model. Motif analysis is accomplished by employing a motif comparison search against a database of
known motifs (i.e. JASPAR) using Tomtom or via TF-MoDISCo, which splits saliency maps, clusters them, and provides an
averaged representation.
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Supplementary Data 5. An html file including the results of a Tomtom motif comparison search between 1st layer filters and
the 2020 JASPAR vertebrates database.
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