
i
i

“main” — 2022/5/27 — 15:47 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Learning single-cell chromatin accessibility
profiles using meta-analytic marker genes
Risa Karakida Kawaguchi 1, Ziqi Tang 1, Stephan Fischer 1, Chandana
Rajesh 1, Rohit Tripathy 1, Peter K. Koo 1 and Jesse Gillis 1,2,∗

1Cold Spring Harbor Laboratory. Cold Spring Harbor, 11724, USA and
2Department of Physiology and Donnelly Centre for Cellular & Biomolecular Research Department, University of Toronto, Ontario, M5S
3E1, Canada.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Single-cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-seq) is a
valuable resource to learn cis-regulatory elements such as cell-type specific enhancers and transcription
factor binding sites. However, cell-type identification of scATAC-seq data is known to be challenging due
to the heterogeneity derived from different protocols and the high dropout rate.
Results: In this study, we perform a systematic comparison of 7 scATAC-seq datasets of mouse
brain to benchmark the efficacy of neuronal cell-type annotation from gene sets. We find that
redundant marker genes give a dramatic improvement for a sparse scATAC-seq annotation across
the data collected from different studies. Interestingly, simple aggregation of such marker genes
achieves performance comparable or higher than that of machine-learning classifiers, suggesting its
potential for downstream applications. Based on our results, we reannotated all scATAC-seq data for
detailed cell types using robust marker genes. Their meta scATAC-seq profiles are publicly available
at https://gillisweb.cshl.edu/Meta_scATAC. Furthermore, we trained a deep neural network to predict
chromatin accessibility from only DNA sequence and identified key motifs enriched for each neuronal
subtype. Those predicted profiles are visualized together in our database as a valuable resource to explore
cell-type specific epigenetic regulation in a sequence-dependent and -independent manner.
Contact: jesse.gillis@utoronto.ca
Supplementary information: Supplementary data are available at xxxxxx online.
Keyword: scATAC-seq, cell typing, marker genes, benchmark, meta analysis, deep learning, motif
analysis

Key points
• 7 scATAC-seq datasets of mouse brain are systematically compared

to benchmark the efficacy of neuronal cell-type annotation from gene
sets.

• Redundant marker genes give a dramatic improvement for a sparse
scATAC-seq annotation beyond the heterogeneity of scATAC-seq data.

• We reannotated all scATAC-seq data for detailed cell types using robust
marker genes and their meta scATAC-seq profiles are publicly available
at a new Meta scATAC-seq server.

• Predicted profiles from only DNA sequence using a deep neural
network are visualized together to explore sequence-dependent and
-independent epigenetic regulation.

1 Introduction
The elaborate developmental process of multicellular organisms relies
on epigenetic marks encoded in a cell-type specific manner. Chromatin
accessibility is an epigenetic signal that can be read out via high-throughput
sequencing methods, reflecting the existence of active regulatory regions
such as enhancers and promoters. Assay for Transposase-Accessible
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Fig. 1. A workflow of scATAC-seq analysis and the seven scATAC-seq dataset used in this study. (A) A general workflow of scATAC-seq protocols and quantification. (B) tSNE mapping
of BICCN scATAC-seq data from mouse primary motor cortex (MOp). (C) tSNE mapping of 7 scATAC-seq datasets used in this study. Each cell is colored depending on the assigned cell
type from three major cell types; blue for non-neuronal cell (NN), green for inhibitory neuron (IN), and orange for excitatory neuron (EX). For the dataset without a cell-type annotation
from [1], the total read count of each cell is shown by a different color. (D) Relationship between the number of detected clusters and sampled cells after filtering based on the coverage for
7 scATAC-seq datasets.

Chromatin using sequencing (ATAC-seq) is a primary method to detect the
epigenetic footprint of chromatin location through the insertion of barcode
sequences by the Tn5 transposase [2]. Due to its high throughput and
applicability, massive reference atlases of ATAC-seq have been constructed
for diverse targets such as immune and neuronal cells [3–5]. However,
bulk ATAC-seq analysis often measures the chromatin accessibility across
a mixture of cell types, unless each cell-type is isolated in advance.
Indeed, previous studies that analyzed ATAC-seq data for neuronal cell-
type specific epigenetic profiles used cell lines or recombinase driver lines
[6], or micro-dissection of a specific region [7, 8]. Such approaches not
only require laborious work to obtain each cell or driver line but also
restrict the scope of the analysis to a biased set of cell types. In addition,
independent processing and sequencing of each sample inevitably cause
batch effects that may make it challenging to make comparisons across
datasets.

In principle, single-cell ATAC-seq (scATAC-seq) can resolve many
of the issues that are intrinsic to bulk ATAC-seq by obtaining the ATAC-
seq profiles from a broader sampling of individual cells. One promising
application of scATAC-seq is the identification of cell-type specific gene
regulation performed by multiple proximal and distant enhancers [9–12].
To assign each chromatin accessibility profile to the transcriptome space
of known cell types, it is common practice to estimate the gene activity
profile by summing the read counts around the transcription start site (TSS)
and/or entire gene body for each gene. However, in general, gene activity
inferred from epigenetic profiles cannot be perfectly aligned to RNA-
seq because assessing epigenetic profiles at the gene body alone ignores
the complex regulation producing transcripts [4]. Moreover, the limited
number of chromosome copies (e.g., 2 for diploid organisms) results in
observed signals that are nearly binary (0, 1, or 2) and are sparsely located
across genomic loci, making it difficult to obtain robust results from single
datasets [13]. Integration of data to improve robustness is one solution to
this noise and sparsity problem, but there is still no gold standard approach
that grapples with the profound differences of scATAC-seq datasets across
protocols [14]. To fully reveal cell-type specific gene regulation from
scATAC-seq data, we need to develop methods to group shared cell-types
and then uncover the key regulatory features that are robust.

Despite the comparatively unbiased characterization of most single
cell methods, marker-based annotation has retained a strong role in
the validation of cell clusters as real “types”. However, marker-based
annotation is not immune to “dropout” in general, which frequently arises
especially for single-cell analyses due to technical artifacts or stochastic
expression of mRNA transcripts. A potential solution to address the
two main shortcomings of scRNA-seq data, dropout and batch effect,
is to analyze the marker genes that are co-expressed, in addition to
distinctly expressed. This approach expands the repertoire of markers,
making it unlikely that all of them would be dropped out in unison,
thereby transforming a hard classification problem into a soft classification
problem [15]. In essence, scRNA-seq experiments vastly expand our
capacity to discover marker sets and it is plausible this can be used to
build a model applicable to scATAC-seq data, where pure clustering is
otherwise more challenging (involving weak genome-wide trends).

In this study, we carried out a comprehensive benchmark of cell-
type classification for mouse brain scATAC-seq datasets based on five
marker gene sets. The mouse brain is one of the most complex systems
and also one of the most heavily assayed, providing a useful test bed
for assessment. We collected marker sets from previous scRNA-seq and
scATAC-seq studies, as well as meta-analytic marker sets inferred from
multiple scRNA-seq datasets. In a broad evaluation of marker sets, learning
methods, and datasets, we aim to simply characterize which factors
drive characterization performance. Our principal finding is that careful
selection of marker genes, especially when they are chosen to increase
redundancy meta-analytically, can greatly improve performance; this
occurs to such a degree that if an adequately strong marker set is selected,
simple aggregation of the gene-specific scATAC-seq signal characterizes
cell-type remarkably well. This finding provides an important basis
for future data integration and downstream applications of scATAC-seq
analysis. Moreover, we trained a deep convolutional neural network (CNN)
to classify which cell types are accessible for an input DNA using the
largest scATAC-seq dataset collected in this study. Those predictions are
published at our server with all collected and re-annotated datasets as well
as marker sets for the integrative analysis with future scATAC-seq datasets.
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2 Results

2.1 Benchmarking the influence of marker gene selection
on cell-type resolution across scATAC-seq datasets

Figure 1A shows a general scATAC-seq analysis workflow including the
differences between experimental protocols and quantification methods.
While each experimental technology relies on a different principle, the
common downstream analysis is that the cells are gathered into clusters
according to the similarity of the chromatin accessibility for each bin or
region around TSS and gene body of each gene, called gene activity. To
infer the cell-type specific regulatory network from scATAC-seq profiles,
it is essential to assign each chromatin accessibility profile to a cell type,
either through known marker genes or by mapping to cell types inferred
from transcriptome data. Averaging of gene activity profiles for each
cluster, which is a common step for cluster-level cell typing, reduces the
influence of stochastic noise, decreases the sparsity of the dataset, and
requires fewer computational resources, when compared to the single-cell
analysis. Then cluster-level cell typing is done by checking the cluster-
specific enrichment of biomarker genes based on prior knowledge of
existing cell types as shown in Figure 1B. When a cell type is inferred
for each cluster, however, the resolution of cell typing is limited by the
cluster size. This especially matters for brain scATAC-seq analyses, which
potentially contain hundreds of cell types, and clusters are expected to
contain several finer grained cell types.

In fact, the disparity in terms of the number of cells and clusters for
the heterogeneous datasets used in this study suggests that cluster-level
annotation is inadequate since it would likely depend on an implausible
lack of variation between pipelines. For example, Figure 1C and D shows
the variation in their granularity (9 to 36 clusters), from major cell types to
more detailed cell types, such as Pvalb or Vip within inhibitory neuronal
cells. While characterization of individual cells, or at most small cell
groups, is necessary for functional analysis, this strategy is only feasible
with high-coverage datasets, such as the BICCN dataset, which has more
than 110,000 cells. Besides, there is variation in marker gene selection,
and thus definition of brain cell types, limiting annotation to major cell
types, such as inhibitory (IN), excitatory (EX), and non-neuronal (NN)
cell types,

To examine the real feasibility of our cell typing approach, therefore,
we take two steps; benchmarking major cell-type annotation and its
robustness at the cluster and individual cell level, then validating the
annotation of more detailed cell types that are shared in two high-coverage
datasets (Fig. 2A). Because the appropriate parameters or data handling
processes for each study are unknown, we used the annotations provided
by the authors to define “true” cell-type labels. For six out of seven datasets,
the metadata about these cell types are published, or were provided
personally. Among the seven datasets, three datasets are coupled with
scRNA-seq data, one from the BICCN dataset [16] and two joint profiling
data from Chen et al. [17] and Zhu et al. [18]. Those scRNA-seq data are
later applied to validate the cell typing with the reference.

2.2 Gene-set based approach using functional marker
genes has a strong potential to produce practical and
reproducible predictions at single-cell level

Due to the sparseness and binary-like characteristics, scATAC-seq data is
prone to stochastic loss. To assess cell-type classification performance
of each gene beyond such noises, area under the receiver operating
characteristics curves (AUROCs) are computed for gene activity in the
BICCN scATAC-seq dataset among the marjor categories: IN, EX, and
NN cell types. The informativeness of individual genes, on average,
only provides a modest predictive power of cell-types from random as
expected (AUROC 0.5-0.6, Supplementary Fig. 4A). For example, by

focusing on the top 1,000 most predictive genes, we find that fewer than
200 genes achieved an AUROC greater than 0.625 for each cell-type
(Fig. 2B). On the other hand, aggregating gene activity at a cluster-level
substantially improves the AUROC (Fig. 2C). It should be noted cell-level
and cluster-level classification have different sample sizes (number of cells
vs number of clusters), leading to a step-wise characteristic for cluster-level
performance.

Additionally, we computed the AUROC for cell typing based on each
genomic bin activity at cell-level classification (Supplementary Fig. 4B),
as the features used in the previous studies [19]. Evidently, the activity level
specified by top bins has the lowest predictive power with an AUROC <

0.55. We also computed p-values for Fisher’s exact test and around 6.39 %
of bins had p-values smaller than 0.05 after Bonferroni correction for three
major cell types (inset in Supplementary Fig. 4B). These results show that
no single feature provides sufficient accuracy, even for major cell types.

Previously, we found that using an expanded marker set that includes
co-expressed genes of marker genes significantly improves cell typing
in terms of signal-to-noise ratio and AUROCs for scRNA-seq data [15].
Thus, we hypothesize that this meta-analytic marker gene set (defined by
scRNA-seq data) could also help improve the performance of cell typing
with scATAC-seq data. To examine the validity of this idea, we collected
five marker gene sets established for single-cell sequencing data, named
SF, CU, TA, TN, and SC, for meta-analytic integration of brain scATAC-
seq data (Fig. 2D-F). Specifically, the biomarker set determined in [12]
(referred to as CU) is used as a scATAC-seq oriented biomarker set while
those from [20] and [6] (TA and TN) are selected as the representatives of
scRNA-seq oriented biomarker sets. Additionally, the gene sets SF and SC
are newly constructed using six scRNA-seq datasets obtained in a BICCN
project detailed in [16]. In Figure 2G, the AUROCs of marker genes
computed for IN cell-types are substantially higher than random (0.5),
particularly for our meta-analytic marker set SF. These distributions are
not sufficiently high for practical cell-typing, but noticeably different from
those of all genes, suggesting the potential predictive power of individual
marker genes.

An extra advantage of the gene-set based approach is that the integrated
signals are expected to be more robust for the difference between the
omics layers. For example, the gene activity measured by scATACA-seq
is known to imperfectly correspond to transcriptome profiles because it
ignores complex regulation by distant or condition-specific enhancers [4].
However, the comparison of the gene activity profiles between the BICCN
scRNA-seq and scATAC-seq as well as proteome data [21] shows that the
overlaps of top cluster-specific genes can designate the cluster pairs of the
consistent cell types better than the correlation coefficients for all captured
genes (Supplementary Fig. 3A and D).

Taken together, our results indicate that a small number of marker
genes substantially and consistently increase their activity in a specific cell
type while most genes do not – though no single gene provides sufficient
predictive power for consistent cell typing at individual cell level.

2.3 A meta-analytic marker gene set shows consistently
increased signal across heterogeneous scATAC-seq
datasets

We further evaluated the reproducibility of the AUROCs of single features
across the different scATAC-seq datasets. By computing the Spearman’s
correlation of AUROC scores for all pairs of datasets, we found large
variation in the correlation between datasets (Supplementary Fig. 5). For
example, the BICCN, Lareau, and Chen datasets were highly correlated
with each other, while the Cusanovich and Zhu datasets had a much lower
correlation with any dataset. Compared to the cell-level classification,
the correlation coefficients of cluster-level or bin-level classification
performances are comparable or even lower (e.g., comparisons involving
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Fig. 2. Cell-type characterization workflow at the cluster and individual cell level. (A) Graphical abstract of the cell-type annotation for scATAC-seq data using a single marker gene for
each cell type. A dropout is observed with equal probability at cell level annotation while the cell types of the large cell cluster are more likely to be detected than rare cell types at cluster
level. (B) and (C) The top 1,000 features for major cell-type classification for the BICCN scATAC-seq dataset using the gene activity of each single gene are shown for each cell (B) and
cluster (C). (D) Classification of five marker sets used in this study. (E) and (F) The size and overlap of 5 marker gene lists for the IN cell type used in this study. (G) The distribution of
AUROCs of the IN cell-type classification within the BICCN dataset using the gene activity of 5 marker gene sets.

the BICCN dataset), suggesting that the enrichment of high-performance
features at cluster-level is only weakly reproducible across the datasets.

Focusing on the performance stability of the marker genes, we also
computed the correlation for each marker gene set between the BICCN and
Lareau datasets, which give us the highest correlation among all pairs of
datasets for gene-level comparison. To evaluate statistical significance, we
generated a null distribution by randomly sampling gene sets of the same
size from all genes 10,000 times, and computed the correlation coefficients
for each between the two datasets. As a result, all marker sets for IN type
showed a higher correlation coefficient compared to the comparison of all
genes (SF: 0.931, CU: 0.921, TA: 0.779, TN: 0.851, and SC: 0.880), but
only the p-value of SF is significantly lower after multiple corrections (p-
value<5e-5, n = 5). Together, these results demonstrate that cell typing
by a single feature, such as gene activity or genomic bin, is highly variable
at both individual cell and cluster-level across scATAC-seq datasets. At
the same time, choosing meta-analytic marker genes can greatly increase
the reproducibility of cell-type classification in scATAC-seq data.

2.4 Redundant and meta-analytic marker gene sets enable
robust and practical cell-type classification

Following our evaluation of individual genes, we now consider the
integration of information across multiple genes. To address this
problem in a practical scATAC-seq analysis workflow, we evaluated
the performance of cluster-level annotation based on two cell-typing
strategies; the qualitative comparison of cluster-specific genes, and
quantitative comparison of the aggregated pseudo-bulk profiles of gene
activity.

As a cell-type classification using a gene list, the Jaccard index was
computed as a metric of overlap between each marker set and cluster-
specific genes for all clusters from seven datasets. Specifically, the index
is defined as J(M,C) = M∩C

M∪C
, where M and C are the marker gene set

and cluster-specific genes, respectively. Then, the indices of each cluster
were normalized within the range (0, 1) across three cell types as shown
in Figure 3A. Finally, we examined AUROCs based on the normalized
Jaccard index for each cell type classification against the reference true cell-
type labels for the clusters. In Figure 3B, the AUROCs of each marker set
are shown as a function of the number of top cluster-specific genes selected
(shown in the x-axis). The larger the number of cluster-specific genes is,
the higher the AUROCs of prediction are for all marker sets. However, the

classification based on the SF marker set shows a sudden increase of the
AUROCs to 0.8-0.9 only with around the top 100 cluster-specific genes.
Descent performance of SC compared to SF indicates the importance of
marker set redundancy for scATAC-seq annotation. Interestingly, most of
the marker sets except for TA reached around 0.8 for the classification of
IN cell type just by considering the top genes. This result suggests that
even a few genes are enough to accurately annotate the IN cell-type group
while additional genes can further improve the accuracy of prediction for
other cell types. As a redundant gene set which is comparable to SF, we
compared the AUROCs with those based on the cell-type specific gene
sets inferred from each dataset (Supplementary Fig. 7). The SF marker set
produced highest and most stable AUROCs across the different cell types
compared to most of the gene sets, suggesting the potential of our meta-
analytic approach to enhance the stability and applicability of marker sets
beyond the cell-type and batch-specific difference.

While cell-type annotation using a cluster-specific gene list is a
simple and effective approach, it relies on clusters partitioning the cells
appropriately into types and may be sensitive to over- or under-clustering.
For that reason, we evaluated another cell-type approach by computing
the absolute (rather than relative) strength of marker gene activities, which
are also called module scores. This generates a single cell-type score for
each cell group that can then, again, be summarized by performance as
AUROCs (Fig. 3C). For cell-level annotations, we computed AUROCs
from individual cell profiles, while for cluster-level annotations we used
the average pseudo-bulk profiles of the cells that belong to the same
cluster. Although there are only small differences in AUROCs for the
cluster-level classification, the SF marker set outperformed at individual
cell-level classification with a median AUROC around 0.85. Moreover, to
show the robustness of marker set performance without a class imbalance
problem, we constructed simulation data of 100 average profiles for each
major cell type over a specific number of cells randomly sampled from the
original datasets. Along with the increase of the AUROCs with the number
of cells, the SF marker set is found to show the most stable prediction
accuracy for cell-type classification. In summary, we found that our meta-
analytic marker gene set could improve the robustness of major cell-type
classification at a variety of cell resolution.
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2.5 The robustness and feasibility of subtype classification
can be improved using meta-analytic marker gene sets

In addition to the three major cell types, we can iteratively use the SF
marker sets to perform rare cell- or subtype classification as shown in
Figure 3A. We first extracted two groups with the higher Jaccard scores for
either of IN or EX marker sets, then computed the number of overlapping
genes again between each SF subtype marker set and cluster-specific genes.
The cell-typing performance of several inhibitory subtypes (Sst, Pvalb,
Sncg, Vip, and Lamp5) was validated for the BICCN and Chen datasets,
which both contain the clusters associated with those subtypes (Fig. 3D). In
the BICCN dataset, the AUROCs of five inhibitory neuronal subtypes at the
smallest cluster level are 1.0, 0.755, 1.0, 1.0, and 0.983, respectively. These
clusters, except for Pvalb, are considered to be substantially distinctive
within the BICCN dataset using SF subtype marker sets. In the Chen
dataset, the AUROCs of Sst, Pvalb, and Vip of inhibitory subtypes
are all higher than 0.955. Since the SF marker sets were constructed
independently from the scATAC-seq datasets, the use of meta-analytic
marker sets is a promising approach to enable robust cell typing even for
neuronal subtypes at the cluster-level.

Furthermore, by carefully examining the consistency of the signals in
Figure 3A, some clusters from other datasets show enrichment for multiple
marker sets. This suggests the heterogeneity of those clusters and our cell
typing at individual cell level would be able to detect the existence of
mixed subtype populations. Finally, the clusters of the Preissl dataset,
whose “true” labels are not available in this study, also show an exclusive
signal enrichment for the SF major cell- and subtype marker sets. This,
too, indicates their applicability to labeling unknown clusters.

2.6 Comprehensive assessment of cell-type classification
and marker sets with machine learning classifiers

We next ask whether more sophisticated prediction methods, such as
supervised learning, can further improve performance with our marker
genes. To determine the degree to which robust markers facilitate more
sophisticated cell typing, we performed a comprehensive assessment of
scATAC-seq cell-type classification at the individual cell level. Because of
the extreme heterogeneity of the scATAC-seq datasets, it is rarely possible
to select the most robust approach for not only clustering but also cell-type
characterization. Instead of exploring just the best combination, we aim
to address the question of whether the suitable feature selection based on
marker genes is still critical beyond the differences in the test datasets,
training datasets, or prediction methods.

We applied a variety of supervised learning methods for scATAC-seq,
such as raw signal aggregation (as used in the previous section), machine
learning (ML) classifiers, and joint clustering methods. Importantly, raw
signal aggregation of the marker set is the only method that is applicable
without a reference training dataset. This provides scope for methods
with more parameter optimization to improve performance, although the
parameter optimization can sometimes reduce robustness.

As ML classifiers, we applied four different classifiers (e.g., Logistic
regression, support vector machine(SVM)) and trained them using the
BICCN scRNA-seq data (RNA atlas) or other scATAC-seq datasets
(Consensus). As joint clustering methods developed for the integration of
scRNA-seq, BBKNN [22] and Seurat [23] were selected. Further details
on optimization and evaluation are described in the Methods section (also
see Supplementary Fig. 2).

Figure 4A shows the summary of the AUROCs for NN cell-type
classification at the individual cell level. The prediction performance
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Fig. 4. Comprehensive comparison of cell-type classification at individual cell level using a combination of marker genes and supervised learning methods. (A) and (B) AUROCs of six
datasets and those average for NN cell-type classification at each cell level for all demonstrated combinations (A) and top 10 combinations according to the average AUROCs (B). The
columns shown at right represent the marker set, supervised learning method, and training dataset used to construct each classifier. (C) and (D) AUROCs of 6 datasets and those average
for IN cell-type classification at each cell level for all demonstrated combinations (C) and top 10 combinations according to the average AUROCs (D). (E) AUROCs of two joint profiling
datasets and those average for IN cell-type classification at each cell level for top 10 combinations according to the average AUROCs. This result contains the combinations using available
scRNA-seq data of each dataset as a training data.

highly depends on the dataset quality or similarity as shown in a clear
contrast between the rows: when the dataset is too deviated from others,
no single method or training condition seemed to work at a practical level.
In Figure 4B, the top 10 combinations in terms of average AUROCs are
extracted. Most of the combinations are based on ML optimized on the
Consensus (using all other datasets for training) although also included
is one combination of the raw signal aggregation and SF marker sets.
The two best methods are the Logistic regression classifier trained on all
genes, and Alternate Lasso trained on SF marker genes. With respect to
the marker sets selected, SF and TN gene sets are dominant within the top
10 combinations while only one combination utilizes all gene sets. This
suggests the utility and stability of redundant marker gene sets as a kind
of feature selection method against the dataset-dependent variability.

Next, the prediction performances for IN cell-type classification are
visualized (Fig. 4C and D). Unlike the result of NN cell-type classification,
the AUROCs of the top and bottom combinations are clearly distinct.
Specifically, the combinations based on Consensus training or raw signal
aggregation show apparently higher AUROCs than those using the RNA
atlas from the BICCN dataset. As previously, the top 10 combinations
exploit the combinations involving the SF and TN marker sets as well as
only one set using all genes. Indeed, even the simple raw signal aggregation
method from the SF marker gene sets is ranked in the top 10 regardless of
the target cell types while that with other marker sets are not.

Additionally, we examined the classification performance using a
transcriptome-based reference from the exact same sample (named RNA
training) to show the potential of the scRNA-seq reference. Figure 4E
shows the top 10 combinations that performed best for two joint profiling
datasets. The top 10 ranks are occupied by methods of ML classifiers
optimized by Consensus and RNA reference data, in addition to raw signal
aggregation for the SF marker gene set.

In summary, our comprehensive assessment strongly suggests that
consensus training using other scATAC-seq data and simple aggregation
of large marker sets are comparably powerful for major cell-type
classification. Although optimization based on the independent reference
scRNA-seq was less powerful, training on the joint-profiled scRNA-
seq shows a comparable prediction performance with consensus training.
More importantly, in all cases, the choice of marker genes most strongly
characterized the performance of a method/data/feature combination,
suggesting the wide-applicability of robust marker gene sets for integrative
analyses and interpretation of the resultant cell-type specific ATAC-seq
profiles for regulatory inference, as described next.

2.7 Meta scATAC-seq server with deep learning prediction
enhances cell-type specific motif analysis

For future integrative analysis, we have published a new Meta scATAC-seq
server at https://gillisweb.cshl.edu/Meta_scATAC/ to make all collected
data and marker genes in this study available. In this server, the average
read count of each genomic location can be visualized in a genome browser
for certain cell types or datasets. The accessibility signals can be aggregated
for not only the cluster-derived cell types provided by the authors (which
are not unified across the studies) but also the top 500 cells of each subtype
by calculating the marker activity of SF.

Furthermore, to assess the potential of genomic sequences to regulate
the cell-type specific cis-regulatory programs, we integrated predicted
chromatin accessibility data using a sequence-based deep CNN trained
on the BICCN scATAC-seq data. Specifically, we generated a multi-
task classification dataset that consists of cell-type specific pseudo-bulk
chromatin profiles. The pseudo-bulk profiles were then used to generate
a dataset of 5kb DNA with a corresponding label vector that specifies
whether the DNA is accessible or not in the BICCN dataset (see Methods).
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Fig. 5. (A) Deep learning analysis workflow. The CNN model was trained to take DNA sequence as input and predict the sequence’s accessibility in each cell type. Model interpretability
is accomplished by visualizing layer convolutional filters and by cell-type specific saliency analysis for a given sequence. Each can be used to visualize motif features extracted by the
model. Motif analysis is then performed by employing two ways of motif search: a motif comparison search against a database of known motifs (i.e. JASPAR) using Tomtom or via
TF-MoDISCo, which splits saliency maps, clusters them, and provides an averaged representation. Motif analysis of BICCN scATAC-seq pseudo-profiles (B-F). Sequence logos of saliency
maps from a CNN model trained at the sub-cell type level: (B) Lamp5, (C) Vip, (D) Sncg, and (E) Vip. Only 210 positions out of 5kb is shown for visual clarity. The known motifs from the
JASPAR database are annotated with a box above each saliency plot, labelled with a putative motif name and JASPAR ID. (F) Venn diagram of motifs enriched in each cell type. The filter
representations are shown, while the cell type-specific motif enrichment was determined with TF-MoDISCo and the motif annotations were given by statistically significant matches to the
JASPAR database using Tomtom.

We constructed a custom CNN with a Basset-like architecture [24] and
trained it to take DNA as input and simultaneously predict chromatin
accessibility across each cell-type (Fig. 5A). We found that the CNN’s
classification performance on test data (i.e. all data from held-out
chromosomes: 1, 3, and 5) had good predictive power with an area under
the precision-recall curve (AUPR) of 0.539 on average across each cell-
type – this is a large improvement upon DeepSea’s AUPR of 0.444 across
125 chromatin accessibility datasets [25], most of which derive from cell
lines.

For model interpretability, we performed filter visualization and
attribution methods, both of which are common techniques in genomics
[26]. We compared filter representations against the 2020 JASPAR
vertebrates database [27] using Tomtom [28]. We found that 36% of the
filters match known motifs, which is seemingly a low number considering
that when applying a similar network to the Basset dataset, our CNN yields
a higher match fraction of about 62% [29]. Using an attribution method
called saliency analysis [30], which takes the gradient of a given class
prediction with respect to the inputs, we can generate sequence logos of
the importance of each nucleotide in a given sequence (see Methods).
Within the 5kb binned sequences, we often find that small patches within
the attribution maps highlight known motifs either alone (Fig. 5B), in
combinations with their reverse complements (Fig. 5C-D), and with other
partners (Fig. 5E).

To demonstrate the efficiency of meta-analytic marker genes for the
interpretation of a deep CNN model, we examine enriched patterns
within the attribution maps, specifically nearby meta-analytic marker
gene sets, using a clustering tool for attribution maps TF-MoDISCo [31].

Figure 5F highlights a Venn diagram of the motifs enriched in different
cell types: Lamp5, Vip, and Sncg. Many motif representations were
shared between all three cell types, including the binding motifs of NFIC,
MYOG, DBP, and FOSL1. Vip and Lamp5 had many unique motifs
enriched near meta-analytic marker genes, while Sncg only had a single
enriched motif identified by TF-MoDISCo. This is consistent with the
strong overlaps among these cell-types within the observed transcriptional
hierarchy, where there is mixing across types when defined purely by
expression clusters [32]. A full list of the motif matches for each filter is
provided as Supplementary data 7. We also found that many TF-MoDISCo
cluster representations, which were also supported by convolutional filter
representations, do not have any correspondence to a known motif in the
JASPAR database – these were labeled by just their filter name. This was
expected to an extent as the JASPAR database is not complete and the
ability to analyze cell type-specific regulatory regions within the brain
emerged recently with the advent of scATAC-seq data.

3 Discussion
In this study, we examined the usability of meta-analytic marker genes for
scATAC-seq cell-typing at a variety of levels of granularity. We found that
a robust marker gene set optimized for multiple scRNA-seq data produced
high performance at resolutions from cell to cluster level. Interestingly,
feature selection via marker gene sets substantially improved neuronal and
non-neuronal cell-type prediction even without sophisticated supervised
learning methods. The choice of marker gene sets was a major driving
factor of the prediction performance rather than that of classification
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strategies. We also demonstrated the potential power of this strategy for
regulatory inference from scATAC-seq experiments once heterogeneous
data has been partitioned into cell-type specific pseudo-bulk profiles. The
resultant “cleaned” profiles can be used to train a CNN model to learn
a relationship between input DNA sequence and its accessibility for a
given cell-type – we showed this with the BICCN dataset. Interpreting
the trained CNN revealed learned motifs that were enriched near the
marker gene sets in a subtype-specific manner, suggesting the existence of
cell-type specific regulation for meta-analytic marker genes in the motor
cortex. The straightforward feasibility of using robust marker gene sets
for accurate subtype cell-typing within scATAC-seq data opens up many
important downstream possibilities, most clearly condition- and subtype-
specific regulatory network discovery, as demonstrated in our own deep
learning analysis.

ScRNA-seq has proven to be a remarkably effective technique for
the characterization of cell-types within the brain, shedding new light
on decades old questions regarding the form, function, and organization
of cell-types [33]. In turn, the complexity of the brain has made it one
of the strongest use cases for single cell technologies. While cell-typing
and characterization have been major success stories, understanding the
regulatory basis of the observed cell-types remains an important challenge
[9]. One of our important contributions is to demonstrate just how effective
marker gene selection can be for brain epigenetic data. The cell-type
characterization based on marker genes has long been a mainstay of wet-lab
biology but typically focused on specificity, rather than comprehensiveness
[34]. In contrast, high-throughput single-cell methods have generally
preferred methods that rely on information distributed across a large
fraction of genes. Our analysis suggests that a middle ground of picking
redundant marker sets meta-analytically satisfies a number of important
constraints: high classification performance, generalization, simplicity and
straightforward interpretability. While we see dramatic differences from
dataset to dataset, feature selection appears to be the critical determinant
for accurate cell-typing, as opposed to more complicated modeling of the
way those features interact (which is less likely to generalize). Because
marker sets can be derived from high-performing scRNA-seq data, we
exploit all the existing success of cell-typing efforts there to inform the
interpretation of scATAC-seq data. Importantly, the utility of feature
selection for consistent annotation is likely to remain even as wet-lab
technology improvements (such as paired scRNA-seq and scATAC-seq)
will make clustering cells within a given dataset less challenging. The
significance of marker set selection is also highlighted by the improved
interpretability it offered when we turned to model the cell-type specific
regulatory programs through deep learning.

To predict chromatin accessibility across different cell-types from
just the DNA sequence, CNNs have demonstrated a remarkable ability
[24, 25, 35]. ScATAC-seq provides an opportunity to study cell-type
specific regulatory programs in heterogeneous tissues, such as the immune
cells [36] and the brain (this study), using CNNs. By “purifying” scATAC-
seq data by robust cell typing, the accessibility signal is expected to
become more reliable. This may explain why our CNN yields improved
performance both in classification accuracy and interpretable motif
representations. Since many accessible sites are shared across different
cell-types, these “overlapping” regions may not necessarily contain the
information we desire, that is to know which motifs drive cell-type
specific regulation. Hence, it remains a challenge to decipher which motifs
are relevant for cell-type specificity. Our approach was to explore the
enrichment of motifs nearby meta-analytic marker genes that are cell-
type specific, which shifts the distribution of transcription factors that are
learned genome-wide to the ones that regulate genes of a given cell-type.
Indeed this approach reveals many known motifs (and some putative novel
ones). Moving forward, it would be beneficial to follow up this work to

try to decipher which proteins bind to these motifs in each cell-type and
explore which non-marker genes they regulate.

4 Methods and Materials

Meta-analytic marker genes for mouse brain

For robust and accurate cell-typing of single-cell data, we developed a
method, MetaMarkers, and used it to define a new meta-analytic marker
gene set, called SF marker set [15], derived from multiple scRNA-seq
datasets from the BICCN. The SF marker set is the expanded marker set
that includes co-expressed genes of marker genes. Additionally, SC is a
subset of SF but restricted to have the same number of genes as that of CU
to assess the importance of the number of genes, rather than the protocol
by which the marker genes were obtained. The overlap of each marker
gene is shown in Figure 2D and F (also see Supplementary Fig. 1).

Mouse brain scATAC-seq datasets

From the BICCN collection, we obtained single-cell combinatorial
indexing ATAC-seq (sci-ATAC-seq) data which consists of 4 batches
with a transcriptome reference of SMART-seq v4 scRNA-seq data (the
cell number after filtering is 6,278) for the mouse primary motor
cortex region [16]. Both datasets are available from the BICCN data
portal https://biccn.org. Moreover, we collected scATAC-seq datasets
of the mouse brain published on Gene Expression Omnibus (GEO).
Specifically, read count matrices and metadata of 6 scATAC-seq studies
were downloaded from GEO. The corresponding GEO IDs of the
collected studies are GSE100033 [1], GSE111586 [12], GSE123576 [37],
GSE127257 [38], GSE126074 [17], and GSE130399 [18]. From the
Paired-seq datasets of GSE130399, the one for an adult mouse cerebral
cortex sample is applied in this study. To convert read counts to gene
activities, we used the gene structure information from an Ensembel GTF
file for GRCm38 as of Nov. 2018. Each genomic feature in the original
study was then assigned to the closest TSS found in the GTF file. A gene
activity estimation was carried out by summing the read counts of all
assigned features within the 10kb upstream or downstream from the TSS
of all transcripts of the same gene id. For the datasets whose feature is peak-
based, the locations of each peak center were used to associate each feature
and gene. A general pre-processing, filtering, clustering, and detection of
cluster-specific genes was performed on a SCANPY platform [39].

Assessment of cell-typing for scATAC-seq

We performed a comprehensive assessment of cell-typing for six
well-annotated scATAC-seq datasets using a different combination of
supervised learning methods, training sets, and marker gene sets. A
graphical outline is shown in Supplementary Figure 2.

Supervised learning methods The methods used in this study are classified
into three categories: raw signal, ML classifiers, and joint clustering
methods. Raw signal methods predict each cell type based on the raw signal
scores computed by aggregating the read counts for the genes included in
each biomarker gene set. This method is the only method that does not
require any training dataset except for a marker gene set. ML classifier
methods consist of four popular ML classifiers applicable to supervised
learning of scATAC-seq cell-typing. Specifically, SVM, random forest,
logistic regression with L1 regularization (Logistic regression), and a
variant of logistic LASSO “Alternate Logistic LASSO” [40] are included
in this category, which is expected to be more robust for sparse data. Due
to the limitation of computational resources, only Logistic regression was
carried out for the prediction using all genes and the other three classifiers
were applied with the feature selection based on the marker gene set. The
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last category is a joint clustering method, in which a test and training dataset
is reanalyzed independently, then jointly clustered two datasets to associate
each cell in the test set with the annotated cells in the training dataset. We
chose Seurat [23] and BBKNN [22] for a comparison referring to the
results of the previous study of an integrated analysis of single-cell atlases
[14]. To compute AUROCs from the results of BBKNN, we implemented
our own script to compute the scores for a cell-type prediction by counting
the nearest-neighbor cells for each cell type.

Training set The training set is applied in four different ways. Raw signal
methods use gene activity profiles from the test scATAC-seq dataset only
for selected biomarker genes. Consensus methods use the scATAC-seq
datasets except for the one used as a test set. For this prediction, the
prediction scores are computed by the classifiers trained on each training
set. Those scores are averaged to compute the final prediction scores after
normalization within each dataset. RNA atlas methods use the BICCN
scRNA-seq data as a training set to optimize the parameters or infer the
nearest-neighbor cells. For the datasets based on joint profiling methods,
we also carried out ML-based supervised learning using scRNA-seq from
the same dataset, named “RNA” training.

Gene set selection In addition to the five marker gene sets collected
from the previous studies, we performed the supervised learning with
all detected genes if an optimization process is feasible. Specifically,
supervised learning based on all genes was demonstrated for Logistic
regression from ML classifiers and both joint clustering methods.

Supervised learning by machine learning classifiers

To carry out supervised learning, we implemented a workflow of
optimization of ML classifiers using the scikit-learn library. The
parameters used for each classifier are as follows: degree is 3 and kernel is
set to an rbf kernel for SVM, n_estimators is set to 100 for RF, and C is set to
1.0 (default) for Logistic regression. Other parameters are set to the default
values. For Alternate Lasso, we implemented an original classification
function in which the best and alternate predictors are averaged with
different weights. In this study, we extracted top n predictors at maximum
and summed their predictions with the weight 1/n, where n is set to 5.

Joint clustering methods for an integrative analysis of
single-cell omics datasets

BBKNN was applied to the pair of scATAC-seq and the BICCN scRNA-seq
dataset after applying a general normalization for the scRNA-seq dataset
by a Scanpy function “normalize_per_cell”. The parameter for k-nearest
neighbor used in the BBKNN algorithm was set to k = 5, 10, 20, 30

with and without a graph trimming option. We also run Seurat v3.2.2 to
align the same dataset combinations as used for BBKNN. The alignment
of two datasets was done via FindTransferAnchors and TransferData
functions using canonical correlation analysis by setting a parameter
reduction=‘cca’.

Sequence analysis of accessible sites with deep learning

Data for binary classification Given the 5kb bins, each of which contains
a single bulk accessibility profile value, we binarized each label with a
threshold of 0.02, above which is given a positive label, and below is
given a negative label. We then filtered sequences with no positive labels
across all classes. Sequences were converted to a one-hot representation
with 4 channels (one for each nucleotide: A, C, G, T) and a corresponding
label vector with either a 0 for negative labels or 1 for positive labels. We
split the data into a validation set (chromosomes 7 and 9; N = 24, 908),
test set (chromosomes 1, 3, and 5; N = 14, 670), and training set (all
other chromosomes; N = 274, 689).

Model Our CNN model takes as input a 1-dimensional one-hot-encoded
sequence with 4 channels, then processes the sequence with three
convolutional layers, a fully-connected hidden layer, and a fully-connected
output layer that have sigmoid activations for binary predictions. Each
convolutional layer consists of a 1D cross-correlation operation followed
by batch normalization [41], and a non-linear activation function. The
first layer used an exponential activation, which was previously found
to encourage first layer filters to learn interpretable motif representations
and also improves the overall interpretability with attribution methods
[29]; while the rest used a rectified linear unit. The first convolutional
layer employs 200 filters each with a size of 19 and a stride of 1. The
second convolutional layer employs 300 filters each with a size of 9 and
a stride of 1. And the third convolutional layer employs 300 filters each
with a size of 7 and a stride of 1. All convolutional layers incorporate
zero-padding to achieve the same output length as the inputs. The first
two convolutional layers are followed by max-pooling layer of window
size 10, and the last one is followed by a global average pooling layer.
The fully-connected hidden layer employs 512 units with rectified linear
unit activations. Dropout [42], a common regularization technique for
neural networks, is applied during training after each convolutional layer,
with a dropout probability set to 0.2 for convolutional layers and 0.5 for
fully-connected hidden layers.

Training All models were trained with mini-batch stochastic gradient
descent (mini-batch of 100 sequences) with Adam updates [43] with a
decaying learning rate using a binary cross-entropy loss function. The
initial learning rate was set to 0.001 and decayed by a factor of 0.3 if
the model performance on a validation set (as measured by the Pearson
correlation) did not improve for 7 epochs. Training was stopped when the
model performance on the validation set does not improve for 25 epochs.
Optimal parameters were selected by the epoch which yields the highest
Pearson correlation on the validation set. The parameters of each model
were initialized according to Glorot initialization [44].

Filter visualization To visualize first layer filters, we scanned each
filter across every sequence in the test set. Sequences whose maximum
activation was less than a cutoff of 50% of the maximum possible
activation achievable for that filter in the test set were removed [24, 45].
A subsequence the size of the filter centered about the max activation for
each remaining sequence and assembled into an alignment. Subsequences
that are shorter than the filter size due to their max activation being too
close to the ends of the sequence were also discarded. A position frequency
matrix was then created from the alignment and converted to a sequence
logo using Logomaker [46].

Saliency analysis To test the interpretability of trained models, we generate
saliency maps [30] by computing the gradients of the predictions with
respect to the inputs. Saliency maps were multiplied by the query sequence
(times inputs) and visualized as a sequence logo using Logomaker [46].
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