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Abstract

Technology to generate single cell RNA-sequencing (scRNA-seq) datasets and tools to
annotate them have rapidly advanced in the past several years. Such tools generally rely on
existing transcriptomic datasets or curated databases of cell type defining genes, while the
application of scalable natural language processing (NLP) methods to enhance analysis
workflows has not been adequately explored. Here we deployed an NLP framework to
objectively quantify associations between a comprehensive set of over 20,000 human
protein-coding genes and over 500 cell type terms across over 26 million biomedical
documents. The resultant gene-cell type associations (GCAs) are significantly stronger between
a curated set of matched cell type-marker pairs than the complementary set of mismatched
pairs (Mann Whitney p < 6.15x10-76, r = 0.24; cohen’s D = 2.6). Building on this, we developed
an augmented annotation algorithm that leverages GCAs to categorize cell clusters identified in
scRNA-seq datasets, and we tested its ability to predict the cellular identity of 185 clusters in 13
datasets from human blood, pancreas, lung, liver, kidney, retina, and placenta. With the
optimized settings, the true cellular identity matched the top prediction in 66% of tested clusters
and was present among the top five predictions for 94% of clusters. Further, contextualization of
differential expression analyses with these GCAs highlights poorly characterized markers of
established cell types, such as CLIC6 and DNASE1L3 in retinal pigment epithelial cells and
endothelial cells, respectively. Taken together, this study illustrates for the first time how the
systematic application of a literature derived knowledge graph can expedite and enhance the
annotation and interpretation of scRNA-seq data.
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Introduction

The development of single cell transcriptomic technologies has enabled the dissection of
cellular heterogeneity within complex tissue environments [1–5]. Typically, the processing
workflows for such studies involve unsupervised clustering of single cells based on their gene
expression profiles followed by the assignment of a cell type annotation to each identified
cluster. While cell type annotation was initially performed via manual inspection of
cluster-defining genes (CDGs), there have been a number of algorithms developed recently to
automate this process [6–12].

Manual cell type annotation inherently relies on an individual’s knowledge of cellular
gene expression profiles. For example, an immunologist may know based on their literature
expertise and firsthand experience that CD19 and CD3E are specific markers of B cells and T
cells, respectively. On the other hand, the existing methods for automated annotation leverage
previously generated transcriptomic datasets or curated lists of cell type-defining genes to
determine which cell type a newly identified cluster most closely resembles. Interestingly, it is
now common for researchers to employ both manual and automated methods for cluster
annotation [13–16], as one can be used to check the veracity of the other. Importantly, there
remains an unmet need for tools which augment manual annotation by transparently and
objectively leveraging the associations between genes and cell types which are embedded in
the literature.

Rare or novel cell types which are marked by well-studied genes have been identified
through scRNA-seq, such as the CFTR-expressing pulmonary ionocyte described recently
[17,18]. Conversely, scRNA-seq should also enable researchers to identify novel markers of
even well characterized cell types. However, there is currently no standardized method to
assess the level of literature evidence for each individual CDG during the process of manual or
automated cell type assignment. As a result, this step is often foregone in practice, in favor of
proceeding to downstream workflows such as differential expression, pseudotime projection, or
analysis of receptor-ligand interactions.

Here, we leverage a literature derived knowledge graph to augment the annotation and
interpretation of scRNA-seq datasets. We first deploy an NLP framework to quantify pairwise
associations between human protein-coding genes and cell types throughout the biomedical
literature contained in PubMed. We validate that these quantified gene-cell type associations
(GCAs) recapitulate canonical cell type defining genes and then harness them to perform
unbiased literature-driven annotation of scRNA-seq datasets. Finally, we demonstrate that
integration of these literature encoded GCAs into a differential expression workflow can highlight
unappreciated gene expression patterns that warrant further experimental evaluation.
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Methods

Generation of cell type vocabulary

To create a database of cell types, we first manually curated over 300 cell types into a directed
acyclic graph structure. Specifically, each unique cell type corresponds to one node in the
graph, which can be connected to one or more parent nodes (i.e. broader cell type categories)
and one or more child nodes (i.e. more granular subsets of the given cell type). For example, “T
cell” corresponds to one node, of which “lymphocyte” is a parent node and “CD4+ T cell” is a
child node. Where applicable, we also manually added aliases or acronyms for each cell type.
We merged this manually curated cell graph with the EBI Cell Ontology graph [19–21] by
mapping identical nodes to each other and preserving all parent child relationships documented
in each graph. We expanded each node to include synonymous tokens by considering
synonyms from the EBI Cell Ontology and Unified Medical Language System database [22] and
from our own custom alias identification service. After expansion, we reviewed our updated
graph to remove erroneously introduced synonyms and performed an internal graph check to
ensure that each token (i.e. cell type name or synonym thereof) occurred in one and only one
node. The complete cell graph is given in Supplemental File 1.

For the cell type annotation algorithm described subsequently, this graph was filtered to retain
the 556 nodes which were strongly associated (local score ≥ 3; see description of local scores
below) with at least one human protein-coding gene; these 556 nodes are subsequently referred
to as “candidate cell types.” We also defined a set of 103 “priority nodes” which intend to
capture major cell types or cell type categories, to which all other candidate cell types in the
filtered graph are mapped. The set of all candidate cell types, along with the priority nodes to
which they map, are given in Supplemental File 2.

Generation of gene vocabulary

We obtained the full set of human protein-coding genes from HGNC [23] and curated potential
gene synonyms from various sources including ENTREZ, UniProt, Ensembl, and Wikipedia. For
specific gene families, we also manually added family-level synonyms which are not captured
by synonyms curated at the single gene level. This included genes encoding the following
proteins: T cell receptor subunits, immunoglobulin subunits, class II MHC molecules,
hemoglobin subunits, surfactant proteins, chymotrypsinogen subunits, CD8 subunits (CD8A,
CD8B), and CD3 subunits (CD3E, CD3G, CD3D, and CD247). The complete gene vocabulary is
given in Supplemental File 3.

For the cell type annotation algorithm described subsequently, we only considered
protein-coding genes which were strongly associated with at least one cell type in the literature
(local score ≥ 3; see description of local scores below). Further, we excluded mitochondrially
encoded genes (gene names starting with “MT-”), genes encoding ribosomal proteins (gene
names starting with “RPS”, “RPL”, “MRPS”, or “MRPL”), and MHC class I genes except for
HLA-G (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F). These filtering steps yielded a final set of 5,113
“eligible genes” for consideration during the cell type annotation steps (indicated in
Supplemental File 3).

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.01.438124doi: bioRxiv preprint 

https://paperpile.com/c/rssi5b/0wGX+4q15+kRcj
https://paperpile.com/c/rssi5b/b5dZ
https://paperpile.com/c/rssi5b/y3Y5
https://doi.org/10.1101/2021.04.01.438124
http://creativecommons.org/licenses/by/4.0/


Quantification of literature associations between genes and cell types

To quantify gene-cell type associations (GCAs) in biomedical literature, we computed local
scores as described in detail previously [24]. Briefly, this metric measures how frequently two
tokens A and B are found in close proximity to each other (within 50 words or fewer) in the full
set of considered documents (corpus), normalized by the individual occurrences of each token
in that corpus. In this case, the two tokens are a gene and a cell type, and the corpus includes
all abstracts in PubMed along with all full PubMed Central (PMC) articles.

To calculate the score, we first compute the pointwise mutual information between A and B as
pmiAB = log10([AdjacencyAB * NC]/[NA * NB]), where AdjacencyAB is the number of times that Token
A occurs within 50 words of Token B (or vice versa), NA and NB are the number of times that
Tokens A and B each occur individually in the corpus, and NC is the total number of occurrences
of all tokens in the corpus. The local score between Tokens A and B is then calculated as LSAB =
ln(AdjacencyAB + 1) / [1 + e-(pmiAB - 1.5)]. A local score of 0 indicates that Tokens A and B have
never occurred within 50 words of each other, and a local score of 3 indicates a co-occurrence
likelihood of approximately 1 in 20. Thus, we typically consider a local score greater than or
equal to 3 to represent a significant literature association.

A matrix of GCAs (i.e. pairwise local scores between all genes and all candidate cell types) is
provided in Supplemental File 4. Notably, the maximum GCA varies substantially across the
set of candidate cell types (range 3.00 - 12.54; see Supplemental Figure 1), which reflects the
fact that different cell types have been characterized to different degrees with respect to the
landscape of all human genes. To account for this, we also computed “scaled GCAs” by dividing
all GCAs for a given cell type by the maximum GCA for that cell type, such that the maximum
normalized GCA for every cell type is equal to 1. The matrix of scaled GCAs is provided in
Supplemental File 5.

Curation of canonical cell type defining genes

To test the utility of literature-derived GCAs in capturing gene expression profiles, we first
curated a set of cell type defining genes, i.e. genes which were used to identify cell types in
previously published manually annotated scRNA-seq datasets [25–32]. The complete set of
manually curated cell type defining genes is provided in Supplemental Table 1. We also
obtained a previously curated set of cell type defining genes from the Panglao database [33].
From this database, genes were extracted that were labeled as canonical human markers with a
ubiquitousness index < 0.06, human sensitivity > 0, and mouse sensitivity > 0 (Supplemental
File 6).

Using these curated sets of defining genes, all pairwise gene-cell type combinations and their
corresponding local scores (GCAs) were then classified as “matched” or “mismatched.” A
matched GCA refers to the local score between a cell type and one of its defining genes (e.g. B
cells and CD19); a mismatched GCA refers to the local score between a cell type and any
non-defining gene for that cell type (e.g. B cells and CD3E). That is, the mismatched pairs are
obtained by simply excluding matched pairs from the set of all unique pairwise combinations of
the genes and cells from the matched pairs. From the manually curated set, there were 174
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matched pairs and 5,678 mismatched pairs; from the Panglao database, there were 2,291
matched pairs and 154,313 mismatched pairs.

ROC analysis of local scores to classify matched GCAs versus mismatched GCAs

To evaluate the ability of our literature derived GCAs (local scores) to classify gene-cell type
pairs as matched or mismatched, we performed a Receiver Operating Characteristic (ROC)
analysis and computed the area under (AUC) the ROC curve using the “pROC” package
(version 1.17.0.1) in R (version 4.0.3). Briefly, we tested over 500 thresholds (sliding intervals of
0.01 starting at 0) to determine the sensitivity and specificity of local scores in classifying
gene-cell types pairs as matched or mismatched. We also repeated this ROC analysis 10,000
times with randomly shuffled assignments of “matched” and “mismatched” to empirically confirm
a lack of predictive power for local scores in performing this classification with the given sets of
genes and cell types when labeled at random.

Processing of scRNA-seq studies

For each individual human scRNA-seq study listed in Supplemental File 7, we obtained a
counts matrix and metadata file (if available) from the Gene Expression Omnibus or another
public data repository. We then processed each dataset using Seurat v3.0 [34] to normalize and
scale the counts, and to identify cell clusters. Normalization was performed using the
NormalizeData function, with the method set to “LogNormalize” and the scale factor set to
10000, such that unique molecular index (UMI) counts were converted into values of counts per
10000 (CP10K). Scaling was performed for all genes using the ScaleData function. Linear
dimensionality reduction was performed using principal component analysis (PCA), and then
clusters were identified using the FindNeighbors and FindClusters functions. The top principal
components explaining at least 90% of the variance were used in the FindNeighbors function,
and various cluster resolutions (0.25, 0.5, 1.0, 1.5, 2.0) were tested in the FindClusters
functions. Cell type annotations were obtained from associated metadata files if available;
otherwise, annotation was performed manually, guided by the cell types reported in the
associated publication.

Cell type annotation algorithms

To perform automated annotation of cell types (clusters) identified from scRNA-seq datasets
using our literature derived knowledge graph, we performed the following steps: (1) identify the
top N cluster defining genes (CDGs), (2) compute local scores between these CDGs and all
candidate cell types, (3) compute local score vector norms for each candidate cell type, and (4)
rank candidate cell types for annotation plausibility based on their vector norms. Each of these
steps are described in detail below, and an example workflow for annotating a single cluster is
illustrated schematically in Figures 2-3. The studies for which cell type annotation was
performed are listed in Table 1 [25,27–30,35–41].

1. Identify the top N cluster defining genes (CDGs)

To compute cluster defining genes for a given cluster to annotate (CA) from study S, we
compared the mean expression of all 5,113 eligible genes in CA to their mean expression in a
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reference set (R) of single cells. Specifically, we calculated the fold change (FC) and log2FC of
mean expression for each gene, where FC = (Mean CP10K in CA + 1) / (Mean CP10K in R + 1)
and log2FC = log2(FC).

These results were sorted in descending order and stored as two vectors: a 5,113-dimensional
fold change vector F ([f1, f2, … , f5113]) and a 5,113-dimensional log2FC vector G ([g1, g2, … ,
g5113]).

These vectors F and G were scaled to range from 0 to 1 as follows:

● Scaled fi = wi = (fi - Fmin) / (Fmax - Fmin)

● Scaled gi = xi =  (gi - Gmin) / (Gmax - Gmin)

The top N genes were then selected as CDGs, leading to the creation of two vectors for use in
subsequent analyses: a N-dimensional scaled FC vector W ([w1, w2, ... , wN]) and a
N-dimensional scaled log2FC vector X ([x1, x2, … , xN]).

2. Store absolute and scaled GCAs between these CDGs and all cell types

Absolute and scaled GCAs between the N selected CDGs for CA and all 556 candidate cell
types were extracted from the GCA matrix (described above and given in Supplemental Files
4-5). This resulted in the generation of 556 N-dimensional vectors of absolute GCAs (one vector
per candidate cell type) and 556 N-dimensional vectors of scaled GCAs (one vector per
candidate cell type), represented for each candidate cell type as follows:

● Absolute GCA Vector Y: [y1, y2, … , yN]

● Scaled GCA Vector Z: [z1, z2, … , zN]

3. Compute GCA vector norms for each cell type

For a given candidate cell type CC, we started with the N-dimensional vectors defined above,
where each dimension corresponds to one of the N top CDGs: scaled FC (W), scaled log2FC
(X), absolute GCAs (Y), scaled GCAs (Z). We then used these vectors to compute various
scores quantifying the level of literature evidence connecting CC to the set of CDGs. The
computed scores included variations of L0 and L2 norms as follows:

1. Modified L0 normAbsolute GCAs = number of elements in Y greater than or equal to 3

2. L2 normAbsolute GCAs = sqrt(y1
2 + y2

2 + … + yN
2)

3. FC Weighted L2 normAbsolute GCAs = sqrt(w1*y1
2 + w2*y2

2 + … + wN*yN
2)

4. Log2FC Weighted L2 normAbsolute GCAs = sqrt(x1*y1
2 + x2*y2

2 + … + xN*yN
2)

5. L2 normScaled GCAs = sqrt(z1
2 + z2

2 + … + zN
2)

6. FC Weighted L2 normScaled GCAs = sqrt(w1*z1
2 + w2*z2

2 + … + wN*zN
2)
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7. Log2FC Weighted L2 normScaled GCAs = sqrt(x1*z1
2 + x2*z2

2 + … + xN*zN
2)

Thus, for each candidate cell type CC, we calculated seven literature based metrics. These
metrics were computed for all 556 candidate cell types, yielding a matrix of 556 candidate cell
types by 7 metrics.

4. Rank candidate cell types for annotation plausibility based on their vector norms

This 556 by 7 matrix was then leveraged to predict the most likely cellular identity of the cluster
CA. Specifically, we tested the utility of each individual metric and a combination of the L0 and
L2 metrics (“composite ranks”) in predicting the correct cellular identity.

When using individual metrics, cell type predictions were ranked by simply sorting the
corresponding score in descending order (i.e. the prediction with the highest score was
assigned a rank of 1). In the case of ties (i.e. predictions with the same score), all tied
predictions were assigned the maximum (worst) possible rank; for example, if 10 predictions
were tied for the highest score, then all of them were assigned a rank of 10.

To derive composite ranks, we first determined the mean and minimum of the modified L0 rank
and a given L2 rank (e.g. L2 normAbsolute GCAs) for each cell type prediction. That is, each version
of the L2 norm (n = 6) was used to generate a separate composite rank. Predictions were then
ranked by sorting with the following priority order: mean rank (descending), minimum rank
(ascending), and modified L0 rank (ascending). Ties were again addressed by assigning the
maximum (worst) rank to all tied predictions, as described above for the handling of individual
metrics.

Hyperparameter tuning of cell type annotation algorithms

There were five adjustable parameters in our cell type annotation algorithm, which were each
tested for their impact on algorithm performance as follows (see Figure 3):

1. Reference set (R) of single cells used to identify the top CDGs for cluster CA. We tested
three options for this parameter: “within study”, “within tissue”, and “pan-study.” For the
“within study” reference, the mean expression of each gene in CA was compared to its
mean expression in all other cells from the same study. For the “within tissue” reference,
the mean expression of each gene in CA was compared to its mean expression in all
other cells from any study which were derived from the same tissue as CA. For the
“pan-study” reference, the mean expression of each gene in CA was compared to its
mean expression in all other cells from all other processed studies (approximately 2.5
million cells; see Supplemental File 7). We tested these options because each has its
own advantages and disadvantages. While “within study” comparisons are most
commonly performed by investigators when annotating scRNA-seq datasets and are
less prone to technical artifacts, selection of cell types prior to sequencing (e.g. by
fluorescence activated cell sorting) can lead to the dropout of important cell type defining
genes from a CDG list in this analysis workflow. For example, in a scRNA-seq study of
sorted CD8+ T cells, important cell type markers (e.g. CD3E, CD8A, CD8B) will be
ubiquitously expressed and by definition cannot be identified as CDGs for each identified
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subcluster. On the other hand, the “pan study” and “within tissue” comparisons are more
prone to technical artifacts (e.g. batch effects, differences in sequencing depth and
sample viability between studies) but are better able to preserve cell type markers in
examples like the one described above. It is important to note that the pan-study
comparison is also more likely to be adversely impacted by tissue contaminants (e.g.
extracellular RNA) than within study or within tissue comparisons. For example, highly
expressed transcripts from abundant parenchymal cells (e.g. albumin in the hepatocytes)
are often detected in other non-parenchymal cells from the same tissue. When
performing a pan-study comparison, this contamination of highly tissue specific
transcripts could lead to the incorrect identification of these genes as markers for even
the non-parenchymal cell types. However, if the cluster is compared to only other cells
from the same study or tissue (which presumably have similar levels of contaminant
gene expression), this issue can be avoided.

2. Number of CDGs used to compute GCA vector norms. We tested five options for this
parameter: 1, 3, 5, 10, and 20. This range of values was selected to mirror the typical
manual workflows utilized by investigators annotating their own datasets. In some cases
a single obvious CDG is enough to declare a cellular identity, while in other cases it is
necessary to consider the combination of several genes among the top 10 to 20 CDGs.

3. Weighting metric used in calculating GCA L2 vector norms. We tested three options for
this parameter: no weighting, FC, and log2FC. The reason for testing this parameter is
that it may be reasonable to assign more value to genes that are more strongly
overexpressed in cluster CA when attempting to annotate it. This hyperparameter tuning
is also captured in the previous section “Compute local score vector norms for each cell
type.”

4. GCA version used to calculate L2 vector norms. We tested two options for this
parameter: absolute and scaled. The scaling of GCAs was described previously, and the
raw and scaled GCAs are provided in Supplemental Files 4-5. This hyperparameter
tuning is also captured in the previous section “Compute local score vector norms for
each cell type.”

5. Metric used to rank cell type predictions. We tested three options for this parameter:
modified L0 norm rank, L2 norm rank, and composite rank. The derivation of these ranks
is described in the previous section “Rank plausible cell type annotations based on their
vector norms.”

In total, we tested 195 combinations of parameters. Note that this is fewer than the total number
of “possible” parameter combinations (3 x 5 x 3 x 2 x 3 = 270) because the weighting metric and
GCA version used (absolute vs. scaled) in calculating L2 vector norms were irrelevant for all
parameter combinations in which the modified L0 norm rank was used as the metric to rank cell
type predictions.

Performance evaluation of cell type annotation algorithms
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For each cluster CA, our algorithm outputs a table which ranks all 556 candidate cell types, from
most likely annotation to least likely annotation. We used our cell graph to map the true identity
of CA to its priority node (“true priority node”), and each candidate cell type was similarly
mapped to its priority node (“candidate priority node”). A cell type annotation was considered
correct if the true priority node was the same as the candidate priority node, and we determined
the success (or failure) of labeling the given cluster by identifying the minimum (best) rank at
which this was the case.

To evaluate the overall performance of each parameter combination across all surveyed studies,
we first determined the fraction of clusters (out of 185 total clusters) for which the correct cell
type annotation was present in the top K predictions, where K ranges from 1 to 103 (the total
number of cell type priority nodes, as defined previously). For real-world application by
investigators, we reasoned that an annotation would be most useful if the correct cell type was
given with the top prediction, and that an annotation could also be considered useful if the
correct cell type was present among the top 5 predicted cell types. To account for this definition
of performance, we generated a subset of the cumulative distribution plot for each parameter
combination, illustrating the fraction of clusters annotated correctly within a given rank (ranging
from rank 1 to rank 5; see example in Figure 3B). We then estimated the area under this curve
(denoted as AUCRanks 1-5) by calculating the average fraction of correct cluster annotations within
the top 1, 2, 3, 4, and 5 ranks (see Figure 3B). Parameter combinations which yielded the
highest fraction of correctly annotated clusters and the highest AUCRanks 1-5 were taken as the
optimal algorithm settings.

Identification of poorly characterized cell type markers

To identify potential novel or poorly characterized markers of established cell types, we
compared the mean expression (CP10K) of all genes in the defined cell type of interest to their
mean expression in all other cells from our reference dataset (see Supplemental File 7). The
cell types considered here included retinal pigment epithelial cells derived from two independent
studies [30,42] and endothelial cells derived from 31 studies [25–28,30,36,38–41,43–64].
Specifically, we calculated the FC value for each gene as described above in the “pan-study”
method for CDG identification during the cell type annotation algorithm. We also computed the
cohen’s D (d) as a measure of effect size which considers the variation in the two compared
groups. Specifically, this was calculated as d = (Mean CP10KA - Mean CP10KB) / SDpooled. The
pooled standard deviation was calculated as SDpooled = sqrt([(NA-1)xSDA

2 + (NB-1)xSDB
2] / [NA +

NB - 2]), where SDA and SDB are the standard deviations of each individual group, and NA and
NB are the number of single cells in each group. Group A corresponds to the cell type of interest,
and Group B corresponds to all other cells contained in the reference dataset. Among genes
with d > 0.5, we considered the top 50 genes (ranked by fold change) as cell type markers.

After identifying the cell type markers based on transcriptional data, we assessed the literature
evidence relating each marker (gene) to the cell type of interest by extracting the corresponding
GCAs (local scores) from Supplemental File 4. Genes were classified as having Strong (local
score ≥ 3.0), Intermediate (local score ≥1 and <3), or Weak (local score <1) association to the
cell type of interest.
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Computation of endothelial gene signatures

After identifying potential markers of endothelial cells that have not been well characterized, we
evaluated their expression levels in several datasets. To verify the given annotation of one or
more clusters in each dataset as endothelial cells, we computed an endothelial signature score
for each individual cell, defined as the geometric mean of CP10K values for a selected set of
canonical endothelial markers; that is, Endothelial Signature = (CP10KGene 1 x CP10KGene 2 x …
CP10KGene N)1/n. The five endothelial markers considered were CD31 (PECAM1), AQP1, VWF,
PLVAP, and ESAM. For liver sinusoidal endothelial cells, which are known to display a distinct
expression profile compared to other endothelial cells, we considered CLEC4G and CLEC4M as
markers rather than the previously listed set.

Statistical analysis

Statistical analyses were performed in R (version 4.0.3). To compare local scores (GCAs)
between matched and mismatched gene-cell type pairs, we computed a p-value and effect size
using the two-sample Mann Whitney U Test. P-values were calculated using the wilcox.test
function from the “stats” package (version 4.0.3), and effect sizes were calculated using the
wilcoxonR function from the “rcompanion” package (version 2.3.27). This nonparametric test
was applied because the mismatched GCAs did not show a normal distribution (Supplemental
Figures 2A-B). We also computed cohen’s D as a measure of effect size between these groups
using the cohens_d function from the “effectsize” package (version 0.4.3) in R. Finally, ROC
curves were generated (and corresponding AUC values calculated) to assess the ability of local
scores to classify matched and mismatched GCAs as described above using the “pROC”
package (version 1.17.0.1).

Results

A literature derived knowledge graph recapitulates canonical gene-cell type associations

We have previously described the application of a knowledge graph trained on over 100
million biomedical documents to contextualize the scRNA-seq expression profile of ACE2, the
entry receptor for SARS-CoV-2 [24]. Here we leverage this knowledge graph to
comprehensively quantify gene-cell type associations (GCAs) across scientific publications.
Specifically, we quantified each GCA as the local score between a single gene G and a single
cell type C [65], which captures the likelihood of the observed co-occurrence frequency of G and
C across these documents (see Methods and Figure 1A). Local scores for all such pairs are
provided in Supplemental File 4. Of note, this metric does not account for sentiment and so will
capture co-occurrences regardless of whether they denote, explicitly or implicitly, the expression
of a gene in a given cell type (Figure 1A). Despite this potential shortcoming, we hypothesized
that local scores would generally be higher for matched gene-cell type pairs (pairs of genes and
cell types in which the gene is a canonical marker for given the cell type) than for mismatched
pairs (pairs of genes and cell types in which the gene is not a canonical marker for the given cell
type).
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To test this hypothesis, we curated matched and mismatched pairs by extracting the
author-provided cluster defining genes (CDGs) that were used to classify cell types in seven
manually annotated scRNA-seq studies [25–32]. This yielded 174 matched gene-cell type pairs
(comprising 133 unique genes and 44 unique cell types) from tissues including blood, pancreas,
lung, liver, placenta, and retina (Supplemental Table 1). We found that indeed all cell types
surveyed had a strong local association with at least one of their canonical marker genes
(Figure 1B). For example, T cells, B cells, pancreatic beta cells, hepatocytes, and trophoblasts
are strongly associated with genes including CD3E, CD20, insulin, albumin, and HLA-G,
respectively (Figure 1B). Local scores between matched pairs were indeed significantly higher
than local scores between mismatched pairs (Mann Whitney p < 6.15x10-76, r = 0.24; cohen’s D
= 2.6; Figure 1C). Further, among the considered set of gene-cell type pairs, local scores were
strongly predictive of whether a gene should be considered a canonical marker for a given cell
type (AUC = 0.903; Figure 1D). We confirmed that local scores showed no predictive power
when the matched and mismatched assignments were randomly shuffled (Supplemental
Figure 3).

To confirm that these observations extend beyond the cell types and tissues captured in
the studies that we curated, we performed a similar analysis to compare local scores between
matched and mismatched gene-cell type pairs from the Panglao database of cell type markers
[33]. From this database, we extracted 2,291 matched gene-cell type pairs (comprising 94
unique cell types and 1,666 unique genes) and 154,313 mismatched gene cell pairs
(Supplemental File 6). We found that local scores for matched pairs were indeed significantly
higher than those for mismatched pairs (Mann Whitney p < 1x10-323, r = 0.17; cohen’s D = 2.79;
Supplemental Figure 4A), and that local scores robustly distinguished matched from
mismatched pairs (AUC = 0.88; Supplemental Figure 4B). We again confirmed that local
scores showed no predictive power when the matched and mismatched assignments were
randomly shuffled (Supplemental Figure 4C).

Literature associations facilitate augmented annotation of single cell RNA-seq datasets

Having demonstrated its ability to capture canonical cell type defining genes, we
hypothesized that our knowledge graph can be applied in scRNA-seq analyses to assist in
automated and unbiased cluster annotation. We thus developed an algorithm to annotate
scRNA-seq datasets which have been clustered using any method of choice (see Methods and
Figure 2). We tested this approach for its ability to classify 185 clusters from 13 previously
annotated scRNA-seq datasets from seven human tissues: pancreas, retina, blood, lung, liver,
kidney, and placenta [25–30,35–41]. This included a systematic evaluation of parameter
modifications on algorithm performance (see Methods and Figure 3).

After testing the 195 possible parameter combinations, we found that optimal algorithm
performance was obtained with the following settings: (1) use the pan-study reference to identify
CDGs, (2) consider the top 20 CDGs, (3) use scaled local scores to compute L2 norms, (4)
weight local scores by log2FC to compute L2 norms, and (5) use the L2 norm alone when
ranking cell type predictions (Figures 4A-B; Supplemental Table 2). With these parameters,
we were able to accurately categorize 123 of 185 (66%) cell types, and the correct annotation
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was among the top three or five predictions for 156 (84%) and 173 (94%) of 185 cell types,
respectively (AUCRanks1-5 = 0.83; Figure 4C; Supplemental Table 2). Generally, using fewer than
five cluster defining genes or ranking cell type predictions by the modified L0 norm were most
detrimental to algorithm performance, while the reference cell types used to compute cluster
defining genes, the scaling of GCAs, and the weighting of GCAs when calculating L2 norms had
less impact (Figures 4A-B and Figure 5).

The predicted annotations using our optimized algorithm parameters are shown for
selected studies from retina, blood, and pancreas [25,29,30,39,40] in Figures 6A-F. All retinal
cell types except for B cells were correctly classified, including retinal pigment epithelial cells,
melanocytes, and schwann cells along with tissue resident immune and stromal cells (Figures
6A-B). B cells were incorrectly classified as dendritic cells, which may reflect their shared status
as professional antigen presenting cells. That said, the prediction with the second highest rank
was indeed B cells (Figure 6B).

In the blood, the labeling of monocytes proved difficult, as both CD14+ and CD16+

monocytes were misclassified as macrophages (Figures 6C-D). This likely reflects the close
developmental and transcriptional relationships between monocytes and macrophages, as
monocytes can differentiate into macrophages upon migration from circulation into tissues [66].
The misclassification of cytotoxic T cells as NK cells is also understandable, given their shared
expression of cytolytic effector molecules and the fact that these cells often cluster together in
scRNA-seq analyses due to their transcriptional similarity (Figures 6C-D).

In the pancreas, this algorithm correctly annotated acinar cells, schwann cells,
endothelial cells, macrophages, and mast cells. Ductal cells were correctly classified as
epithelial cells, while the specific annotation of ductal cells was ranked fourth. Alpha, beta, delta,
epsilon, and gamma cells were all correctly classified as endocrine cells, with their specific
subtypes ranked shortly after this broader categorization (Figures 6E-F). The classification of
stellate cells (both quiescent and activated) as fibroblasts was deemed technically incorrect,
although stellate cells are indeed known to display myofibroblast-like properties [67]. That said,
stellate cells were the second ranked predictions for each of these two clusters (Figures 6E-F).

The predicted annotations for all other tested studies are shown in Supplemental
Figures 5-8. It was interesting to note that certain studies were more accurately labeled with
parameter settings that diverged from the overall optimized settings. For example, in one study
of the retina which contained a large population of rod photoreceptors, only three of nine
clusters were accurately labeled while several other cell types (e.g. amacrine cells, endothelial
cells, and muller glia) were incorrectly classified as rods with the optimized settings
(Supplemental Figure 8D). Amacrine cells were particularly problematic, with the correct label
receiving a rank of 19. This suggests that many cells were contaminated with rod-specific
transcripts at a high enough abundance that they dominated the CDG list when compared to all
other cells in our reference set. However, this artifact was substantially mitigated by considering
only the top 10 CDGs calculated using the “within-study” method and ranking predictions by the
composite metric. With these settings, amacrine cells, endothelial cells, and muller glia were all
annotated correctly.
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The literature knowledge graph highlights uncharacterized markers of established cell types

By contextualizing each CDG for the novelty, or lack thereof, of its association with the
given cell type, our literature knowledge graph also enables researchers to rapidly identify novel
markers of even well studied cell types. For example, we assessed the literature evidence for
the top 50 genes overexpressed in cells of the retinal pigment epithelium (RPE) relative to all
other cells in our reference dataset (Figure 7A). Several of these genes were established RPE
markers such as RPE65 and BEST1, mutations in both of which can cause retinitis pigmentosa
and other retinopathies [68,69]. Other markers showing moderate to strong literature
associations with the RPE included genes involved in vitamin A metabolism (e.g., TTR, RLBP1,
RBP1, LRAT). However, we also identified several CDGs with little or no literature association to
RPE cells, including genes encoding ion transporters (SLC6A13, CLIC6) and proteins that
modulate Wnt signaling (FRZB, SFRP5). While these Wnt modulators have been infrequently
referenced as RPE markers [70,71], and CLIC6 has been detected by proteomics in RPE tissue
and cells [72,73], the contribution of these genes to RPE function has never been explored.

Similarly, we assessed the existing literature evidence for genes overexpressed in
endothelial cells (ECs). While 24 of the top 50 genes were strongly associated with ECs (e.g.,
PECAM1, VWF, ICAM1), several other genes were poorly characterized or previously
uncharacterized endothelial markers (Figure 7B). For example, DNASE1L3 was identified as an
EC marker whereas it is canonically reported to be expressed by macrophages and dendritic
cells [74–76]. While its expression in liver sinusoidal ECs, non-sinusoidal hepatic ECs, and renal
ECs of the ascending vasa recta has been recently reported [57,77–79], we not only confirmed
expression in these populations (Supplemental Figure 9) but also identified several other
tissues in which ECs were the predominant DNASE1L3-expressing cell type, including the
adrenal gland, lung, and nasal cavity (Supplemental Figure 10). Further, the functional
significance of DNASE1L3 expression in ECs has not been explored, but it may indeed be very
relevant given the strong genetic associations connecting DNASE1L3 to the development of
anti-dsDNA antibodies and various autoimmune phenotypes including lupus [75,76,80],
systemic sclerosis [81], scleroderma [75,80], and hypocomplementemic urticarial vasculitis
syndrome [82].

Discussion

scRNA-seq has enabled the characterization of cellular heterogeneity at unprecedented
levels. Initial uptake was relatively slow due to the costs associated with these experiments, but
rapid technological advances have drastically improved the accessibility of this technique [83].
As a result, the amount of scRNA-seq data which is being generated and deposited into public
databases is likely to continue increasingly rapidly for years to come. It is imperative that
investigators are equipped to efficiently annotate and analyze these datasets such that the
insights embedded within them are not left untapped.

The cell type annotation tools developed in recent years provide excellent resources that
will assist in efforts to analyze individual datasets and to synthesize the exponentially increasing
quantity of publicly available data [6–12]. However, these methods do have intrinsic
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shortcomings, such as the requirement for the existence or generation of high quality reference
transcriptomic datasets for all cell types that may be recovered in a given scRNA-seq
experiment. By considering all cell types that have been described in the literature, our method
circumvents this need for data curation. Further, even as these tools are increasingly applied to
automate data processing pipelines, it remains preferable to perform some degree of manual
review to ensure the validity of the resultant annotations. Specifically, the quality of annotations
should minimally be assessed by determining whether a set of CDGs is biologically consistent,
per canonical knowledge, with the given cell type label. Our method is specialized to perform
this exact task.

Standard manual annotation is flawed due its inherent subjectivity and reliance on the
existing knowledge of a single investigator. These flaws can be mitigated to some degree by
“assisted” manual annotation that leverages search engines (e.g., Google, PubMed) to identify
cell types which have been reported to express the genes under consideration. However, this
process only leverages a sliver of the information contained within the biomedical literature and
would be prohibitively time consuming if scaled to the analysis of large numbers of datasets. On
the other hand, the deployment of NLP algorithms to mimic manual annotation provides a
superior alternative, enabling “augmented annotation” workflows that objectively harness the
entire knowledge graph of GCAs contained in the literature to suggest which cell types are most
strongly associated with a given set of CDGs. By integrating this approach with already existing
annotation workflows, one can rapidly assess the veracity of predicted cell type annotations and
highlight those which warrant further review by an expert.

The utility of this literature knowledge graph also extends beyond the annotation of cell
types, unlocking a new analytic workflow in the interpretation of scRNA-seq data. By its very
nature, scRNA-seq provides investigators with data at the level of gene-cell type pairs, i.e. Gene
X is expressed in Cell Type Y at Level Z. However, to date there has been no systematic and
objective method to comprehensively contextualize this data with respect to the world’s
knowledge of those same gene-cell type pairs at that point in time. To address this unmet need,
we demonstrated that our database of literature derived GCAs can be used to assess the
degree of literature evidence connecting any gene to any cell type in which its expression has
been observed by scRNA-seq. This workflow will provide investigators with the opportunity to
rapidly identify gene expression patterns which were previously unknown or poorly
characterized, and thereby prioritize candidates for directed follow-up functional studies.

For example, we found CLIC6 and DNASE1L3 as uncharacterized markers of RPE cells
and endothelial cells, respectively. Although CLIC6 was identified almost two decades ago as a
member of the chloride intracellular channel (CLIC) gene family, its function remains essentially
unknown [84,85]. Biochemical studies have demonstrated that CLIC6 interacts with dopamine
D2 receptors in the brain, but it is still unclear whether CLIC6 modulates dopamine receptor
mediated signaling or even serves as a functional chloride channel [85,86]. It is intriguing that
CLIC4, another member of the CLIC family, functions in RPE cells to promote their epithelial
morphology, maintain their attachment to the photoreceptor layer of the retina, and regulate
extracellular matrix degradation at focal adhesions [87,88]. CLIC6, on the other hand, has never
been functionally characterized in these cells despite having been detected in them by
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proteomics and immunohistochemistry [72,73,89]. Given recent evidence for structural
conservation between CLIC6 and other CLIC family proteins [90], we suggest that directed
studies to analyze CLIC6 function in RPE cells are warranted.

DNASE1L3 is an extracellular DNase which is historically reported to be released
specifically by macrophages and dendritic cells [74,75,80]. Our analysis challenges this canon,
insteading highlighting this gene as an uncharacterized marker of endothelial cells (in addition to
myeloid cells) in tissues including liver, kidney, lung, nasal cavity, thyroid, and adrenal cortex.
Interestingly, DNASE1L3 is genetically associated with multiple autoimmune phenotypes
including systemic lupus erythematosus (SLE) [75,80], systemic sclerosis [81], and scleroderma
[75,80]. Loss of function mutations in DNASE1L3 are responsible for a familial form of SLE
which is characterized by the presence of anti-dsDNA antibodies and lupus nephritis [76], and
mechanistic studies have directly implicated DNASE1L3 deficiency as a cause of anti-dsDNA
antibody development [75]. Further, DNASE1L3 mutations have been reported to cause
hypocomplementemic urticarial vasculitis syndrome, an inflammatory disease of the vascular
system which often progresses to SLE [82]. Given these genetic associations, we hypothesize
that the production of DNASE1L3 by ECs may protect against the development of
autoantibodies and outright autoimmune disease. While CD11c+ cells are responsible for about
80% of serum DNASE1L3 activity in mice [75], it is plausible that ECs contribute significantly to
the remaining 20% or that EC-derived DNASE1L3 acts in a more localized fashion. Indeed, the
localized activity of other EC products, such as tissue-type plasminogen activator (t-PA) and von
Willebrand factor (VWF), are known to regulate clot formation specifically at sites of damaged
endothelium. Perhaps the activity of DNASE1L3 in the close vicinity of renal, hepatic, and
pulmonary endothelial cells protects against the development of nephritis and other forms of
vasculitis at these sites.

There are several limitations of this study. First, the GCAs which are used to perform
cluster annotation simply measure literature proximity of a gene and a cell type without
accounting for the sentiment surrounding this co-occurrence. The algorithm would be improved
by training NLP models which can distinguish between co-occurrences that denote a gene
expression relationship versus those that are ambiguous, spurious, or explicitly deny a gene
expression relationship. Second, annotation using literature derived associations inherently has
limited utility in the recognition of novel cell types and cell types which are infrequently
discussed in literature. Third, the granularity derived from this method is lower than that derived
from many other existing pipelines which use reference transcriptomes of defined cellular
subsets to automate the annotation process.

With these shortcomings in mind, we highlight that this should be viewed as a tool for
augmenting current annotation workflows rather than as a standalone automated pipeline to
replace other methods. In the future, formal integration of our literature based method with
data-driven annotation tools will reduce the time and effort required for manual review of
automated annotations. Further, we emphasize that the utility of quantified literature
associations in scRNA-seq analyses extends beyond cluster annotation, enabling for the first
time a rapid, systematic, and unbiased novelty assessment of all observed gene expression
patterns from any previously or newly generated dataset.
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Taken together, we have presented a new framework for the processing and
interpretation of scRNA-seq datasets. Using a literature derived knowledge graph, we
comprehensively quantified the strength of associations between human genes and cell types.
These associations robustly capture relationships between many cell types and their canonical
gene markers, and accordingly they can be used to annotate clusters of distinct cell types
identified by scRNA-seq. Finally, these associations can rapidly contextualize lists of CDGs and
differentially expressed genes, enabling investigators to identify and prioritize uncharacterized
cell type markers for further exploration.
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Figure 1. Literature derived gene-cell type associations (GCAs) capture manually curated
markers of a variety of hematopoietic, epithelial, and mesenchymal cells. (A) Schematic
description of the computation of local scores to quantify associations between genes and cell
types across biomedical literature. The local score is a proximity metric which quantifies the
likelihood of the observed co-occurrence frequency of two terms within 50 words of each other.
In the context of genes and cell types, some sentences with co-occurrences state or imply that a
gene is expressed in a particular cell type (denoted by green check mark), while other such
sentences do not (denoted by red “X”). (B) Heatmap depicting the pairwise local scores
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between cell types and corresponding cell type-defining genes. These genes and cell types
were extracted from a set of scRNA-seq datasets which were previously published and
manually annotated. A “+” indicates a matched gene-cell type pair (i.e. genes which have been
used to define the corresponding cell type in prior scRNA-seq datasets). (C) Boxplot showing
the distribution of local scores (GCAs) between matched (n = 174) and mismatched (n = 5,678)
gene-cell type pairs. The difference between these groups was assessed by calculating the
Mann Whitney test p-value and effect size (r), along with the cohen’s D effect size. (D) Receiver
operating characteristic (ROC) analysis demonstrating the ability of literature based GCAs to
classify these manually curated matched versus mismatched gene-cell type pairs. The AUC was
calculated as 0.904, and the sensitivity and specificity using a local score threshold of 3 are
indicated in red.
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Figure 2. Schematic summary of the approach to leverage the literature knowledge graph
to augment the annotation of cell type clusters in scRNA-seq datasets. This illustration
presents the example of predicting the annotation of one cluster (B cells) from a previously
published scRNA-seq dataset of the human kidney [36]. After clustering a new scRNA-seq
dataset (step 1), we compute the top N cluster defining genes for a given cluster CA relative to a
defined set of reference cells (steps 2-3). The GCAs between each of these top N genes and all
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candidate cell types are computed, and the L0 and L2 norms are computed to summarize the
level of literature evidence connecting these CDGs to each cell type. Candidate cell types are
ranked by these norms, and the cell type showing the strongest association to the set of CDGs
is selected as the most likely annotation for cluster CA. Note that only three candidate cell types
are shown here for simplicity, but there were actually over 500 cell types considered (which
mapped to 103 cell type priority nodes).
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Figure 3. Hyperparameters tested for cluster annotation and schematic of algorithm
performance evaluation. (A) Hyperparameters tested for each step of the cluster annotation
algorithm, as described in Figure 2. The parameters that yielded optimal annotation
performance are highlighted in orange. To compute CDGs, we compared the mean expression
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of all genes in the cluster of interest to their mean expression in a set of reference cells.
Reference cells were taken as all other cells from the corresponding study, all other cells from
the corresponding tissue, or all other cells from all processed studies. After computing fold
change values for each gene, we tested the selection of 1, 3, 5, 10, and 20 genes for the
downstream annotation steps. We tested the use of absolute and scaled versions of GCAs
(local scores between genes and cell types). To compute L2 norms, we tested the weighting of
each GCA term with the corresponding fold change and log2FC values to increase the
contribution of the strongest CDGs to the cell type prediction. To rank all candidate cell types,
we considered a modified L0 norm (number of genes with GCA > 3 to the given cell type), an L2
norm, and a composite metric that considers both the modified L0 and L2 norms. (B) For each
parameter combination (n = 195), a cumulative distribution plot was generated to illustrate the
fraction of clusters which were correctly predicted within a given rank, ranging from rank 1 to
rank 5. To summarize the performance we considered the number of clusters which were
annotated correctly (corresponding to the red bar at Rank Threshold = 1), and we estimated the
area under this curve (denoted as AUCRanks 1-5) as the average fraction of clusters for which the
correct annotation was present among the top 1, 2, 3, 4, and 5 predictions.
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Figure 4. Performance evaluation of 195 parameter combinations for literature based
augmented cell type annotation. (A) Each curve corresponds to one combination of
parameters, where the parameters include: (1) cells used as reference to compute CDGs
(encoded by line type and dot shape), (2) number of CDGs considered (encoded by the vertical
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facet variable), (3) the GCA version used (absolute or scaled; encoded by color), (4) the
weighting method used in computed L2 norms of GCAs (also encoded by color); and (5) the
metric by which candidate cell types were ranked to predict cluster identify (encoded by the
horizontal facet variable). Each curve is generated from five points, specifically the percentage
of clusters for which the correct annotation was present among the top 1, 2, 3, 4, or 5
predictions. (B) Performance summary of all 195 tested parametric combinations, considering
the fraction of clusters which were annotated correctly (i.e. the top-ranked prediction
corresponded to the true cluster label) versus the AUCRanks 1-5 metric. The metrics are highly,
although not perfectly, correlated. The parameter combination which showed the highest fraction
of correct annotations and the highest AUCRanks 1-5 was taken as the optimal approach; the
optimized parameters are shown in the purple inset. (C) Summary of algorithm performance
with the optimized parameters as described in (B): reference - all cells; number of CDGs - 20;
local score version - scaled; weighting metric: log2FC; ranking method: L2 norm. The plot
illustrates the fraction of clusters which were annotated correctly within the top 1, 2, 3, 4, or 5
ranks. The AUCRanks 1-5 metric was estimated as the average of these five values.
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Figure 5. Effects of altering individual parameters on cluster annotation algorithm. Plots
shown are the cumulative distribution functions of the AUCRanks 1-5 metric. Each panel illustrates
the effect of modifying a single parameter on the algorithm performance. (A) Modifying the
source of reference cells used to compute CDGs for downstream analysis has a limited impact
on performance, with the pan-study and within study options slightly outperforming the within
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tissue option. (B) Modifying the number of cluster defining genes considered has a strong
impact on performance, with fewer genes (e.g. 1, 3, or 5) showing considerably worse
performance. (C) Modifying the local score version used (absolute or scaled) has a mixed effect,
with scaled GCAs contributing more of the worst-performing (left tail) and best-performing (right
tailed) parameter combinations. Note that only the parameter combinations which used an L2
norm-based rank or the composite rank were included in this analysis, as only absolute GCAs
were considered for the modified L0 norm-based ranking. (D) Modifying the weighting method
for calculating the L2 norm has minimal impact on performance, with weighting by either fold
change (FC) or log2FC slightly outperforming the unweighted method. (E) Modifying the final
ranking method has a strong impact on performance, with the modified L0 rank and L2-based
rank showing the worst and best performances, respectively.
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Figure 6. Comparison of true and predicted annotations for all cell types in three selected
studies from retina, blood, and pancreas. True cluster annotations shown in the panels on
the left (A, C, E) are derived from publicly deposited metadata and manual review. Predicted
annotations on the right (B, D, F) are derived from our literature based cell type annotation
algorithm, with the optimized parameter settings as described in the text (pan-study reference,
top 20 CDGs, scaled local score, weighting by log2FC, and rank by L2 norm). Correct
annotations (annotations in which the true priority node exactly matches the mapped priority
node for the top prediction) are shown in green, and incorrect annotations are shown in red. For
each incorrect annotation, the rank of the correct prediction (out of 103 candidate cell type
priority nodes) is shown in parentheses. The datasets selected for display here were all
previously published in separate studies [29,30,39,40,55].
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Figure 7. Literature derived GCAs contextualize differentially expressed genes,
highlighting poorly characterized markers of established cell types. (A) Transcriptional
markers of retinal pigment epithelial (RPE) cells were identified by comparing the mean
expression of all genes in RPE cells from two scRNA-seq studies [30,42] to their expression in
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all other cells from our reference datasets (see Supplemental File 7). The top 50 markers
(ranked by fold change) were classified for their level of literature association to retinal pigment
epithelial cells as follows: strong: Local Score ≥ 3; intermediate: Local Score ≥ 1 and < 3; weak:
Local Score < 1. All of the genes with strong or intermediate evidence are highlighted by name,
as are a subset of the genes with weak evidence that may warrant further evaluation. (B) The
same process was applied as in (A), but for endothelial cells from 31 studies
[25–28,30,36,38–41,43–64] rather than for RPE cells. Here, all of the genes with strong or weak
evidence are highlighted by name.
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Tables
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Tissue Study Title Reference

Blood
Immune Cell Atlas: Blood Mononuclear Cells (2 donors,
2 sites) Immune Cell Atlas

Blood
A single-cell atlas of the peripheral immune response in
patients with severe COVID-19 PMID 32514174

Kidney Spatiotemporal immune zonation of the human kidney PMID 31604275

Liver
Resolving the fibrotic niche of human liver cirrhosis at
single-cell level PMID 31597160

Liver
A human liver cell atlas reveals heterogeneity and
epithelial progenitors. PMID 31292543

Lung
A cellular census of human lungs identifies novel cell
states in health and in asthma PMID 31209336

Lung A single-cell atlas of the human healthy airways PMID 32726565

Pancreas
De Novo Prediction of Stem Cell Identity using
Single-Cell Transcriptome Data PMID 27345837

Pancreas
Single-Cell Transcriptome Profiling of Human Pancreatic
Islets in Health and Type 2 Diabetes PMID 27667667

Pancreas
A Single-Cell Transcriptome Atlas of the Human
Pancreas PMID 27693023

Placenta
Single-cell reconstruction of the early maternal-fetal
interface in humans PMID 30429548

Retina

Single-cell transcriptomic atlas of the human retina
identifies cell types associated with age-related macular
degeneration PMID 31653841

Retina

Single-cell transcriptomics of the human retinal pigment
epithelium and choroid in health and macular
degeneration. PMID 31712411

Table 1. List of studies that were used to test the cluster annotation algorithm. The
columns indicate (1) the tissue from which cells were derived in the study, (2) the title of the
published study or dataset, and (3) the reference for the study [25,27–30,35–41]. The three
pancreas datasets were integrated for one single analysis of cluster annotation.
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Supplemental Figures
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Supplemental Figure 1. Distribution of maximum GCAs for all 556 candidate cell types.
For each candidate cell type (n = 556), the maximum GCA (local score between any human
protein-coding gene and the given cell type) was extracted from Supplemental File 3. This
distribution shows that the maximum GCA varies substantially by cell type (range 3.00 - 12.54),
and so we also scaled these values to range from 0 to 1 for each cell type (see Supplemental
File 4). Both absolute and scaled GCAs were tested for their utility in cluster annotation.
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Supplemental Figure 2. Distribution of gene-cell type local scores (GCAs) between
matched and mismatched pairs. A “matched” pair corresponds to (A) a gene which was used
to define a cell type in prior scRNA-seq analyses and its corresponding cell type, or (B) a gene
which are documented as canonical human cell type markers in the Panglao database and its
corresponding cell type [33]. In each case, after obtaining the set of matched pairs, all other
possible gene-cell type combinations (i.e. all other pairwise combinations of these genes and
cell types) were considered “mismatched” pairs. The distributions here show that these local
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scores do not follow a normal distribution, and so we used nonparametric tests to assess the
difference between them.
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Supplemental Figure 3. Distribution of AUC values from ROC analysis of GCA-based
classification of manually curated gene-cell type pairs with randomly shuffled matched
and mismatched assignments. A set of matched gene cell-type pairs was manually curated,
and the complement pairs were designated as mismatched. After performing an ROC analysis
to determine the classification power of GCAs in discriminating matched from mismatched
gene-cell type pairs, we performed 10,000 iterations of this ROC analysis with random shuffling
of the matched and mismatched labels. This histogram shows the distribution of the 10,000
AUC values obtained from these analyses.
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Supplemental Figure 4. Literature based GCAs distinguish matched from mismatched
gene-cell type pairs derived from the Panglao database of cell type markers. (A) Boxplot
and violin plot showing the distribution of local scores (GCAs) between matched (n = 2,291) and
mismatched (n = 154,313) gene-cell type pairs. The difference between these groups was
assessed by calculating the Mann Whitney test p-value and effect size (r), along with the
cohen’s D effect size. (B) Receiver operating characteristic (ROC) analysis demonstrating the
ability of literature based GCAs to classify matched versus mismatched gene-cell type pairs.
The AUC was calculated as 0.877, and the sensitivity and specificity at specific local score
thresholds are indicated in red. (C) Distribution of AUC values from 10,000 repeats of the
analysis in (B), where the matched and mismatched labels were randomly shuffled prior to
performing the ROC analysis. As expected, GCAs do not show any classification power when
the labels are randomly assigned.
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Supplemental Figure 5. Comparison of true and predicted annotations for all cell types
from two scRNA-seq studies of the respiratory tract (lung and nasal cavity). True cluster
annotations shown in the panels on the left (A, C) are derived from publicly deposited metadata
and manual review. Predicted annotations on the right (B, D) are derived from our literature
based cell type annotation algorithm, with the optimized parameter settings as described in the
text (pan-study reference, top 20 CDGs, scaled local score, weighting by log2FC, and rank by
L2 norm). Correct annotations (annotations in which the true priority node exactly matches the
mapped priority node for the top prediction) are shown in green, and incorrect annotations are
shown in red. For each incorrect annotation, the rank of the correct prediction (out of 103
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candidate cell type priority nodes) is shown in parentheses. The datasets selected for display
here were previously published in separate studies [26,38].
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Supplemental Figure 6. Comparison of true and predicted annotations for all cell types
from scRNA-seq studies of the placenta and peripheral blood. True cluster annotations
shown in the panels on the left (A, C) are derived from publicly deposited metadata and manual
review. Predicted annotations on the right (B, D) are derived from our literature based cell type
annotation algorithm, with the optimized parameter settings as described in the text (pan-study
reference, top 20 CDGs, scaled local score, weighting by log2FC, and rank by L2 norm). Correct
annotations (annotations in which the true priority node exactly matches the mapped priority
node for the top prediction) are shown in green, and incorrect annotations are shown in red. For
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each incorrect annotation, the rank of the correct prediction (out of 103 candidate cell type
priority nodes) is shown in parentheses. The datasets selected for display here were previously
published in separate studies [28,29].
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Supplemental Figure 7. Comparison of true and predicted annotations for all cell types
from two scRNA-seq studies of the human liver. True cluster annotations shown in the
panels on the left (A, C) are derived from publicly deposited metadata and manual review.
Predicted annotations on the right (B, D) are derived from our literature based cell type
annotation algorithm, with the optimized parameter settings as described in the text (pan-study
reference, top 20 CDGs, scaled local score, weighting by log2FC, and rank by L2 norm). Correct
annotations (annotations in which the true priority node exactly matches the mapped priority
node for the top prediction) are shown in green, and incorrect annotations are shown in red. For
each incorrect annotation, the rank of the correct prediction (out of 103 candidate cell type
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priority nodes) is shown in parentheses. The datasets selected for display here were previously
published in separate studies [27,37].
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Supplemental Figure 8. Comparison of true and predicted annotations for all cell types
from scRNA-seq studies of the kidney and retina. True cluster annotations shown in the
panels on the left (A, C) are derived from publicly deposited metadata and manual review.
Predicted annotations on the right (B, D) are derived from our literature based cell type
annotation algorithm, with the optimized parameter settings as described in the text (pan-study
reference, top 20 CDGs, scaled local score, weighting by log2FC, and rank by L2 norm). Correct
annotations (annotations in which the true priority node exactly matches the mapped priority
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node for the top prediction) are shown in green, and incorrect annotations are shown in red. For
each incorrect annotation, the rank of the correct prediction (out of 103 candidate cell type
priority nodes) is shown in parentheses. The datasets selected for display here were previously
published in separate studies [36,41].

46

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.01.438124doi: bioRxiv preprint 

https://paperpile.com/c/rssi5b/HX4f+eq40
https://doi.org/10.1101/2021.04.01.438124
http://creativecommons.org/licenses/by/4.0/


Supplemental Figure 9. Expression of DNASE1L3 in endothelial cell populations from the
kidney and liver. In each panel, the UMAP plot on the far left displays the clusters colored by
their cell type annotations; the middle feature plot displays the expression level of a gene
signature comprised of five canonical endothelial markers (CD31, AQP1, VWF, PLVAP, and
ESAM) or two sinusoidal endothelial cell markers (CLEC4G and CLEC4M); and the far right
feature plot displays the expression level of DNASE1L3, which overlaps with the endothelial
signatures in each case. The data is derived from (A) kidney [36] and (B) liver [27].
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Supplemental Figure 10. Expression of DNASE1L3 in endothelial cells from adrenal
gland, lung, and nasal cavity. In each panel, the UMAP plot on the far left displays the clusters
colored by their cell type annotations; the middle feature plot displays the expression level of a
gene signature comprised of five canonical endothelial markers (CD31, AQP1, VWF, PLVAP,
and ESAM); and the far right feature plot displays the expression level of DNASE1L3, which
overlaps with the endothelial signature in each case. The data is derived from (A) adrenal gland
[53], (B) lung [44], and (c) nasal cavity [51].

48

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.01.438124doi: bioRxiv preprint 

https://paperpile.com/c/rssi5b/Ai5i
https://paperpile.com/c/rssi5b/heEe
https://paperpile.com/c/rssi5b/wP44
https://doi.org/10.1101/2021.04.01.438124
http://creativecommons.org/licenses/by/4.0/


Supplemental Tables
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Cell Type Marker Gene
ACINAR CELLS PRSS1

ALPHA CELL GCG

B CELL CD37

B CELL CD79A

B CELL IGKC

B CELL MS4A1

B CELL MZB1

B CELL PTPRC

BASAL CELL KRT5

BASAL CELL TP63

BRUSH CELLS ASCL2

BRUSH CELLS DCLK1

CD4  T CELLS CCR7

CD4  T CELLS IL7R

CD4  T CELLS S100A4

CD8  T CELLS CD8A

CHOLANGIOCYTES CFTR

CHOLANGIOCYTES EPCAM

CHOLANGIOCYTES KRT17

CHOLANGIOCYTES KRT18

CHOLANGIOCYTES KRT19

CHOLANGIOCYTES SOX9

CILIATED CELLS FOXJ1

DENDRITIC CELLS CCL17

DENDRITIC CELLS CD1C

DENDRITIC CELLS CD1E

DENDRITIC CELLS CLEC10A

DENDRITIC CELLS CST3

DENDRITIC CELLS FCER1A

DUCTAL CELLS KRT19

ENDOTHELIAL CELLS ANGPT2

ENDOTHELIAL CELLS CD34

ENDOTHELIAL CELLS ICAM2

ENDOTHELIAL CELLS PECAM1

ENDOTHELIAL CELLS PLVAP
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ENDOTHELIAL CELLS VWF

EOSINOPHILS CLC

EPSILON CELLS GHRL

EXOCRINE CELLS CCN3

EXOCRINE CELLS RCAN1

EXOCRINE CELLS SPP1

EXTRAVILLOUS TROPHOBLAST HLA-E

EXTRAVILLOUS TROPHOBLAST HLA-G

FIBROBLASTS ACTA2

FIBROBLASTS COL3A1

FIBROBLASTS CYGB

FIBROBLASTS FN1

FIBROBLASTS IGF2

FIBROBLASTS POSTN

FIBROBLASTS TIMP1

GAMMA CELL PPY

GAMMA DELTA T CELLS TRDC

GAMMA DELTA T CELLS TRGC1

GAMMA DELTA T CELLS TRGC2

GOBLET CELLS CEACAM5

GOBLET CELLS MUC5AC

GOBLET CELLS S100A4

HEPATIC STELLATE CELLS CFTR

HEPATIC STELLATE CELLS EPCAM

HEPATIC STELLATE CELLS KRT17

HEPATIC STELLATE CELLS KRT18

HEPATIC STELLATE CELLS KRT19

HEPATIC STELLATE CELLS SOX9

HEPATOCYTES ALB

HEPATOCYTES APOB

HEPATOCYTES APOE

HEPATOCYTES ASGR1

HEPATOCYTES ASS1

HEPATOCYTES CYP3A4

HEPATOCYTES HP

HEPATOCYTES PCK1

HEPATOCYTES TF
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IONOCYTES CFTR

IONOCYTES SCNN1B

KUPFFER CELLS CD163

KUPFFER CELLS MAFB

KUPFFER CELLS VSIG4

LYMPHATIC ENDOTHELIAL CELLS CCL21

MACROPHAGES AIF1

MACROPHAGES APOC1

MACROPHAGES APOE

MACROPHAGES CCL18

MACROPHAGES CD14

MACROPHAGES CD163

MACROPHAGES CD68

MACROPHAGES CD74

MACROPHAGES CD86

MACROPHAGES CSF1R

MACROPHAGES HLA-DPA1

MACROPHAGES HLA-DPB1

MACROPHAGES HLA-DRA

MACROPHAGES MAFB

MACROPHAGES MARCO

MACROPHAGES S100A9

MACROPHAGES VSIG4

MAST CELLS KIT

MAST CELLS TPSAB1

MAST CELLS TPSB2

MAST CELLS TPSD1

MELANOCYTES DCT

MELANOCYTES MLANA

MELANOCYTES PMEL

MELANOCYTES TYRP1

MONOCYTES CD14

MONOCYTES FCGR3A

MONOCYTES LYZ

MONOCYTES MS4A7

NATURAL KILLER CELLS CD2

NATURAL KILLER CELLS CD9
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NATURAL KILLER CELLS FCGR3A

NATURAL KILLER CELLS GNLY

NATURAL KILLER CELLS ITGA1

NATURAL KILLER CELLS KLRB1

NATURAL KILLER CELLS NCAM1

NATURAL KILLER CELLS NKG7

NATURAL KILLER CELLS PRF1

NATURAL KILLER CELLS PTPRC

NATURAL KILLER T CELLS CD3E

NATURAL KILLER T CELLS CD8A

NATURAL KILLER T CELLS KLRB1

NATURAL KILLER T CELLS PTPRC

NEUROENDOCRINE CELLS ASCL1

NEUROENDOCRINE CELLS CHGA

NEUROENDOCRINE CELLS HOXB5

NEUROENDOCRINE CELLS INSM1

NEUTROPHILS CTSG

NEUTROPHILS CXCR2

NEUTROPHILS ELANE

NEUTROPHILS FCGR3B

NEUTROPHILS LCN2

NEUTROPHILS LILRA5

NEUTROPHILS LTF

NEUTROPHILS MMP8

NEUTROPHILS MPO

NEUTROPHILS S100A12

NEUTROPHILS S100A8

PANCREATIC BETA CELL INS

PERIVASCULAR CELLS MGP

PLATELET PPBP

RETINAL PIGMENT EPITHELIAL CELLS BEST1

RETINAL PIGMENT EPITHELIAL CELLS RPE65

SCHWANN CELLS PLP1

SINUSOIDAL ENDOTHELIAL CELLS CLEC4G

SINUSOIDAL ENDOTHELIAL CELLS CLEC4M

SINUSOIDAL ENDOTHELIAL CELLS FLT1

SMOOTH MUSCLE CELLS ACTA2
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SMOOTH MUSCLE CELLS RGS5

STELLATE CELLS ACTA2

STELLATE CELLS COL3A1

STELLATE CELLS CYGB

STELLATE CELLS FN1

STELLATE CELLS POSTN

STELLATE CELLS TIMP1

STEM CELLS CD34

STROMAL CELLS ACTA2

STROMAL CELLS COL3A1

STROMAL CELLS CYGB

STROMAL CELLS DKK1

STROMAL CELLS FN1

STROMAL CELLS IGFBP1

STROMAL CELLS IGFBP2

STROMAL CELLS IGFBP6

STROMAL CELLS POSTN

STROMAL CELLS TAGLN

STROMAL CELLS TIMP1

T CELL CCR7

T CELL CD2

T CELL CD3D

T CELL CD3E

T CELL CD8A

T CELL IL7R

T CELL KLRB1

T CELL PTPRC

T CELL S100A4

Supplemental Table 1. Manually curated cell type defining genes. 174 gene-cell type pairs
were extracted from published scRNA-seq datasets in which marker genes that were used for
manual cluster annotation were reported [25–32]. This set of gene-cell type pairs were
designated as “matched”, and all other possible pairwise combinations of these genes and cell
types were designated as “mismatched” pairs for subsequent analyses.
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Parameter Settings

% Clusters
Annotated
Correctly
(Rank 1)

% Clusters
Annotated
Correctly

(Ranks 1-2)

% Clusters
Annotated
Correctly

(Ranks 1-3)

% Clusters
Annotated
Correctly

(Ranks 1-4)

% Clusters
Annotated
Correctly

(Ranks 1-5) AUCRanks 1-5

Scaled_PanStudy_Top20CDGs
_WeightLog2FC_L2Rank 66.49 78.92 84.32 90.27 93.51 82.7

Scaled_WithinStudy_Top20CD
Gs_WeightLog2FC_L2Rank 65.95 80.54 84.32 89.19 91.89 82.38

Scaled_PanStudy_Top20CDGs
_Unweighted_L2Rank 63.78 76.22 81.08 90.27 90.81 80.43

Scaled_PanStudy_Top10CDGs
_WeightLog2FC_L2Rank 64.86 75.68 83.78 87.57 89.73 80.32

Scaled_WithinStudy_Top10CD
Gs_WeightLog2FC_L2Rank 61.08 72.43 83.78 89.19 92.43 79.78

Scaled_WithinStudy_Top20CD
Gs_Unweighted_L2Rank 62.16 77.3 81.62 87.03 89.73 79.57

Scaled_WithinTissue_Top20C
DGs_WeightLog2FC_L2Rank 61.62 76.22 82.7 87.03 89.19 79.35

Scaled_PanStudy_Top20CDGs
_WeightFC_CompositeRank 62.7 75.68 82.16 84.86 88.65 78.81

Raw_PanStudy_Top10CDGs_
WeightFC_CompositeRank 62.16 76.22 81.62 87.03 87.03 78.81

Scaled_PanStudy_Top10CDGs
_Unweighted_L2Rank 63.24 73.51 83.78 85.95 87.03 78.7

Scaled_WithinStudy_Top10CD
Gs_Unweighted_L2Rank 58.92 71.35 82.7 88.65 90.81 78.49

Raw_PanStudy_Top10CDGs_
WeightLog2FC_L2Rank 63.24 73.51 81.08 85.95 88.11 78.38

Raw_PanStudy_Top20CDGs_
WeightFC_CompositeRank 62.7 74.59 81.08 85.95 87.03 78.27

Scaled_PanStudy_Top20CDGs
_WeightFC_L2Rank 65.41 74.05 82.16 83.24 85.95 78.16

Scaled_PanStudy_Top20CDGs
_WeightLog2FC_CompositeRa

nk 58.38 75.14 81.62 87.03 88.11 78.06
Raw_PanStudy_Top10CDGs_

WeightLog2FC_CompositeRan
k 61.62 75.68 81.08 84.32 87.57 78.05

Scaled_PanStudy_Top10CDGs
_WeightLog2FC_CompositeRa

nk 62.7 73.51 81.62 83.78 88.11 77.94
Raw_PanStudy_Top10CDGs_U

nweighted_CompositeRank 61.62 76.22 80 83.24 87.57 77.73
Scaled_WithinStudy_Top20CD

Gs_WeightFC_L2Rank 60 72.97 82.16 85.41 88.11 77.73
Raw_WithinTissue_Top10CDG

s_WeightFC_L2Rank 60.54 74.59 80.54 84.86 87.57 77.62
Raw_WithinTissue_Top20CDG

s_WeightFC_L2Rank 60.54 74.59 80 83.78 89.19 77.62

Raw_PanStudy_Top20CDGs_ 62.16 72.97 80 84.86 87.57 77.51
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WeightFC_L2Rank

Scaled_PanStudy_Top10CDGs
_WeightFC_CompositeRank 62.16 74.59 79.46 83.78 87.57 77.51

Scaled_WithinTissue_Top20C
DGs_WeightFC_L2Rank 61.08 71.89 80.54 85.41 88.65 77.51

Scaled_WithinStudy_Top5CDG
s_Unweighted_L2Rank 60 72.43 80 86.49 88.65 77.51

Scaled_WithinTissue_Top10C
DGs_WeightLog2FC_L2Rank 60 70.81 81.08 85.95 89.19 77.41
Scaled_WithinTissue_Top20C

DGs_Unweighted_L2Rank 60.54 74.59 80.54 84.86 86.49 77.4
Scaled_WithinStudy_Top10CD
Gs_WeightFC_CompositeRank 61.08 72.43 78.92 85.95 88.11 77.3
Scaled_WithinStudy_Top10CD
Gs_WeightLog2FC_Composite

Rank 61.08 71.89 80 86.49 87.03 77.3
Scaled_WithinStudy_Top10CD
Gs_Unweighted_CompositeRa

nk 62.16 71.89 78.92 85.95 87.03 77.19
Raw_WithinStudy_Top5CDGs_

Unweighted_L2Rank 57.84 71.89 82.16 85.41 88.65 77.19
Scaled_WithinStudy_Top5CDG

s_WeightLog2FC_L2Rank 61.08 70.81 81.08 85.41 87.03 77.08
Raw_PanStudy_Top10CDGs_

WeightFC_L2Rank 59.46 71.89 81.08 85.41 87.57 77.08
Scaled_WithinStudy_Top10CD

Gs_WeightFC_L2Rank 56.76 71.89 81.62 85.41 89.73 77.08
Scaled_PanStudy_Top20CDGs
_Unweighted_CompositeRank 59.46 72.43 81.08 85.41 85.95 76.87
Raw_WithinTissue_Top10CDG

s_WeightLog2FC_L2Rank 58.92 74.59 80 83.24 87.57 76.86
Raw_PanStudy_Top10CDGs_U

nweighted_L2Rank 62.16 73.51 78.92 82.7 86.49 76.76
Scaled_WithinStudy_Top20CD
Gs_WeightFC_CompositeRank 61.08 71.89 78.92 84.86 87.03 76.76
Raw_WithinStudy_Top10CDGs

_WeightLog2FC_L2Rank 57.84 74.05 80 83.78 88.11 76.76
Scaled_WithinStudy_Top5CDG
s_WeightFC_CompositeRank 60 71.89 78.92 85.41 87.03 76.65
Raw_PanStudy_Top5CDGs_W

eightLog2FC_L2Rank 58.92 71.35 80.54 85.95 86.49 76.65
Scaled_WithinTissue_Top20C
DGs_WeightFC_CompositeRa

nk 60.54 71.89 80 83.78 86.49 76.54
Scaled_WithinStudy_Top20CD
Gs_WeightLog2FC_Composite

Rank 59.46 68.65 80.54 85.95 87.57 76.43
Scaled_WithinStudy_Top20CD
Gs_Unweighted_CompositeRa

nk 60 68.65 79.46 85.95 87.57 76.33
Scaled_PanStudy_Top10CDGs
_Unweighted_CompositeRank 62.16 71.89 78.92 83.24 85.41 76.32
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Raw_WithinStudy_Top5CDGs_
WeightLog2FC_L2Rank 56.76 70.81 81.08 84.86 88.11 76.32

Raw_WithinStudy_Top10CDGs
_WeightFC_CompositeRank 61.08 70.81 78.92 82.16 88.11 76.22

Raw_WithinStudy_Top10CDGs
_WeightLog2FC_CompositeRa

nk 62.16 70.81 78.38 82.7 86.49 76.11
Scaled_PanStudy_Top10CDGs

_WeightFC_L2Rank 61.62 71.89 78.38 82.7 85.95 76.11
Raw_WithinStudy_Top20CDGs

_WeightFC_L2Rank 60 73.51 78.38 82.16 86.49 76.11
Scaled_WithinTissue_Top10C

DGs_WeightLog2FC_Composit
eRank 62.16 69.19 78.38 83.24 87.03 76

Raw_WithinStudy_Top10CDGs
_Unweighted_CompositeRank 62.16 71.89 78.38 82.16 85.41 76
Raw_WithinStudy_Top10CDGs

_WeightFC_L2Rank 58.92 73.51 79.46 82.16 85.95 76
Raw_PanStudy_Top5CDGs_Un

weighted_L2Rank 58.38 71.35 79.46 84.86 85.95 76
Raw_WithinStudy_Top5CDGs_
Unweighted_CompositeRank 57.84 71.35 79.46 83.78 87.57 76
Scaled_WithinTissue_Top20C

DGs_Unweighted_CompositeR
ank 60 71.89 78.38 83.24 85.95 75.89

Scaled_WithinTissue_Top10C
DGs_Unweighted_L2Rank 56.22 70.81 80 85.41 87.03 75.89

Scaled_PanStudy_Top5CDGs_
WeightLog2FC_L2Rank 61.62 70.27 80 81.08 85.41 75.68

Scaled_WithinTissue_Top20C
DGs_WeightLog2FC_Composit

eRank 60 70.81 78.38 83.78 85.41 75.68
Raw_WithinStudy_Top5CDGs_
WeightLog2FC_CompositeRan

k 57.3 70.81 79.46 82.7 88.11 75.68
Scaled_WithinTissue_Top10C

DGs_Unweighted_CompositeR
ank 61.62 68.65 77.84 83.78 85.95 75.57

Raw_WithinTissue_Top10CDG
s_WeightFC_CompositeRank 61.08 70.81 76.76 83.24 85.41 75.46
Raw_PanStudy_Top20CDGs_

WeightLog2FC_CompositeRan
k 60.54 72.97 78.38 81.08 84.32 75.46

Raw_WithinStudy_Top5CDGs_
WeightFC_CompositeRank 57.3 71.35 80 82.7 85.95 75.46

Raw_WithinTissue_Top20CDG
s_WeightFC_CompositeRank 61.62 73.51 77.84 79.46 84.32 75.35
Raw_WithinTissue_Top10CDG
s_WeightLog2FC_CompositeR

ank 61.08 70.81 77.3 81.62 85.95 75.35
Scaled_WithinTissue_Top10C
DGs_WeightFC_CompositeRa

nk 61.08 68.65 76.22 84.32 86.49 75.35
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Raw_WithinTissue_Top20CDG
s_WeightLog2FC_L2Rank 60 75.14 78.92 80 82.7 75.35

Scaled_WithinStudy_Top5CDG
s_WeightLog2FC_CompositeR

ank 58.92 70.81 75.14 84.86 87.03 75.35
Scaled_WithinStudy_Top5CDG

s_WeightFC_L2Rank 56.76 70.27 78.92 83.24 87.57 75.35
Raw_PanStudy_Top20CDGs_

WeightLog2FC_L2Rank 61.08 71.35 77.3 81.62 84.86 75.24
Scaled_WithinStudy_Top5CDG
s_Unweighted_CompositeRan

k 59.46 71.35 75.68 82.7 87.03 75.24
Scaled_WithinTissue_Top10C

DGs_WeightFC_L2Rank 56.22 70.27 77.84 84.32 87.57 75.24
Raw_WithinStudy_Top20CDGs

_WeightLog2FC_L2Rank 57.84 71.35 78.38 83.24 84.86 75.13
Raw_WithinTissue_Top10CDG

s_Unweighted_L2Rank 57.84 71.89 78.38 81.08 85.95 75.03
Raw_PanStudy_Top5CDGs_W

eightFC_CompositeRank 57.3 69.73 78.92 83.24 84.86 74.81
Raw_WithinTissue_Top10CDG
s_Unweighted_CompositeRan

k 60.54 70.27 76.22 81.62 84.86 74.7
Raw_WithinStudy_Top10CDGs

_Unweighted_L2Rank 57.3 71.89 78.38 81.62 84.32 74.7
Raw_PanStudy_Top20CDGs_U

nweighted_CompositeRank 59.46 71.89 78.38 80 82.7 74.49
Scaled_PanStudy_Top5CDGs_

WeightFC_CompositeRank 58.92 69.73 77.84 81.62 84.32 74.49
Raw_PanStudy_Top5CDGs_W

eightFC_L2Rank 55.14 69.73 78.38 83.78 85.41 74.49
Raw_PanStudy_Top5CDGs_W
eightLog2FC_CompositeRank 57.84 68.65 78.38 82.7 84.32 74.38
Scaled_PanStudy_Top5CDGs_

Unweighted_L2Rank 59.46 69.19 77.84 80.54 84.32 74.27
Raw_PanStudy_Top5CDGs_Un

weighted_CompositeRank 57.84 69.73 78.38 81.62 83.78 74.27
Raw_WithinTissue_Top5CDGs

_WeightLog2FC_L2Rank 55.14 70.27 77.3 81.62 85.95 74.06
Raw_WithinStudy_Top5CDGs_

WeightFC_L2Rank 53.51 71.35 78.38 82.7 84.32 74.05
Raw_WithinTissue_Top20CDG
s_WeightLog2FC_CompositeR

ank 60 73.51 76.22 78.92 81.08 73.95
Scaled_PanStudy_Top5CDGs_
WeightLog2FC_CompositeRan

k 57.84 68.11 77.3 81.62 84.86 73.95
Raw_WithinStudy_Top20CDGs

_WeightFC_CompositeRank 57.84 68.11 77.84 81.08 83.78 73.73
Raw_WithinTissue_Top20CDG
s_Unweighted_CompositeRan

k 60.54 72.97 75.68 77.84 81.08 73.62
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Raw_WithinTissue_Top5CDGs
_WeightFC_L2Rank 55.14 70.81 76.76 80 85.41 73.62

Raw_WithinTissue_Top20CDG
s_Unweighted_L2Rank 58.92 72.43 77.3 78.38 80.54 73.51

Scaled_PanStudy_Top5CDGs_
Unweighted_CompositeRank 57.84 67.57 76.76 81.08 83.78 73.41

Raw_WithinTissue_Top5CDGs
_Unweighted_L2Rank 55.14 69.19 76.76 80 85.95 73.41

Raw_WithinStudy_Top20CDGs
_WeightLog2FC_CompositeRa

nk 58.38 68.65 76.22 79.46 83.24 73.19
Raw_WithinStudy_Top3CDGs_

WeightLog2FC_L2Rank 52.97 71.35 77.84 81.08 82.7 73.19
Raw_PanStudy_Top20CDGs_U

nweighted_L2Rank 57.84 70.27 76.22 78.92 82.16 73.08
Raw_PanStudy_Top3CDGs_Un

weighted_L2Rank 52.43 67.57 77.84 83.24 84.32 73.08
Raw_WithinStudy_Top20CDGs

_Unweighted_L2Rank 58.38 69.73 76.22 79.46 81.08 72.97
Raw_PanStudy_Top3CDGs_W

eightLog2FC_L2Rank 51.89 68.11 77.3 82.7 84.86 72.97
Scaled_PanStudy_Top5CDGs_

WeightFC_L2Rank 57.3 65.95 75.68 81.08 83.78 72.76
Raw_WithinStudy_Top20CDGs
_Unweighted_CompositeRank 58.38 68.65 75.14 78.38 82.7 72.65
Scaled_WithinTissue_Top5CD

Gs_WeightLog2FC_L2Rank 54.59 64.86 77.3 81.08 85.41 72.65
Raw_PanStudy_Top3CDGs_Un

weighted_CompositeRank 54.05 65.95 77.84 82.16 83.24 72.65
Raw_WithinTissue_Top3CDGs
_WeightLog2FC_CompositeRa

nk 52.97 66.49 76.76 83.24 83.78 72.65
Raw_WithinTissue_Top5CDGs
_WeightFC_CompositeRank 54.59 70.27 74.59 78.92 84.32 72.54

Raw_PanStudy_Top3CDGs_W
eightLog2FC_CompositeRank 54.05 66.49 77.3 81.62 83.24 72.54
Raw_WithinTissue_Top3CDGs
_Unweighted_CompositeRank 52.97 67.03 76.76 82.16 83.78 72.54
Raw_WithinTissue_Top3CDGs

_WeightLog2FC_L2Rank 52.43 68.65 76.76 81.08 83.24 72.43
Raw_WithinTissue_Top5CDGs
_WeightLog2FC_CompositeRa

nk 54.05 68.11 74.05 80.54 84.86 72.32
Scaled_WithinTissue_Top5CD

Gs_Unweighted_L2Rank 54.05 64.86 75.68 81.08 85.41 72.22
Raw_WithinStudy_Top3CDGs_

Unweighted_L2Rank 52.43 69.73 76.76 80 82.16 72.22
Raw_WithinTissue_Top3CDGs

_Unweighted_L2Rank 51.89 69.19 75.68 81.08 83.24 72.22
Raw_WithinTissue_Top5CDGs
_Unweighted_CompositeRank 54.59 67.57 73.51 79.46 85.41 72.11
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Raw_WithinStudy_Top3CDGs_
WeightLog2FC_CompositeRan

k 53.51 68.65 74.59 80 82.7 71.89
Raw_WithinStudy_Top3CDGs_

WeightFC_L2Rank 51.89 67.03 77.84 81.08 81.62 71.89
Raw_PanStudy_Top3CDGs_W

eightFC_CompositeRank 52.97 65.95 76.22 81.08 82.16 71.68
Scaled_WithinTissue_Top5CD
Gs_WeightLog2FC_Composite

Rank 54.05 63.78 73.51 81.62 84.32 71.46
Raw_WithinStudy_Top3CDGs_

WeightFC_CompositeRank 52.43 67.03 75.68 80.54 81.62 71.46
Raw_PanStudy_Top20CDGs_U

nweighted_L0Rank 55.14 67.57 75.68 77.84 80.54 71.35
Raw_WithinTissue_Top3CDGs
_WeightFC_CompositeRank 51.89 65.41 73.51 81.62 84.32 71.35

Scaled_WithinTissue_Top5CD
Gs_Unweighted_CompositeRa

nk 54.05 63.78 73.51 80 84.86 71.24
Raw_WithinStudy_Top3CDGs_
Unweighted_CompositeRank 52.97 67.57 74.05 78.92 82.16 71.13
Raw_PanStudy_Top3CDGs_W

eightFC_L2Rank 50.27 66.49 76.22 80.54 81.62 71.03
Scaled_WithinTissue_Top5CD
Gs_WeightFC_CompositeRank 53.51 62.16 72.97 80.54 84.86 70.81
Scaled_WithinTissue_Top5CD

Gs_WeightFC_L2Rank 50.81 62.7 75.68 80 83.24 70.49
Raw_WithinTissue_Top3CDGs

_WeightFC_L2Rank 49.19 67.03 74.59 77.84 83.24 70.38
Scaled_PanStudy_Top3CDGs_

WeightFC_CompositeRank 55.14 62.16 72.43 77.84 82.16 69.95
Scaled_PanStudy_Top3CDGs_
WeightLog2FC_CompositeRan

k 55.68 62.16 71.35 76.76 82.16 69.62
Scaled_WithinStudy_Top3CDG
s_WeightFC_CompositeRank 52.43 64.86 72.43 76.76 81.62 69.62

Scaled_PanStudy_Top3CDGs_
Unweighted_CompositeRank 55.68 63.24 70.27 76.22 82.16 69.51
Scaled_WithinTissue_Top3CD
Gs_WeightLog2FC_Composite

Rank 49.73 61.62 75.14 78.92 81.08 69.3
Scaled_WithinStudy_Top3CDG
s_WeightLog2FC_CompositeR

ank 50.81 65.41 72.97 76.76 80 69.19
Scaled_PanStudy_Top3CDGs_

Unweighted_L2Rank 52.43 64.32 72.43 76.22 80 69.08
Scaled_WithinTissue_Top3CD
Gs_Unweighted_CompositeRa

nk 49.19 62.16 74.05 78.92 80.54 68.97
Scaled_PanStudy_Top3CDGs_

WeightLog2FC_L2Rank 50.81 64.86 72.43 76.76 79.46 68.86
Scaled_WithinStudy_Top3CDG
s_Unweighted_CompositeRan 50.81 64.86 71.89 76.76 80 68.86
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k

Scaled_WithinTissue_Top3CD
Gs_WeightFC_CompositeRank 50.27 61.62 73.51 77.84 81.08 68.86
Raw_WithinTissue_Top20CDG

s_Unweighted_L0Rank 56.76 65.41 70.27 74.05 77.3 68.76
Scaled_WithinStudy_Top3CDG

s_WeightLog2FC_L2Rank 48.11 63.24 72.97 77.84 80 68.43
Scaled_WithinStudy_Top3CDG

s_Unweighted_L2Rank 48.11 62.16 72.97 78.38 80 68.32
Raw_WithinStudy_Top20CDGs

_Unweighted_L0Rank 55.68 63.78 68.65 74.05 75.68 67.57
Scaled_WithinTissue_Top3CD

Gs_WeightLog2FC_L2Rank 49.73 61.08 71.35 76.76 78.92 67.57
Raw_PanStudy_Top10CDGs_U

nweighted_L0Rank 50.27 63.78 70.81 75.14 77.3 67.46
Scaled_WithinStudy_Top3CDG

s_WeightFC_L2Rank 48.65 62.16 70.81 75.68 79.46 67.35
Scaled_PanStudy_Top3CDGs_

WeightFC_L2Rank 50.81 61.62 69.73 75.68 78.38 67.24
Raw_WithinStudy_Top10CDGs

_Unweighted_L0Rank 50.81 62.16 69.73 75.68 77.84 67.24
Scaled_WithinTissue_Top3CD

Gs_Unweighted_L2Rank 49.19 60.54 70.81 77.3 78.38 67.24
Raw_WithinTissue_Top10CDG

s_Unweighted_L0Rank 53.51 63.24 68.11 73.51 76.76 67.03
Scaled_WithinTissue_Top3CD

Gs_WeightFC_L2Rank 47.57 60 69.73 75.68 77.84 66.16
Raw_WithinStudy_Top1CDG_

WeightFC_CompositeRank 40 58.38 65.41 69.73 72.97 61.3
Raw_WithinStudy_Top1CDG_

WeightFC_L2Rank 40 58.38 65.41 69.73 72.97 61.3
Raw_WithinStudy_Top1CDG_

WeightLog2FC_CompositeRan
k 40 58.38 65.41 69.73 72.97 61.3

Raw_WithinStudy_Top1CDG_
WeightLog2FC_L2Rank 40 58.38 65.41 69.73 72.97 61.3

Raw_WithinStudy_Top1CDG_U
nweighted_CompositeRank 40 58.38 65.41 69.73 72.97 61.3

Raw_WithinStudy_Top1CDG_U
nweighted_L2Rank 40 58.38 65.41 69.73 72.97 61.3

Raw_WithinStudy_Top5CDGs_
Unweighted_L0Rank 36.76 54.59 65.41 69.19 71.35 59.46

Scaled_WithinStudy_Top1CDG
_WeightFC_CompositeRank 37.3 53.51 63.24 68.11 73.51 59.13

Scaled_WithinStudy_Top1CDG
_WeightLog2FC_CompositeRa

nk 37.3 53.51 63.24 68.11 73.51 59.13
Scaled_WithinStudy_Top1CDG
_Unweighted_CompositeRank 37.3 53.51 63.24 68.11 73.51 59.13
Raw_PanStudy_Top1CDG_Wei

ghtFC_CompositeRank 37.84 56.22 62.16 66.49 70.81 58.7
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Raw_PanStudy_Top1CDG_Wei
ghtLog2FC_CompositeRank 37.84 56.22 62.16 66.49 70.81 58.7

Raw_PanStudy_Top1CDG_Un
weighted_CompositeRank 37.84 56.22 62.16 66.49 70.81 58.7

Raw_PanStudy_Top1CDG_Wei
ghtFC_L2Rank 37.84 56.22 62.16 66.49 70.27 58.6

Raw_PanStudy_Top1CDG_Wei
ghtLog2FC_L2Rank 37.84 56.22 62.16 66.49 70.27 58.6

Raw_PanStudy_Top1CDG_Un
weighted_L2Rank 37.84 56.22 62.16 66.49 70.27 58.6

Scaled_PanStudy_Top1CDG_
WeightFC_CompositeRank 38.38 52.97 60.54 69.19 70.81 58.38

Scaled_PanStudy_Top1CDG_
WeightLog2FC_CompositeRan

k 38.38 52.97 60.54 69.19 70.81 58.38
Scaled_PanStudy_Top1CDG_U

nweighted_CompositeRank 38.38 52.97 60.54 69.19 70.81 58.38
Scaled_WithinStudy_Top1CDG

_WeightFC_L2Rank 35.68 51.89 62.16 67.57 72.97 58.05
Scaled_WithinStudy_Top1CDG

_WeightLog2FC_L2Rank 35.68 51.89 62.16 67.57 72.97 58.05
Scaled_WithinStudy_Top1CDG

_Unweighted_L2Rank 35.68 51.89 62.16 67.57 72.97 58.05
Raw_PanStudy_Top5CDGs_Un

weighted_L0Rank 40 50.27 62.16 67.03 69.19 57.73
Raw_WithinTissue_Top1CDG_

WeightFC_CompositeRank 37.84 56.76 60 64.86 68.65 57.62
Raw_WithinTissue_Top1CDG_
WeightLog2FC_CompositeRan

k 37.84 56.76 60 64.86 68.65 57.62
Raw_WithinTissue_Top1CDG_
Unweighted_CompositeRank 37.84 56.76 60 64.86 68.65 57.62

Raw_WithinTissue_Top1CDG_
WeightFC_L2Rank 37.84 56.76 60 64.86 67.57 57.41

Raw_WithinTissue_Top1CDG_
WeightLog2FC_L2Rank 37.84 56.76 60 64.86 67.57 57.41

Raw_WithinTissue_Top1CDG_
Unweighted_L2Rank 37.84 56.76 60 64.86 67.57 57.41

Scaled_PanStudy_Top1CDG_
WeightFC_L2Rank 37.3 49.73 58.38 67.03 69.73 56.43

Scaled_PanStudy_Top1CDG_
WeightLog2FC_L2Rank 37.3 49.73 58.38 67.03 69.73 56.43

Scaled_PanStudy_Top1CDG_U
nweighted_L2Rank 37.3 49.73 58.38 67.03 69.73 56.43

Scaled_WithinTissue_Top1CD
G_WeightFC_CompositeRank 33.51 50.81 61.62 67.03 69.19 56.43
Scaled_WithinTissue_Top1CD
G_WeightLog2FC_CompositeR

ank 33.51 50.81 61.62 67.03 69.19 56.43
Scaled_WithinTissue_Top1CD
G_Unweighted_CompositeRan

k 33.51 50.81 61.62 67.03 69.19 56.43
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Scaled_WithinTissue_Top1CD
G_WeightFC_L2Rank 30.81 48.11 59.46 65.41 68.11 54.38

Scaled_WithinTissue_Top1CD
G_WeightLog2FC_L2Rank 30.81 48.11 59.46 65.41 68.11 54.38

Scaled_WithinTissue_Top1CD
G_Unweighted_L2Rank 30.81 48.11 59.46 65.41 68.11 54.38

Raw_WithinTissue_Top5CDGs
_Unweighted_L0Rank 34.59 47.03 56.22 61.62 65.41 52.97

Raw_PanStudy_Top3CDGs_Un
weighted_L0Rank 32.43 41.62 47.03 52.97 56.76 46.16

Raw_WithinTissue_Top3CDGs
_Unweighted_L0Rank 27.57 35.68 43.24 52.43 57.3 43.24

Raw_WithinStudy_Top3CDGs_
Unweighted_L0Rank 27.57 36.22 42.7 48.11 56.76 42.27

Raw_PanStudy_Top1CDG_Un
weighted_L0Rank 10.81 20 25.41 35.14 38.92 26.06

Raw_WithinStudy_Top1CDG_U
nweighted_L0Rank 9.19 15.14 24.32 31.35 34.59 22.92

Raw_WithinTissue_Top1CDG_
Unweighted_L0Rank 8.65 14.59 20.54 27.57 31.35 20.54

Supplemental Table 2. Summary of annotation algorithm performance for all tested
parameter combinations. The “Parameter Settings” column indicates the combination of
parameters which was used to annotate clusters, including the following listed in this order: (1)
local score version (raw or scaled), (2) reference cells used to calculate CDGs (pan-study, within
tissue, or within study), (3) number of CDGs used (1, 3, 5, 10, or 20), (4) the weighting method
used calculating L2 norms (unweighted, fold change, or log2FC), and (5) the ranking metric
used (modified L0 rank, L2 rank, or composite rank). The next five columns indicate the
percentage of clusters (out of 185) for which the correct annotation was among the top-ranked
1, 2, 3, 4, or 5 predictions. The last column provides the AUCRanks 1-5 metric for each parameter
combination, which was calculated as the average of the previous five columns. The table is
sorted in descending order by AUCRanks 1-5, which was used to assess overall algorithm
performance.
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