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ABSTRACT: MicroRNAs (miRNAs, miRs) finely tune protein 
expression and target networks of 100s-1000s of genes that con-
trol specific biological processes. They are critical regulators of 
glycosylation, one of the most diverse and abundant posttransla-
tional modifications.  In recent work, miRs have been shown to 
predict the biological functions of glycosylation enzymes, leading 
to the “miRNA proxy hypothesis” which states, “if a miR drives a 
specific biological phenotype…, the targets of that miR will drive 
the same biological phenotype.” Testing of this powerful hypothe-
sis is hampered by our lack of knowledge about miR targets. Tar-
get prediction suffers from low accuracy and a high false predic-
tion rate. Herein, we develop a high-throughput experimental 
platform to analyze miR:target interactions, miRFluR. We utilize 
this system to analyze the interactions of the entire human 
miRome with beta-3-glucosyltransferase (B3GLCT), a glycosyla-
tion enzyme whose loss underpins the congenital disorder Peters’ 
Plus Syndrome.  Although this enzyme is predicted by multiple 
algorithms to be highly targeted by miRs, we identify only 27 
miRs that downregulate B3GLCT, a >96% false positive rate for 
prediction. Functional enrichment analysis of these validated 
miRs predict phenotypes associated with Peters’ Plus Syndrome, 
although B3GLCT is not in their known target network. Thus, 
biological phenotypes driven by B3GLCT may be driven by the 
target networks of miRs that regulate this enzyme, providing addi-
tional evidence for the miRNA Proxy Hypothesis.   

INTRODUCTION 

MicroRNAs (miRNAs, miRs) are small non-coding 
RNAs which fine-tune protein expression through binding mes-
senger RNA (mRNA), primarily via the 3’-untranslated region 
(3’-UTR), downregulating protein levels. They are thought to 
target networks of 100s-1000s of genes that control specific bio-
logical processes, tightening their expression range and dampen-
ing noisy expression 1, 2.  Currently, ~2700 human miRs have 
been reported, although the functions and targets of many are 
unknown. Contemporary knowledge of miR:target interactions 
relies heavily on computational tools and prediction algorithms 
such as Targetscan 3 and miRwalk 4 to identify interaction pairs. 
Only ~ 0.01% of all predicted human miR:target interactions have 
been validated to date 5. Limited studies comparing prediction to 
experimental data has estimated that between 16-63% of all pre-

dictions identify functional miR:target interactions 6, 7. However, 
these studies focused mainly on a limited set of well-known can-
cer genes and a subset of abundant and well-studied miRs, which 
may bias the analysis. To date, no study has comprehensively 
analyzed the human miRome regulation of a gene.  

miRs are emerging as critical regulators of the glycome 
8-11. Glycosylation is one of the most abundant and diverse post-
translational modifications with roles in almost every disease state 
12. However, identifying which glycosylation enzyme underlies 
which glycan epitope and concordant biology is still a barrier to 
our understanding of the glycome. Previous work from our labo-
ratory identified miR regulatory networks that control glycosyla-
tion, arguing miRs are major regulators of the glycome 9. Down-
regulation of miR targets commonly recapitulates the phenotype 
induced by a miR. We realized that this might enable us to iden-
tify biological phenotypes of specific glycogenes, a point we 
demonstrated in work by Kurcon et al. 10. In this paper, we 
showed that glycosylation enzymes targeted by the miR-200 fam-
ily, which are known to impact epithelia to mesenchymal transi-
tion (EMT) and migration, also regulate EMT and migration. This 
led us to formulate the “miRNA proxy hypothesis” which states, 
“if a miR drives a specific biological phenotype…, the targets of 
that miR will drive the same biological phenotype. Thus, miRs 
can be used to identify (by proxy) the biological functions of spe-
cific glycosylation enzymes (or other proteins).” 8 We used this 
approach to identify glycosylation enzymes controlling cell cycle, 
providing additional evidence for our hypothesis 11. Testing of 
this hypothesis and utilization of this approach to identify the 
biological functions of glycosylation enzymes requires a thorough 
knowledge of miR:target interactions. However, in our original 
work, we found that only 3 out of the 11 miR:target interactions 
identified by prediction were accurate, and discovered 4 unpre-
dicted interactions 9. The high false positive rates of prediction 
observed, coupled with significant false negatives, points to the 
need for more accurate data on miR regulation of glycosylation 
enzymes before we can test and utilize our hypothesis.   

To overcome these obstacles, we developed a system 
for the experimental mapping of miR:target interactions, the miR-
FluR high-throughput assay. This assay utilizes a genetically en-
coded fluorescent ratiometric reporter to identify miR: 3’-UTR 
interactions in a 384-well plate assay, enabling interrogation of 
the entire human miRome.  We applied this assay to mapping the 
miR regulation of beta-3-glucosyltranferase (B3GLCT). This 
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enzyme is predicted to be highly regulated. However, we show 
that B3GLCT predictions have a high false positive rate in multi-
ple algorithms (>96%), implying that prediction accuracy may be 
far worse than currently thought. Previously, we demonstrated 
that this enzyme is regulated by the miR-200 family and has a role 
in EMT 10. This was consistent with the cleft palate observed in 
Peters’ Plus Syndrome, a genetic disorder caused by loss of 
B3GLCT. Herein, we find that the set of miRs downregulating 
B3GLCT predict multiple aspects of Peter’s Plus Syndrome, in 
line with our miRNA Proxy Hypothesis.  

 

RESULTS AND DISCUSSION 

Development of miRFluR high-throughput assay 

To date, high-throughput analyses of miR-mRNA inter-
actions have focused on the use of either luciferase assays in a 96-
well format 6 or HITS-CLIP analysis, which pulls down miRs 
associated with mRNA in RISC complexes 14. Luciferase assays 
require the lysis of cells and expensive reagents. In contrast, 
HITS-CLIP assays focus on a specific miR, are cell-type depend-
ent, and do not readily identify miR interactions with low abun-
dance genes 10, 15. To overcome these limitations, we developed a 
fluorescent ratiometric assay to identify miR: 3’-UTR interac-
tions using a genetically encoded fluorescent reporter (miRFluR). 
Although both single and dual-color genetically encoded fluores-
cent reporters have been used to study miRs in live cells, their use 
has been limited to examining single miR:mRNA interactions by 
microscopy or flow cytometry 16, 17.  

We created an optimized dual-color reporter, pFmiR, 
for high-throughput analysis of the regulatory interactions of the 
human miRome (pFmiR-3’UTR, Figure 1A and S1). In pFmiR, 
the 3’UTR of a gene of interest is cloned downstream of Ceru-
lean, our reporter protein. A second fluorescent protein, mCherry, 
is incorporated into the same plasmid, to control for transfection 
efficiency and any non-specific effects of the miR on the trans-
fected cells. The pFmiR plasmid and the miR mimics are co-
transfected into Hek-293T cells in a 384-well plate assay. The 
ratio of Cerulean/mCherry fluorescence in miR transfected cells is 
normalized to the data from a non-targeting control (NTC) and 
reflects the extent of miR-target regulation (Figure 1A). Our 
miRFluR assay enables rapid analysis of miR libraries without the 
need for additional manipulation and reagents post-transfection. 

For our first target, we chose to study the miR regula-
tion of the non-canonical glycosyltranferase, beta-1,3-
glucosyltransferase (B3GLCT). This enzyme catalyzes the addi-
tion of glucose to O-linked fucosyl glycans on thrombospondin 
type-1 repeats (TSRs) 13. Mutations in this gene are known to 
cause the congenital disorder Peters’ plus syndrome 18, 19. In pre-
vious work, we identified miR-200b-3p as a regulator of this en-
zyme and demonstrated a role for B3GLCT in EMT 10. Bioinfor-
matic analysis of miRNA predictions identified this glycogene as 
a highly regulated target 10. Thus, we anticipated that a large 
number of miRs would downregulate this enzyme. 

We inserted the 3’UTR of B3GLCT after the stop codon 
of Cerulean in our pFmiR plasmid to give the pFmiR-B3GLCT-
3’UTR sensor (Figure S2). To establish that our sensor worked as 
expected, we compared the Cerulean/mCherry fluorescence ratios 
upon co-transfection of our sensor with either NTC, the positive 
control miR-200b-3p or the known negative control miR-200a-3p 
(Figure 1B and S3) 10.  We observed a clear downregulation of 
Cerulean, but not mCherry, by miR-200b-3p but not NTC1 or 
miR-200a-3p. We next analyzed our sensor using the Mission 
miRNA mimic library v.21 (Sigma), which contained all human 
miRs included in miRbase version 21. This library has 2,754 miR 
mimics. We aliquoted these mimics into 384-well plates in tripli-
cate, for a total of 32 plates. Each plate contained NTC, miR-

200b-3p and miR-200a-3p as controls. miRs were co-transfected 
with pFmiR plasmid into Hek-293T cells using lipofectamine 
2000. After 48 h, plates were read by a fluorescence plate reader. 
For each plate, the average ratiometric data for each miR was 
normalized to the average ratiometric data for the NTC in that 
plate. Higher error measurements were observed in 5 plates, and 
these were omitted from further analysis. Comparison of the miR-
200a-3p and miR-200b-3p data for the remaining 27 plates 
showed high reproducibility in the data, with significant repres-
sion of B3GLCT observed for miR-200b-3p as compared to miR-
200a-3p, in line with our previous work (Figure 1C).  

 

 

FIGURE 1. Reproducibility of the miRFluR high-throughput 
analysis system. (A) Schematic illustration of the miRFluR high-
throughput assay. (B) Fluorescence microscopy images of HEK-
293T cells co-transfected with pFmiR-B3GLCT and either NTC, 
miR-200a-3p or miR-200b-3p, 48 h post-transfection.  (C) 
Graphical analysis of data for miR-200a-3p and miR-200b-3p, 
normalized to NTC, from 27 independent 384-well plates. Un-
paired Student’s t test; *****p << 0.0001 (see SI for details). 

 

Identification of miR hits for B3GLCT  

We next analyzed the remaining miR data for B3GLCT. 
We first removed any miRs that had high errors in the measure-
ment (median error +2 S.D. across all plates), leaving us with data 
for 2,071 miRs. We Z-scored the remaining NTC normalized 
ratiometric data from the sensor. In line with previous work by 
Wolter et al using luciferase assays 6, we set the threshold for hits 
at 20% change (either up or down) and a Z-score of +/-1.960, 
which corresponds to the 95% confidence interval. Using these 
thresholds, we identified 27 miRs that downregulated expression, 
all of which met the 20% threshold. To our surprise, we also iden-
tified 11 miRs that were potential upregulators (Figure 2A & B). 
Although a few upregulatory miRs have been described in the 
literature 20, 21, most are thought to activate expression in senes-
cent cells 22, 23. To validate our findings, we first rescreened a 
small set of 12 miRs (Figure S4 and S5). With one exception, all 
miRs recapitulated the findings observed in the library screen. We 
next performed Western blot analysis for the protein levels of 
B3GLCT in HEK-293T transfected with the subset of downregu-
latory (miR-200b-3p, miR-504, miR-4504, miR-4649-3p, miR-
4725-5p) and upregulatory (miR-891b and miR-4470-5p) miRs 
that passed our secondary screen. We used miR-200a-3p and NTC 
as negative controls (Figure 2C- D and S5, Table S1). In gen-
eral, the B3GLCT protein levels followed the expected results 
from our sensor assay, with one exception.  The downregulatory 
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miR-4649-3p did not show significant inhibition. We tested 
whether the mRNA levels of B3GLCT changed with miR trans-
fection (Figure 2E).  Although generally mRNA levels are 
thought to correspond to protein expression, the correlation is not 
absolute and miRs have been shown to impact mRNA in ways not 
reflected in the protein levels 6. For all inhibitory miRs, including 
miR-4649-3p, we observed a clear loss of mRNA expression for 
B3GLCT. Conversely, the upregulatory miR, miR-891b, elevated 
mRNA expression in line with its impact on the protein. Interest-
ingly, miR-4470-5p, which upregulated both protein and sensor 

expression, clearly repressed mRNA levels for B3GLCT.  This 
argues for multiple pathways to protein regulation through differ-
ential mRNA regulation by miRNA. 

 

 

 

 

 

 

  

                    
FIGURE 2. Identification and validation of hits for B3GLCT. (A) Plot of Z-score versus log2(fold change) for 2074 miRs against the 3’-
UTR of B3GLCT. miRs within the 95 % confidence interval and with a minimum impact of +/- 20 % are labeled (red:downregulatory, 
blue: upregulatory). NTC is shown in grey for reference. (B) Bar graph of ratiometric data for miRs indicated in A.  Error bars represent 
propagated error. (C) Western blot analysis of B3GLCT in HEK273T transfected with 50 nM miR mimics or NTC, 48 hours post-
transfection. (D) Quantification of Western blot analysis for three independent experiments as in C.  B3GLCT expression was normalized 
to total protein and set over normalized NTC for each blot. Statistical analysis was done against miR-200a-3p as a negative control.  (E) 
RT-qPCR analysis for relative B3GLCT mRNA expression levels. All samples are normalized to GAPDH within the sample and then to 
NTC for that run. Results shown are from three independent experiments. Statistical analysis was done against miR-200a-3p as a negative 
control.  Student’s t-test; *p<0.05, ** p <0.01, *** p <0.001 and **** p <0.0001. 
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Comparison of prediction to experimental data for miR regu-
lation of B3GLCT.  

Identification of miRs that target a specific protein is 
heavily based on prediction from algorithms. We tested how accu-
rately two of the most popular miR prediction programs, Target-
scan 7.2 3 and miRwalk 3.0 4, 24, 25, predicted B3GLCT regulators. 
For both algorithms, we only examined miR predictions for miR 
within our final dataset. Targetscan 7.2 predicted 480 unique miR 
interactions with the 3’-UTR of B3GLCT (Figure 3A). Of those, 
only 17 (3.5%) were identified as hits within our screen. All 17 
were repressors. Of the repressors, 17/27 (~2/3) were identified by 
Targetscan.  

 

 

 

FIGURE 3. Comparison of experimental results to prediction 
datasets from TargetScan (A) or miRWalk (B). (C) Overlap of 
experimental results and predictions from both  Targetscan and 
miRWalk. (D) Correlation between Targetscan context++ score 
percentile and our experimental results. A significant but small 
negative correlation was observed (R = -0.25, p~10-9) with data 
for which Targetscan context scores++ exist. (E) Correlation be-
tween miRWalk score and our experimental results. No correla-
tion was observed. 

 

Overall, there was a weak but significant correlation be-
tween the Targetscan score, where available, and the level of re-
pression observed (Figure 3D, R= 0.25, p = 1 x 10-9). It should be 
noted, however, that although Targetscan 7.2 analyzes the miRs 
from miRbase v 21, only 559 of the 2,071 miRs from our analysis 

have a context score in Targetscan. Scores were not available for 
the 10 non-predicted downregulatory miRs or the 10 upregulatory 
miRs. Among the unpredicted downregulators were miR-504-5p, 
miR-4649-3p and miR-4725-5p, all of which showed clear repres-
sion of B3GLCT in our assays (Figure 2 C-E). Thus, the actual 
correlation is likely far lower. For miRwalk 3.0, 781 unique miR 
interactions were predicted. Of these, only 13 were observed 
(1.7%, Figure 3B). In this case, 1 of the upregulators (miR-6792-
5p) was among the predicted hits. No correlation was observed 
between the score in miRwalk 3.0 and miR regulation of the sen-
sor (Figure 3E). Only 9 of the hits were predicted by both algo-
rithms, which only predicted 185 miRs in common between the 
two (Figure 3C). In previous work, a higher concordance be-
tween prediction and testing (~167-63 %6) was observed. How-
ever, in that work, multiple 3’-UTRs were tested against a limited 
set of miRs. These datasets were skewed towards highly abundant 
miRs and cancer-related genes. Our analysis is the first to test a 
broad swath of the human miRome against a single gene, unre-
lated to cancer. Our approach shows that current prediction algo-
rithms are significantly less accurate than previously thought, with 
a high bias towards false positives.   

 

miRs Downregulating B3GLCT Predict Peters’ Plus Syn-
drome 

In previous work we posited that miR regulation of a 
gene would predict the biological functions of that gene, a hy-
pothesis we termed the miRNA Proxy Hypothesis 8, 10, 11. Down-
regulation of B3GLCT activity has a known set of biological out-
comes due to the existence of mutations in the gene in the human 
population, which cause a loss of activity. These result in the ge-
netic disorder Peters’ Plus Syndrome, which is characterized by a 
variety of symptoms including ocular abnormalities, short stature, 
cleft palate, small ears, facial abnormalities and brain abnormali-
ties, including intellectual disability 18, 19. To test our hypothesis, 
we tested whether miRs that downregulate B3GLCT are predic-
tive of the Peters’ Plus Syndrome phenotypes. We analyzed the 
gene target network, and enrichment in associated disease pheno-
types, of our 27 validated downregulatory miRs using miRNet 26, 

27. Only validated miR-target interactions from miRTarbase were 
used in our evaluation. None of the 27 miRs fed into the system 
were known in miRTarbase to target B3GLCT. The gene target 
network for our downregulatory miRs was functionally enriched 
in genes associated with Peters’ Plus Syndrome features (Figure 
4, Table S2). The only non-Peters’ plus phenotype observed in 
the predicted set were a subset of cancer phenotypes. Whether this 
is due to a real role for B3GLCT in these specific cancers, or is an 
outcome of the bias of the current datasets towards cancer genes is 
unknown. Overall, our analysis supports the miRNA proxy hy-
pothesis, predicting a role for B3GLCT in the disease outcomes 
related to Peters’ Plus Syndrome through the miRs that downregu-
late this enzyme.  
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FIGURE 4. Phenotypic network analysis of miRs downregulating B3GLCT. (A) Table of enriched disease phenotypes resulting from 
miRNet analysis of B3GLCT downregulatory miRs.  Table is color coded to phenotypes seen in Peter’s Plus Syndrome as in (B). (B) 
Schematic of B3GLCT downregulating miR-mRNA target network as it applies identification of disease phenotypes observed in Peters’ 
Plus Syndrome. miRs that downregulate B3GLCT target the mRNA of genes enriched in the disease networks shown in (A).

 

CONCLUSIONS 

Our current understanding of miR regulation of protein 
expression has been hampered by limited data on miR:mRNA 
target interactions.  Herein, we created a high-throughput experi-
mental platform, miRFluR, to rapidly analyze miR interactions 
with the 3’-UTR of a gene of interest. We used this dual fluores-
cence platform to perform the first comprehensive analysis of miR 
regulation of a gene, B3GLCT, through its 3’-UTR.  Our analysis 
found both downregulatory and upregulatory miRs for B3GLCT, 
which we validated at the protein and mRNA levels. We antici-
pated that this gene would be highly regulated, based on the pre-
dictions from multiple algorithms 3, 10, 28. However, we found a 
wide discrepancy between prediction and our assay, with < 4% of 
predicted miRs targeting this enzyme (>96 % false positive rate). 
Although it is widely held that miRs target hundreds to thousands 
of genes, our results would argue that prediction algorithms vastly 
overstate miR regulation. Functional enrichment analysis of miRs 
downregulating B3GLCT identified disease phenotypes included 
in Peters’ Plus Syndrome, the known disorder caused by mutation 
of this gene, in line with our miRNA Proxy hypothesis. One limi-
tation of this analysis is that the dataset underpinning miRNet and 
other such network analysis algorithms has a lack of validated 

interactions5, 29. As our information on true miR:target interac-
tions grow, our ability to harness this data to understand the bio-
logical functions of the glycome and other genes will improve. 

 

EXPERIMENTAL METHODS 

Cloning of pFmiR-B3GLCT-3’UTR  

B3GLCT 3’UTR was cloned from cDNA using primers: 

B3GLCTc_fwd: CTAGCATCAGGGTGACCTG 

B3GLCT_rev: GATCCTTTTCATTACATAATAAAG 

and standard PCR conditions. The DNA fragment was cloned 
using the NheI and BamHI sites downstream of Cerulean in our 
pFmiR-empty backbone using standard ligation protocols. Plas-
mid maps and sequences for pFmiR and pFmiR-B3GLCT-3’-
UTR can be found in Figure S1 and Figure S2, respectively. 

 

FluoRmiR High-throughput Assay. 

The Human miRNA Mimic library version 21 
(MISSION, Sigma) was resuspended in nuclease-free water and 
aliquoted into black 384-well, clear optical bottom tissue-culture 
treated plates (Nunc). Each plate contained 3 replicates of every 
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miRNA (1.8 pmol/well). Including controls (NTC, miR-200a-3p, 
miR-200b-3p). 

To each well in the plate was added 25 ng of pMIR-
B3GLCT plasmid in 5 µl Opti-MEM (Gibco) and 0.11 µl lipofec-
tamine 2000 (Invitrogen) in 5 µl Opti-MEM (Gibco). The solution 
was allowed to incubate at room temperature for 25 min. Then, 
HEK293T cells (25 µl per well, 400 cells/ µl in non-phenol red 
Dulbecco's Modified Eagle Medium (DMEM) with FBS 10%) 
were added to the plate. Plates were then incubated at 37°C, 5% 
CO2. After 48 hours, the fluorescence signals of Cerulean (excita-
tion: 433 nm; emission: 475 nm) and mCherry (excitation: 587 
nm; emission: 610 nm) were measured using the bottom read 
option in a FlexStation 3 Multi-mode microplate reader (Molecu-
lar Devices).  

 

Data Processing 

We calculated the ratio Cerulean fluorescence (Cer) 
over mCherry fluorescence (Cer/mCh) for each well in each plate. 
For each miR, triplicate values were averaged and the standard 
deviation (S.D.) obtained. We calculated a % error for each miR 
as 100 x S.D./mean. . As a quality control measure, we removed 
any plates or miRs that had high errors in the measurement (me-
dian error +2 S.D. across all plates). This left us with data for 
2,071 miRs. The Cer/mCh ratio for each miR was then normal-
ized to the Cer/mCh ratio for the NTC within that plate and error 
was propagated. Data from all plates was then combined and Z-
scores were calculated. A Z-score of +/-1.960, corresponding to a 
2-tailed p-value of 0.05, was used as a threshold for significance. 
In addition, we set a second threshold of +/- 20% impact by the 
miR, in line with previous work 6, 7. 

 

Western Blot 

HEK293T cells were seeded in six-well plates (80,000 
cells per well), cultured for 24 h, and transfected with miRNA 
mimics (50 nM, Sigma MISSION) using Lipofectamine 2000 
(Life Technologies).  Cells were washed and harvested 48 hours 
post-transfection. 

 
Cells were then lysed in cold RIPA buffer supplemented with 
protease inhibitors and 50 µg of protein were run on SDS-PAGE.  
Standard Western Blot analysis using α-B3GLCT (IHC-plus anti-
human B3GALTL antibody, 1:500) and α-rabbit-HRP (2°, 
1:5,000, Abcam)] was performed 9. Blots were developed using 
Clarity and Clarity Max Western ECL substrate (Bio-Rad). 

 

 

RT-PCR 

Total RNA was isolated using RNeasy kit (Qiagen) ac-
cording to the manufacturer’s instructions. RNA concentrations 
were measured using NanoDrop, and isolated RNA was reverse-
transcribed (Applied Biosystems Power SYBR Green PCR). Real-
time quantitative PCR (qPCR) was performed using the SYBR 
Green method and cycle threshold values (Ct) were obtained us-
ing an Applied Biosystem (ABI) 7500 Real-Time PCR machine 
and normalized to GAPDH.  

Primer Sequence (5’ → 3’) 

B3GLCT-qRT-F GGTCTGATTAGTGCCTTCTACTG 

B3GLCT-qRT-R TGGTTAGGCTTACACCATTCC 

GAPDH-qRT-F GGTGTGAACCATGAGAAGTATGA 

GAPDH-qRT-R GAGTCCTTCCACGATACCAAAG 

[i] B3GLCT, beta 3-glucosyltransferase; GAPDH, glyceraldehyle-
3-phosphate dehydrogenase; RT-qPCR, Reverse transcription 
quantitative polymerase chain reaction; F, forward; R, reverse. 

Network Analysis Using miRNet. 

 Downregulatory miRs (27 miRs, Figure 2B) were input into 
miRNet (www.mirnet.ca) 26,27 using the following parameters: 
Organism:  human miRs, ID type: miRbase ID, Targets: 
Genes(miRTarbase v 8.0). The Diseases Phenotype Enrichment 
function was used for Figure 4. 
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