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In the skin, tissue injury results in fibrosis in the form of scars composed of dense 

extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound 

healing has remained elusive in part because principles of fibroblast programming and 

adaptive response to injury remain incompletely understood. Here, we present a 

multimodal -omics platform for the comprehensive study of cell populations in complex 

tissue, which has allowed us to characterize the cells involved in wound healing across 

both time and space. We employ a stented wound model that recapitulates human tissue 

repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate 

during the physiologic response to injury. Through integrated analysis of single cell 

chromatin landscapes and gene expression states, coupled with spatial transcriptomic 

profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This 

has allowed us to define the mechanisms controlling cell fate during migration, 

proliferation, and differentiation following tissue injury and thereby reexamine the 

canonical phases of wound healing. These findings have broad implications for the study 

of tissue repair in complex organ systems.  
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Tissue fibrosis and its sequelae are associated with 45% of all mortality in the U.S1,2. In the skin, 

wound healing is achieved through fibrosis and formation of a scar, which is composed of dense 

extracellular matrix components. Scars are stiff, poorly vascularized, and generally insensate. 

Scars also lack normal skin appendages (primarily hair follicles and sweat and sebaceous glands) 

and as such are devoid of the skin’s native functionality. As a result of these features, dermal 

scars can result in lifelong disability secondary to disfigurement and dysfunction3. Fibroblasts are 

responsible for the deposition of wound scar tissue. While several studies have characterized 

subtypes of fibroblasts involved in wound healing, the development of novel therapies that foster 

regeneration (rather than fibrosis) has remained limited because the origins, heterogeneity, and 

behavior of fibroblasts during tissue repair are not yet comprehensively understood.  

Translating cutaneous tissue repair in mice to humans is challenging due to the presence 

of the panniculus carnosus muscle in mice. This is a subdermal muscle layer found throughout 

the body of the mouse that causes wound contraction, but whose analog in humans only exists 

as the platysma muscle in the neck, the palmaris brevis in the hand, and the dartos muscle in the 

scrotum. Fibroblast heterogeneity has been previously explored in wound healing using mouse 

models in which large, un-stented wounds (1.5 cm diameter) heal primarily by contraction with 

only a small portion in the center healing through re-epithelialization and deposition of connective 

tissue from fibroblasts (the primary mechanism of wound healing in humans)4,5. To recapitulate 

clinically relevant wound healing using mouse models, we utilize a stented wound model which 

limits contraction of the panniculus carnosus and thereby mimics human wound healing kinetics6. 

Given that local tissue mechanics play a central role in scar formation7-9, this model permits us to 

interrogate fibroblast mechano-biology in a more clinically relevant manner.  

Recent advances in sequencing and cell capture technology have enabled the 

assessment of gene expression with reference to tissue organization using spatial 

transcriptomics. This approach has only been applied to a limited number of tissue types to date, 

primarily in the study of tumors including prostate cancer10, skin cancer11,12, and breast cancer13, 
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as well as bone marrow14, joint inflammation15, and brain tissue16. However, to our knowledge, 

this technique has yet to be applied to characterize tissue repair or wound healing. Moreover, the 

spatial and temporal distributions of single cell chromatin landscapes – which mechanistically 

underlie gene expression – have yet to be described in any context. 

Here, using transgenic mouse models, we assess the proliferation of local, tissue-resident 

fibroblast cells in wound healing. By establishing a microsurgical approach to independently 

isolate fibroblasts from spatially distinct regions within the wound, we interrogate Rainbow-labeled 

fibroblasts from critical timepoints during the course of wound closure. The Rainbow mouse model 

is a four-color reporter system that permits precise clonal analysis and lineage tracing. Using this 

model with phenotype-paired single cell RNA- and ATAC-sequencing (scRNA-seq and scATAC-

seq), we are able to define the spatial and temporal heterogeneity of wound healing fibroblasts 

with unique granularity. Using full-length, plate-based scRNA-seq we assess the differentiation 

states of individual cells as they proliferate and migrate from the outer wound region inward17. By 

disrupting this process using small molecule inhibition or genetic knockdown of focal adhesion 

kinase (FAK, Ptk2), we further elucidate the relationship between wound healing fibroblast 

activation and microenvironmental cues. By integrating our scRNA-seq and scATAC-seq 

analyses using the recently-developed ArchR platform18, we delineate interrelated changes in 

chromatin accessibility and gene expression driving wound closure and scar fibrosis and identify 

functionally distinct wound healing fibroblast subpopulations. Furthermore, using CIBERSORTx 

deconvolution19 of bulk RNA-seq data, we are able to categorize putative fibroblast 

subpopulations-based response to local tissue injury. Finally, we introduce spatial multi-omics, 

combining spatial transcriptomics with paired scRNA-seq and ATAC-seq datasets to impute 

spatial epigenomic properties. These data provide a comprehensive map of fate-determining 

chromatin accessibility states in the healing wound. Collectively, this work defines the spatial and 

temporal dynamics of the cellular response to injury and provides a multimodal -omics framework 

for future studies in tissue repair. 
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Wounding triggers polyclonal proliferation of tissue-resident fibroblasts 

Many cell surface and lineage markers have been associated with fibroblasts involved in wound 

healing, including Pdgfra, Engrailed-1 (En1), and CD26 (Dpp4)20,21. However, we and others have 

found expression of such markers to be highly variable throughout wound tissue (Extended Data 

Fig. 1a), suggesting spatial and functional heterogeneity among the fibroblasts that respond to 

injury. We asked whether there might be one or more fibroblasts activated following injury that 

could give rise to more diverse downstream fibroblast phenotypes. If so, we wondered whether 

such a cell type would be of tissue-resident origin, as suggested by previous studies22-24 

(Extended Data Fig. 1b), or originate from the peripheral circulation. To explore this, we 

employed transgenic parabiotic mice in conjunction with an established model of excisional 

wound healing6 (Extended Data Fig. 1c). Each eGFP donor mouse was parabiosed to a wild-

type (C57BL/6J) mouse (Extended Data Fig. 1d), and shared blood supply was established by 

two weeks after surgery (Extended Data Fig. 1e). At that time, wounds were made on the dorsum 

of each wild-type parabiont and then harvested at either post-operative day (POD) 7 (midway 

through healing) or POD 14 (when the wound has fully re-epithelialized). While systemically 

infiltrating GFP+ cells were found in the dermal scar at both time points, the overwhelming majority 

of GFP+ cells were also CD45+ and thus of hematopoietic (non-fibroblast) lineage (Extended 

Data Fig. 1f). These data further support the growing body of literature indicating that the 

fibroblasts responsible for wound healing are local, tissue-resident cells.  

To further explore the lineage dynamics, activation, and proliferation of these cells, we 

examined stented wound healing using the Rainbow (Rosa26VT2/GK3) mouse model25. Rainbow 

mice contain a transgenic four-color reporter construct in the Rosa26 locus. Upon induction with 

Cre-recombinase, the four colors irreversibly recombine (creating up to ten color combinations) 

and all subsequent progeny cells will have the same color as their parent cells, permitting 

stochastic lineage tracing and clonal analysis (Fig. 1a). We developed a technique using local 

induction with activated tamoxifen liposomes (LiTMX) to exclusively consider tissue-resident cells 
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(Fig. 1b)26. Following injury, tissue-resident fibroblasts were found to proliferate in a linear, 

polyclonal manner along the cross-sectional wound interface (Fig. 1c-d), whereas uninjured 

dermal fibroblasts exhibited only minimal clonality (Fig. 1e). These data support the presence of 

local, cells that are activated in response to injury and proliferate polyclonally to fill the wound 

“gap.” We developed an optimized tissue clearing protocol and whole mount technique to 

comprehensively visualize wound healing biology with the Rainbow mouse27. Using these 

methods in conjunction with a ubiquitous Actin-CreERT2 driver, we observed that cells were 

activated along the wound edge and proliferated inward in a distinct radial pattern (Fig. 1f-g).  

 

Bulk transcriptomic analysis of injury-responsive fibroblasts 

Based on the pattern of clonal proliferation extending from the outer wound edge inward, we 

sought to determine whether there might be underlying, region-specific cellular changes that are 

characteristic to this process. As such, we developed a microsurgical isolation technique that 

considers the “inner” and “outer” components of the wound dermis independently (Fig. 2a). We 

isolated wound fibroblasts from these two regions separately at POD 7 (midpoint of healing). Bulk 

RNA-seq evaluation showed clear differences in the gene expression profiles of both inner and 

outer wound fibroblasts compared with those of uninjured (control) skin (Extended Data Fig. 2a). 

We noted upregulation of fibrosis genes such as matrillin (Matn2), Dlk1, osteopontin (Spp1), 

Acta2, and multiple collagen subtypes (Extended Data Fig. 2b-c). We also observed elevated 

expression of mechanotransduction and FAK pathway components such as the chemokines Stat1 

and Il6, consistent with our prior work demonstrating FAK regulation of cell-matrix interactions in 

wound healing28. When we directly compared inner and outer wound fibroblasts (Fig. 2b), we 

found that cell cycle pathways were among those upregulated in inner compared to outer region 

wound fibroblasts (Fig. 2c – top panel), whereas outer fibroblasts had greater enrichment for 

more generalized tissue-repair processes (Fig. 2c – bottom panel). Furthermore, we observed 

that inner wound fibroblasts had transcriptional programs more divergent from uninjured skin than 
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their outer wound counterparts (Extended Data Fig. 2c). These findings support broad regional 

differences in the proliferation and activation status of fibroblasts in the healing wound; however, 

their strength is limited by the lack of granularity inherent to bulk transcriptional analysis.  

 

Traditional cell surface markers are not sufficient to characterize regional heterogeneity 

among wound healing fibroblasts 

 We evaluated how well several recently published cell surface marker profiles, defining fibroblast 

subtypes largely based on tissue depth, tracked with the regional differences observed in our 

study20. FACS-isolated, lineage-negative 29, Rainbow wound fibroblasts were examined (Fig. 2d, 

Extended Data Fig. 3a), and we found that most of cells fell into the putative category of reticular 

fibroblasts (defined as DLK1+/SCA1-) rather than papillary (CD26+/SCA1-) or hypodermal (DLK1+/-

/SCA1+) (Extended Data Fig. 3b). When we considered inner and outer region wound fibroblasts 

separately, we found that distribution of fibroblast subtypes was not significantly different between 

these two groups (Extended Data Fig. 3c), suggesting that differences in expression among 

known marker profiles are not sufficient to delineate inner versus outer region wound fibroblasts, 

though these can be readily distinguished based on their transcriptional programs even at the 

bulk tissue level.  

 

Single-cell transcriptomic analysis of injury-responsive fibroblasts 

We sought to better characterize wound fibroblast heterogeneity by examining individual fibroblast 

transcriptional programs at important functional timepoints in the canonical wound healing 

process: POD 2 – inflammation, POD 7 – granulation, and POD 14 – complete re-epithelialization 

(“healed” wound). We conducted single-cell, plate-based RNA-seq (scRNA-seq) of lineage-

negative fibroblasts isolated based on their expression of Rainbow clone colors from both inner 

and outer wound regions at each time point (Fig. 2d). Modularity-optimized clustering of the 

resulting gene expression dataset identified four transcriptionally-defined fibroblast 
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subpopulations (Fig. 2e), with considerable differences in their distributions between wound 

regions (Fig. 2f).  

Given our interest in understanding lineage trajectories in the context of wound healing, 

we assessed the relative differentiation states of these fibroblast populations using CytoTRACE, 

a computational tool that leverages transcriptional diversity to order cells based on developmental 

potential (Fig. 2g, Extended Data Fig. 4)17. This analysis identified a clear lineage trajectory 

stemming from scRNA-Cluster 1, which is primarily represented by cells from the outer wound 

region, extending to scRNA-Cluster 4, which is primarily represented by cells from the inner 

wound (Fig. 2h). These findings suggest that fibroblasts undergo differentiation and activate 

fibrotic transcriptional programs as they proliferate from the outer wound inward.  

 

Evaluation of chromatin accessibility complements transcriptional analysis of mechano-

responsive fibroblast subpopulations 

To evaluate the epigenomic changes associated with fibroblast activation and lineage 

differentiation in wound healing, we conducted a series of scATAC-seq experiments in parallel 

with our scRNA-seq assays (Extended Data Fig. 5a). We identified considerable heterogeneity 

in accessibility profiles among individual wound fibroblasts, which were clustered into six 

epigenomically-distinct subgroups using a Louvain-based modularity optimization in the ArchR 

platform18 (Fig. 3a). This partitioning was agnostic to the phenotype of cell origin (i.e., wound 

region or post-operative day), and all clusters included fibroblasts harvested from multiple time 

points and wound regions (Extended Data Fig. 5b-c).  

We then performed cross-platform integration to link these scATAC data with our earlier 

scRNA data using ArchR’s phenotype-constrained implementation of Seurat’s label transfer 

algorithm18. This resulted in four multimodal clusters characterized by both gene expression and 

chromatin accessibility profiles (Fig. 3b, Extended Data Fig. 5d), which we refer to as ArchR-

Clusters 1-4 (Extended Data Fig. 6a-b).  
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We first examined the epigenomic landscape of the largest subpopulation, ArchR-Cluster 

1, which showed significantly elevated chromatin accessibility proximal to key fibrosis-related 

genes such as Col1a1, Acta2, and Pdgfra (Fig. 3c-e, Extended Data Fig. 6c-e). We also 

observed specific accessibility peaks and transcription factor footprinting in association with the 

FAK (Ptk2) locus, as well as numerous FAK-pathway elements, suggesting that these fibroblasts 

represent a mechanoresponsive, pro-fibrotic subpopulation (Extended Data Fig. 7a-b, Extended 

Data Fig. 8). ArchR-Cluster 2 was associated with elevated Fn1 and Thbs1 accessibility peaks; 

ArchR-Cluster 3 was characterized by increased accessibility at the Jak2 locus and decreased 

accessibility at the Fsp1 (S100a4) and Il6st loci; and ArchR-Cluster 4 was characterized by 

increased accessibility at the Ptk2b, Jak1, and Jak3 loci.  

In addition to specific peak and motif evaluation, we also employed cluster-wide 

enrichment analysis using Genomics Regions Enrichment of Annotations Tool (GREAT)30 

(Extended Data Fig. 9a). We found significant enrichment for “Focal adhesion” in ArchR-Cluster 

1 and for FAK-pathway signaling response elements such as “Integrin a11b1” in ArchR-Clusters 

1 and 4. The related processes of “Increased fibroblast migration” and “Increased fibroblast 

proliferation” were specifically enriched for among Cluster 1 and Cluster 4 cells, respectively. 

Furthermore, pseudotime analysis of these integrated scRNA-ATAC data demonstrated an 

epigenomic progression from the putatively least-differentiated ArchR-Cluster 1 to the remaining 

cell populations that was driven by mechanical signaling elements (Extended Data Fig. 9b).  

Based on these findings, we were able to provisionally characterize each subpopulation 

according to its putative role in the wound healing process: “Mechano-fibrotic” (ArchR-Cluster 1), 

“Activated-responder” (ArchR-Cluster 2), “Remodeling” (ArchR-Cluster 3), and “Proliferator” 

(ArchR-Cluster 4) fibroblasts (Fig. 3b, right).  
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Clonal proliferation of injury-responsive fibroblasts is mechanotransduction-dependent 

Our laboratory has previously shown that local tissue mechanics are crucial in guiding the 

response to healing after injury31, and mechanotransduction signaling pathway elements were 

found to delineate fibroblast subpopulations in our scRNA and scATAC wound data. To further 

interrogate the role of local tissue mechanics in wound biology, we applied a small molecule FAK 

inhibitor (FAKi) to disrupt mechanosensation in stented mouse wounds (Extended Data Fig. 

10a). Consistent with prior work, we found that FAKi-treated wounds healed at the same rate as 

untreated wounds (Extended Data Fig. 10b-c), but resulted in significantly smaller and thinner 

scars composed of less-dense matrix tissue (Extended Data Fig. 10d) and connective tissue 

arranged in a more basket-weave-like pattern characteristic of uninjured skin (Extended Data 

Fig. 10e)28.  

To validate our FAKi results, we conducted additional wound healing experiments using 

Actin-CreERT2::Rosa26VT2/GK3::Ptk2fl/+ and Actin-CreERT2::Rosa26VT2/GK3::Ptk2fl/fl (heterozygous 

[FAKfl/+] and homozygous [FAKfl/fl] knock-out) mice, with local LiTMX induction at the time of 

wounding (Extended Data Fig. 10a-c). We found that these mouse wounds also exhibited a less 

scar-like pattern of connective tissue (Extended Data Fig. 10e). To further explore these 

differences, we employed an automated feature extraction algorithm (Mascharak et al., in review) 

to identify and quantify hundreds of ultrastructure characteristics for Picrosirius red stained wound 

tissue sections. Lower dimensional embedding of these features demonstrated that FAKi-treated 

or knock-out wound specimens were more similar to unwounded skin than to vehicle-control 

wounds, with significant differences present for both mature and immature collagen fiber 

intensities (Extended Data Fig. 10f). Taken together, these findings confirm that when FAK is 

inhibited, either genetically or using a small molecule, wounds heal with thinner scars and 

connective tissue structure that is more similar to that of unwounded skin.  

To understand the transcriptional changes associated with modulation of 

mechanotransduction in wound healing, we conducted additional bulk RNA-seq experiments 
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comparing fibroblasts isolated from inner and outer regions of FAKi-treated and control wounds. 

We observed significant changes in the transcriptional programs of FAKi-treated cells, and found 

that the regional differences were diminished in wounds following FAK inhibition (Extended Data 

Fig. 11a-b). These results suggest that local tissue mechanics play a key role in the underlying 

changes to transcriptional programming between inner and outer wound regions. We also found 

that wound healing fibroblasts showed downregulation of mechanotransduction and fibrosis-

related pathways with FAKi treatment (Extended Data Fig. 11c), again supporting the conclusion 

that disruption of FAK signaling impedes fibroblast scarring capacity.  

We next applied FAKi to Rainbow mouse wounds to explore the effect of FAK modulation 

on the polyclonal proliferation of fibroblasts. We found that when mechano- signaling was blocked 

using FAKi, or in FAKfl/+ or FAKfl/fl mice, the linear polyclonal proliferation of fibroblasts that was 

previously appreciated (Fig. 1g) was disrupted (Fig. 4a). With FAKi, or in FAKfl/+ or FAKfl/fl mice, 

the resulting rainbow fibroblast clones were smaller and less ordered (Fig. 4b-c).  

 

Deconvolution permits evaluation of bulk tissue samples through the lens of single cell -

omics  

We applied the deconvolution tool CIBERSORTx19 to estimate the abundance of our four scRNA-

ATAC populations (ArchR-Clusters 1-4) within bulk RNA-seq data for fibroblasts isolated from 

POD 7 and POD 14 wounds with or without  FAKi treatment (Fig. 4d). We found that the majority 

of cell estimates across the specimens were attributed to “Mechano-fibrotic” ArchR-Cluster 1, 

consistent with its prominent representation in both our scRNA-seq and scATAC-seq datasets, 

likely comprising among the most active fibroblasts during wound healing. The predicted 

prevalence of these cells was highest at POD 7 (91% and 95% in the inner and outer regions, 

respectively) and decreased by POD 14 (82% and 84%). FAK inhibition demonstrated a more 

dramatic reduction of ArchR-Cluster 1 fibroblasts at POD 14 for both inner (67%) and outer (74%) 
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wound samples, further supporting the mechano-sensitivity of the ArchR-Cluster 1 fibroblast 

subpopulation.  

 

Spatial transcriptomics applied to wound healing 

To further explore the significance of fibroblast heterogeneity in healing wounds, we applied the 

recently developed 10x Genomics Visium platform to analyze gene expression while retaining 

tissue spatial information. This technology had not previously been applied to analyze skin 

wounds, so we first developed an optimized protocol that permitted us to obtain reproducible, 

high-quality spatial gene expression data for all stages in the healing process (see Methods). We 

then conducted spatial transcriptomic analysis on tissue from our stented Rainbow mouse wound 

healing model at POD 2, 7, and 14, as well as in uninjured skin (Fig. 5a). 

The epidermal, dermal, and hypodermal layers of the healing wounds were easily 

delineated histologically and also found to cluster independently based on transcriptional 

programs (Fig. 5b). Looking at individual genes for prominent wound healing cell types (Fig. 5ci), 

we found clear delineation of keratinocytes in the epidermis based on Krt6b expression (as well 

as other keratinocyte-specific gens), allowing us to track re-epithelialization over space and time 

at the transcriptional level (Fig. 5cii). Similarly, fibroblast activity was evaluated using 

characteristic genes such as Pdgfra, which was most prominent in the dermis and most active at 

POD 14 (Fig. 5ciii). Likewise, we found that activated macrophage markers like Msr1 allowed us 

to monitor these immune cells throughout our dataset, which were very prominent in the “proud 

flesh” at the center of the wound at POD 7 (Fig. 5civ).  

 One challenge inherent to current spatial transcriptomic platforms is that each “spot” can 

capture gene expression information from more than one cell (1-10 cells, characteristically). In a 

complex tissue such as a healing wound, this often includes cells of different types – particularly 

within the dermis where fibroblasts, multiple types of immune cells, and nascent blood vessels 

can be found. As such, to understand our spatial transcriptomics results in the context of our 
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scRNA and scATAC fibroblast data, we needed to account for the contributions of non-fibroblast 

cells from each Visium spot. This was achieved by first estimating the number of each specific 

cell type present within individual spots based on the associated histological staining (Extended 

Data Fig. 12a-d). This information was then used to construct single cell gene expression 

distributions for spots comprised entirely of fibroblasts, keratinocytes, macrophages, neutrophils, 

or endothelial cells across each timepoint and replicate (Extended Data Fig. 13). These sets 

were then sampled randomly in a Monte Carlo fashion and used to “subtract out” potential 

contributions from non-fibroblast cells in each fibroblast-containing spot, generating a distribution 

of 10,000 inferred fibroblast transcriptomes for each Visium spot. These were propagated forward 

for anchor-based integration to spatially overlaid partial memberships for each of our four scRNA-

Clusters (Fig. 6a). The resulting partial membership contributions for each spot were then 

averaged to obtain consensus cluster representations.  

We found that the predicted spatial distributions for our scRNA-seq clusters were largely 

congruent with the transcriptional differences observed earlier between inner and outer cells using 

our microdissection approach. For example, “mechano-fibrotic” fibroblasts (Cluster 1) became 

more prominent over time, expanding from the outer to inner wound regions to fill the scar, 

whereas putative “proliferator” fibroblasts (Cluster 4) were found primarily at the wound center. 

These “proliferator” fibroblasts were found to be characterized by expression of Spp1, a gene 

closely associated with scar fibrosis (Fig. 6b, Extended Data Fig. 14a-d). “Proliferator” fibroblasts 

also strongly expressed factors that may prime the granulation tissue for keratinocyte migration 

and proliferation in a paracrine fashion, for example Mmp9. Further examining transcriptional 

programming relative to tissue depth, we observed clear spatial distinctions between the apical 

and basal regions of the dermis as early as POD 7 and most prominently at POD 14 (Fig. 6c). 

For example, the MMP inhibitor Timp1 is expressed by fibroblasts in the basal dermis, while 

Thbs2, which mediates cell-matrix interactions, is primarily expressed in the more apical scar 

region. Furthermore, we observed that chemokines such as Cxcl5 were preferentially expressed 
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by fibroblasts in the superficial dermis, supporting a role for these cells in regulating inflammation 

within the wound microenvironment (Fig. 6c, Extended Data Fig. 14e-f).  

To assess the relative differentiation states of fibroblasts in this system, we applied 

CytoTRACE to our POD 14 dermal scar data and found that, similar to our scRNA-seq 

microdissection findings, cells exhibited significantly less transcriptional diversity in the more inner 

wound regions, further supporting that fibroblasts undergo differentiation as they proliferate 

inward during tissue repair (Fig. 6d). We then applied RNA velocity analysis to these spatial 

transcriptomic data, comparing the expression of unspliced pre-mRNA and mature spliced mRNA 

in order to infer directional information for the transcriptional dynamics within the dermis. This 

approach again predicted a trajectory of differentiation from outer to inner wound regions of the 

dermal scar (Fig. 6e, Extended Data Fig. 15a). Examining genes most highly correlated with 

RNA velocity, we found Runx1 to have the strongest alignment along this trajectory of 

differentiation (Extended Data Fig. 15b). Runx1 has been implicated in myofibroblast 

differentiation and is known to have cooperative and overlapping roles with its companion gene 

Runx2, which is downstream from and regulated by FAK32,33,34,35, again supporting a role for 

mechanotransduction in driving fibroblast differentiation in wound healing.  

 

Integrated analysis permits imputation of spatial epigenomic properties 

To further explore fibroblast cell fate with spatial resolution, we developed a method to combine 

our integrated single cell RNA-ATAC framework with Visium in order to impute spatially-informed 

epigenomes for wound healing fibroblasts (Fig. 7a). As described above, we had generated 

spatial transcriptomic data from unwounded skin and POD 2, 7, and 14 wound tissue following a 

modified Visium protocol. To extend this analysis to impute spatial epigenomic properties, we 

used our RNA-ATAC construct to ascribe partial membership values to fibroblasts present within 

each Visium spot. This was achieved by first attempting to subtract out non-fibroblast 

contributions, as described above, followed by anchor-based mapping into a higher-dimensional 
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cluster space from our gene integration matrix (Fig. 7b). Parameterization was optimized to 

preserve spatial autocorrelation for the top measured and imputed gene expression distributions 

within the POD 14 dermis (Extended Data Fig. 16a-b). To account for residual contributions from 

non-fibroblast cells that may remain after our initial subtraction step, we also spiked-in RNA-seq 

data for keratinocytes, endothelial cells, macrophages, and neutrophils as described above. The 

resulting putative reference matrix was then used to assign initial partial set memberships for 

each spatial datapoint using an anchor transfer-based approach. A single-step spatial smoothing 

filter was applied to this membership space, followed by removal of non-fibroblast contributions 

and re-normalization. The resulting partial set memberships for each spatial datapoint then 

allowed us to project higher-order epigenomic features from the scRNA-ATAC data onto these 

Visium samples (Extended Data Fig. 17a-d).  

These spatial epigenomic imputations provided a valuable complement to further refine 

our understanding of the fibroblast biology driving tissue repair. Detailed data analysis is provided 

in Fig. 7c-d and Extended Data Fig. 18-19 and more broadly summarized below for each time 

point in the healing process.  

Immediately following wound injury, tissue trauma leads to inflammatory cell recruitment, 

provisional clot formation, and a dermal gap resulting in loss of contact inhibition among local 

fibroblasts. These fibroblasts are recruited into the wound bed and begin proliferating. Our data 

suggest that by POD 2, subsets of these cells have differentiated along the wound margin to form 

a putative “activated-responder” fibroblast subpopulation. Other, less-differentiated and more 

mechano-sensitive, “mechano-fibrotic” fibroblasts become pre-activated in the deeper dermis at 

this point, increasing chromatin accessibility for the Runx1, which is known to be a primary 

regulator of mesenchymal progenitor cell proliferation and differentiation36.  

By POD 7, macrophage-dominated granulation tissue occupies the wound defect, 

allowing overlying keratinocyte proliferation and re-epithelialization. At this time, “mechano-

fibrotic” fibroblasts are engaged in their maximal proliferative activity and begin to differentiate as 
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they finish proliferating toward the wound center and transition to a more “proliferator” 

subpopulation. These cells are strongly pro-fibrotic and characterized by elevated Spp1 gene 

expression and chromatin accessibility (Fig. 6b, Extended Data Fig. 6e). In parallel, a population 

of “remodeling” fibroblasts begins to appear in the outer deep dermis (Fig. 3b, Fig. 6a). 

At POD 14, re-epithelialization is complete, and the wound is traditionally considered to 

be “healed”. However, while keratinocyte activity decreases at this time, there remains a strong 

immune cell presence maintained by wound fibroblast chemokine secretion to stimulate active 

fibrosis in the dermal layer (Fig. 6c, Extended Data Fig. 14e-f). Likewise, while the outer wound 

“remodeling” and “activated-responder” fibroblast populations appear more quiescent, the 

“proliferator” fibroblasts enter their most “active” phase at this time, which accelerates fibrosis to 

a level higher than any prior to complete re-epithelialization, particularly in the inner wound region.  

Considering our imputed spatial epigenomics data more globally, we observed that 

changes to chromatin accessibility frequently preceded downstream changes in gene expression, 

even within the constraints of our coarse temporal sampling (Fig. 7c, Extended Data Fig. 18). 

For example, we found that the Runx1 motif, which is downstream from and regulated by FAK 

mechanotransduction, initially becomes open at POD 2, remains open particularly along the 

leading wound edge at POD 7, and then begins to decrease in accessibility throughout the 

nascent scar at POD 14 (Fig. 7c-d). 

In aggregate, these studies represent a framework for the comprehensive elucidation of 

wound healing fibroblast phenotypes based on both gene expression and chromatin accessibility 

– across time, space, and lineage – with unique granularity. Furthermore, these findings allow us 

to challenge the classical stages of wound healing, typically described as three overlapping 

phases: inflammation (POD 2), proliferation (POD 7), and remodeling (POD 14)3. Based on our 

findings, we propose a new set of wound healing stages: 1) Early inflammation – in which immune 

cells are migrating and infiltrating the injury site without proliferation; 2) Re-epithelialization – 

which includes rapid keratinocyte proliferation across the wound surface, fibroblast recruitment, 
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and macrophage proliferation; and 3) Activated fibrosis – where maximal fibroblast activation is 

achieved and sustained in a slow asymptotic decay by steady-state inflammatory signaling 

beneath the “healed” wound (Extended Data Fig. 20a-b).  

 
Conclusions 

In this manuscript, we define fibroblast biology throughout the course of wound healing using 

integrated, single cell multimodal -omics to unravel the spatial, temporal, and functional 

heterogeneity of these cells. We demonstrate that fibroblasts are activated from tissue-resident 

cells in response to injury and proliferate polyclonally to fill the wound gap. Furthermore, we 

demonstrate that fibroblasts undergo spatially-informed differentiation during this process.  

Elucidating these relationships required the integration of nascent technologies and data 

platforms in what is still a rapidly evolving field of multi-omic imputation. To our knowledge, this 

work represents the first pairing of scRNA-seq analysis with evaluation of single cell chromatin 

accessibility in the context of tissue repair with spatial resolution. This approach provides a 

complementary and mutually-informed lens through which we can view these processes, and 

specifically allowed us to demonstrate that upstream chromatin changes surrounding mechanical 

signaling elements precede RNA activation and cell proliferation – directly linking tissue force with 

activation of wound healing fibroblasts.  

Furthermore, we were able to identify and characterize putative, functionally-distinct 

fibroblast subpopulations with divergent transcriptional and epigenomic programs. We designate 

these four wound healing fibroblast phenotypes as: “mechano-fibrotic”, “activated-responder”, 

“proliferator”, and “remodeling”. Following wound injury, fibroblast cells are locally-recruited and 

migrate to the wound. By POD 2, a subset appears to have differentiated to form an “activated-

responder” subpopulation, while the remaining outer wound fibroblasts comprise the less 

differentiated “mechano-fibrotic” cells. These fibroblasts highly express known fibrosis-associated 

markers such as Engailed-1 (Rinkevich et al., 2015), Col1a1 (Xie et al., 2009), Tgbf2 (Lu et al., 
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2005), and Jun (Wernig et al., 2017). At POD 7, “mechano-fibrotic” cells appear engaged in their 

maximal proliferative activity and may begin to differentiate in response to mechanotransduction 

cues as they migrate toward the wound center to become central “proliferator” cells. By POD 14, 

outer wound “remodeling” and “activated-responder” cells show decreased proliferation and 

provide support through the secretion of cytokines and coordination of other pro-fibrotic pathways, 

representing an early steady state maintained by sustained inflammatory signaling within scar 

tissue.  

Taken together, these results illustrate fundamental principles underlying the cellular 

response to tissue injury. We demonstrate that populations of fibroblasts migrate, proliferate, 

and differentiate in an adaptive, dynamic response to disruption of their local environment. 

Understanding the origin, injury-activation, and differentiation trajectories of injury-responsive 

cells is critical to develop therapeutic strategies to promote tissue repair.  
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FIGURE LEGENDS 

Figure 1. Wounding triggers polyclonal proliferation of tissue-resident fibroblasts 

a, Schematic of the Rainbow mouse construct.  

b, Schematic showing wound healing model using Rainbow mice with local Cre recombinase 

induction using 4-hydroxytamoxifen liposomes (LiTMX).  

c, Schematic showing a Rainbow wound cross-section. Black dotted line highlights wound scar 

area; arrows indicate the direction of cellular proliferation during wound healing. Structures as 

labelled in panel.  

d, Representative confocal image of POD 14 wound cross sections from Actin-

CreERT2::Rosa26VT2/GK3 mice induced locally with LiTMX at the time of wound creation. Thick white 

dotted lines highlight scar boundaries. Individual Rainbow cell clones are highlighted with thin 

colored dotted lines. Arrows indicate direction of wound healing. n > 5. Scale bar = 50µm.  

e, Representative confocal images of unwounded skin from Actin-CreERT2::Rosa26VT2/GK3 mice 

induced locally with LiTMX. Thick white dotted lines highlight dermal boundaries. Individual 

Rainbow cell clones are highlighted with thin colored dotted lines. n > 5. Scale bar = 50µm.  

f, Schematic of dorsal, stented, excisional wound healing in the Rainbow mouse model (whole 

mount view), with polyclonal proliferation of Rainbow fibroblasts from the outer wound edge 

inward across time from POD 2 (left panel), to POD 7 (middle panel), to POD 14 (right panel). 

Black arrows highlight the apparent direction of proliferation.  

g, Representative confocal imaging of a POD 14 whole-mounted wound harvested from Actin-

CreERT2::Rosa26VT2/GK3 mice showing the polyclonal proliferation of wound fibroblasts radially 

towards the center of the wound (dark area at center). White arrows highlight the direction of cell 

proliferation; individual cell clones are highlighted with thin colored dotted lines. Bottom subpanels 

denote individual Rainbow color contributions to merged image. mCh = membrane (m)Cherry, 

mOr = mOrange, mCe = mCerulean, eG = eGFP. n > 5. 
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Figure 2. Bulk and single-cell transcriptomic analysis of injury-responsive fibroblasts 

a, Schematics illustrating micro-dissection strategy for isolation of inner and outer wound regions 

(top panel), followed by enzymatic separation of the dermal scar from the epi- and hypo-dermis 

(bottom panel).  

b, Heatmap displaying expression data for genes significantly different between POD 7 inner and 

outer region wound fibroblasts. Legend at right displays fold-change.  

c, Gene Ontology (GO) enrichment analysis comparing gene expression data from POD 7 inner 

and outer region wound fibroblasts. Top panel shows GO Biological Processes upregulated in 

inner region fibroblasts compared with outer region fibroblasts, while the bottom panel shows the 

same for outer region fibroblasts compared with inner. Top 10 most significant gene sets are 

displayed for each condition.  

d, Schematic illustrating single-cell (sc) isolation of Rainbow wound fibroblasts from inner and 

outer wound regions (highlighted with black dotted lines). For scRNA-seq, mCerulean+ fibroblasts 

were arbitrarily selected from the available Rainbow colors and used for the remaining 

experiments in this Figure.  

e, Uniform manifold approximation and projection (UMAP) embedding showing scRNA -seq data 

from mouse wound fibroblasts FACS-isolated using a lineage-negative sort strategy 29 from POD 

2, POD 7, and POD 14 - digitally pooled and clustered in a manner agnostic to POD and inner vs 

outer wound regions. Four unique fibroblasts clusters were identified (Cluster 1-4). Dotted lines 

highlight individual clusters distributions.  

f, Re-coloring of Fig. 2e UMAP plot based on fibroblast tissue region: inner (black) versus outer 

(orange).  

g, CytoTRACE analysis of scRNA-seq data using the UMAP embedding from Fig. 2f. Shading 

indicates inner (light grey) versus outer (dark grey) wound regions.  
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h, Box plots showing the predicted ordering by CytoTRACE for individual cells within the four 

scRNA-seq clusters. Grey arrow indicates direction of predicted differentiation from scRNA-seq 

Cluster 1 to Cluster 4 (which corresponds to outer-to-inner wound region expansion). P-value was 

derived from two-sided Student’s t-test.  

 

Figure 3. Chromatin accessibility delineates mechano-responsive fibroblast 

subpopulations 

a, scATAC-seq evaluation of Rainbow mouse wound fibroblasts isolated in parallel with our 

scRNA-seq experiments (see Methods). UMAP embeddings were generated using ArchR with 

default Louvain parameters18, and six unique fibroblast clusters were identified.  

b, ArchR integration of scRNA-seq and scATAC-seq data.  

c, Heatmap of scATAC-seq cluster peaks mapped to associated gene markers. Elements relevant 

to fibroblast activation, fibrosis, and mechanotransduction are specifically annotated along the top 

of panel.  

d, Genome tracking plots showing scATAC-seq peaks for pseudo-bulk replicates generated for 

each cluster. Associations between the peaks with fibrosis and mechanotransduction-related 

genes (Peak2GeneLinks) are included at the bottom of each plot. Pale orange shading highlights 

differentially expressed peaks across the scATAC Clusters. All highlighted peaks demonstrated 

statistically significant differential expression in at least one pairwise comparison (FDR < 0.1 and 

FC >= 2).  

e, UMAP feature plots highlighting distributions for genes of interest related to fibrosis and 

mechanotransduction.  

 

Figure 4. Clonal proliferation of injury-responsive fibroblasts is dependent on 

mechanotransduction signaling.   
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a, Representative confocal images of sectioned Rainbow mouse wound specimens treated with 

FAKi (second panels), FAKfl/+ (third panels) or FAKfl/fl (bottom panels) compared with vehicle 

control (top panels). Imaris rendering in second column of images highlights individual Rainbow 

clones. Dermal wound area highlighted with thick while dotted line. n = 5. Scale bars = 25µm.  

b, Quantitation of average clone size based on Imaris rendering.  

c, Wedge sections of representative whole mount confocal images of Rainbow wound specimens 

embedded within surrounding wound schematics for vehicle control (top panel), FAKi-treated 

(second panel), FAKfl/+ (third panel), and FAKfl/fl (bottom panel) samples. Corresponding vector 

analyses are provided to the right of each sub-panel.  

d, Schematic illustrating our approach to deconvolve bulk RNA-seq data using our multimodal 

scRNA-ATAC construct. Transcriptionally-defined cluster labels from scRNA-seq analysis were 

projected onto the scATAC-seq manifold using an anchor transfer-based approach in ArchR as 

previously described18 to construct four multimodal fibroblast subpopulations (left-center panel). 

Putative names were assigned to these ArchR-Clusters based on integrated functional and 

temporospatial characteristics. Feature and peak plots, above and below, for FAK (Ptk2) are 

provided for illustrative purposes. Deconvolution of bulk RNA-seq specimens representing wound 

fibroblasts treated with FAKi versus vehicle control (middle panel) was then performed using 

CIBRERSORTx19 (see Methods). Wound schematics (with silicone ring around the outside, and 

outer and inner regions indicated) are provided to represent CIBRERSORTx output identifying 

changes in the percentages of ArchR-Cluster 1 (“Mechano-fibrotic”) cells in bulk samples over 

time and with/without FAKi treatment (green, upper row of plots). Parallel schematic of 

corresponding changes in other ArchR-Clusters are provided in yellow (lower row of plots).  

 

Figure 5. Spatial transcriptomics applied to wound healing 

a, Schematic for generating spatial transcriptomics data from splinted excisional wounds using 

the 10x Genomics Visium protocol. Fresh Rainbow mouse wound tissue is harvested, flash-frozen 
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embedded in OCT, and then sections were taking representing the complete wound radius. H&E 

staining and tissue section imaging was completed as described in the Visium protocol (see 

Methods). Each “spot” captures mRNA from 1-10 individual cells at that tissue location.  

b, Delineation of scar layers based on underlying tissue histology at each time point (top row), 

and UMAP plot showing that the three scar layers can easily be distinguished by their 

transcriptional programs, even independent of spatial information. 

c, (i) Schematic of classic stages of wound healing evaluated at POD 2, 7, and 14 relative to 

uninjured skin. (ii) Keratinocyte activity as measured through expression of the Krt6b gene. 

(iii) Fibroblast activity as measured through expression of the Pdgfra gene. (iv) Immune cell 

activity as measured through expression of the Msr1 gene. 

 

Figure 6. Tracking fibroblast subpopulations over time and space 

a, Anchor-based integration of scRNA-seq populations (defined in Fig. 2f) with Visium gene 

expression to project partial membership within each spot across all time points. These 

populations exhibit strong spatial preferences within the wound.  

b, Visium plots showing POD 0, 2, 7, and 14 (top to bottom) wound sections. As wound 

fibroblasts proliferate from the outer region of the wound inwards, a portion of Cluster 1 

cells appear to differentiate into Cluster 4 cells. Cluster 4 cells prominently express Spp1 

and Mmp9, and track along the same trajectory of the healing edge of the epidermis. 

Wound centers indicated by dotted line as labelled in panels. Left 2 panels show partial 

membership clusters from a. Right two panels show SCT gene expression.  

c, Visium plots showing POD 0, 2, 7, and 14 (top to bottom) wound sections. Cluster 2 

cells appear to populate the basal dermis primarily. Gene expression of Timp1 highlights 

this subpopulation, whereas Thbs1 expression highlights suprabasal wound fibroblasts, 
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which strongly express chemokines such as Cxcl5 regulating immune cells within the 

wound microenvironment. Wound centers indicated by dotted line as labelled in panels. 

Left  panel show partial membership clusters from a. Right three panels show gene 

expression data. 

d, CytoTRACE applied to spatial transcriptomics recapitulates cellular differentiation from the 

outer to inner regions of the wound.  

e, RNA-velocity data demonstrating a clear arc of differentiation from outer to inner wound regions 

along the dermal scar layer. 

 

Figure 7. Integrated analysis permits imputation of spatial epigenomic properties 

a, Punnett square schematic summarizing the data acquired in Figures 2, 3, and 6; setting the 

stage for imputation of spatial epigenomics.  

b, Schematic summarizing imputation of spatial epigenomics. Multimodal scRNA-ATAC fibroblast 

data were first re-clustered into a higher-resolution space to generate twenty partitions, each 

representing between 27 and 552 cell equivalents. Gene score matrix distributions, informed by 

both modalities, were then extracted for each partition and subjected to SCT transformation. 

“Spike-in” RNA-seq data for keratinocytes, endothelial cells, granulocytes, and macrophages 

were obtained pure Visium spots across all time points. These data were combined and subjected 

to a similar variance-stabilizing transformation. The resulting putative single cell gene expression 

reference matrix was then used to assign initial partial set memberships for each spatial 

transcriptomic datapoint using an anchor transfer-based approach. Non-fibroblast contributions 

were subsequently regressed out, and a single-step spatial smoothing filter was applied to the 

resulting membership space, followed by re-normalization. The resulting partial set memberships 

for each spatial datapoint were then treated as a topological vector space, onto which epigenomic 

peak, motif, and binding activity from the twenty scRNA-ATAC partitions can be projected. 
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c, Visium plots showing POD 0, 2, 7, and 14 (top to bottom) wound sections, imputed spatial 

epigenomics. For housekeeping genes such as Hprt (top panel), gene imputed matrix (GIM) 

correlates with gene score matrix (GSM) epigenomic data and is fairly stable over space and time 

(top panel). However, for Runx1, which we have shown to be very active within wound fibroblasts, 

GSM data shows opening at the Runx1 motif at POD2, which yields strong gene expression 

primarily among inner wound fibroblasts at POD 7 (bottom panel). 

d, Visium plots showing POD 0, 2, 7, and 14 (top to bottom) wound sections, motif deviations for 

genes of interest related to FAK-mediated mechanotransduction and fibroblast proliferation 

including Runx1, Ets1, and Ehf. 
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METHODS  

Animal Models 

The following mouse strains were purchased from Jackson Laboratories: Black/6 (C57BL/6J), 

Actin-CreERT2 mice (Tg(CAG-cre/Esr1)5Amc/J), eGFP (C57BL/6J-Tg(CAG-EGFP)10sb/J), and 

FAKflox (B6.129P2(FVB)-Ptk2tm1.1Guan/J). aSMA-CreERT2 were courtesy of Dr. Ivo Kalajzic, 

University of Connecticut. Rainbow mice (ROSA26VT2/GK3) were courtesy of the Weissman 

Laboratory, Stanford University School of Medicine. All of the mice were genotyped as per 

manufacturer’s recommendations. Female mice were used for all experiments in this study. Mice 

were housed at the Stanford University Comparative Medicine Pavilion (CMP) and Research 

Animal Facility (RAF). The facilities provided light- & temperature-regulated housing. Mice were 

given rodent chow and water ad libitum. A minimum sample size of three animals was used for 

all experiments (exact numbers for experiments are noted in the figure legends). Animals with 

appropriate genotypes for a given experiment were randomly allocated to the various 

experimental conditions. All experiments were completed according to the Stanford University 

Animal Care and Use Committee standards of care. 

 

Splinted Excisional Mouse Wound Healing Model 

Splinted excisional wounds were created following the protocol outlined by Galiano et al 6, which 

was designed to mimic human wound healing kinetics. In brief, mice were anesthetized with 

isofluorane (Henry Schein Animal Health) at a concentration of 1-2% in oxygen at 3 L/min. The 

mice were placed in prone position, and dorsal fur was removed. Skin was sterilized with a 

betadyne wash followed by 70% ethanol. Punch biopsies were used to make 6mm diameter full-

thickness dermal wounds. Two dorsal wounds were created on each mouse. A silicone ring was 

fixed to the dorsal mouse skin using an adhesive and interrupted 6-0 nylon sutures placed around 

the outer edge of the ring to prevent rapid contraction. A sterile dressing was placed and changed 
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every other day until the wound was harvested. Digital photographs were taken at the time of 

surgery and every other day at the time of dressing changes.  

 

Parabiosis 

Parabiotic mouse pairs were created as previously described 37. In brief, parabiotic pairs consisted 

of one female wild-type (C57BL/6) mouse and one female eGFP (C57BL/6-Tg(CAGEGFP)10sb/J) 

mouse that were both age-matched and housed together for 2 weeks prior to parabiosis surgery. 

Mice were anesthetized, shaved, and sterilized as previously described. Matching incisions were 

made from the base of the elbow joint (olecranon) to the base of the knee joint on corresponding 

sides of each mouse. The joints and skin were sutured together. Peripheral blood chimerism was 

determined with flow cytometry two weeks after parabiosis surgery. Wound surgery was 

performed on the wild-type mouse after systemic circulation was established.  

 

Liposomal Tamoxifen Induction 

Liposomal tamoxifen (LiTMX) was created as per the protocol described by Ransom et al26. 

Briefly, liposomes were applied locally (pulse) to the surface of dorsal mouse wounds to induce 

Cre recombinase at the time of wounding. Wound surgeries were conducted as described above.  

 

Tissue Processing 

Mouse tissue was fixed in 4% paraformeladehyde (Electron Microscopy Sciences) for 20 hours 

at 4°C and embedded into paraffin per standard protocols. For cryopreservation, following fixation, 

specimens were placed in 30% sucrose (Sigma) at 4°C until saturation, followed by OCT at 4°C 

until saturation and embedded in OCT. Representative tissue specimens were sectioned and 

stained with hematoxylin and eosin (H&E, Sigma-Aldrich), Picro Sirius Red Stain (Abcam), or 

Masson’s trichrome (Sigma-Aldrich) per the manufacturer’s protocols.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.437928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.437928


28 

Whole Mount 

A border of Vaseline was prepared on a Superfrost/Plus microscope slide and the center was 

filled with mounting medium (BABB clearing reagent or fluoromount-G (SouthernBiotech)). The 

tissue sample was placed into the reservoir of mounting medium and a cover slip was applied. 

The whole-mounted samples were stored at 4°C. 

 

Tissue Clearing 

Tissue clearing optimized to preserve expression of endogenous fluorophores as previously 

described by our laboratory27 was pursued on selected Rainbow whole mount and sectioned 

wound specimens. In brief, for dehydration, tert-butanol (FisherSci) was buffered to a pH 9.5 with 

triethylamine (FisherSci). Fixed tissue specimens were placed into increasing gradients of tert-

butanol (33%, 66%, and 100%) at room temperature for 30 minutes each and then left in 100% 

tert-butanol overnight. Tert-butanol and benzoic acid:benzyl benzoate (Sigma Aldrich) at a 1:2 

ratio were buffered to pH 9.5 with triethylamine (FisherSci). For whole mount samples, tissues 

were placed in the prepared BABB solution for clearing for 7 hours at room temperature. Cleared 

whole mount and sectioned tissue specimens were stored in BABB solution at 4°C.  

 

Confocal Imaging and Analysis 

Rainbow mouse tissues were fixed and prepared in the dark to minimize bleaching of endogenous 

fluorophore expression. Laser scanning confocal microscopy of whole mount and tissue 

specimens was performed using the Leica WLL TCS SP8 Confocal Laser Scanning Miscroscope 

(Leica Microsystems) located in the Cell Sciences Imaging Facility (Stanford University, Stanford, 

CA). Both the 20x and 40x objectives were used for imaging (x20 and x40 HC PL APO IMM 

CORR CS2, H2O/glycerol/oil, numerical aperture 0.75). Precise excitation and hybrid detection of 

the Rainbow fluorophores (mCerulean, eGFP, mOrange, and mCherry) was captured. Raw image 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.437928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.437928


29 

stacks were imported into either Fiji (NIH) or Imaris (Bitplane/Perkin Elmer) software for further 

analysis. Z-stacked confocal images were rendered into 3-dimensions. Analysis of clonal volume, 

area and direction was conducted using the surface and thresholding tools using Imaris software.  

 

Immunostaining 

Cryosections on Superfrost Plus microscope slides (FisherSci) were rehydrated and 

permeabilized with 0.5% Triton X-100 (Sigma). Tissue sections were then rinsed repeatedly, 

incubated with 1X Power Block (BioGeneX), and stained with primary antibody for one hour at 

room temperature. Primary antibodies used for immunostaining included CD45 (D3F8Q) Rabbit 

mAb (Cell Signaling), Rabbit mAb to alpha Smooth Muscle Actin (Abcam), Rb pAb to Collagen I 

(Abcam), Rb pAb to Collagen III (Abcam), Rb pAb to Collagen III (Abcam), Specimens were then 

rinsed repeatedly, stained with a secondary antibody for one hour, rinsed repeatedly, and 

mounted with ProLong Gold antifade reagent with DAPI. Secondary antibodies used for 

immunostaining included Goat anti-Rabbit Secondary Antibody Alexa Fluor 488 (Abcam), Goat 

anti-Rabbit Secondary Antibody Alexa Fluor 647 (Abcam), Donkey Anti-Rat Secondary Antibody 

Alexa Fluor 647 (Abcam), and Donkey Anti-Rabbit Secondary Antibody Alexa Fluor 555 

(Invitrogen). Slides were then coverslipped and imaged using a Lecia DMI6000B inverted 

microscope or confocal microscopy as described above.  

 

DAB Immunohistochemistry 

Cryosections on Superfrost Plus microscope slides (FisherSci) were rehydrated. H2O2 was used 

to quench endogenous peroxidases. Antigen retrieval was conducted using Abcam’s Trypsin 

Antigen Retrieval kit (Ab970) per the manufacturer’s protocol. Tissue sections were then 

permeabilized with 0.025% Triton X-100 (Sigma), rinsed, incubated with 1X Power Block 

(BioGeneX), and stained with primary antibody at 4°C overnight. Primary antibodies used for 

staining included Phospho-FAK/PTK2 pTyr397 (Invitrogen) and Il6 Monoclonal Antibody (MP5 
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20F3) (Invitrogen). Tissue sections were then washed, and incubated with secondary antibody at 

room temperature for one hour. Secondary antibodies used for staining included Horse anti-

Rabbit IgG Antibody (H+L) Biotinylated R.T.U. (Vector Laboratories) and Goat anti-Rat IgG 

Antibody (H+L) Biotinylated R.T.U. (Vector Laboratories). The VECTASTAIN Elite ABC system 

for avidin/biotin peroxidase (Vector Laboratories) was then applied per the manufacturer’s 

recommendations. DAB staining was conducted using the BD DAB Substrate Kit (BD 550880) 

per the manufacturer’s guidelines. Specimens were co-stained with Hematoxylin, rinsed, 

dehydrated, mounted, and imaged using a brightfield microscope.  

 

Automated Connective Tissue Analysis  

Polarization microscopy images of Picrosirius Red-stained histology specimens were obtained at 

40X with a minimum of 10 images per specimen. Images were color deconvoluted to yield 

separated images of mature (red) and immature (green) connective tissue fibers. These images 

were then separately denoised, binarized, and quantified across a panel of fiber parameters 

(length, width, persistence, alignment, etc.), for a total of 294 parameters per image (147 for 

mature fibers, 147 for immature fibers). Images were quantitatively compared by t-SNE, an 

algorithm for visualizing high dimensionality data in two dimensions. Individual parameter values 

were compared between specimen conditions.  

 

Sample Preparation and Fluorescent-Activated Cell Sorting (FACS) Isolation 

Mouse wound tissues were harvested and micro-dissected to separate the outer and inner 

regions of the wounds. In brief, the wound radius was divided in half, and microdissection was 

conducted to separate the inner radius and the outer ring based on this division. The wound tissue 

regions were then placed independently in a dispase-trypsin solution as previously described 38 

for 30 minutes at 37ºC; following this, the epidermis and hypodermis were isolated from the 

dermal wound scar specimens and discarded. The dermal wound tissues were then minced and 
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digested in DMEM-F12 (GIBCO®) with 0.5mg/ml LiberaseTM (Roche) for 30 minutes at 37º in an 

orbital shaker. The digests were quenched with quench media (DMEM-F12 with 10% Fetal Bovie 

Serum (FBS, Sigma)), centrifuged at 300 x G for 5 minutes at 4°C, resuspended in quench media, 

filtered through 100, 70, and 40µm cell strainers (Falcon cell strainer, ThermoFisher), centrifuged 

once more, and resuspended in FACS buffer.  

 Cells were counted. Primary antibodies were then applied, and cells were stained in the 

dark on ice with gentle agitation for 30 minutes. Antibodies against the following cell surface 

markers primarily or secondarily conjugated to the same fluorophore were used for exclusion of 

“lineage” cells in order to isolate fibroblasts in an unbiased manner: CD45, CD31, Ter119, Tie2, 

CD324, and CD326. This approach has been previously validated by our laboratory to isolate 

mouse wound fibroblasts29,39. Cells were then washed with FACS buffer, centrifuged, and 

resuspended in FACS buffer. Staining with any secondary antibodies was conducted in the same 

manner. SYTOX ADvanced Ready Flow Reagent (ThermoFisher) or DAPI (Thermofisher) were 

used as viability markers. Fibroblasts were isolated using the FACS Aria II system.  

 For bulk RNA-seq, cells were sorted into chilled lysing reagent under RNA/DNAse-free 

conditions (Trizol LS, ThermoFisher). For scRNA-seq, cells were bulk sorted by “purity” based on 

expression of Rainbow colors. These sorted cell aliquots were then individually re-sorted by single 

cell and index into prepared, 96-well plates containing lysis-buffer. For scATAC-seq, cells were 

sorted into FACS buffer. mCerulean was arbitrarily selected from among the available Rainbow 

colors and mCerulean+ wound fibroblasts were used for single-cell sequencing experiments. 

Flow-cytometry plots shown are representative of at least three independent experiments. 

For flow cytometry analysis of cell surface and phosphorylated proteins, a single cell 

suspension was prepared using manual tissue dispersion rather than enzymatic digestion to 

preserve phosphorylated signal. Rainbow fibroblasts were isolated as described above and then 

prepared using the BD Biosciences Cytofix/Cytoperm™ kit according to manufacturer’s 
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instructions. Primary antibodies used for flow cytometric analysis included Phospho-FAK/PTK2 

pTyr397 (Invitrogen), DLK1 Monoclonal Antibody (3A10) (Invitrogen), Rat Anti-Mouse Sca1 (Ly-

6A/E) (Stem Cell technologies), Rabbit Anti-DPP4 (CD26) (Abcam). Protein expression analysis 

was conducted using the FACS Aria II system.  

 FACS gating and data analysis was performed using FlowJo. Gating schemes were 

established with fluorescence-minus-one controls. Single cells were first gated using FSC and 

SSC parameters. Dead and lineage-positive (non-fibroblast) cells were then excluded. Gating 

schemes to quantitate and/or isolate fibroblasts were validated by plating a portion of the sorted 

cells for morphological visualization.  

 

Bulk mRNA Sequencing 

RNA extraction was performed using Qiagen miRNeasy kit with on column DAnase treatment per 

the manufacturer’s recommendations. The Clontech Smarter Ultra Low Input RNA kit (Takara 

Bio) was used to generate cDNA from 150 pg total RNA following the manufacturer’s 

recommendations. Amplified cDNA was purified using SPRI Ampure Beads (Beckman Coulter) 

and the quality and quantity was measured using a High Sensitivity DNA chip on the Agilent 2100 

Bioanalyzer (Agilent Technologies). cDNA was sheared to an average length of 300 basepairs 

using a Covaris S2 ultrasonicator (Covaris) and libraries were generated with the Clontech Low 

Input Library Prep kit (Takara Bio). The samples were uniquely barcoded, pooled, and sequenced 

on HiSeq (Illumina).  

 

Bulk mRNA Sequencing Data Analysis 

A total of 12 mouse samples were profiled by bulk RNA-sequencing as described above. Raw 

FASTQ reads were aligned to the GENCODE vM20 reference transcripts (GRCm38.p6) with 

Salmon40 v0.12.0 using the --seqBias, --gcBias, --posBias, --useVBOpt, --rangeFactorizationBins 

4, and --validateMappings flags and otherwise default parameters for single-end mapping. 
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Salmon results were merged into a single gene-level counts matrix using the R package, 

tximport41 v1.4.0. Count normalization and differential gene expression analysis was performed 

using the DESeq2 v1.22.2 package in R or using Basepair software (www.basepairtech.com). 

Counts were size-factor normalized using the DESeq function and log2-transformed. Pairwise 

differential gene expression analysis was performed using the lfcShrink function and indicating 

type = apeglm, which applies the adaptive t prior shrinkage estimator. As recommended, a 

threshold of P-adjusted < 0.1 was used to define significance for differentially expressed genes.  

 

Single-cell RNA Sequencing (scRNA-seq) 

Mouse wound healing fibroblasts were prepared for PlateSEQ analysis as described above. In 

brief, mouse dermal scar specimens derived from 4 litter mates were pooled for each timepoint 

(POD 2, 7, and 14) and divided by wound region (inner and outer). Cells were counted and filtered 

just prior to loading into the FACS machine. Fibroblasts were FACS-isolated based on expression 

of individual Rainbow colors, and using an unbiased, lineage-based strategy to isolate fibroblasts 

independent of cell surface marker expression29. The sorted mCerulean+ (arbitrarily selected from 

among the available Rainbow colors) fibroblast aliquot was then re-, index-sorted into 96-well 

plates with 4 ul per well of lysis buffer consisting of 1U/ul of Recombinant RNase inhibitor (RRI) 

(Clontech), 0.1% Triton X-100 (Thermo 85111), 2.5mM dNTP (ThermoFisher), 2.5 uM 

oligodT30VN (5′AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, IDT). Once sorted, plates 

were immediately spun down and frozen at -80oC. Single cell RNAseq was performed via the 

method described by Picelli et al42. Lysis buffer plates were thawed on ice, then heated at 72 oC/3 

min in a Biorad C1000 Touch thermal cycler to denature RNA. First strand cDNA synthesis was 

performed in a 10 ul reaction with 100 Units of Clontech’s Smartscribe reverse transcriptase (Cat. 

No. 639538), 10 Units RRI, 1X First Strand Buffer (Clontech), 5 mM DTT, 1M Betaine (Sigma 

B0300-5VL), 6mM MgCl2, 1 µM Template Switch Oligo (TSO, (5′-

AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′, Exiqon) at 42oC/90 min, 70oC/5 min. PCR 
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pre-amplification was performed in a 25 ul reaction with 1X Kapa HiFi HotStart, 0.1 uM ISPCR 

primer (5′-AAGCAGTGGTATCAACGCAGAGT-3′, IDT) at 98oC/3 min, then 25 cycles of 98oC/20 

sec, 67 oC/15 sec, 72 oC/6 min, then 72 oC/5 min. Amplified cDNAs were purified by SPRI beads 

using a Biomek FX automated platform and eluted in 25 ul water, and 2 ul aliquots were run on 

an Fragment Analyzer High Sensitivity NGS 1-6000 kit for quantitation. Barcoded sequencing 

libraries were made using the miniaturized Nextera XT protocol of Mora-Castilla et al43 in a total 

volume of 4 ul. Pooled libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA 

chip for qualitative control purposes. cDNA libraries were sequenced on a NextSeq 500 Illumina 

platform aiming for 50,000 reads per cell. 

 

scRNA-seq Data Processing 

Fastq files for individual cells were converted to BAM format using STAR v2.5.3. Cell barcodes 

representative of quality cells were delineated from barcodes of apoptotic cells or background 

RNA based on a threshold of having at least 200 unique transcripts profiled and less than 10% of 

their transcriptome of mitochondrial origin, resulting in 191 unique single cells, with an average of 

550,000 reads per cell. Raw mRNA counts were normalized on a per-cell basis with a scale factor 

of 10,000 and subsequently natural log transformed with a pseudocount of 1 in R (version 3.6.0) 

using the Seurat package (version 3.1.1)44. Aggregated data was then evaluated using uniform 

manifold approximation and projection (UMAP) analysis over the first 15 principal components45, 

with n.neighbors = 50, min.dist = 0.75, and repulsion.strength = 1.  

 

Generation of Characteristic Subpopulation Markers and Enrichment Analysis 

Cell-type marker lists were generated with two separate approaches. In the first approach, we 

employed Seurat’s native FindMarkers function with a log fold change threshold of 0.25 using the 

ROC test to assign predictive power to each gene. However, in order to better account for the 

mutual information contained within highly correlated predictive genes, we also employed a 
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characteristic direction analysis 46. The 50 most highly ranked genes from this analysis for each 

cluster were used to perform gene set enrichment analysis in a programmatic fashion using 

EnrichR (version 2.1) 47.  

 

Prediction of Differentiation States 

CytoTRACE v0.2.1 R package (publicly available at https://cytotrace.stanford.edu)17 was used 

with default settings to predict differentiation states in scRNA-seq data. Predictions were 

generated using the CytoTRACE function with a read count matrix as input. Low-dimensional 

plots for visualizing CytoTRACE and cluster assignments were generated with plotCytoTRACE 

using UMAP coordinates generated from Seurat. Genes associated with less and more 

differentiated cells were generated with plotCytoGenes.  

 

Single-cell ATAC Sequencing (scATAC-seq) 

Single cell ATAC-seq was performed following 10x Genomics protocols. In brief, Rainbow mouse 

wound healing fibroblasts were FACS-isolated using the unbiased, fibroblast-isolation strategy as 

described above. As for scRNA-seq, mouse dermal scar specimens derived from 4 litter mates 

were pooled for each timepoint (POD 2, 7, and 14) and divided by wound region (inner and outer). 

As for scRNA-seq, the sorted mCerulean+ (arbitrarily selected from among the available Rainbow 

colors) fibroblast aliquot was selected for further analysis. For nuclei isolation, 10x genomics 

protocol CG000169 Rev D was followed using the low cell input modifications. Transposition, 

GEM generation and barcoding, post GEM Incubation Cleanup, library construction, and 

quantification was conducted following the 10x genomics protocol CG000169 Rev D. Pooled 

libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip for qualitative control 

purposes. cDNA libraries were sequenced on a NextSeq 500 Illumina platform. In total, we 

generated scATAC-seq profiles from 5,353 cells, which yielded on average 13.0 × 10^3 unique 

fragments mapping to the nuclear genome. 
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scATAC-seq Data Processing and Analysis 

Raw base call (BCL) files were demultiplexed to fastq files using the 10x Genomics Cell Ranger 

tool cellranger-atac mkfastq. These files were then aligned to the mouse genome (mm10) using 

cellranger-atac count with default parameters. Downstream analysis of scATAC-seq data were 

performed using ArchR, a novel tool developed by our collaborators (Granja et al., 2020). Arrow 

files were created for each sample using TSS and frag filters of 4 and 1000, respectively. Doublets 

were filtered using k = 10 pseudodoublets embedded in UMAP space, as previously described 

(Granja et al., 2020). Dimensionality reduction was achived using ArchR’s implementation of 

latent semantic indexing (LSI). Initial clustering was achieved using the native addClusters 

function with resolution = 0.1, method = Seurat, reducedDims = IterativeLSI. Single cell 

embeddings were then generated using addUMAP with nNeighbors = 40, minDist = 0.5, metric = 

"cosine", and marker genes were identified using getMarkerFeatures with bias = 

c("TSSEnrichment", "log10(nFrags)"), testMethod = "wilcoxon". 

 

Integration of scRNA-seq and scATAC-seq Data  

Single cell ATAC-seq data were integrated with scRNA-seq data using ArchR. Cells from 

scATAC-seq are directly aligned with cells from scRNA-seq by comparing the scATAC-seq gene 

score matrix with the scRNA-seq gene expression matrix. This alignment is performed using the 

FindTransferAnchors() function from Seurat, which allows for the alignment of data across two 

datasets. This cross-platform linkage is performed serially in an unconstrained and constrained 

fashion. Pseudo-scRna-seq profiles are then generated for each single ATAC cell using the native 

ArchR addGeneIntegrationMatrix() function with default parameters, and scATAC-seq clusters 

were then labeled with scRNA-seq information. Pseudo-bulk replicates were then generated using 

ArchR’s addGroupCoverages(), permitting peak calling with ArchR’s native TileMatrix algorithm. 
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Motif enrichment calculations were performed using addMotifAnnotations and 

peakAnnoEnrichment with cutOff = "FDR <= 0.1 & Log2FC >= 0.5". 

 

GREAT Analysis  

Genomic Regions Enrichment of Annotations Tool (GREAT) analysis was performed 

programmatically in R (rGREAT v1.18.0) to assess for enrichment of cis-regulatory regions 30. 

This was performed separately for the initial six ATAC-defined clusters and the subsequent four 

clusters defined based on integrated scRNA-seq analysis. In each case, this was performed 

iteratively for each cluster using pairwise comparisons between peak sets for that cluster against 

a background containing the union of all peak sets from the dataset (including those for that 

cluster).  

 

Deconvolution of Bulk RNA-seq Profiles 

CIBERSORTx19 was used to deconvolve cell type abundances from bulk RNA-seq profiles of 

fibroblasts isolated from untreated wounds at POD7 (n = 4) and POD14 (n = 3) and FAK-inhibitor-

treated wounds at POD14 (n = 4). Default parameters from the web toolkit 

(http://cibersortx.stanford.edu/) were used to generate a custom signature matrix using a single 

cell reference matrix file consisting of raw mRNA counts for each cell in the scRNA-seq dataset. 

Each scRNA cell was re-labeled using Seurat’s anchor-transfer mapping algorithm to the 

integrated ArchR scRNA-ATAC reference profiles: “ArchR-Cluster 1”, “ArchR-Cluster 2”, “ArchR-

Cluster 3”, and “ArchR-Cluster 4” subpopulations as defined in Fig.  3b. Imputation of cell fractions 

was then performed using this matrix in conjunction with a mixture file of bulk RNA-seq samples, 

using S-mode batch correction without quantile normalization. 

 

Spatial Transcriptomics 
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Wound specimens were rapidly harvested and flash frozen in OCT. Using the Visium Tissue 

Optimization Slide & Reagent kit, permeabilization time was optimized at a thickness of 10um per 

section and 37 minutes for mouse cutaneous scar tissue. Wound tissues were cryosectioned at -

20 degrees onto gene expression slides. The Gene Expression Slide & Reagent kit was followed 

per protocol, and used to produce sequencing libraries. The libraries were then sequenced using 

NextSeq (Illumina), and Bcl files were demultiplexed.  

 Raw FASTQ files and histology images were processed by sample with the Space Ranger 

software, which uses STAR v.2.5.1b (Dobin et al., 2013) for genome alignment, against the Cell 

Ranger mm10 reference genome, available at: http://cf.10xgenomics.com/supp/cell-exp/. Raw 

spaceranger output files for each sample were read into a Seurat class object in R using Seurat’s 

Load10X in a manner that kept them paired with the low resolution histology images for 

visualization purposes. This included information such as the number of estimated cell counts, 

the sum of UMIs per spot, number of expressed genes per spot, and graph-based clustering 

results. We did not drop any spots given the spatial pattern they presented. Data were normalized 

using the SCTransform with default parameters. Principal component analysis was performed on 

the normalized dataset, and the top 30 components were used for neighbor finding, Louvain-

based cluster analysis, and UMAP dimension reduction and embedding.  

For the delineation of cell type contributions to each Visium “spot”, high resolution 

histology images (H&E) were loaded and each spot was counted for the number of a given cell 

type in that spot. This was performed by co-authors who were not involved in the Visium data 

analysis. A maximum of 9 cells of a given type were used as the limit for a given spot. Spots 

consisting entirely of one cell type, based on these annotations, were used to construct sets of 

“pure” keratinocyte, endothelial cell, macrophage, and “neutrophil” (including all non-macrophage 

immune cells) transcriptional profiles. We then sampled from these in silico population in a Monte 

Carlo fashion using 10,000 iterations to “subtract out” the contribution of non-fibroblast cells from 

each fibroblast-containing spot in a linear fashion. Negative gene expression values were zeroed 
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out at a per-spot level following all subtractions, representing an asymmetrical bias for spots 

based on the number of non-fibroblast cells, which we found to counterbalance the assumption 

of linear added effects. These values were propagated forward for anchor-based integration to 

spatially overlaid partial memberships for each of our four clusters. The resulting partial 

membership contributions for each spot were then averaged to obtain consensus cluster 

representations  

RNA velocity analysis was performed using scVelo,48 using a likelihood-based dynamical 

model to solve the full transcriptional dynamics of mRNA splicing kinetics. Whereas the originally 

described steady-state model assumes that all genes share an equal splicing rate 49, the 

likelihood-based dynamical model of scVelo generalizes RNA velocity analysis to transient cell 

states and non-stationary subpopulations.  

  

Imputed Spatial Epigenomics 

In order to impute spatial epigenomic properties from our Visium datasets, we first re-partitioned 

our scRNA-ATAC construct with higher cluster resolution in order to better capture differences in 

the time and space phenotypes represented by the underling scRNA and scATAC data. This 

parameterization was optimized using our POD 14 spatial transcriptomic data, which had the 

clearest delineation of dermal margins and highest representation of fibroblasts. We first defined 

an “outer” ßà “inner” vector along the scar dermis and then computed the spatial auto-correlation 

for each gene along this vector using six neighbors for each Visium spot (Extended Data Fig. 

16a) 13. We considered the top 100 most highly auto-correlated genes to have spatial significance 

in our original dataset (Extended Data Fig. 16b). We then iteratively re-partitioned our multimodal 

scRNA-ATAC fibroblast data using ArchR’s native Louvain clustering algorithm while varying the 

resolution parameter from 0.5 to 4.0 at increments of 0.1. Each of the resulting cluster 

configurations was used to generate partial membership profiles for each Visium spot using the 

anchor-based transfer method described above, after which the Gene Integration Matrix values 
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associated with each ArchR cluster were projected onto each Visium spot in accordance with the 

each cluster’s partial spot membership. Preservation of auto-correlation for the 100 genes 

determined above was used as an optimization metric, and we selected a resolution parameter 

of 2.2, which produced twenty clusters, each representing between 27 and 552 cell equivalents. 

Gene integration matrix distributions, informed by both modalities, were then extracted for each 

partition and subjected to SCT transformation. “Spike-in” scRNA-seq data for keratinocytes, 

endothelial cells, macrophages, and neutrophils were generated as described above and 

augmented to the initial 20 RNA-ATAC-defined clusters following a similar SCT transformation. 

The resulting putative single cell gene expression reference matrix (comprising 24 cell-types) was 

then used to assign initial partial set memberships for each spatial transcriptomic datapoint using 

an anchor transfer-based approach. Given that the Visium technology captures multiple cells 

within each 55 um spot, and discretizes all of their location to the spatial center of that spot, we 

applied a single-step spatial smoothing function to incorporate fractional membership 

contributions from each of the six neighboring spots. This is achieved by updating each partial 

membership value mi for each spotj in the Visium slide: 
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#∈
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Partial memberships to non-fibroblast clusters were subsequently removed from each spot, and 

the remaining partial membership values for each fibroblast cluster were normalized to enforce a 

membership sum of 1 for each spot: 

𝑚!"𝑠𝑝𝑜𝑡"' = 𝑚!"𝑠𝑝𝑜𝑡"'
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The resulting partial set memberships for each spatial datapoint were then treated as a topological 

vector space, onto which epigenomic peak, motif, and binding activity from the twenty scRNA-

ATAC partitions can be projected.  
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To examine the spatial dependence of individual genes along the out-to-inner wound axis, 

spatial lag vectors were constructed for POD 14 Visium samples using a 3-spot diameter 

trajectory as shown in (Extended Data Fig. 16a)13, and Pearson correlations calculated for 

imputed gene scores along either radial direction. The top 200 genes from each group were used 

to perform enrichment analysis against the Gene Ontology database. Functional networks of the 

most highly enriched gene sets were then generated using the clusterProfiler package in R 50. 

 

Statistical Analysis 

Non-omics statistical analyses were performed using the software GraphPad Prism v.6 (unless 

otherwise noted). Results are expressed as absolute numbers, percentages, fractions, or mean 

+/- standard deviation (unless otherwise noted). Unpaired t-test assuming two-tailed distribution 

or one-way analysis of variance (ANOVA) and post hoc Tukey correction were used to compare 

groups where relevant. P < 0.05 was considered statistically significant. All -omics statistical 

analyses were performed in R (version 3.6.0) as described above.  
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