
Guidelines for obtaining an absolute blood flow
index with laser speckle contrast imaging
Smrithi Sunil1,3,*, Sharvari Zilpelwar2,3,*, David A. Boas1,2,3, and Dmitry D. Postnov1,3,4,�

1Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
2Boston University, Department of Electrical and Computer Engineering, Boston, MA 02215, USA
3Boston University, Neurophotonics Center, Boston, MA 02215, USA
4Copenhagen University, Department of Biomedical Sciences, Copenhagen, 2200, Denmark
*Authors with equal contribution
�dpostnov@sund.ku.dk

ABSTRACT

Laser speckle contrast imaging (LSCI) is a technique broadly applied in research and clinical settings for full-field characterization
of tissue perfusion. It is based on the analysis of speckle pattern contrast, which can be theoretically related to the decorrelation
time - a quantitative measure of dynamics. A direct contrast to decorrelation time conversion, however, requires prior knowledge
of specific parameters of the optical system and scattering media and thus is often impractical. For this reason, and because of
the nature of some of the most common applications, LSCI is historically used to measure relative blood flow change. Over
time, the belief that the absolute blood flow index measured with LSCI is not a reliable metric and thus should not be used has
become more widespread. This belief has resulted from the use of LSCI to compare perfusion in different animal models and to
obtain longitudinal blood flow index observations without proper consideration given to the stability of the measurement. Here,
we aim to clarify the issues that give rise to variability in the repeatability of the quantitative blood flow index and to present
guidelines on how to make robust absolute blood flow index measurements with conventional single-exposure LSCI. We also
explain how to calibrate contrast to compare measurements from different systems and show examples of applications that are
enabled by high repeatability.

Introduction
Laser speckle contrast imaging (LSCI) provides a rapid wide field qualitative characterization of the motion of light scattering
particles. Over the past 20 years, it has become widely used as an imaging tool to measure blood flow in the brain1–6, skin7–9,
retina10–12 and other organs. LSCI has had a broad impact on fundamental research, for instance enabling the connection
between migraine aura and headache2, and has a rising number of clinical applications12, 13 thanks to the approval of LSCI
imaging systems by the US Food and Drug Administration.

The technique is based on quantifying the speckle pattern blurring, caused by the motion of scattering particles, in terms of
speckle contrast (K)14. The speckle contrast is a function of the exposure time (T) and the intensity autocorrelation function
g2(τ). Their relationship is given by15, 16:
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where K is the contrast, < I > and σ are the mean and standard deviation of the intensity respectively, T is the exposure time,
g2(τ) is the intensity autocorrelation function, and τ is the time lag. The intensity autocorrelation function, in turn, is related to
the field correlation function and thus to the decorrelation time τc, a quantitative measure of the particles dynamics14, 16. For
spatial statistics in the presence of static scattering, the relation is commonly described as16–18:

g2 (τ) = 1+β
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noise, (2)

where the β parameter describes the degree of coherence19–21, ρ is the fraction of static scattering events17, 18, 21–23, and g1(τ)
is the temporal field auto-correlation function14. Finally, g1(τ) = exp(−( τ

τc
)n), where n takes discrete values of 0.5, 1, or 2,

depending on the form of the particle motion and the scattering regime18, 24, and τc is the decorrelation time, which is inversely
proportional to particles speed and thus to perfusion16, 25. To allow real-time contrast estimates and to ease the adoption of the
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technique, the contrast to perfusion relation is generally expressed in terms of the blood flow index11, 20, 26–30 (BFI):

BFI = 1/K2 ≈ 1
β

T
τc
. (3)

It is important to note that the parameters ρ , n, and τc describe the properties of the medium17, 18, while β is the only
parameter that depends on the imaging system characteristics15, 19, 20 and is not explicitly set by the user. To exclude system-
dependent effects, the relative blood flow index (rBFI) is defined:

rBFI =
(

Kbaseline

Kresponse

)2

≈
τc,baseline

τc,response
, (4)

where baseline and response indicate either temporal (before vs after stimulus) or spatial (affected tissue vs non-affected tissue).
As a system-independent quantitative metric, rBFI measured with LSCI has found broad applications in studying blood flow
changes in various applications. These include, but are not limited to stroke experiments3, 6, 28, 29, sensory stimulation4, 31,
perfusion response to drugs11, 32, and vasoreactivity research11, 27.

However, the use of absolute values of BFI for quantitative studies of flow has not evolved due to the BFI dependence on
system parameters. As a result, LSCI has found a limited number of applications in studies where there is no baseline data
or where it is challenging to avoid changes in the system configuration between experimental sessions. Such studies include
long-term blood flow monitoring (i.e. stroke recovery, ageing), absolute perfusion comparison in different subjects or animal
models, and studies in which animal has to be moved during the experiment (i.e. traumatic brain injury).

In this work, we aim to demonstrate that, when the system is appropriately configured, the absolute speckle contrast and
resultant BFI are sufficiently robust for quantitative comparisons to be performed. It is important to note that we address
the problem of quantitative BFI measurements and not the problem of relating BFI to the absolute perfusion values, which
requires knowledge of the scattering regime and particle motion type in the media18, 25. We demonstrate that measurement
repeatability can be increased by adjusting polarization, speckle size, and the amount of light. We also show how contrast can
be calibrated to enable comparisons between different settings and even different imaging systems. We conclude the results
with two examples of applications where robust absolute blood flow index measurements, enabled by following our guidelines,
provide important physiological insights.

Results

Repeatability of speckle contrast measurements

Key components and parameters of an LSCI system are shown in Fig.1. Some of them, such as sensor parameters (exposure
time, frame rate), are easy to reproduce between studies and, in most cases, are well described. Others, such as optical
parameters and the light source position relative to the sample, are more difficult to quantify and often vary even within the
same set of experiments. The key characteristics that affect LSCI signal quality are: (i) exposure time T with respect to τc, (ii)
illumination intensity I with respect to the camera dynamic range and noise, and (iii) system parameters that define parameter
β . The latter includes light source coherence and stability20, speckle to pixel size ratio19, and detected light polarization19, 33.
The β takes values from 0 to 1, where 1 corresponds to ideal conditions, and β<1 reflects the loss of correlation related to the
listed factors. From eq. 2 it can be seen that increasing β is a key to improving the robustness and the signal-to-noise ratio of
LSCI. Furthermore, keeping β constant between recordings is critical for the repeatability of LSCI measurements.
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Figure 1. Key components and parameters of a typical LSCI system. (a) List of the LSCI system components. Parameters
highlighted in red are often modified between recordings even within the same system. (b), (c) Speckle pattern characteristics
that vary with the LSCI system parameters: average intensity, global contrast, and speckle to pixel size relation s/p (as
determined from the spatial cross-correlation of the speckle pattern).

To quantify repeatability we introduce two metrics - Dm and Dsd . Dm is a metric of the standard deviation of contrast
between recording sessions relative to the mean. Dsd is a metric of the standard deviation of contrast between recording sessions
relative to the average standard deviation of the contrast within recording sessions.
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where K f is the spatial contrast calculated for the frame f , N f is the total number of frames, K is the average spatial
contrast across all frames within a single recording, σK is the standard deviation of the spatial contrast for all frames in a
single recording, and σK is the standard deviation of the average spatial contrast between recordings. Nr is the total number
of recordings, < K >r is the contrast averaged across all frames in all recordings, and < σK >r is the mean of the standard
deviation within recordings.

Example contrast measurements and their repeatability are shown in Fig.2. The system parameters are: the speckle to pixel
size ratio (s/p) of 3.2; the detected light is polarized; a VHG stabilized laser diode with a coherence length ≈ 2mm is used as
the light source. Parameters remain constant between recordings, except for natural changes in the position of the sample as
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two animals were alternated. Under these conditions, the repeatability is high with the contrast variation between recordings
being less than 6% of the mean (Dm<0.06, see Fig.2, c), and less than 25% of the variation within the recordings (Dsd<0.25,
see Fig.2, d) caused by measurement noise and physiological fluctuations (e.g. breathing, cardiac activity).

Figure 2. Repeatability in the speckle contrast measurements. (a) Spatial contrast map measured from the same animal after
repositioning. (b) Average and standard deviation of the speckle contrast values in selected ROIs for five different recordings
from the same animal. (c) and (d) Dm and Dsd repeatability metrics for recordings in both animals. The variation between
recordings is minor compared to the average contrast level and the average variation within given recordings - in majority of the
pixels Dm<0.06 and Dsd<0.25.

To further explore the repeatability, we have performed additional experiments, where the system parameters were varied
in addition to alternating animals and adjusting their position. The s/p was adjusted to take values 2.5,2.8,3.7 or 5.8, and the
polarization of the detected light was set to either "no polarization" (by removing the polarizing filter) or linearly polarized to
minimize the reflected light. We took six recordings (Nr = 6) for each animal with each of 8 parameter sets. As exposure time
was kept constant and s/p was changed by opening or closing the iris, the average intensity < I > varied between recordings.
Fig. 3, (a) shows the pixel average Dm and Dsd for all recordings, including the ones demonstrated in Fig. 2. One can see
that even the least robust settings (s/p=2.5 with non-polarized detection) result in Dm < 0.14 and Dsd < 0.45, which can be
considered acceptable for studies where large changes in perfusion are expected. The repeatability improves with larger s/p
ratios and polarized detection, reaching Dm < 0.03 and Dsd < 0.13. Recordings with high repeatability tend to share the same
characteristics: detected light is polarized, the average intensity variation is low, and the s/p value is typically above 2.8. Fig
3, (b) and (c) show how the repeatability metrics are affected by the size of the neighbourhood used to calculate the contrast.
Average contrast < K >r rapidly rises with the increase of the neighbourhood side

√
N (where N is the total number of pixels

in the neighbourhood) and reaches 80% of possible maximum when
√

N ≥ 2.5s/p, which agrees well with computational
studies33. The Dm rapidly decreases (improvement of repeatability) until the maximum < K >r is reached, which is followed
by a slower decrease caused by changes in σK . Dsd , on the other hand, is rising, reflecting the reduction of noise effects and
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decreased average variation within recording < σK >r.

Figure 3. (a) Pixel average repeatability metrics for recordings taken with varied system parameters. Circle size is
proportional to the s/p value and corresponds to 2.5, 2.8, 3.2, 3.7, and 5.8. The symbol inside the circle denotes data taken with
the polarizing filter (’+’) and without it (’x’), with the symbol colour indicating the average intensity. The colour of the circle
outline indicates the standard deviation of the average intensity between recordings. Green dashed square highlights 9 out of 18
recordings with the highest repeatability. (b),(c) Pixel average repeatability metrics for the spatial contrast calculated using
neighbourhoods of different size. Recordings with high repeatability and speckle to pixel ratios 2.5 (b) and 5.8 (c) were
analyzed. Corresponding system settings are indicated in (a), bottom left corner. Green dashed line highlights the commonly
used 7x7 (N=49) pixels neighbourhood.

Cross-parameter and cross-system calibration
An estimate of β is required to calibrate and compare BFI (or speckle contrast) measured with different parameters or imaging
systems. It can be obtained by imaging a static scattering phantom (see Fig.1,b) and calculating the global contrast20. According
to eq.1,2, the speckle contrast measured from a purely static phantom (τc = 0) will be given by:

Kmax =
√

β +Cnoise. (7)

Kmax is the maximum speckle contrast that can be measured with the given system parameters, as any dynamics in the scattering
particles will only reduce the contrast. Given Kmax, we can now calibrate subsequent measurements as:

Kcalibrated = Kmeasured/Kmax. (8)

We applied the calibration procedure and calculated pixel average Dm for all possible pairs of recordings taken with the
settings shown in Fig.3. Results showing the impact of calibration are presented in Fig.4. As expected, changing the speckle
size or polarization often leads to high contrast variation between the recordings (Dm reaches 0.3, Fig.4, (a) left panels), which
will prevent perfusion comparison between the datasets. The difference is particularly noticeable when comparing two different
polarization states, or comparing the smallest speckle size (s/p = 2.5) with larger speckle sizes (s/p = 3.7 and 5.8). The
difference between recordings taken with s/p = 3.7 and s/p = 5.8 is not as noticeable (Dm<0.1), since effects of speckle to
pixel size ratio on the average contrast becomes negligible after s/p reaches 319. After the calibration (Fig.4, (a) right panels)),
the Dm generally reduced to below 0.1 within the same polarization - an example is shown in Fig. 4, b. Calibration becomes
less effective when applied to measurements taken with different polarizations - repeatability has improved in 28 out of 32
cases (Fig.4,c), but worsened in other 4 (all observed in animal 2, Fig.4,e). Importantly, calibration allows comparing the data
collected with two different systems as long as the Kmax estimate is available for both systems (Fig.4,d).

5/10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.438198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438198
http://creativecommons.org/licenses/by/4.0/


Figure 4. Contrast calibration results. (a) The pixel average Dm and Dm calibrated for both animals, calculated with the data
merged from recordings taken with different settings. Calibration improves the repeatability, especially when applied to the
data collected with the same polarization type. (b)-(e) Examples of the calibration displayed as the average and standard
deviation of the contrast over the field of view. (b) Calibration of the data collected with the same polarization type; (c)
successful calibration with different polarization types; (d) successful calibration between different imaging systems (same
polarization type); (e) failed calibration for the data collected with different polarization types.

Potential applications

In Fig.5 we present examples of both long term and short term recordings where repeatable LSCI is necessary or beneficial.
Fig.5 (a),(c),(e) show long term monitoring of cerebral blood flow in the animal model of ischemic stroke3, where continuous
imaging is challenging due to the long, over few days, observation time. Fig.5 (b),(d),(f) show monitoring of cerebral blood
flow during a traumatic brain injury experiment, where continuous imaging is not possible as the experimental design requires
moving the animal between different setups. In the stroke experiments the control ROI returned to the baseline perfusion level
at 24 hours after stroke and remained at that same level at the 72 hr time-point, while the ischemic core remained at rBFI = 0.5.
Without ensuring repeatable LSCI, one can only compare between ROIs within a single time point, which might result in
the misinterpretation of the results as both regions are affected to a different degree depending on the time passed after the
stroke. With repeatable LSCI, more robust analysis is possible by comparing each time point to the pre-stroke blood flow index.
Similarly, in the traumatic brain injury experiment, repeatable LSCI allows evaluation of the blood flow reduction by comparing
it to the baseline instead of the control hemisphere, where the blood flow also changes over time.
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Figure 5. Application examples, where continuous imaging is challenging due to requirements of the experimental design.
(a),(c),(e) Long term monitoring of cerebral blood flow in the animal model of ischemic stroke. (b),(d),(f) Monitoring of
cerebral blood flow during a traumatic brain injury experiment. Orange lines and ROIs correspond to the ischemic core (in the
stroke experiment) or the hemisphere that was hit (in the traumatic brain injury experiment). Blue lines and ROIs correspond to
the control regions, which are not affected directly.

Discussion
We have demonstrated that the absolute values of speckle contrast and the corresponding BFI collected with an optimally
configured LSCI system are sufficiently robust and repeatable for quantitative comparison. We have also shown how to calibrate
the contrast to allow comparison of BFI measurements taken with different imaging systems (i.e. by different research groups).
To achieve the optimal configuration one should follow the guidelines presented below.

Guidelines:

• Use a linear polarizing filter in the detection path. Adjust the filter rotation to minimize the specular reflections, which
generally corresponds to the minimum average intensity observed during the filter rotation. Although the importance of
polarizing the detected light in the LSCI is well known16, 19, this step is often missing in the real-life applications.

• Use a highly coherent and stable light source. For example - volume holographic grating wavelength stabilized diodes
coupled to a single-mode fibre, that have a long coherence length and have become broadly available over the past few
years.

• Have a detection pupil with an adjustable diameter that will permit adjustment of the system f-number and thus speckle
size. Theoretically, a value of 2 is sufficient for the speckle to pixel size ratio to minimally affect β 19. However, in
practice, because of the pixels cross-talk20, 34 and difficulties in precise estimation of the speckle size, we recommend
adjusting the pupil diameter to reach a speckle to pixel size ratio s/p & 3. The s/p value can be calculated by analyzing
spatial cross-correlation of a speckle pattern recorded from a static scattering sample (Matlab script is available at BU
NPC GitHub35). The same data can be used to estimate Kmax.
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• When calculating the spatial contrast use neighbourhood side
√

N at least 2-3 times larger than the speckle to pixel size
ratio (i.e. 7x7, N=49 for the s/p=3). Further increase in the neighbourhood size might be beneficial in the applications
where spatial resolution loss is not of critical importance (i.e. skin imaging).

• Use an exposure time optimized according to the dynamics of interest: from ≈1 ms if measuring the blood flow index in
arteries and veins with a diameter more than 50 micrometres, to ≈5 ms for capillaries and small vessels36 (e.g. imaging
the skin or parenchymal regions of the brain).

• The average detected intensity over the field of view should be just below the middle of the sensor’s dynamic range (i.e.
110 for an 8 bit sensor). Lower values will result in a reduced ability to resolve speckle fluctuations, while higher average
intensity might lead to the pixel saturation and clipping of the signal.

• Illuminate the sample as homogeneously as possible to ensure that the same signal to noise ratio is obtained over the
entire field of view.

• If relevant, collect the data at a higher frame rate to allow contrast averaging in time and thus reduction of the shot noise
effects. Compensate for the fixed pattern noise if it is noticeable. It increases the intensity of specific pixels, and thus
impacts the relationship between calculated contrast and the perfusion.

• Collect the calibration data (speckle pattern image collected from a static scattering sample) and calculate Kmax whenever
the system parameters were or could be changed. Follow the same guidelines as described above during the calibration
and modify the exposure time T to adjust the pixel intensity. Repeat the calibration in fixed intervals of time (i.e. once
per week) during long term studies. Use the calibrated BFI BFIcalibrated = K2

max
K2 to evaluate perfusion.

• To make results reproducible by others, report the calibration parameter Kmax and exposure time T along with the contrast
or BFI measurements.

Potential applications
Applications, where repeatable measurements with LSCI are critical, include perfusion comparison without stimulation and
experiments where continuous monitoring is not possible. It will be particularly crucial for long term perfusion monitoring,
such as in chronic stroke studies, where potential physiological changes compromise the use of control ROIs. Optimizing LSCI
measurements will improve quality and open new possibilities for individual studies while publishing calibration data will
allow BFI comparisons between different studies. Thus linking together the body of LSCI measurements performed in the
world and allow the quantitative use of the LSCI blood flow index.

Methods
Two separate LSCI systems were used. Both systems use the same model of the light source (volume holographic grating
stabilized laser diode, 785 nm, LP785-SAV50, Thorlabs) to deliver coherent light to the sample and the same model of the
CMOS camera (Basler acA2040-90umNIR, 2048x2048 pixels, 5.5 µm pixel size) to record the backscattered light. The light
was delivered to the camera through a 2x objective with NA= (TL2X-SAP, Thorlabs) in the first system, and a 5x objective
with NA= 0.14 (Mitutoyo, Japan) in the second system. The speckle size of the first system was adjusted by altering the pupil
diameter of an iris in the detection path to achieve an estimated speckle to pixel size ratios of ≈2.5,2.8,3.7 and 5.8. For the
second system, the speckle to pixel size ratio was fixed to an estimated value of 3.2. A linear polarizing filter was either placed
in front of the objective and adjusted to minimize the reflected light (polarized state), or removed from the system entirely
(non-polarized state). The light source was fixed in the position that provided homogeneous illumination over the whole field
of view and resulted in the optical power density that saturated 1% of pixels at the smallest speckle to pixel size ratio for the
non-polarized system settings. As we did not change the optical power density between recordings, the average intensity is
decreased for both the polarized condition and for larger speckle to pixels size ratios (smaller pupil diameter).
In all experiments, except for the application demonstration (stroke and traumatic brain injury), data were collected over
30 seconds per recording. The frame rate was 50 frames per second, and the exposure time was 5ms. The raw data was
then processed into spatial contrast K by calculating standard deviation and mean of intensity over a neighbourhood of 7x7
pixels16, 33 unless indicated otherwise. The contrast was then further processed to calculate maps of Dm and Dsd as well as
BFI and rBFI, according to equations 3,4,5,6. All animal procedures were approved by the Boston University Institutional
Animal Care and Use Committee and conducted following the Guide for the Care and Use of Laboratory Animals. A chronic
cranial window surgery was performed on wildtype C57Bl6 mice (approximately 12-week-old, The Jackson Laboratory), as
reported previously3. Briefly, a craniotomy was drilled over one hemisphere, keeping the dura intact. A half-skull shaped
curved glass (modified from Crystal Skull, LabMaker, Germany) was inserted into the craniotomy, gently touching the brain.
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The window was fixed with dental acrylic, along with an aluminium bar attached to the skull on the other hemisphere for head
fixation during imaging. In the application experiment that involved traumatic brain injury, a half skull glass window was also
installed in the second (control) hemisphere. In all experiments, except the application demonstration, animals were imaged
under isoflurane anaesthesia (3% induction, 1-1.5% maintenance, in 1 L/min oxygen), by fixing the head to a custom-made
stage. The animal was allowed to recover after the experiment. In the experiments that involved stroke and traumatic brain
injury, after a 7-day surgery recovery period, the animals were trained for 10 days to remain awake and head-fixed under the
imaging systems. The application experiments were performed in awake head-fixed mice.
The static scattering sample (white backside of the VRC2 Thorlabs laser viewing card) was imaged to get the calibration data.
A single image was collected and processed to get the Kmax value by calculating global contrast over 512x512 pixels. The
calibration data was collected for each speckle to pixel size ratio in the polarized state. To calibrate non-polarized data, Kmax
measured in the polarized state was multiplied by a theoretical coefficient of 1√

2
19, 33.
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