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 20 

Abstract 21 

Background. Transforming patient-specific molecular data into clinical decisions is fundamental 22 

to personalized medicine. Despite massive advancements in cancer genomics, to date driver 23 

mutations whose frequencies are low, and their observable transformation potential is minor 24 

have escaped identification.  Yet, when paired with other mutations in cis, such ‘latent driver’ 25 

mutations can drive cancer. Here, we discover potential ‘latent driver’ double mutations.  26 

Method. We applied a statistical approach to identify significantly co-occurring mutations in the 27 

pan-cancer data of mutation profiles of ~80,000 tumor sequences from the TCGA and AACR 28 

GENIE databases. The components of same gene doublets were assessed as potential latent 29 

drivers. We merged the analysis of the significant double mutations with drug response data of 30 

cell lines and patient derived xenografts (PDXs). This allowed us to link the potential impact of 31 

double mutations to clinical information and discover signatures for some cancer types.   32 

Results. Our comprehensive statistical analysis identified 228 same gene double mutations of 33 

which 113 mutations are cataloged as latent drivers. Oncogenic activation of a protein can be 34 

through either single or multiple independent mechanisms of action. Combinations of a driver 35 

mutation with either a driver, a weak driver, or a strong latent driver have the potential of a 36 

single gene leading to a fully activated state and high drug response rate. Tumor suppressors 37 

require higher mutational load to coincide with double mutations compared to oncogenes which 38 

implies their relative robustness to losing their functions. Evaluation of the response of cell lines 39 

and patient-derived xenograft data to drug treatment indicate that in certain genes double 40 
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mutations can increase oncogenic activity, hence a better drug response (e.g. in PIK3CA), or 41 

they can promote resistance to the drugs (e.g. in EGFR).  42 

Conclusion. Our comprehensive analysis of same allele double mutations in cancer genome 43 

landscapes emphasizes that interrogation of big genomic data and integration with the results of 44 

large-scale small-molecule sensitivity data can provide deep patterns that are rare; but can still 45 

result in dramatic phenotypic alterations, and provide clinical signatures for some cancer types. 46 

 47 

Keywords: mutation doublets, molecular signatures of cancer, latent drivers, cancer genome 48 

analysis, passenger mutations 49 

 50 

Background  51 

Cancer is a disease of uncontrolled cell proliferation driven by molecular alterations. The impact 52 

of these alterations diffuses into the molecular interaction network and changes signaling 53 

pathways and transcriptional regulation in the cell. Not all alterations equally contribute to 54 

growth advantage of cancer cells. Some mutations are drivers; others are passengers [1]. 55 

Whereas it is generally believed that passenger mutations do not bestow proliferative effects on 56 

the disease phenotype, their properties and possible roles are not fully understood [2]. 57 

Comprehensive screening of thousands of p53 mutations and phenotypic characterization of 58 

these mutations have shown that mutations that maintain wild-type functionality of p53 are 59 

unlikely to be cancer drivers [3]. However, cancer genomics and evolutionary studies suggest 60 

that the accumulation of ‘slightly’ deleterious passenger mutations can slow cancer progression 61 

and this could be exploited for therapeutic purposes [4]. Lately, another class of mutations was 62 
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defined, dubbed “latent” or “mini-drivers” [5-7]. Latent mutations may assume a driver-like 63 

behavior yet were not identified as drivers per se. Latent drivers emerge during cancer evolution 64 

and their detection may help forecast cancer progression and improve personalized treatment 65 

strategies [6]. Driver mutations are classified into three types, strong driver, driver and weak 66 

driver. As for latent drivers, there are strong latent and weak latent drivers. Curated driver genes 67 

and mutations have been deposited in multiple databases [8-10]and used by multiple research 68 

groups to develop computational approaches to predict driver genes and driver mutations [11-69 

16]. These methods, including the frequency-based methods, subnetwork identification methods, 70 

and 3D mutation search methods, have been comprehensively compared [17-19]. One of the 71 

concerns with frequency-based approaches is that prohibitively large sample sizes are needed to 72 

identify infrequently mutated driver genes. Thus, in frequency-based approaches, there is a risk 73 

of generating biased results due to background mutation rates [20]. Large databases catalog 74 

cancer driver genes and driver mutations and help in understanding the mechanism behind 75 

tumorigenesis. However, frequency-based approaches fail in the identification of rare drivers 76 

which can be tissue-specific [21]. A recent multidimensional analysis of cancer driver genes in 77 

IntOGen showed that some drivers are cancer-wide whereas others are specific to a limited 78 

number of cancer types [14].  79 

Even a single mutation in a gene can be considered as a prognostic marker and change the global 80 

genome and protein expression, eventually altering the signaling pathways [22]. However, it has 81 

been estimated that the contribution of a single driver mutation to cancer progression is very 82 

small and needs additional mutations over time [23]. Despite DNA repair, somatic mutations 83 

accumulate and different genotypes in individual tissues are generated. This mechanism, called 84 

‘somatic mosaicism’, offers driver or synergistic mutations an advantage in cancer cells [24]. 85 
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Recently, the combination of single frequent mutations with a rare, or weak mutation in the same 86 

gene was shown to have a significant advantage in tumor progression and influence treatment 87 

response. These double mutations in cis in PIK3CA were shown to be more oncogenic, and more 88 

sensitive to an inhibitor compared to a single mutation [25]. A recent work cataloged ‘composite 89 

mutations’ of multiple genes – i.e. acting through same proteins – having more than one non-90 

synonymous mutation in the same tumor [26]. Saito et al demonstrated the functional 91 

implications of multiple driver mutations in the same oncogene with an emphasis on PIK3CA 92 

[27]. Analysis of the rare mutations in cancer patients revealed known and hidden onco-drivers 93 

that are mutually exclusive in the same pathway suggesting epistatic mechanisms [28]. Many 94 

approaches are based on the principle that functionally-related genes have similar profiles of 95 

epistatic interactions [29]. One proposed explanation, typically for mutations in the same cellular 96 

pathway, involves functional redundancy. After a pathway has been mutated once, there is no 97 

evolutionary benefit to the clone from additional mutations in that pathway [29, 30].  98 

Here, aided by informatics techniques, we systematically screen somatic mutations in pan-cancer 99 

data across ~80,000 patient tumors. We aim to find co-occurring patterns that are predominantly 100 

present in specific tissues and tumor types. Our screening reveals tumor-type specific double 101 

mutations on the same gene which may promote tumorigenesis and alter the response to 102 

treatments. It also reveals that tumors having at least one double mutations pair can lead to 103 

changes in response to drugs. We cataloged the components of double-mutations as latent 104 

mutations if their co-occurrence is significant and not yet labeled as a cancer driver. This led us 105 

to uncover 113 latent driver mutations. The oncogenic activation of a gene is through either 106 

single or multiple independent mechanisms of action. We present these different mechanisms 107 

through the same gene double mutations. Although the existence of a set of driver genes is 108 
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considered cancer-wide, we show that having double mutations on those genes is cancer-specific. 109 

Same gene double mutations are relatively rare; however, their impact is elevated in tumor 110 

progression.   111 

Methods  112 

Data collection and Processing 113 

All available somatic missense mutation profiles are downloaded from two sources, The Cancer 114 

Genome Atlas (TCGA) and the AACR launched Project GENIE (Genomics Evidence Neoplasia 115 

Information Exchange) [31-33]. The TCGA mutation annotation file contains more than 11,000 116 

human tumors across 33 different cancer types. The GENIE mutation file (Release 6.2-public) 117 

contains 70679 samples across 671 cancer subtypes under Oncotree classification. The GENIE 118 

cohort contains multiple tumor barcodes belonging to the same tumor type. In such a case only 119 

one primary tumor barcode is kept for further analysis. We continued the analysis with 78837 120 

samples from 671 cancer subtypes and 34 tissues (including UNKNOWN and OTHER 121 

categories). 122 

Identification of Significant Double Alterations 123 

The total number of mutations is 1638191 in 19443 genes. We only evaluated dual combinations 124 

of 21983 (on 5062 genes) of these alterations observed on at least 5 tumors and constructed 125 

binary combinations of them. Then we created a contingency table for each combination of 126 

tumor numbers having both alterations, only the first or second alteration and none of those two 127 

alterations. Based on the contingency table, we calculated the p-value by using Fisher Exact Test 128 

with the formula below: 129 
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 131 

where a is the number of tumors having both alterations, b is the number of tumors having only 132 

the first alteration, c is the number of tumors having only the second alteration and d is the 133 

number of tumors not having these two alterations. 134 

228 significant pairs and 227 non-significant pairs were decided using the Fisher Exact Test for 135 

p=0.05. We used the Catalog of Validated Oncogenic Mutations from the Cancer Genome 136 

Interpreter [10] to label dual mutation components: if a mutation is among the 5601 driver 137 

mutations, we label it as known driver (D), otherwise potential latent driver (d). We then 138 

classified a known driver mutation as a driver if it is present in more than 500 tumors; otherwise, 139 

it is a weak driver. Similarly, we dubbed a potential latent driver mutation as a strong latent 140 

driver if it is present in more than 10 tumors; otherwise, we classified it as a weak latent driver. 141 

Additionally, double mutations are annotated based on their functions, domains, chemical 142 

properties and structural proximity (see Supplementary Text) 143 

Survival Analysis  144 

For survival analysis, 10336 patients in MSK impact 2017 and 11160 patients in TCGA and their 145 

overall survival status are used [31, 33]. We compared survival times of tumor groups with 146 

significant same/different gene double mutations and single mutations in a specific cancer 147 

subtype. The first group is the union of patients with significant doublets whereas the second is 148 

the union of patients that carry only one component of these significant double mutations. Then 149 
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we gathered overall survival times (time in months) and vital status (1: Deceased, 0: Alive) of 150 

these patients for survival analysis. 151 

We utilized the “survival” library of R to do Kaplan Meier Survival Analysis of double and 152 

single mutant groups. The survival probability at any particular time is calculated by the formula 153 

given below [34]:  154 

)* 	=
(-./012	34	5.0617*5	89:9;<	=*	*>1	5*=2*)@(-./012	34	5.0617*5	)

-./012	34	5.0617*5	89:9;<	=*	*>1	5*=2*
			(2)	155 

 156 

Oncoprint Maps 157 

To reveal mutual exclusivity and co-occurrence patterns between double mutations we plotted 158 

oncoprint maps by using ComplexHeatmap package of R [35].  159 

Cell Line Network Construction 160 

We obtained a list of cell lines with the dual mutations from Cell Model Passports and their drug 161 

response information from CancerrxGene [36, 37]. We also extracted information about drug 162 

targets and target pathways. We used 2 different approaches to select drugs for PTEN, APC, and 163 

PIK3CA dual mutant cell lines: if a drug is in the gray zone (|z-score|<=2) in the single mutant 164 

cell lines but gives a significant drug response in a dual mutant cell line (|z-score|>2). If there is a 165 

single mutant cell line that is sensitive (or resistant) to the drug but the dual mutant cell line gives 166 

an opposite response to the drug. (Drug response flips sensitive into resistant or resistant into 167 

sensitive between single and dual mutant cell lines). 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.438239doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438239
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

For EGFR we selected drugs that give significant drug response either in the single or dual 169 

mutant cell line. Then we formed networks connecting mutations to cell lines, cell lines to drugs, 170 

and drugs to their target pathways.  171 

Patient-Derived Xenograft Analysis 172 

We used the mutation profiles, transcriptomic data and drug responses of patient-derived 173 

xenografts in [38]. We determined xenografts harboring significant doublets. Then, we compared 174 

changes in tumor volumes of single and dual mutant xenografts for the untreated and drug-175 

treated cases (single mutation is part of a significant dual mutation). We preferred to specify the 176 

time intervals in multiples of 5. When a given timepoint is not a multiple of 5, we used linear 177 

interpolation between two nearest numbers containing a multiple of 5.  178 

ABC9 = ABC9@D +
*F@*FGH
*F#HG*FGH

(ABC9ID − ABC9@D)    (6) 179 

 180 

where ti is a timepoint that is multiple of 5 between the given timepoints ti-1 and ti+1 and Voli is 181 

the volume (mm3) at timepoint i. 182 

Results  183 

Discovery of Latent Drivers through Double Mutations  184 

The availability of a vast amount of pan-cancer genomic data helps to find mutational patterns 185 

that can be signatures of the specific tumor tissues or cancer types. Multiple mutations in a single 186 

gene rarely co-occur in patient tumors. However, when they are together, they may cause 187 

dramatic phenotypic differences [25-27]. For example, dual mutations in PIK3CA increase the 188 

sensitivity to PI3K inhibitors in breast cancer [25], while dual mutations in EGFR predominantly 189 
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exist in lung cancer [39]. A strong driver may couple with a weak driver or a latent driver to 190 

increase the pathological impact of the alterations. This pattern also gives insight into the latent 191 

drivers that are context specific. We exploited the dual mutations to discover latent drivers. For 192 

this purpose, following the Oncotree classification we obtained and cataloged missense mutation 193 

profiles of ~80,000 tumors from TCGA and GENIE Pan-Cancer datasets from 34 main tissues 194 

and 672 cancer subtypes including tissues tagged as Unknown and Other (Figure 1A). Collecting 195 

all missense mutations on each gene and counting their pairwise combinations result in 228 196 

significant double mutations (p-value < 0.05, Fisher exact test). Especially, when single 197 

mutations across patient tumors are systematically reduced in the co-occurring mutation patterns, 198 

the double mutations are revealed to be cancer specific. We also assembled tissue-specific sets of 199 

double alterations since tissues differ in sample size and are enriched in different genes and 200 

mutations. As shown in Figure 2A, co-occurring double mutations on the same gene are 201 

relatively rare, with varied frequencies across tissues. In some cancer tissues, doublets are 202 

present on the same gene in up to 10% of the patient tumors. However, same gene doublets are 203 

either extremely rare or not present in other tissues, such as the pancreas, ovary, liver, kidney, 204 

biliary tract. Same gene double mutations accumulate on 35 genes in the pan-cancer dataset of 205 

which 20 genes are tumor suppressors (TSG), 12 are oncogenes (OG) and the rest labeled as 206 

both.  207 

Recently, the frequency of driver genes was analyzed together with the maximum prevalence of 208 

their mutations, distinguishing cancer-specific drivers versus cancer-wide drivers  [14]. We 209 

applied a similar analysis to our dataset composed of double mutations on the same gene where 210 

we obtained the ratio of the number of tissues carrying double mutations (Tdouble) and single 211 

mutations (Tsingle). We also calculated the prevalence of double mutations compared to single 212 
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mutations. As a result, although some genes and their single mutant states have been previously 213 

cataloged cancer-wide, we found sets of double mutations that are cancer tissue-specific. 214 

Examples include double mutations in PTEN, EGFR, and KRAS (Figure 1B).  215 

We retrieved the known driver mutations from the Cancer Genome Interpreter database to 216 

evaluate if the double mutations are composed of known drivers or other mutations that are not 217 

cataloged as drivers but can be considered as ‘potential latent driver’ mutations. In a doublet, the 218 

components can be known drivers or potential latent drivers, so each doublet is cataloged as DD, 219 

Dd and dd. That is, DD is a known driver-known driver doublet, Dd is a known driver-potential 220 

latent driver and dd is a doublet consisting of two potential latent drivers. Among the 228 same 221 

gene double mutations, there are 115 DD, 28 Dd, 85 dd where the mutations that are not 222 

catalogued as driver are potential latent drivers (the 228 same gene double mutations are 223 

composed of 91 known major drivers, 113 potential latent drivers). Thus, our analysis can 224 

capture rare mutations that are potential latent driver candidates. We observe that oncogenes 225 

have significantly more DD mutations than tumor suppressors (p-value < 10-4), although their 226 

background probability to have a double mutation is similar (Figure 1C). This result implies that 227 

becoming more oncogenic requires mostly co-occurrence of two frequent mutations while 228 

suspending tumor suppressor activities may involve rare mutations coming together.   229 

Tumor suppressor genes have 131 double mutations in 883 patient tumors and oncogenes have 230 

91 double mutations in 1000 patient tumors. Patient tumors that have at least one double 231 

mutation in any TSG have a significantly higher passenger mutation load compared to patient 232 

tumors having at least one double mutation in an oncogene (p-value < 10-11, Figure 1D). These 233 

results imply that double mutations are very rare. Especially tumor suppressor genes require a 234 

very high mutation load for two coexisting mutations in a single gene. Based on the mutation 235 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.438239doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438239
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

load, and in line with our previous result, loss of function through double mutations in TSGs 236 

requires considerably higher mutational load compared to gain of function in oncogenes.  237 

 Known driver mutations have a higher frequency than potential latent driver mutations (Figure 238 

1E). The median values of tumor counts for known driver and potential latent driver mutations 239 

are 170 and 35.5, respectively (p-value < 5x10-20). Potential driver mutations are relatively rare, 240 

and their pathological impact can be dramatic when they couple with another mutation. 241 

Therefore, we cataloged all potential latent driver mutations that contribute to a significant 242 

doublet in the same gene as strong or weak latent drivers. The list of 113 latent drivers is given in 243 

Table S1.   244 

Next, we followed a bottom-up approach to obtain the spatial, chemical, and pathway level 245 

organization of the double mutations. We used the pan-cancer mutation clusters deposited in 246 

3DHotspot where each cluster represents the set of mutations that are spatially close to each 247 

other [40]. We found that components of the doublets in the same gene are usually spatially 248 

distant from each other. The simultaneous presence of spatially close two strong driver mutations 249 

is very rare in a patient tumor. However, some weak drivers are proximal to either a strong driver 250 

or another weak driver, as in the cases of mutations at positions 711, 714, 715 in BRAF. 251 

Spatially close residues may form potent allosteric couples, which may enhance proliferation.  252 

Analysis of the chemical class of doublets in oncogenes and tumor suppressor genes harboring 253 

the same gene doublets revealed that Charged-Polar and Hydrophobic-Charged switches are 254 

more dominant among tumor suppressors and oncogenes respectively (Figure 1F). Double 255 

mutations are either located in flexible or hinge or disordered regions or in different domains 256 

(Supplementary Text, Figure S1A). Components of each double are annotated in different 257 

molecular functions (Supplementary Text, Figure S1B).    258 
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Doublets on the Same Gene are Rare, but are a Signature for Some Cancer Types 259 

Figure 2A illustrates the tissue-specific prevalence of double mutations in the same gene. TP53 260 

and its double mutations are cancer wide. A recent study verified that PIK3CA double mutations 261 

in cis increase oncogenicity and sensitivity to PI3Kα inhibitors [25]. In our dataset, PIK3CA 262 

double mutations are also quite common in breast and uterus tumors. In the uterus, PIK3CA 263 

mutations are more inclined to constitute double mutations (around 90%). Among lung tumors, 264 

EGFR and bowel tumors APC double mutations are ahead by far. Bowel, breast, and lung tissues 265 

are enriched with double mutations on specific genes whereas brain tissue has significant double 266 

mutations in multiple genes such as BRAF, FBXW7, KDM5A, STAG2, TP53, TSC1. LUAD 267 

(Lung Adenocarcinoma) is enriched with EGFR dual mutations. 90% of the EGFR mutations are 268 

in more than 160 tumors. COAD (Colon Adenocarcinoma) is enriched with APC and PTEN dual 269 

mutations. We note that PIK3CA double mutations are relatively more dominant in BRCA, 270 

COAD, and UCEC subtypes (Figure 2B). A set of known driver mutations, for example in 271 

KRAS and IDH1 are usually present as single mutations but are frequently paired with mutations 272 

in other genes. The most frequent IDH1 mutation occurs at position 132 located in the interface 273 

of its homodimer [41].  274 

The most frequent mutation, KRASG12D, is rarely coupled with another mutation in KRAS. The 275 

mutational mosaic of KRAS is distinguishable in different cancer types. KRASG12D is 276 

predominantly present in pancreatic and colorectal cancers [42]. KRAS mutations are context-277 

specific and a mutation may act in different cancers. However, among this limited number of 278 

KRAS double mutations, KRASG12D/A149T accumulates in lung tissue and only exists in primary 279 

tumors in our dataset. KRASA146T promotes opening of Switch I in GEF mediated GDP-GTP 280 

nucleotide exchange whereas KRASG12D abolishes GAP-mediated hydrolysis [43].  281 
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Figure 2C illustrates some sequence details. In APC, EGFR, PTEN, and TP53 the diversity of 282 

the double mutations is limited, but this is not the case in PIK3CA and BRAF. Among them, 283 

BRAFV600E, a strong driver, is rarely coupled with another BRAF mutation, but the rest are 284 

(Figure S2A). Other BRAF mutations such as at 711, 714, 715, and 721 are close to each other 285 

and coupled in a set of patients, especially in brain tissue (Figure S2B and S2C).  286 

Another interesting case is the double mutations in the cohesin complex. Mutated cohesin can 287 

enhance Wnt signaling by stabilizing beta-catenin [44]. Targeting Wnt signaling in cohesin 288 

mutant cancer cells was proposed as a novel therapeutic strategy. Double, even multiple 289 

mutations in the components of the cohesin complex (Figure S3A) in the same tumor may 290 

dramatically increase Wnt signaling. In Figure S3B, we notice that STAG2 double mutations 291 

accumulate in the brain, RAD21 and SMC3 double mutations are prominent in lymph and 292 

myeloid tissues. 293 

The Clinical Impact of Double Mutations in PIK3CA  294 

PIK3CA is a large protein with drivers e.g. H1047R, E545K and weak drivers such as R88Q, 295 

E453K, M1043I. It is the second (or third) most highly mutated protein and its number of double 296 

mutations is also relatively higher than other proteins. The pathological impact of a single driver 297 

may be insufficient. Full activation of oncogenic PIK3CA is through two drivers acting in 298 

different, albeit complementary mechanisms. One well-known example is H1047 and E545 299 

double mutations enhancing proliferation [45]. However, E545 and E542 double mutations do 300 

not make PIK3CA reach the fully activated level. Also, the combination of two strong latent 301 

driver mutations – but not two weak – can act like a driver mutation. 302 
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In our dataset of significant double mutations, 46 of the 228 are in PIK3CA. Enhanced activation 303 

of PIK3CA via dual mutations is shown in Figure 3A, where most of them are composed of one 304 

frequent and one rare mutation.  Our frequency-based analysis revealed that P104, E726 and 305 

M1004 might be a strong latent drivers coupled with a driver mutation. PIK3CA double 306 

mutations are also tissue- and context-specific as shown in Figure 3B. Most are in breast tissue. 307 

An exception involves R88Q doublets which are depleted in breast but frequent in uterus tumors. 308 

Their structural location is shown in Figure 3C. Kinase mutations work by destabilizing the 309 

inactive or stabilizing the active state. These are better captured by their detailed conformational 310 

consequences. The mechanisms of activation of PI3Kα by these driver mutations have been 311 

recently worked out [45-47]. Unsurprisingly, considering their diverse mechanisms of action no 312 

clear trend is observed in the calculated folding free energy (ΔΔG) upon double or single 313 

mutation with DynaMut [48] (Suppl. Text and Figure S4). If the components of double mutations 314 

act via distinct mechanisms, the additivity of their activation potential is high; otherwise the 315 

additivity is low as in the E545/E542 example where the mutations execute the same mechanism 316 

of action. 317 

The impact of co-occurring mutations in the same gene is mostly additive but can be also 318 

cooperative. There are seven allosteric mutations at positions 83, 88, 365, 539, 542, 603, 629 in 319 

PIK3CA in BRCA as cataloged in Allosteric DB [49]. We found 23 significant double mutations 320 

in PIK3CA in the BRCA subtype of breast tumors. Dual mutations PIK3CA1047/88, 321 

PIK3CA1047/539, PIK3CA1047/539 are composed of one known driver (at position 1047) and one 322 

weak driver mutation (PIK3CA88 and PIK3CA539) which are allosteric mutations. Their effects 323 

are additive. 324 
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To further evaluate the double mutations, we used cancer cell lines from the DepMap project and 325 

patient-derived xenograft (PDX) samples in [38]. In both datasets, mutation profiles and 326 

response to drug treatment information are available. Additionally, we used the temporal data on 327 

tumor volume growth in PDX samples in untreated conditions and drug-treated conditions.    328 

We found two breast cancer cell lines belonging to the BRCA subtype: BT-20 has a double 329 

mutation PIK3CA1047/539 and Cal-148 has PIK3CA1047/350. H1047R is a frequent driver. However, 330 

539 and 350 are rare mutations in the Pan-cancer data, making them weak drivers. To explore the 331 

impact of the double mutations in terms of drug response, a network of cell lines to drugs and 332 

target pathways is constructed (Figure 3D) where drugs are linked to each cell line which has 333 

altered response compared to their single mutation counterparts. Cal-148, which has 334 

PIK3CA1047/350, is more sensitive to drugs targeting the PI3K/mTOR pathway compared to the 335 

single mutant cell lines. Indeed, we found a difference in the response to PIK3α inhibitors in 336 

double-mutant cell line BT-20 which is more sensitive to this class of inhibitors compared to 337 

single mutant cell line counterparts (p-value=0.015). Additionally, an evaluation of other classes 338 

of inhibitors showed that the PIK3K inhibitor CZC24832 does not work on single mutant MFM-339 

223, but double mutant BT-20 is sensitive to it (Figure 3E).    340 

We retrieved PDXs having double mutations in PIK3CA to explore the tumor volume changes 341 

and drug responses compared to single mutant PDXs. Properties of the patient tumors can be 342 

maintained in xenografts and can help assess the impact of double mutations. We found three 343 

PDXs having double PIK3CA mutations (726/1047, 88/542, 88/1025). In PDX X-2524 344 

H1047R/E726K, a strong driver/strong latent driver combination, the volume change of the 345 

tumor between days 0 and 10 is more than 1700 mm3, while single mutant tumors X-3077 and 346 

X-3078 (with mutation H1047R) have volume change of  ~200 mm3 in the first 10 days reaching 347 
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~400 mm3 at around 35 days (Figure 3F). H1047R/E726K tumors grow significantly faster 348 

compared to the single mutant case.  349 

We analyzed the effects of drugs on tumor growth of these three PDX tumors. We observed that 350 

BYL-719 (Alpelisib), a selective PI3Kα inhibitor, diminishes tumor volume by 88% (around 351 

1600 mm3) in the first 10 days in the double mutant in the xenograft (X-2524) (Figure 3G). 352 

Because the tumor volume growth is mild in the single mutant xenografts X-3077 and X-3078 353 

the volume difference between the initial tumor and after 10 days of treatment with BYL-719 is 354 

not as high as in dual mutant X-2524. Also, we noticed that BYL-719 treatment combined with 355 

LJM716, an anti-HER3 monoclonal antibody, is more effective in reducing tumor volume than 356 

BYL-719 treatment alone (Figure 3H). Dual mutation E726/H1047 makes the tumor grow 357 

significantly faster compared to the single mutant case. The double mutant tumor is also more 358 

sensitive to PI3K inhibitors. 359 

However, not all doublets increase the PIK3CA oncogenic activity. For example, the impact of 360 

double mutation R88/T1025 (a combination of weak drivers) differs from E726K/H1047R in the 361 

screened PDX tumors. The growth rate of the tumor with R88/T1025 is slower than the tumor 362 

having a single mutation (at position 88).  The tumor with only R88 is more responsive to PI3K 363 

inhibitors compared to that with R88/T1025 (Figure S5A-H).  364 

  365 

Linking Double Mutations to Clinical Data Using Cancer Cell Lines and Xenografts 366 

Dual mutations may increase the activation strength and enhance drug response. In Figure 4 we 367 

show driver mutations combined with weak drivers or strong latent drivers in EGFR, BRAF, 368 
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APC and PTEN. Below, we probe PTEN, APC and EGFR double mutations with respect to drug 369 

treatments. 370 

We screened all significant doublets across cell lines and PDX tumors. Double mutations are rare 371 

in the patient tumor samples and in cancer cell lines. Treatment data of patients are limited. 372 

Therefore, we aim to associate each marker double mutation with the cell lines or PDXs and 373 

assess their phenotypic impact through drug response data compared to their single mutant 374 

counterparts. In this way, we can assess the clinical impact of the same gene dual mutations and 375 

link the dual mutation patterns to drug response. We used the DepMap dataset together with Cell 376 

Model Passports to retrieve the mutational profile of cancer cell lines and the response to a panel 377 

of hundreds of drugs. We notice the same pattern: despite scanning hundreds of cancer cell lines, 378 

double mutations on the same gene are rare. In Figure 5, double mutations are linked to cell lines 379 

having the same pair, and cell lines are linked to drugs causing a significant response. These 380 

links are represented as a network of mutations, associated cell lines, and drugs. We listed some 381 

of the striking results on how dual mutations can alter the response to the drug in the same tissue.  382 

Among 228 same gene mutations only 17 doublets match with one or more cell lines in Cell 383 

Model Passports [36]. We constructed a network by using Cytoscape [50] with 4 different node 384 

types, mutations (components of a double mutation), cell lines, drugs, and drug target pathways. 385 

In the same gene double mutation network, there are 22 mutations, 19 cell lines, 206 drugs, and 386 

22 drug target pathways nodes with 548 edges between them. In Figure 5A, we show the 387 

prevalence of the same gene dual mutations in corresponding tissues of the cell lines. These are 388 

consistent with the patient tumor doublets obtained in the previous section.  389 

One example is EGFRL858/T790 doublet, a combination of two driver mutations (Figure 4A), in 390 

one cell line (NCI-H1975) of lung cancer. H3255 cell line has only one mutation at position 391 
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L858 in EGFR (Figure 5B). Both mutations are on the tyrosine kinase domain to which the RTK 392 

inhibitors bind (PDB: 4IF23, Figure 5C). However, response to the inhibitors is significantly 393 

different in cell line with dual mutant EGFR which is more resistant compared to the single 394 

mutant cell line (p-value=0.01, Figure 5D).   395 

BRAF has multiple double mutations (Fig. 4B). The most significant doubles contain the V600 396 

strong driver and one of the strong latent drivers (I710, L711, I714, E715, L721). E715 is in the 397 

interface of the BRAF homodimer and the other strong latent drivers are in the same 3D cluster 398 

with E715. These mutations are not annotated based on their clinical or kinase activity; however, 399 

contributing to a significant double mutation make them strong latent driver candidates. They 400 

can be further analyzed based on their mechanism of action complementing V600. The 401 

mechanisms of BRAF mutations were classified into those signaling as active monomers, those 402 

acting as constitutive active dimers, and those having impaired/dead kinase activity [51]. Despite 403 

being very rare in our dataset, we have three cases of impaired/dead mutations paired with other 404 

classes: BRAFG469/K601, BRAFG466/L597, and BRAFG466/V600. Another rare double mutation is 405 

BRAFL597/K601. The double mutation components lead to a constitutively active dimer, 406 

independent of Ras. The mutations may increase Raf affinity. A combination of strong latent 407 

drivers located at or close to the dimer interface can fit into this activation mechanism. To 408 

identify these pairs a larger dataset is necessary, but still we can identify some rare doubles that 409 

need clinical evaluation.  410 

A second example involves PTEN (Figure 5E). PTENR130/R233 and PTENR130/F341 doublets, both 411 

composed of a driver and a weak driver mutation (Figure 4C), exist in two cell lines which differ 412 

in response to drugs as compared to their single mutant counterparts. Although single mutant 413 

PTEN is resistant to drugs targeting ERK/MAPK signaling, cell lines having dual mutant PTEN 414 
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are sensitive to these drugs. Additionally, cell line SNU-81 having PTENR130/R233 becomes 415 

resistant to genome targeting drugs compared to single mutant cell lines.  416 

The lower panel of Figure 5F presents APC dual mutations with associated cell lines. The 417 

subnetwork shows that cell line SW837 carrying dual mutant APC (R1450*/R213*, a 418 

combination of weak drivers (Figure 4D) becomes resistant to drugs targeting PI3K/TOR 419 

signaling when compared to the single mutant cell lines. Additionally, in the patient-derived 420 

xenograft dataset from [38], there is one xenograft carrying R1450*/R876* dual mutation (a 421 

combination of two weak driver mutations), model id X-1290, and one carrying single R1450* 422 

mutation, model id X-1173. We compared volume changes of these xenografts. For the dual 423 

mutant xenograft X-1290 is ~1500 mm3 in the first 30 days and for the single mutant xenograft 424 

X-1173 ~1200 mm3. The dual mutant xenograft does not encounter any tumor volume change 425 

during the first 70 days when treated with Cetuximab, an EGFR inhibitor, while the single 426 

mutant xenograft keeps growing around 900 mm3 during the first 15 days (Figure S6A-D). 427 

Despite the small number of patients with follow-up information, Kaplan-Meier survival analysis 428 

comparing single and same gene double mutant patient groups demonstrates a significant 429 

difference between the two groups. Patients with double mutant PIK3CA (H1047/R88) and APC 430 

(R876/T1556) have worse survival than their single mutant counterparts. On the other hand, the 431 

patient group with PTEN double mutation (R130/R173) has a better survival than the single 432 

mutant group (Figure S7A-C).    433 

 434 

Discussion  435 
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The highly heterogeneous molecular profiles of tumors compel comprehensive studies to reveal 436 

the underlying patterns resulting in their dramatic phenotypic differences. Distinguishing cancer 437 

drivers from passengers has been one of the key objects of such studies. Here we scan the cancer 438 

genome landscapes aiming to identify latent drivers. We designed this study to discover latent 439 

driver mutations based on the hypothesis that some rare, or weak mutations can cooperate with 440 

other, in cis mutations, to enhance the oncogenic signal. In terms of population of conformations, 441 

conceptually, a strong driver mutation is close to a fully activated state with more than 90% of 442 

the population in the active state. However, the contribution of other types of drivers in the gene 443 

toward reaching a fully activated state can differ. For example, the contribution of a driver to the 444 

active state population can be between 50-75%, that of a weak driver is around 50% and the 445 

contribution of a strong latent driver is above 25%. This implies multiple mechanisms of action 446 

of double mutations relating to the combination of a driver mutation with either driver, weak 447 

driver, or strong latent driver. Latent driver mutations are protein context-specific having driver-448 

like behavior but not identified as driver. We identified 228 significant, same gene double 449 

mutations which are composed of mostly one rare and one frequent mutation. Components of 450 

these double mutations are labelled as latent drivers if they have not been previously cataloged as 451 

driver. We newly cataloged 113 latent drivers. Despite being cancer-wide on their own, coupling 452 

with another mutation increases the cancer-type specificity and decreases the prevalence of these 453 

double mutations. The mutation load of tumors having a doublet in a tumor suppressor is 454 

significantly higher than in an oncogene, indicating their relative robustness to functional loss.  455 

With the sparsity of patient treatment datasets, cell lines or patient-derived tumor xenografts are 456 

a useful clinical interpretation resource. We found significant differences in the response to PI3K 457 

inhibitors in double mutant PIK3CA samples which is in line with the recent work by Vasan et al 458 
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[25, 27]. Additionally, tumor growth is extremely fast in double mutant PIK3CA compared to 459 

the single mutant. This phenotypic difference has been shown by Vasan et al for the couples of 460 

potential latent driver PIK3CA mutations E726, and weak drivers E453, M1043 with known 461 

driver mutations E542, E545, and H1047. Recent mechanistic studies suggest that the increased 462 

gene activity or acquired drug resistance is due to the mutation combinations. Zhang et al. [45] 463 

suggested that combinations of strong and weak drivers can enhance PI3K activity and explain 464 

the phenotypic differences in PIK3CA double mutant tumors, that we observed prominently in 465 

breast and uterus tumors. Here we further extended the analysis to combinations of less frequent 466 

mutations not catalogued as driver, which we view as potential latent drivers. Among them 467 

doubles with mutation at position R88 are depleted in breast but not in uterus, suggesting that 468 

potential latent driver mutations pairing with the mutation R88 are important signatures of uterus 469 

tumors.   470 

Not limited to PIK3CA, numerous other significant double mutations with possible prognostic or 471 

therapeutic impact have also been identified (i.e. APC doublets in the bowel, EGFR in the lung 472 

in line with previous studies [26]). Some have not been previously analyzed clinically but have 473 

potential impact on drug response. For example, APC R1450/R876 double mutation results in 474 

significant sensitivity to cetuximab compared to single mutant APC R1450 in PDXs. On the 475 

other hand, cell lines having APC R1450/R213 doublet became resistant to PI3K/mTOR 476 

signaling inhibitors. Our approach also identified several rare same gene doublets, like the ones 477 

on cohesion complex subunits STAG2, RAD21, SMC3. This protein complex is important for 478 

sister chromatid cohesion, chromosome segregation, DNA repair, genome organization, and gene 479 

expression. The STAG2 subunit of the complex is highly mutated in bladder and myeloid 480 

cancers, and LOF mutations on STAG2 are correlated with DNA damage [52-54].  481 
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The sensitivity or responsivity of a drug action to a targeted cancer depends on how much the 482 

tumor relies on the particular oncogene and the cellular pathway with which it is associated. In 483 

PIK3CA, a combination of a driver mutation with either driver, weak driver, or strong latent 484 

driver, particularly under different mechanism of actions, have a good therapeutic response. 485 

 486 

Conclusions 487 

In conclusion, we developed a comprehensive approach to discover latent driver mutations. We 488 

integrated molecular profiles of more than 80K patient tumors, drug treatment data of cancer cell 489 

lines and PDXs from multiple sources to reveal associations between molecular alterations to 490 

discover latent co-occurring driver mutations in the same allele, in non-redundant pathways and 491 

metastatic patterns with the help of multiple informatics techniques and interpret them through 492 

their clinical impact. Our results, supported by drug response data of cell lines and patient-493 

derived xenografts, and transcriptomic profiles of single and double mutant tumors, provide a 494 

strong background for therapeutic potentials of double mutations. We believe that the results of 495 

this study may form a basis for further experimental evaluation of molecular alterations to be 496 

exploited for therapeutic purposes across different cancer types. Mechanistically, the actions of 497 

same gene double mutations are more straightforward to interpret as compared to double 498 

mutations in different protein in independent pathways. How double mutations in independent 499 

pathways work is highly challenging to understand. 500 

 501 

Figure Legends 502 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.438239doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438239
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Figure 1. Overall statistics of the data set, mutation load and double mutations, and analysis of 503 

the significant double mutations. (A) Total number of tumors, alterations, cancer types in the 504 

union of TCGA and AACR GENIE studies. Same gene double and different gene double 505 

mutations are found by the Mann-Whitney U test. Windrose plot showing the number of same 506 

gene double mutant (blue) tumors across 34 tissues (Oncotree) on the log-scale axis. Green 507 

portion represents the amount of tumors without any significant double mutation. (B) Tissue 508 

specificity of same gene dual mutations compared to their single mutant counterparts. X-axis 509 

shows the ratio of the number of tissues containing double and single mutant tumors in each 510 

gene. Y-axis shows the fraction of overall count of double mutant tumors to the single mutant 511 

ones. Smaller values along the x-axis indicates tissue specific same gene double mutations. 512 

Genes having cancer-specific double mutations are red and cancer-wide double mutations are in 513 

blue. (C) Composition of the double mutations based on known driver (D) and potential latent 514 

driver (d) labels in tumor suppressor genes and oncogenes where D is already known frequent 515 

driver mutations, d is relatively rare potential latent drivers. Fraction (%) of DD, Dd, dd type 516 

double mutations are significantly different between oncogenes and tumor suppressor genes. (D) 517 

Box plot showing passenger mutation load in tumor suppressor genes and oncogenes. The patient 518 

group carrying same gene double mutations on oncogenes have relatively smaller passenger 519 

mutation counts compared to the group carrying double mutation on tumor suppressor genes. (E) 520 

Tumor count distributions of known driver and potential latent driver mutations. Known driver 521 

mutations are observed more frequently that the potential latent driver mutations. (F) Grouped 522 

bar plot shows the fraction (%) of alterations in chemical properties of amino acids for 523 

oncogenes and tumor suppressor genes. Mutations on oncogenes mostly convert hydrophobic 524 
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residues to charged, and mutations on tumor suppressor genes usually convert charged residues 525 

to polar.   526 

 527 

Figure 2. Same gene double mutations are specific to some tissues or cancer subtypes. Bubble 528 

plots show number (node size) and frequency (node color) of double-mutant tumors among 529 

gene-mutant tumors across different tissues and cancer subtypes (Oncotree). For the 35 genes 530 

with significant same gene double mutations, node size represents the number of patients 531 

carrying at least one doublet on a gene in a tissue or cancer type. (A) Presence of same gene 532 

double mutations across different cancer tissues where at least 3 tumors carry at least one same 533 

gene double mutation on one of the 35 genes. (B) Presence of different gene dual mutations 534 

across different cancer subtypes. The cancer subtypes where at least 5 tumors carry at least one 535 

double mutation are listed on the y-axis. (C) Representation of mutations in genes to compose a 536 

doublet as a circular diagram. Circumference of the circles divided into arcs proportional to the 537 

frequency of each mutated residue. The strips from one residue to another represents significant 538 

double mutations with size of strips indicating frequency of each double mutation. 539 

 540 

Figure 3. A detailed analysis of PIK3CA double mutation profile, 3D structure and clinical 541 

implications. (A) Paired dot plot of the 46 double mutations on PIK3CA, and the number of 542 

tumors carrying them. Colors indicate type of a mutation, driver (purple), weak driver (orchid), 543 

strong latent driver (blue), weak latent driver (light blue). Drivers and weak drivers are known 544 

driver mutations with ≥500 and <500 harboring tumors respectively. Strong latent drivers and 545 

weak latent drivers are potential latent driver mutations carried by ≥10 and <10 tumors 546 

respectively. There are 3 driver/driver, 13 weak driver/weak driver, 5 driver/strong latent driver, 547 
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35 driver/weak driver. P104, E726 and M1004 have a potential to be strong latent drivers. (B) 548 

Presence of PIK3CA same gene dual mutations across different cancer tissues. Dots are scaled 549 

based on the number of tumor having double mutations, and color corresponds to the percentage 550 

of double mutant tumors among single mutants. (C) 3D structure of PIK3CA (PDB: 4OVV) with 551 

H1047, E726, E542, E545, R88, R93, P539. (D) Response of PIK3CA double mutant breast 552 

cancer cell lines to drugs in network representation. BT-20 (H1047/P539) and CAL148 553 

(H1047/D350) becomes sensitive to PI3K/MTOR pathway targeting drugs. (E) PIK3CA 554 

mutation doublets in breast cancer and the associated violin plot illustrating response to PI3Kɣ 555 

inhibitors. H1047/P539 double mutant tumor becomes more sensitive to PI3Kɣ	inhibitors (F) 556 

Tumor volume change of single and double PIK3CA mutant xenografts without any treatment. 557 

There is a remarkable tumor increase in the double mutant xenograft. (G) Tumor volume 558 

comparison of the single and double mutant xenografts without any treatment and with BYL719 559 

(Alpelisib) treatment, the double mutant xenograft responds better to the PI3K⍺ inhibitor drug. 560 

(H) Comparing tumor volume changes of the dual PIK3CA mutant xenografts without any 561 

treatment and with BYL719 and BYL719+LJM716 treatment. The tumor growth of the double 562 

mutant xenograft X-2524 is prominently slow when a combination therapy BYL719+LJM716 is 563 

applied compared to untreated and BYL719 treatment alone.	564 

 565 

Figure 4. Representation of double mutations in EGFR, BRAF, APC and PTEN. Each paired dot 566 

represents one double mutation. Dots are colored according to their type, driver (purple), weak 567 

driver (orchid), strong latent driver (blue), weak latent driver (sky blue). (A) Double mutations 568 

and corresponding number of mutated tumors of each component reveals that there are 5 569 

driver/driver, 5 weak driver/weak driver combinations and 1 weak driver/strong latent driver 570 
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combinations; V774 might be a strong latent driver. (B) Genes harboring 12 double mutations, 7 571 

are different combinations of strong latent drivers E317, E319, I710, L711, I714, E715 and 572 

L721, and the rest are V600 (driver) composed of a double mutation with the strong latent 573 

drivers. (C) PTEN carries 15 double mutations with only one potential strong latent driver 574 

(N323). (D) There are 25 double mutations on APC, R499, R564, E1408, S1465, T1487, T1556 575 

that are potential strong latent drivers. 576 

Figure 5. A wider analysis of double mutations in cell lines and association of doublets to drug 577 

response for clinical implications. (A) Prevalence of the double mutations in tissues associated 578 

with cell lines. APC, EGFR, NRAS double mutant cell lines belong to bowel, lung and ovarian 579 

tissues respectively. There are two cell lines in bowel tissue carrying PTEN double mutations, 580 

and five cell lines in lymph tissue with TP53 double mutations. (B) EGFR mutation doublets in 581 

lung cancer cell lines and their response to drugs in network representation. Among eight drugs 582 

targeting EGFR and RTK pathways, EGFRL858/T790 mutant cell line is only sensitive to Pelitinib, 583 

and it is unresponsive to the rest, although the EGFRL858 mutant cell line is sensitive to all. (C) 584 

Representation of dual mutations in EGFR structure. (D) EGFR mutation doublets in lung cancer 585 

together with the violin plot that shows the response to RTK inhibitor in dual mutant and single 586 

mutant cell lines. More negative z-score means more sensitivity and more positive z-score means 587 

more resistance to the drug molecule (E) PTEN and (F) APC mutation doublets in colon cancer 588 

cell lines and their response to drugs in network representation.  589 
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 1 

Supplementary Text 1 

Annotation of Double Mutations 2 

We used domain and gene ontology (GO) information from InterPro, a consortium database 3 

collecting information from member databases, to annotate same gene double mutations 4 

(https://www.ebi.ac.uk/interpro/). Therefore a mutation position may match with more than one 5 

InterPro id, when this is the case we preferred Pfam annotation. If a mutation does not match 6 

with any Interpro id, we labelled it as “No_Domain_Info”. We mapped the Interpro ID’s to GO 7 

Annotations  related to biological process, molecular function and cellular component categories. 8 

Usually an Interpro ID matches with more than one GO annotation. We constructed binary 9 

combinations of these domains for each component of a double mutation and counted the double 10 

mutations related to domain annotation combinations (similar procedure was conducted for GO 11 

annotations).  12 

To find out spatial closeness of same gene double mutations we use 3DHotspots [1] which 13 

identifies statistically significant mutations clustering in 3D protein structures. There are 943 14 

clusters of 504 different genes. If two mutated residues that are containing a dual mutation 15 

belong to the same cluster, we consider this same gene dual mutation components are in close 16 

proximity. We used Interactome Insider to identify if the components of either same gene or 17 

different gene double are located in the same interface [2]. Besides the experimental data in PDB 18 

and predicted data in Interactome3D, it also contains the predicted interfaces with their in-house 19 

method.  We used EnrichR to find the pathway annotation of the genes having co-occurring 20 

mutations [3]. 21 
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 2 

We matched the sequence position of each component of the same gene doublets to their 22 

InterPro domain, if available [4]. As a result, we mapped 113 out of 228 doublets to at least one 23 

Interpro domain. In case of more than one matching domain, we picked the Pfam original one, if 24 

available. Among them, only one component has domain information for 22 double mutations. In 25 

96 doublets, both components have no domain information. We obtained a total of 19 InterPro 26 

domains. Mutations without any domain information are labeled ‘No_Domain_Info’ (this label 27 

covers cases whether the mutation position does not match with any domain or it belongs to 28 

loop, hinge regions). As shown in Figure S1A, a large portion of the mutations is in a region with 29 

domain annotation. Both components of 56 dual mutations are in the same domain. Doublets 30 

with domain information are either located in flexible or hinge or disordered regions or located 31 

in different domains.  32 

A similar approach is applied to find GO molecular function information for partner mutations of 33 

doublets (Figure S1B). Both components of 57 dual mutations match with at least one GO 34 

molecular function annotation. Neither component of 151 dual mutations matches any GO 35 

Annotation. In the remaining 20 dual mutations, only one component matches with a GO 36 

annotation. Protein kinase activity and ATP binding are two molecular functions that are the 37 

most frequent annotations covering ~15% of the same gene dual mutations having GO 38 

annotation. 39 

Alterations in Chemical Properties of amino acids  40 

In order to classify alterations with respect to chemical classes of amino acids before and after 41 

mutations, we prepared a file containing unique rows as follows “patient barcode| gene | residue 42 

number | AA before mutation | AA after mutation”.  We excluded the cases where the final 43 
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 3 

amino acid is a stop codon. We calculated the fraction of chemical alterations on 2189 oncogene 44 

and 2262 tumor suppressor alterations among all oncogene and tumor suppressor alterations 45 

respectively (determined with respect to mutation positions). The 9 categories we evaluated in 46 

our analysis are Polar-Hydrophobic, Charged-Polar, Hydrophobic-Hydrophobic, Hydrophobic-47 

Polar, Hydrophobic-Charged, Polar-Charged, Polar-Polar, Charged-Hydrophobic, Charged-48 

Charged. 49 

PIK3CA Stability Analysis via Dynamut Tool 50 

Using the inactive state (PDB id: 4OVV) we calculated the folding free energy (ΔΔG) upon 51 

mutation using DynaMut [5] to assess the impact of single and double mutations on PIK3CA 52 

stability. Unsurprisingly, considering their diverse mechanism of action no clear trend is 53 

observed (Figure S8). For example, H1047R is a strong driver that promotes interaction with the 54 

membrane. It destabilization impact is minor (∆∆G ≈ -0.5 kcal/mol). The impact of weak drivers 55 

R88Q and R93W is somewhat stronger (∆∆G ≈ -1.5 kcal/mol and ∆∆G ≈ -1 kcal/mol, 56 

respectively). The effect of allosteric mutation D539R is also minor (∆∆G ≈ -0.6 kcal/mol). 57 

Another strong driver E542K (∆∆G ≈ 0.7 kcal/mol), stabilizes the protein like the weak drivers 58 

D350G (∆∆G ≈ 0.5 kcal/mol) and E453Q (∆∆G ≈ 0.3 kcal/mol). The most prominent stability 59 

changes occur when the strong driver H1047R cooperates with the allosteric mutation P539R 60 

(∆∆G ≈ -2.3 kcal/mol) and the minor mutation P104L (∆∆G ≈ -2.5 kcal/mol). These two dual 61 

mutations H1047R/P539R and H1047R/P104L destabilize the protein as do T1025A/R88Q 62 

(∆∆G ≈ 0.7 kcal/mol) while T1025A and R88Q have a destabilizing effect. 63 

 64 

 65 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2021. ; https://doi.org/10.1101/2021.04.02.438239doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Supplementary figures  66 

 67 

Figure S1. (A) Domain annotation and (B) GO molecular function annotation of the mutations 68 

in same gene dual mutations. The numbers in the squares correspond to the number of same gene 69 

dual mutations where constituents are from the domains on the x and y axes.  70 
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 73 

Figure S2 : (A) Oncoprint of frequent BRAF dual mutation constituents. (B) Tissue prevalence 74 

of dual mutations of BRAF. (C) Mutations mapped to 3D structure of BRAF (PDB: 4G9R, 75 

Chain: B) 76 
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 77 

 78 

Figure S3 : (A) Oncoprint of Cohesin complex subunits STAG2, RAD21, SMC3. (B) Tissue 79 

prevalence of dual mutations of STAG2, RAD21, SMC3. 80 
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 83 

 84 

 85 

Figure S4: Predicted ∆∆G values for single and dual mutations of PIK3CA calculated with 86 

Dynamut web server (PDB id: 4OVV). 87 
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 94 

 95 

 96 

Figure S5.  PIK3CA R88\T1025 mutant xenograft (X-3093, BRCA) volume change compared 97 

to single R88 mutant xenograft (X-3205, BRCA) for different drug treatments. x-axis shows 98 

treatment days, y-axis shows volume difference Volume(Day=n)-Volume(Day=0). Treatment 99 

with the drugs/drug combinations (A) BYL719+cetuximab+encorafenib combination. (B) 100 
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HDM201 (Siremadlin). (C) CGM097. (D)LEE011(Ribociclib) (E) BYL719 (Alpelisib) (F) 101 

Encorafenib (G) BYL719+Encorafenib 102 

(H) BKM120+LJC049 103 

 104 

 105 

 106 

 107 

 108 

Figure S6.  APC R1450\R876 mutant xenograft (X-1290, CRC) volume change compared to 109 

single R1450 mutant xenograft (X-1173, CRC) for different drug treatments. x-axis shows 110 

treatment days, y-axis shows volume difference Volume(Day=n)-Volume(Day=0). Treatment 111 

with the drugs (A) Cetuximab (B) CLR457 (C) CGM097 (D) LKA136. 112 
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 113 

 114 

Figure S7. Kaplan-Meier survival analysis comparing single and double mutant patient groups. 115 

P-values are calculated with logrank test. (A) PIK3CA88 and PIK3CA88+1047 116 

(B) PTEN173 and PTEN173+130 (C) APC876 and APC876+1556 117 

 118 
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