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Dietary interventions can dramatically affect phys-1

iological health and organismal lifespan. The de-2

gree to which organismal health is improved de-3

pends upon genotype and the severity of dietary in-4

tervention, but neither the effects of these factors,5

nor their interaction, have been quantified in an out-6

bred population. Moreover, it is not well understood7

what physiological changes occur shortly after di-8

etary change and how these may affect the health9

of early adulthood population. In this article, we10

investigated the effect of six month exposure of ei-11

ther caloric restriction or intermittent fasting on a12

broad range of physiological traits in 960 one year13

old Diversity Outbred mice. We found caloric re-14

striction and intermittent fasting affected distinct15

aspects of physiology and neither the magnitude nor16

the direction (beneficial or detrimental) of effects17

were concordant with the severity of the interven-18

tion. In addition to the effects of diet, genetic vari-19

ation significantly affected 31 of 36 traits (heritabil-20

ties ranged from 0.04-0.65). We observed signifi-21

cant covariation between many traits that was due22

to both diet and genetics and quantified these ef-23

fects with phenotypic and genetic correlations. We24

genetically mapped 16 diet-independent and 2 diet-25

dependent significant quantitative trait loci, both of26

which were associated with cardiac physiology. Col-27

lectively, these results demonstrate the degree to28

which diet and genetics interact to shape the physi-29

ological health of early adult-hood mice following six30

months of dietary intervention.31
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Introduction35

Dietary modifications are the most robust inter-36

ventions known to increase organismal lifespan.37

Caloric restriction (CR) has been been shown to in-38

crease lifespan in multiple species including yeast,39

worms, flies, rats, mice, and non-human pri-40

mates (Heilbronn and Ravussin (2003); Kaeberlein41

et al. (2005); Colman et al. (2009); Mattison et al.42

(2017); Liang et al. (2018); Pifferi et al. (2019)).43

Another dietary modification, intermittent fasting44

(IF), has been shown to increase lifespan in ro-45

dents (Goodrick et al. (1990)). However, the bene-46

ficial effects of these dietary interventions are not47

universal and can be influenced by sex, genetic 48

variation and adaptation to the lab environment 49

(Goodrick et al. (1990); Harper et al. (2006); Liao 50

et al. (2010); Mitchell et al. (2016)). Moreover, the 51

timing and duration of dietary intervention can 52

alter the magnitude of lifespan effects, with the 53

greatest increase observed when CR is imposed 54

early and maintained throughout life (Weindruch 55

et al. (1982); Yu et al. (1985); Goodrick et al. (1990); 56

Dhahbi et al. (2004)). However, the age-specific 57

genetic and physiological mechanisms that deter- 58

mine whether CR or IF will lengthen lifespan re- 59

main largely unknown. 60

Dietary intervention is hypothesized to extend 61

lifespan by improving the physiological function 62

of multiple systems, including but not limited to, 63

metabolic, neurological, and cardiovascular (Ah- 64

met et al. (2011); Colman et al. (2009); Gredilla 65

and Barja (2005); Redman et al. (2018); Gräff et al. 66

(2013); Patel et al. (2005); Halagappa et al. (2007)). 67

In some instances, changes in gene expression, 68

metabolite levels, and physiology occur shortly af- 69

ter the initiation of daily CR (Cao et al. (2001); 70

Dhahbi et al. (2004); Mulligan et al. (2008); Bruss 71

et al. (2010)). Despite the large number of CR ex- 72

periments, it is not well understood how diet and 73

genetics shape early-life changes in physiological 74

traits and whether these changes may have last- 75

ing effects on lifespan. 76

In humans, the largest CR intervention trial pub- 77

lished to date found that a two-year 25% CR treat- 78

ment in a population of middle-aged, non-obese 79

individuals caused significant reductions to mul- 80

tiple cardiovascular and metabolic syndrome risk 81

factors (Kraus et al. (2019)). However, the effect 82

of CR was not universally beneficial, participants 83

in this trial experienced significant reductions in 84

bone mineral density, muscle size and function 85

(Villareal et al. (2006); Weiss et al. (2007); Villareal 86

et al. (2016)). These studies demonstrate that CR 87

improved multiple aspects of physiological func- 88

tion while worsening others in a relatively healthy 89

population. It remains to be determined whether 90

this result is a generalizable feature of CR inter- 91

ventions and whether IF treatment would produce 92

similarly heterogeneous physiological effects. Ad- 93
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ditionally, it is unknown how genetic variation may1

contribute to the variation in the physiological re-2

sponse to dietary intervention.3

We investigate the effect of both CR and IF on a4

range of physiological traits using Diversity Out-5

bred (DO) mice (Mus musculus), a multi-parent ge-6

netic mapping population founded from eight in-7

bred strains (Svenson et al. (2012); Churchill et al.8

(2012)). Our goal is to identify how dietary in-9

terventions affect different aspects of physiology10

in early adulthood mice. We measure the effect11

of CR and IF on 36 morphological and functional12

traits derived from six phenotypic assays: grip13

strength, rotarod, dual-energy X-ray absorptiome-14

try (DEXA), echocardiogram, acoustic startle, and15

wheel running. Many traits change significantly in16

one year old mice exposed to dietary intervention17

for six months. The correlated change in trait val-18

ues enabled us to cluster traits into distinct axes19

of physiology and measure how they were altered20

in response to dietary intervention. A significant21

proportion of phenotypic variation in 30 traits is22

heritable and for many traits in the same clus-23

ter, a large proportion of the heritable variation24

the genetic effects are correlated. We map 24 diet-25

independent quantitative trait loci (QTL) and five26

diet-dependent QTLs. We impute all DO founder27

variants, fine-map QTL intervals to near single28

gene resolution and identify the founder allele(s)29

associated with trait variation. These findings en-30

able us to conclude that dietary intervention has31

heterogeneous effects on physiological health in32

mice during early adulthood, phenotypic variation33

in many physiological health traits has a large ge-34

netic component, and in the case of cardiac physi-35

ology, variation is influenced by the interaction be-36

tween genetics and dietary intervention.37

Study Design and Measurements38

The DO mouse population was derived from eight39

inbred founder strains and is maintained at The40

Jackson Laboratory as an outbred heterozygous41

population (Svenson et al. (2012)). This study con-42

tains 960 female DOmice, sampled at generations:43

22 – 24 and 26 – 28. There were two cohorts per44

generation for a total of 12 cohorts and 80 ani-45

mals per cohort. Enrollment occurred in succes-46

sive quarterly waves starting in March 2016 and47

continuing through November 2017.48

A single female mouse per litter was enrolled into49

the study after wean age (three weeks old), so that50

no mice in the study were siblings and maximum51

genetic diversity was achieved. Mice were housed52

in pressurized, individually ventilated cages at a53

density of eight animals per cage (cage assign-54

ments were random). Mice were subject to a 1255

hr:12 hr light:dark cycle beginning at 0600 hrs.56

All animal procedures were approved by the Ani- 57

mal Care and Use Committee at The Jackson Lab- 58

oratory. 59

From enrollment until six months of age, all 60

mice were on an Ad Libitum diet of standard ro- 61

dent chow 5KOG from LabDiet. At six months 62

of age, each cage of eight animals was ran- 63

domly assigned to one of five dietary treatments, 64

with each cohort equally split between the five 65

groups (N=192/group): Ad Libitum (AL), 20% 66

caloric restriction (20), 40% caloric restriction 67

(40), one day per week fast, (1D) and two days 68

per week fast (2D) (see Figure 1). In a previ- 69

ous internal study at The Jackson Laboratory, 70

the average food consumption of female DO mice 71

was estimated to be 3.43g/day. Based on this 72

observation, mice on 20% CR diet were given 73

2.75g/mouse/day and those on 40% CR diet were 74

given 2.06g/mouse/day. Food was weighed out for 75

an entire cage of eight. Observation of the animals 76

indicated that the distribution of food was roughly 77

equal among all mice in a cage across diet groups. 78

Fig. 1. Study design. Dietary intervention starts at 180 days of age. Experimental
procedures take approximately one week starting from given day.

Mice on AL diet had unlimited food access; they 79

were fed when the cage was changed once a week. 80

In rare instances when the AL mice consumed 81

all food before the end of the week, the food was 82

topped off mid week. Mice on 20% and 40% CR 83

diets were fed daily. These mice were given a triple 84

feeding on Friday afternoon to last till Monday af- 85

ternoon. As the number of these mice in each cage 86

decreased over time, the amount of food given to 87

each cage was adjusted to reflect the number of 88

mice in that cage. Fasting was imposed weekly 89

from Wednesday noon to Thursday noon for mice 90

on 1D diet and Wednesday noon to Friday noon 91

2 | bioRχiv Zhang et al. | Diet and genetics shape physiological health

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.02.438251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438251
http://creativecommons.org/licenses/by-nc-nd/4.0/


for mice on 2D diet. Mice on 1D and 2D diets have1

unlimited food access (similar to AL mice) on their2

non-fasting days.3

Phenotypic Assays. We carried out six phenotypic4

assays to assess motor and neuromuscular func-5

tion, activity, body composition, hearing and car-6

diovascular physiology, at approximately one year7

of age, five to six months following dietary inter-8

vention (Figure 1). All assays were conducted at9

The Jackson Laboratory following standard oper-10

ating procedures that are included in the Supple-11

mental Materials.12

The rotarod assay was run with three consecu-13

tive trials per animal and we derived three traits14

to measure each animal’s latency to fall (Figure15

1). The grip strength assay was run with three16

consecutive trials for all-paws and three trials for17

forepaws. In order to maximize the robustness of18

this assay, we removed any trial with log-normal19

Euclidean distance in the upper 5% quantile of20

the distribution of all animals and then calculated21

the per mouse average of the remaining trials. We22

used dual-energy X-ray absorptiometry to quan-23

tify eight body and bone composition traits (Fig-24

ure 1). We measured voluntary wheel running in25

30 minutes intervals for three nights and two days26

(mice were single housed for this assay). We used27

these data to derive average distance, time spent28

running and max speed in the following intervals:29

12 hour day, 12 hour night and 24 hour inter-30

vals (Figure 1). The echocardiogram assay mea-31

sured 11 traits capturing both heart morphology32

and function (Figure 1). Note, cardiac output is not33

directly measured, it is calculated from the prod-34

uct of stroke volume and heart rate.35

The acoustic startle assay followed the sound-36

startle response protocol in which animals were37

exposed to five sound levels ranging from 80-12038

decibels(dB) at 10dB steps. Each animal’s average39

startle response was normalized to background40

noise. To robustly measure hearing and sensori-41

motor function, we fit the startle response mea-42

surements for each animal to a five parameter lo-43

gistic model with the R package nplr (Commo and44

Bot (2016)) and derived four values to quantify the45

shape of the logistic model (description provided in46

Figure 1). For a few animals, we estimated the the47

median sound response value to be greater than48

120dB, the maximum sound level in our experi-49

ment. These values were set to 122dB, which is50

twice as loud as 120dB and is often used as the51

peak sound level in noise induced hearing loss re-52

search in rodent models (Kim et al. (2005); Escabi53

et al. (2019)).54

Outlier detection and batch correction. We first iden-55

tified technical outliers resulting from equipment56

failure or mislabeled animals and if we could not 57

manually correct them using lab records, they 58

were removed. The total number of samples per 59

trait after outlier removal is listed in Supplemen- 60

tal Table S1. In order to prevent potential biases in 61

interpretation and increase the reliability of these 62

trait measurements, we corrected values for batch 63

and technician effects (Mandillo et al. (2008); Gu- 64

linello et al. (2019); Kafkafi et al. (2018)). For this 65

experiment, there were 12 batches (two for each 66

DO generation) and eight technicians. To quantify 67

batch and technician effects, we fit an Analysis of 68

Variance (ANOVA) model as follows: 69

Trait=Diet+Batch+Experimenter+Error(1)

In contrast to all other assays, greater than 80% 70

of echocardiogram derived traits were collected by 71

a single technician and we determined that a re- 72

duced ANOVA model including Batch and not Ex- 73

perimenter terms was sufficient to control for the 74

batch and technician effects. We used the resid- 75

uals from each model to identify and remove bi- 76

ologically impossible values according to Tukey’s 77

rule for far outlier (Tukey (1977)). After removing 78

far outliers, we repeated the model fit procedure. 79

To remove batch and experimenter effects, we ad- 80

justed each trait using the batch and experimenter 81

model coefficients. 82

Grip strength and rotarod derived traits can be 83

confounded by body weight (Crawley (2007); Mau- 84

rissen et al. (2003); Hood (2011)) and in order to 85

account for this, we fit the following Analysis of 86

Covariance (ANCOVA) model: 87

Trait=Diet+Batch+Experimenter+Weight+Error(2)

To remove body weight effect for grip strength and 88

rotarod derived traits, we adjusted the trait value 89

using the following formula: 90

AdjTrait= Trait−Beta∗ (Weight−AveWeight)(3)

where Beta is the body weight coefficient from the 91

ANCOVA model and AveWeight is the population 92

mean body weight. Following technical, batch, 93

technician, and outlier correction, we applied z- 94

score standardization for all traits. Unless other- 95

wise stated, these values were used for each sub- 96

sequent analysis. 97

Phenotypic effect of dietary intervention. In order to 98

quantify the effect of dietary intervention on each 99

trait, we applied an ANOVA model with Dunnett 100

post-hoc test to compare each diet intervention 101

group to the AL group. In order to account for 102

statistical testing across multiple traits, we ap- 103

plied the Westfall-Young multiple testing adjust- 104

ment (Westfall et al. (1993)). 105
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Phenotypic correlation and unsupervised cluster-1

ing analysis. We calculated correlation coefficients2

within each diet treatment, and experiment-wide3

correlation coefficients for all animals across all4

diets. We performed unsupervised hierarchical5

clustering analysis using the distance metric 1−6

|Phenotypic Correlation| and complete linkage. For7

animals to be included in this hierarchical clus-8

tering procedure we required they had no missing9

trait data (N = 525). To determine cluster member-10

ship of each trait, we applied a sensitivity analy-11

sis by first calculating the within cluster similarity,12

dist-within, of a trait as the average pairwise dis-13

tance to all other traits in the same cluster. Sec-14

ond, we calculated the across cluster similarity,15

dist-across, as the average pairwise distance to all16

traits outside of the cluster. Small values of dist-17

within indicate the trait is highly correlated with18

traits within the cluster, whereas large values of19

dist-across indicate the trait is highly uncorrelated20

with traits outside of the cluster. To identify ro-21

bust clusters of highly correlated traits, the hierar-22

chical clustering algorithm minimizes the penalty23

score, defined as dist-within/dist-across. This24

penalty score is sensitive to the size of the cluster25

and to derive a cluster size specific penalty signifi-26

cance threshold, we used a bootstrap method with27

1,000 resampling trials. The cluster size specific28

penalty significance threshold was defined as the29

0.05/(cluster size-1) quantile value (Supplemental30

Table S2).31

In order to organize traits into robust clusters, we32

first created a dendrogram with 5 clusters and33

compared the observed penalty scores to the boot-34

strap derived penalty threshold values. Within35

each cluster, we removed traits that had a higher36

penalty score than the penalty significance thresh-37

old by moving the cut-tree function closer to the38

origin node of the dendrogram. After the creation39

of a new set of clusters, we repeated the process40

until every newly created cluster had a penalty41

score that was less than the bootstrap derived42

penalty threshold values. We kept singletons, as43

single-trait clusters. Finally, we used principle44

component (PC) analysis of traits within the same45

multi-trait cluster to derive composite traits. All46

PC derived traits with a cumulative of 90% total47

variance explained were included in genetic link-48

age analyses.49

Genotype data and quality assessment. We collected50

tail clippings and extracted DNA using DNeasy51

Blood and Tissue Kit (Qiagen) from 954 ani-52

mals. Samples were genotyped using the 143,259-53

probe GigaMUGA array from the Illumina In-54

finium II platform (Morgan et al. (2016)) by NeoGen55

Corp. (genomics.neogen.com/). We evaluated geno-56

type quality using the R package: qtl2 (Bro- 57

man et al. (2019)). We processed all raw geno- 58

type data with a corrected physical map of the 59

GigaMUGA array probes (https://kbroman.org/ 60

MUGAarrays/muga_annotations.html). After filter- 61

ing genetic markers for uniquely mapped probes, 62

genotype quality and a 20% genotype missingness 63

threshold, our dataset contained 110,807 mark- 64

ers. 65

We next examined the genotype quality of individ- 66

ual animals. We found seven pairs of animals with 67

identical genotypes which suggested that one of 68

each pair was mislabelled. We identified and re- 69

moved a single mislabelled animal per pair by ref- 70

erencing the genetic data against coat color. Next, 71

we removed a single sample with missingness in 72

excess of 20%. All remaining samples exhibited 73

high consistency between tightly linked markers: 74

log odds ratio error scores were less than 2.0 for 75

all samples (Lincoln and Lander (1992)). The final 76

set of genetic data consisted of 946 mice. 77

For each DO mouse, we compared its genotype to 78

that of the eight founder strains at all 110,807 79

markers to calculate the probability that a given 80

founder contributed a given allele at that marker 81

(implemented in the R package: qtl2 Broman et al. 82

(2019)). In other words, the founder-of-origin 83

probability is the likelihood a given DO mouse 84

possess a specific founder haplotype at the focal 85

marker and can be used to identify genomic re- 86

gions that are identical-by-decent. This allowed 87

us to directly test for an association between the 88

founder-of-origin probability and phenotype at all 89

genotyped markers. Using the founder-of-origin 90

of consecutive typed markers and the genotypes 91

of untyped variants (SNPs and small insertion- 92

deletions) in the founder strains, we then imputed 93

the genotypes of all untyped variants (34.5 million) 94

in all 946 mice. The majority, but not all, of im- 95

puted variants were bi-allelic SNPs. Targeted as- 96

sociation testing at imputed variants allowed us to 97

fine-map many QTLs to near single gene resolu- 98

tion. 99

Genetic Linkage Analysis. With the R qtl2 package, 100

we calculated kinship matrices using the leave- 101

one-chromosome-out (LOCO) method and con- 102

ducted quantitative trait locus mapping analyses 103

(Broman et al. (2019)) . In order to identify signif- 104

icant additive genetic associations, we fit a linear 105

mixed model with diet and founder-of-origin prob- 106

abilities per marker as fixed effects and kinship as 107

a random effect. To identify significant genotype by 108

diet (GxD) interaction effects, we fit a linear mixed 109

model with diet and founder-of-origin probabilities 110

and their interactions as fixed effects and kinship 111

as a random effect. To calculate an LOD score for 112
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the GxD interaction term we subtracted the LOD1

score of the full model from the additive model.2

To determine whether the interaction LOD score3

was statistically significant, we conducted a per-4

mutation analysis by randomizing phenotype val-5

ues (regardless of dietary treatment), fitting both6

the full and the additive models, subtracting the7

genome wide set of LOD scores of the full model8

from the additive model and storing the maximum9

LOD value (Churchill and Doerge (1994)). We re-10

peated this procedure 1,000 times to obtain a dis-11

tribution of maximum LOD scores and applied em-12

pirical p-value threshold of 0.05 to define signifi-13

cant QTLs and 0.1 as suggestive QTLs.14

For each significant and suggestive QTL, we im-15

puted variants for 5Mb +/- the lead marker posi-16

tion and re-ran the QTL mapping procedure (im-17

plemented in the snpscan function from qtl2). To18

assess the significance of imputed variants for19

each region, we re-ran the permutation proce-20

dures as previously described with 1,000 itera-21

tions and applied empirical p-value threshold of22

0.05. Finally, we identified all candidate variants23

as those that are specific to lead founder-allele-24

pattern (FAP), or if the lead FAP contains fewer25

than 10 variants, we also include variants spe-26

cific to the second ranked FAP. We identified lead27

candidate genes by their proximity to candidate28

FAP variants and by cross-referencing against phe-29

notypic effect in the Mouse Genome Informatics30

(www.informatics.jax.org) database.31

Heritability and Genetic Correlations Analyses. For32

each trait, we calculated the additive genetic vari-33

ance relative to phenotypic variance, e.g. narrow-34

sense heritability, and its 95% credible interval us-35

ing a Bayesian model with diet as a fixed effect and36

kinship as a random effect based on the EMMA37

model as implemented in R’s STAN package (Kang38

et al. (2008); Carpenter et al. (2017); Stan Devel-39

opment Team (2020)). We assessed whether heri-40

tability was significantly greater than zero by ap-41

plying one-sided z-test to the posterior distribution42

with false discovery rate controlled at 0.05.43

To measure the degree to which the additive ge-44

netic variance underlying two traits is shared45

we calculated their genetic correlation using the46

mathematical framework described in Furlotte47

and Eskin (2015). We used a Bayesian model48

implemented in R’s STAN package (Stan Develop-49

ment Team (2020)) to estimate the genetic corre-50

lation and its 95% credible interval. The details51

about model assumptions and priors are in the52

Supplemental Materials. We ran three indepen-53

dent chains with 2,000 Markov chain Monte Carlo54

(MCMC) iterations, and posterior estimates were55

derived by combining all three MCMC chains af-56

ter 1,000 burn-ins. The convergence diagnostics 57

were assessed by Gelman-Rubin’s statistic (Gel- 58

man and Rubin (1992)). The significance of phe- 59

notypic correlation was determined by t-test and 60

the significance of genetic correlation was deter- 61

mined by posterior mean and standard deviation 62

under standard normal distribution. We applied 63

Benjamini and Hochberg (1995) method to control 64

significant phenotypic and genetic correlations re- 65

spectively, at a false discovery rate of 0.05. 66

Comparison of full and reduced genotype-by-diet as- 67

sociation models to measure interaction effects. In or- 68

der to determine which diet intervention(s) are re- 69

sponsible for genotype-by-diet interaction effects, 70

we re-tested the lead genotypedmarker at each sig- 71

nificant QTL in the following models: 72

Null : T =DFull+G+G∗DFull+K+e

73

Alternative : T =DFull+G+G∗DReduced+K+e

where T is trait, G is genotype, K is kinship, e is 74

error, DFull is all five treatments and DReduced elimi- 75

nates, in singles or pairs, 1D fast, 2D fast, 20%CR, 76

or 40% CR. We first remove a single diet at a time 77

and evaluate the fit of each alternative model using 78

the likelihood ratio test. The diet with the highest 79

LOD score is then tested in pairs with each of the 80

other three diets to determine whether model fit is 81

improved. 82

Results 83

Dietary intervention altered physiology of early adult- 84

hood mice. We measured the effect of dietary in- 85

terventions on multiple aspects of mouse physiol- 86

ogy and found that both the type (CR vs IF) and 87

magnitude of each intervention affected the phys- 88

iological response. To summarize, the 40% CR in- 89

tervention had the greatest impact, 24 of 36 total 90

traits were significantly different compared to the 91

AL diet (Figure 2). For select traits we also pro- 92

vide the non z-score transformed values (Supple- 93

mental Figure S1). Following the 40% CR inter- 94

vention, the 20% CR, 2D fast, and 1D fast treat- 95

ments resulted in 11, 9 and 4, traits changing sig- 96

nificantly in comparison to the AL group (Figure 2). 97

Examining body weight, body length, percent lean 98

mass, tissue mass, tissue area, and bone mineral 99

content, the treatment with the largest effect in 100

comparison to AL was 40% CR and this effect was 101

more than double the difference between 20% CR 102

and AL (Figure 2). Interestingly, the 2D fast and 103

20% CR had nearly the same mean body weights, 104

however the treatments exhibited opposite effects 105

on body fat percentage: 2D fast reduced and 20% 106

CR increased DX_PFAT(Figure 2). In summary, we 107
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found intermittent fasting and daily caloric restric-1

tion had distinct effects on multiple body and bone2

composition traits and changes in response to the3

40% CR and 2D fast treatments were not simply4

a doubling of magnitude of 20% CR and 1D fast5

treatment effects. These patterns were also ob-6

served for additional physiological traits.7

We uncovered multiple cardiac phenotypes which8

were significantly altered by both the 20% CR9

and 40% CR treatments whereas no significant ef-10

fect was detected in the intermittent fasting treat-11

ments. Heart rate, cardiac output, and diastolic12

left ventricle wall thickness (EC_HRAT, EC_COUT,13

EC_LVPD) were significantly lower in both CR14

groups compared to AL (Figure 2). Additionally,15

the 20% CR group exhibited significantly lower16

systolic left ventricle wall thickness (EC_LVPS) and17

stroke volume (EC_STRO) whereas the 40% CR18

group exhibited significantly lower left ventricle19

mass and inner dimension in systole and dias-20

tole (EC_LVMA, EC_LVIS, EC_LVID). The cumula-21

tive effect of these divergent responses was that22

the 20% CR group had the lowest ejection frac-23

tion and the 40% CR group had the highest ejec-24

tion fraction (Figure 2, EC_EFRA). Similarly, after25

controlling for body weight, we found cardiac out-26

put was lowest for the 20% CR group and high-27

est for the 40% CR group (Supplemental Figure28

S1E,F). These results suggest that caloric restric-29

tion, and not intermittent fasting, was detrimental30

to the cardiovascular efficiency of early adulthood31

mice treated with 20% CR and beneficial to the32

40% CR group. This pattern of effects was simi-33

lar to the effects on lean and fat mass, in which34

20% CR, and 40% CR treatment effects relative to35

AL varied in both magnitude and sign (positive or36

negative).37

We conducted multiple experiments to measure38

neuromuscular and motor function: running on39

a wheel, grip strength, and balancing on the ro-40

tarod. Wheel running activity, measured as to-41

tal distance, max speed, and amount of time on a42

running wheel, were significantly increased in the43

40% CR treatment compared to all other groups44

for both the light and dark cycles (Figure 2). The45

2D fast treatment exhibited a significant increase46

in total wheel time and moderate increases in dis-47

tance and max speed during the day compared48

to the other groups (Figure 2). No wheel running49

traits were significantly different in the 1D fast or50

20% CR treatments in comparison to the AL group51

(Figure 2). The only significant difference observed52

among the grip strength and rotarod traits was an53

increase in all-paws grip strength in the 40% CR54

and 2D fast treatments (Figure 2). To summarize55

the effect of dietary intervention on neuromuscu-56

lar and motor function, the 40% CR treatment,57

followed by 2D fast, ran the farthest, and -by at 58

least one measure- had the greatest strength. In- 59

terestingly, these same groups had the lowest body 60

weight, lowest body fat percentage, and highest 61

lean mass percentage. 62

We measured hearing ability using the acoustic 63

startle experiment. We found the AL treatment 64

had the most sensitive hearing whereas the 40% 65

CR treatment mice had the least sensitive hearing, 66

when measured as the total area under the startle 67

response curve (AS_TAUC, Figure 2). This result 68

suggested that 6 month exposure to 40% CR treat- 69

ment, in contrast to all other interventions, had a 70

detrimental effect on hearing ability in 12 month 71

old mice. 72

Collectively, these results demonstrated that in- 73

termittent fasting and daily caloric restriction had 74

distinct effects on multiple aspects of physiology 75

and neither the magnitude nor the sign of effects 76

were linear with respect to daily calorie intake or 77

length of intermittent fasting regime. Addition- 78

ally, none of these interventions were universally 79

beneficial across all aspects of organismal physi- 80

ology. Finally, we found the effect of dietary in- 81

tervention was correlated between many traits. In 82

some instances, this was because one trait was 83

directly calculated from another trait measured in 84

the same assay (see Methods: Phenotypic Assays). 85

Alternative and mutually non-exclusive hypothe- 86

ses may also explain these results: 1) the traits 87

measured similar aspects of physiology (e.g. fat 88

mass and body weight), 2) the traits were derived 89

from the same phenotypic assay and environmen- 90

tal variables (e.g. time of day, time of year, ex- 91

perimenter) were constant, and 3) trait variation 92

is controlled by a shared genetic basis. In order 93

to investigate these hypotheses, we estimated the 94

heritability of each trait and their pairwise pheno- 95

typic and genetic correlations. 96

The majority of physiological traits exhibit significant 97

genetic heritability. To determine the contribution of 98

genetics to phenotypic variation in each trait irre- 99

spective of diet, we calculated heritability across 100

all animals in the study and found that most traits 101

measured at one year of age (31 of 36) have sig- 102

nificant heritability (Figure 3). Body composition 103

traits from DEXA and one measure of hearing sen- 104

sitivity had the highest heritabilities (>0.5). Wheel 105

running speed and distance traits had moderate 106

(0.3-0.5) heritabilities. Several cardiac traits, in- 107

cluding heart rate, stroke volume and cardiac out- 108

put, as well as forepaw grip strength and time to 109

fall on the rotarod had low (0.1-0.3) but statis- 110

tically significant heritabilities. Traits with her- 111

itabilty not significantly different from zero in- 112

cluded two echocardiogram derived traits, and 113
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Fig. 2. Diet specific mean (SE) trait values for all experimental procedures. All trait values were z-score transformed following batch and generation correction.
Red bars denote traits that were significantly different from AL diet.

one each for acoustic startle, rotarod, and grip1

strength (Figure 3).2

Phenotypic and genetic correlations separate distinct3

aspects of physiology. We calculated the pheno-4

typic correlation between all trait pairs using all5

samples and found that many trait pairs, espe-6

cially those derived from the same assay, were7

tightly correlated. (Figure 4A, lower-triangle).8

We also calculated diet-specific correlations and9

found these to be very similar to correlations ob-10

tained when using all animals (Supplemental Fig- 11

ure S2). When diet-specific differences were ob- 12

served, they affected the magnitude but not the 13

sign of the correlation. For example, cardiac out- 14

put and stroke volume (EC_COUT, EC_STRO) were 15

positively correlated with body composition traits 16

(DX_PFAT, DX_TARE, DX_BODY, and DX_TTME) in 17

AL, 1D and 2D group, however, the correlation was 18

reduced in 20% CR and 40% CR groups (Supple- 19

mental Figure S2). Since the phenotypic corre- 20

lations were largely similar across diets, we used 21
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Fig. 3. Trait specific heritability (95% Bayesian credible interval) values.

correlations calculated from all animals in subse-1

quent analyses.2

In order to measure the degree to which the heri-3

table fraction of variation in two traits was shared4

we calculated their genetic correlation (Figure 4A,5

upper-triangle). This value measures the correla-6

tion of genetic effects on two traits, and a genetic7

correlation equal to one means that every variant8

that affects the first trait has an equal pleiotropic9

effect on the second trait. For many traits, the10

genetic and phenotypic correlations were similar11

(adjusted R square of 0.62, Supplemental Figure12

S3). Additionally, we identified 138 instances (out13

of 630 trait pairs) for which the phenotypic corre-14

lation was significantly greater than zero but the15

estimated genetic correlation was indistinguish-16

able from zero. This suggested that, for these17

trait pairs, the phenotypic correlation was due to18

shared environmental factors.19

We sought to quantify the degree of similarity be-20

tween traits using an unsupervised hierarchical21

clustering analysis of all pairwise phenotypic cor-22

relations. We identified 10 clusters of two or more23

traits and six single-trait clusters (Figure 4B). All24

10 multi-trait clusters were composed of traits25

from the same assay, however traits from all as-26

says (except rotarod) were split across multiple27

clusters in non-adjacent regions of the dendro-28

gram (Figure 4B). For example, DEXA derived body29

composition traits formed two multi-trait clusters, 30

the first cluster was composed of bone physiology 31

traits and was adjacent to a cardiac output clus- 32

ter, whereas the second cluster was composed of 33

body area/tissue composition traits and was lo- 34

cated within day and night time wheel running 35

clusters (Figure 4B). We interpret traits in distinct 36

clusters as measurements of distinct aspects of 37

physiology, with cluster placement in the dendro- 38

gram indicating the degree of similarity between 39

these aspects of physiology. 40

Multiple factors may contribute to the high cor- 41

relations within each multi-trait cluster: different 42

traits measured the same underlying physiology, 43

the shared environment in which traits were mea- 44

sured, and a shared genetic basis. In eight of 10 45

multi-trait clusters, nearly all trait pairs within 46

each cluster were significantly genetically corre- 47

lated with each other (Figure 4A), suggesting that 48

the traits that comprise these aspects of physiol- 49

ogy shared a common genetic basis. In the two 50

remaining multi-trait clusters (Rotarod and ECHO 51

2), trait pairs were, for the most part, not signif- 52

icantly genetically correlated (Figure 4A) because 53

of the low genetic heritability of one or both traits 54

(Figure 3). This result suggested that the signifi- 55

cant phenotypic correlations within these clusters 56

was likely due to shared environmental factors. We 57

next sought to measure the diet-independent and 58

diet-dependent genetic basis of each directly mea- 59

sured trait using a QTL mapping approach. 60

Genetic mapping with founder-allele-patterns iden- 61

tifies candidate variants. Using both additive and 62

genotype-by-diet (GxD) interaction models, we 63

used the founder-of-origin genotype probabilities 64

to map associations for each of the 36 directly 65

measured traits. For the additive model, we found 66

16 significant QTLs (p-value < 0.05) and seven 67

suggestive QTLs (p-value < 0.1) among the 36 phe- 68

notypic traits (Table 1). In instances in which mul- 69

tiple traits map to the same genomic region we 70

count these as a single QTL. For the GxD inter- 71

action model, we identified two significant QTLs 72

-both of which were associated with cardiac phys- 73

iology traits- and one suggestive QTL for hearing 74

sensitivity (Table 1). 75

To more thoroughly interrogate aspects of physi- 76

ology represented by each multi-trait cluster, we 77

conducted a principal component analysis of the 78

traits in each cluster (Supplemental Table S3) and 79

repeated the genetic association analyses. For 80

the PC derived traits, we identified eight diet- 81

independent and one diet-dependent QTLs that 82

were not identified in our analysis of the directly 83

measured traits (Table 1). 84

To more precisely fine-map the genomic inter- 85
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Fig. 4. A. Pairwise genetic (upper-triangle) and phenotypic (lower-triangle) correlations. * p-value <0.05. ** p-value < 0.01, *** p-value < 0.001 (FDR adjusted
p-value) B. Hierarchical clustering of traits used phenotypic correlation values. Each color represents a significantly distinct cluster.

val of each QTL, we imputed all SNPs and1

small insertion-deletion variants from the fully se-2

quenced DO founders (Keane et al. (2011)) across3

a 5Mb interval centered at the lead genotyped4

marker and used these variants to conduct the5

fine-mapping association analysis. For each im-6

puted variant, we identified the founder-of-origin7

for the major and minor allele Wright et al. (2020).8

To illustrate this process, consider a bi-allelic9

A/G variant, if allele A was specific to founders10

AJ, NZO, and PWK and allele G was specific11

to the other 5 founders, then we assigned A to12

be the minor allele and defined a founder-allele-13

pattern (FAP) of AJ/NZO/PWK for this variant.14

Importantly, the FAP is a measure of identity-by-15

state for imputed SNPs, and contrasts with the16

founder-of-origin genotype probabilities that mea-17

sure identity-by-decent in the DO population.18

To identify the variants and founder haplotypes19

most likely responsible for the association at each20

locus, we grouped variants based on their FAP21

and ranked groups based on the largest LOD score22

among its constituent variants. (Note that, by def-23

inition, no variant can be a member of more than24

one FAP group.) We hypothesized that the func-25

tional variant(s) responsible for trait-specific vari-26

ation were among those in the lead FAP group be-27

cause they exhibit the strongest statistical associ-28

ation and it is unlikely any additional variants are29

segregating in this genomic interval beyond those30

identified in the full genome sequences of the eight 31

founder strains. By focusing on FAP groups with 32

the largest LOD scores, we narrowed the number 33

of candidate variants at each QTL. The lead FAP 34

and the number and location of statistically sig- 35

nificant variants that comprise each FAP group 36

are summarized in Table 1. Additionally, a list of 37

all imputed variants significantly associated with 38

each trait and the candidate genes in each region 39

are provided in Supplemental Files 1 and 2. To 40

demonstrate this approach, we fine-mapped QTLs 41

associated with bone composition traits. 42

Alleles of contrasting effects associated with variation 43

in bone composition. Traits comprising the tightly 44

correlated bone composition cluster (Figure 4), 45

were associated with a chromosome 5 locus (total 46

bone area andmineral content) and a chromosome 47

7 locus (bone mineral content, Figure 5A). It is un- 48

surprising that the locus with the greatest LOD 49

score, chromosome 5, was associated with both 50

total bone area and bone mineral content because 51

these two traits are both correlated with mouse 52

size (Brommage (2003)). We repeated the genetic 53

association analysis with PC derived bone compo- 54

sition traits and found PC1 replicated the chromo- 55

some 5 association and the strength of the chro- 56

mosome 7 association was reduced (Table 1). Ad- 57

ditionally, the PC1 analysis identified a new peak 58

on chromosome 17 and PC2 analysis identified two 59
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Table 1. Genome-wide significant diet-independent and diet-dependent QTLs. Traits are organized by clusters identified in Figure 4. For each trait, we calculated a
genome-wide significant LOD score threshold using a permutation analysis. We identified the FAP of the variant with the strongest LOD score, the genomic location of these
variants, and the number of significant variants that comprise the lead FAP group. For loci in which the lead FAP is comprised of fewer than 10 variants, we also present
results for the second ranked FAP. We list likely candidate genes based on lead FAP variants and a survey of gene knock-out phenotypes.

new QTLs on chromosomes 17 and X (Figure 5B).1

To identify candidate variants and genes, we fine-2

mapped these loci using the FAP group of each im-3

puted variant.4

We fine-mapped the chromosome 5 loci associated5

with total bone area (DX_BARE) and bone mineral6

content (DX_BOMC). The two lead FAPs -ranked by7

maximum LOD score of each FAP variant group-8

for DX_BARE contained variants with minor al-9

leles specific to the PWK and WSB founders and10

the rank 3 FAP was comprised of NZO and CAST 11

(Figure 5C). The PWK and WSB alleles were asso- 12

ciated with the largest positive effect of the eight 13

founders on total bone area, whereas NZO and 14

CAST were associated with the largest negative 15

effect (Figure 5C). Next, we examined the fine- 16

mapping results for DX_BOMC and identified a dif- 17

ferent order of lead FAPs: rank 1 and 2 groups con- 18

tained minor alleles specific to the NZO and CAST 19

founders whereas the rank 3 group was comprised 20
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Fig. 5. A. Manhattan plot of directly measured bone composition traits: total bone area and bone mineral content. Red circles denote markers with statistically significant (p
< 0.05) LOD score based on genome-wide permutation analysis. B. Manhattan plot of PC derived bone physiology traits. C. Fine mapping of total bone area chromosome 5
locus using imputed variants. LOD scores of closed circles are statistically significant (p < 0.05) based on permutation analysis of all imputed variants with +/- 5Mb of lead
genotyped marker. Variants in three founder-allele-pattern groups shown in red, orange, and yellow circles, ordered by maximum LOD score. D. Founder allele effects and
standard error estimates for the lead genotyped variant for total bone area. E. and F. are for bone mineral content, details are the same as C. and D. G. and H are for the
bone composition-PC1 chromosome 17 locus, details are the same as in C. and D.

of PWK and WSB (Figure 5D). The effect of the1

founder alleles on bone mineral content (Figure2

5E) were similar to results for total bone area (Fig-3

ure 5C). Although the rank order of the top three4

FAP groups differed slightly between the two traits,5

these results are consistent with the hypothesis6

that this one locus affects these two highly similar7

traits. Moreover, we have identified at least three8

distinct alleles at this locus: a positive allele de-9

rived from the PWK and WSB founders, a negative10

allele derived from the NZO and CAST founders,11

and a neutral allele derived from the four other12

founders.13

To further illustrate the utility of fine mapping14

QTLs with variants grouped by FAP, we examined15

the chromosome 17 locus associated with bone16

composition PC1 (Figure 5B). We found that vari-17

ants with minor alleles specific to the B6 and CAST18

founders exhibited the strongest statistical asso-19

ciation (Figure 5G). Consistent with the composi-20

tion of this lead FAP, we found the effect of the21

B6 and CAST founder alleles to have the largest22

negative effects on bone composition PC1 (Figure23

5H). We next used FAP grouped variants and the24

Mouse Genome Informatics database of pheno-25

typic effects (www.informatics.jax.org) to identify 26

candidate genes. 27

The chromosome 5 total bone area QTL contained 28

406 significant variants, of which 27 (21 intergenic 29

SNPs, 6 intronic SNPs) were specific to the positive 30

effect PWK/WSB alleles (rank 1 FAP group) and 13 31

(12 intergenic SNPs and 1 intronic SNP) were spe- 32

cific to the negative effect NZO/CAST alleles (rank 33

3 FAP group; Table 1, Figure 5C). The chromosome 34

5 bone mineral content QTL contained 350 sig- 35

nificant variants, of which 4 intergenic SNPs were 36

specific to the positive B6/PWK/WSB alleles (rank 37

3 FAP group) and 19 (17 intergenic SNPs and 2 38

intronic SNPs) were specific to the negative effect 39

NZO/CAST alleles (rank 1 and 2 FAP groups; Fig- 40

ure 5E). We found no protein coding variants in the 41

lead FAP groups that were significantly associated 42

with either trait, suggesting that the functional 43

variant(s) altered gene expression. Many candi- 44

date variants were located in intergenic regions 45

adjacent to Nkx3-2 (Figure 5C,E), which encodes 46

a homeobox protein critical to skeleton develop- 47

ment (Lettice et al. (1999)). The chromosome 17 48

locus associated with bone composition PC1, was 49

comprised of 47 statistically significant variants, 50
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seven of which were members of the B6/CAST1

FAP (Figure 5G). All of these variants were inter-2

genic SNPs located in a genomic interval contain-3

ing five genes (Pkdcc, Eml4, Cox7a21, Kcng3, and4

Mta3) and of these candidates Pkdcc has previ-5

ously been shown to effect bone morphology (Sa-6

jan et al. (2019); Imuta et al. (2009)).7

These analyses illustrate three key findings: 1)8

conducting genetic association analyses with both9

directly measured and PC derived traits can reveal10

novel loci, 2) fine mapping loci with FAP groups11

greatly reduces the number of lead candidate vari-12

ants, and 3) FAP variant groups illuminate the13

link between specific founder haplotypes associ-14

ated with positive, neutral, or negative phenotypic15

effects.16

Cardiac physiology is altered in response to dietary in-17

tervention in a genotype dependent manner. All three18

significant diet-dependent QTLs were associated19

with cardiac physiology traits (Table 1). We iden-20

tified one QTL associated with the second PC21

(PC2_ECE2) of ejection fraction (EC_EFRA) and22

left ventricular inner dimension, systole (EC_LVIS)23

(Figure 6A). These two traits are positively corre-24

lated with PC2_ECE2 (Supplemental Figure S4),25

which we interpreted as a measure of heart pump-26

ing efficiency. We fine-mapped this QTL and found27

the lead FAP was composed of AJ-specific alle-28

les (Figure 6A). The remaining QTLs were associ-29

ated with diastolic left ventricular posterior wall30

thickness (EC_LVPD) and the first principal com-31

ponent (PC_ECL1) of EC_LVPD and EC_LVPS, sys-32

tolic left ventricular posterior wall thickness (Table33

1). EC_LVPD and EC_LVPS are positively corre-34

lated (Figure 4A) and, unsurprisingly, the QTLs for35

PC_ECL1 and EC_LVPD were located in the same36

region of chromosome 2 and shared the same37

lead FAP: B6/129/NZO (Figure 6B,C). We found38

the genomic interval associated with PC_ECL139

to be larger than EC_LVPD (30.9-34.8Mb versus40

32.9-34.1Mb) and fine-mapping EC_LVPS revealed41

a region of association between 30.5 and 32.042

Mb (Supplemental Figure S5). Although the size43

of our mapping population limits our ability to44

conclude whether the associations with systolic45

and diastolic wall thickness are separate loci af-46

fected by distinct functional variants, this result47

does explain the subtle difference between the fine48

mapped intervals for PC_ECL1 and EC_LVPD (Fig-49

ure 6B,C). We next set out to determine which50

dietary intervention(s) were responsible for these51

genotype-by-diet interaction effects.52

In order to determine the diet most likely respon-53

sible for the significant GxD interaction effects,54

we compared the lead variant LOD score in the55

full model to reduced models in which we pruned56

diets in singles and pairs. We considered a diet 57

as likely responsible for the significant interac- 58

tion effect if the removal of that diet reduced the 59

strength of the association in comparison to the 60

full model. For PC_ECE2, we found that 20% CR 61

and 2D fast treatments were most likely respon- 62

sible for the diet-dependent association (Supple- 63

mental Table S4). The diet-specific founder-allele 64

effect for the AJ allele exhibited the largest posi- 65

tive effects in the 20% CR and 2D fast treatments 66

and significant negative effects in AL and 40% CR 67

treatments (Figure 6D). These results are consis- 68

tent with the hypothesis that the diet-dependent 69

effects of the AJ allele were responsible for the in- 70

teraction association at this locus. 71

We identified 18 variants significantly associated 72

with PC_ECE2 and all of these were specific to the 73

lead FAP, AJ. A single variant was an intergenic 74

structural variant, and the remaining 17 were 75

non-coding exonic (1), intronic (4) or intergenic 76

(12) located at nine genes. One variant was lo- 77

cated in the 3’ UTR of Follistatin-like 1 (Fstl1), this 78

is a secreted glycoprotein expressed in the adult 79

heart that affects cardiac morphology, contractil- 80

ity, and vascularization (Oshima et al. (2008); Shi- 81

mano et al. (2011)). 82

We next examined the diet-dependent associations 83

with EC_LVPD and PC_ECL1 and, using the re- 84

duced GxD association model test, found that 20% 85

CR and 1D fast treatments were most likely re- 86

sponsible for this interaction QTL (Supplemental 87

Table S4). We estimated the diet-specific founder- 88

allele effects for the lead variant at this QTL 89

and focused on the effects of B6, 129 and NZO. 90

We estimated distinct diet-specific effects for each 91

founder: the effect of B6 was significantly nega- 92

tive in 40% CR, positive in 20% CR (for EC_LVPD 93

only), and largely neutral in the other three di- 94

ets; the effect of 129 was significantly positive in 95

the 1D fast treatment and negative in the other 96

four diets; the effect of NZO was significantly pos- 97

itive in 20% CR, neutral in AL, and negative in 98

the other three diets (Figure 6E,F). Although the 99

B6 allele was identified in the lead FAP, the ef- 100

fect size results suggest this allele was unlikely 101

to be responsible for the GxD interaction associa- 102

tion. The seeming incongruence between the FAP 103

and effect-size estimates illustrates a key point: 104

FAPs were annotated using imputed variants and 105

reflect identity-by-state whereas effect-sizes were 106

estimated using the founder-of-origin probabili- 107

ties and reflect identity-by-descent (as described 108

in Methods section). These results were consis- 109

tent with the hypothesis that either 129 or NZO 110

founder alleles were responsible for the significant 111

interaction QTL because of the strong diet-specific 112

effect of the 129 allele in 1D fast and NZO allele in 113
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Fig. 6. A. Fine mapping of chromosome 16 locus associated with PC2 of ejection fraction and left ventricular inner dimension, systole. Rank 1, 2, and 3 FAP variants shown
in red, orange, and yellow circles. LOD scores of closed circles are statistically significant (p < 0.05) based on permutation analysis of all imputed variants with +/- 5Mb of
lead genotyped marker. B. Fine mapping of chromosome 2 locus associated with left ventricular posterior wall thickness, systole. Legend same as A. C. Fine mapping of
chromosome 2 locus associated with PC1 of left ventricular posterior wall thickness, systole and diastole. Legend same as A. D-F. Diet-specific effect of lead genotyped
variant for each of the eight founder variants for three focal traits.

20% CR. Additionally, these results would be con-1

sistent with the hypothesis that both founder al-2

leles are responsible and, given our observation of3

contrasting diet specific effects, each may harbor4

distinct functional variants at this QTL.5

We identified a total of 59 and 28 vari-6

ants significantly associated with PC_ECL1 and7

EC_LVPD. Thirty one PC_ECL1 variants and 188

EC_LVPD variants were specific to the lead FAP9

(B6/129/NZO) and all variants were SNPs. Vari-10

ants associated with PC_ECL1 (19 intronic and11

12 intergenic) were located in close proximity 12

to 10 genes. Ten variants (eight intronic and 13

two immediately upstream) were located at Hemi- 14

centin2, a fibulin family extracellular matrix pro- 15

tein. Genetic knock-out studies of Hmcn2 have 16

resulted in abnormal left ventrical morpholgy in 17

mice (Dickinson et al. (2016)) and have been as- 18

sociated with electrocardiogram derived traits in 19

humans (Tereshchenko et al. (????)). Additionally, 20

three variants (intronic) were located at Lmx1b, 21

a LIM homeobox transcription factor 1-beta that 22
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is known to regulate limb and organ develop-1

ment (Dreyer et al. (1998); Schweizer et al. (2004);2

Doucet-Beaupré et al. (2016)). Variants associated3

with EC_LVPD (9 intronic and 9 intergenic) were4

located in close proximity to 5 genes, a list which5

included Lmx1b and lacked Hmcn2.6

Taken together, all significant diet-dependent7

QTLs were associated with heart physiology. Fine8

mapping with FAPs narrowed the likely number9

of causal variants and identified candidate genes10

previously linked to cardiac morphology or func-11

tion. We previously showed that the signs of the12

effects of diet on the mean physiological trait mea-13

surements were specific to the type of intervention14

(CR or IF) and their magnitudes were non-additive15

with respect to the magnitude of intervention (Fig-16

ure 2). Identification of candidate genes with17

diet-dependent effects suggests molecular mech-18

anisms to explain these results.19

Discussion20

Conditionally beneficial effects of CR and IF on dis-21

tinct aspects of physiology . A primary goal of this22

study was to address the question: which aspects23

of physiology would respond to dietary interven-24

tion in early adulthood mice? We performed this25

experiment using DO mice in order to assess this26

question in an outbred genetic model that more27

closely resembles human populations. Addition-28

ally, we were interested in determining whether29

the physiological health benefits (or detriments)30

of daily CR could be replicated with intermittent31

fasting treatments. We found dietary intervention32

initiated at six months of age significantly altered33

many traits in 12 month old mice. The 40% CR34

dietary intervention impacted the greatest num-35

ber of traits in comparison to the AL diet followed36

by the 20% CR, 2D and 1D fast treatments (Figure37

2). Using six experimental assays we clustered in-38

dividual traits into distinct aspects of physiology39

(Figure 4). In many instances, changes to an as-40

pect of physiology were not consistent between IF41

and CR. For the body composition cluster, we ob-42

served similar mean body weights for the 20% CR43

and 2D fast treatments, however the 2D fast treat-44

ment significantly increased the proportion of lean45

muscle mass and reduced fat mass, whereas the46

20% CR decreased the percentage of lean mus-47

cle mass and increased fat mass (Figure 2). How48

might these changes in physiology impact organ-49

ismal health?50

While the lifespan extension of daily CR is well51

established, it remains largely unknown whether52

dietary intervention would improve physiological53

function in healthy, early adulthood mice. Our54

results demonstrated that 2D fast and 40% CR,55

in comparison to 20% CR, improved multiple as-56

pects of cardiovascular function. Left ventricular 57

posterior wall thickness (systolic and diastolic) in- 58

creased in 2D fast but decreased in 20% CR, and 59

these changes in morphology were correlated with 60

cardiac function - ejection fraction and stroke vol- 61

ume increased in 2D fast and decreased in 20% 62

CR (Figure 2). Similar to the 2D fast treatment, 63

we observed a decrease in posterior wall thickness 64

for 40% CR and an increase in cardiac function - 65

measured as increased ejection fraction and stroke 66

volume after controlling for the dramatic decrease 67

in body weight observed in the 40% CR mice (Fig- 68

ure 2, Supplemental Figure S1F). Ejection frac- 69

tion was previously shown to decrease with mouse 70

age and is indicative of decreased cardiac health 71

(Medrano et al. (2016); Lindsey et al. (2018)), there- 72

fore we interpret these results to suggest that the 73

2D fast and 40% CR treatments increased cardiac 74

health relative to 20% CR. These results highlight 75

the complex manner in which the type and mag- 76

nitude of dietary intervention may improve or de- 77

grade cardiac health and may explain the seem- 78

ingly contradictory results of IF and CR interven- 79

tions observed in other rodent models (Ahmet et al. 80

(2005, 2011)). 81

Examining the effect of dietary intervention on 82

other aspects of physiological health suggest that 83

the 40% CR treatment was not universally ben- 84

eficial. The 40% CR group had the lowest hear- 85

ing ability across the entire auditory range tested, 86

whereas hearing ability was greatest in the AL 87

group (Figure 2). These results contradict pre- 88

vious studies that found caloric restriction pre- 89

vented age-related hearing loss (Someya et al. 90

(2007, 2010)). Similar to hearing ability, we ob- 91

served bone mineral density was lowest in 40% 92

CR and greatest in AL diet (DX_BOMD; Figure 2). 93

These result were consistent with human clinical 94

trial which showed cardiovascular function was 95

improved and bone mineral density was degraded 96

following a 25% CR intervention (Villareal et al. 97

(2006, 2016); Kraus et al. (2019)). By measur- 98

ing multiple aspects of physiology in a large out- 99

bred mouse population, we identified contrasting 100

effects of CR and IF on health. With continued 101

observation, we will determine whether the year 102

one effects will have lasting physiological effects on 103

health and explain the physiological mechanisms 104

by which dietary intervention extends lifespan. 105

The effect of select genetic variants on physiologi- 106

cal health may be as impactful as dietary interven- 107

tion. The majority of traits (31 of 36) derived from 108

six phenotypic assays exhibited significant genetic 109

heritabilities (Figure 3). Genetic mapping analyses 110

with directly measured and PC derived traits iden- 111

tified both diet-independent and diet-dependent 112
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QTLs associated with distinct aspects of physiol-1

ogy (Table 1). We found the effect of founder alle-2

les at some QTLs were as strong or stronger than3

the effect of dietary intervention. For instance, the4

difference between positive and negative founder-5

allele-effects for the lead genotyped variant at the6

chromosome 5 bone mineral content QTL (0.77,7

Figure 5F) exceeded the negative effect of 40%8

CR diet (-0.57). This suggested that the poten-9

tially detrimental effect of 40% CR on bone min-10

eral content may be offset by the beneficial effect11

of the PWK and WSB founder alleles. Similarly,12

the negative effect of 40% CR on hearing ability13

(-0.31) could be offset by the significantly posi-14

tive effect of the WSB, PWK, CAST alleles (1.19)15

at the chromosome 10 QTL (Table 1). The can-16

didate genes at these loci maybe fruitful targets17

for genetic manipulation or therapeutic interven-18

tion to either mimic beneficial or ameliorate detri-19

mental effects of caloric restriction and intermit-20

tent fasting. Finally, the extensive genetic corre-21

lations identified between traits, both within and22

between clusters, suggests that interventions may23

have pleiotropic effects (perhaps positive or nega-24

tive) beyond the focal trait.25

Cardiac morphology and function is shaped by26

diet-dependent genetic associations. Cardiac mor-27

phology and function were the only physiologi-28

cal traits for which we identified significant diet-29

dependent QTLs. Variation in cardiac pumping ef-30

ficiency, quantified with PC_ECE2, was associated31

with an AJ specific allele that increased function32

in 20% CR, 1D, and 2D fast treatments and de-33

creased function in the AL and 40% CR treatments34

(Figure 6D). Interestingly, the diet-dependent ef-35

fect of the NZO allele at this locus was nearly op-36

posite that of AJ and the difference between these37

alleles in the AL (0.500) and 2D fast (0.746) treat-38

ments was of similar magnitude of the difference39

between diets (0.631). We highlight this example to40

illustrate that the beneficial or detrimental effects41

of diet maybe ameliorated by genetic variants seg-42

regating within the DO mouse population. These43

results provide additional support for the hypoth-44

esis that cardiac efficiency maybe altered to the45

same degree as CR or IF with genetic manipulation46

or therapeutic intervention to phenocopy the AJ47

or NZO allele. Additionally, the large diet-specific48

effects of the 129 and NZO alleles (Figure 6E,F)49

suggest that similar approach could be utilized to50

manipulate LV posterior wall thickness. The de-51

cline in cardiac health in response to diet and age52

is a leading risk factor for reduced lifespan in hu-53

man populations (Dwyer-Lindgren et al. (2016)).54

These results clearly demonstrate that functional55

variants are segregating within the DO population56

to modulate cardiac morphology and function in 57

a diet-specific manner and suggest possible inter- 58

ventions to protect against the diet-induced or age- 59

related decline of cardiac health. 60

Future considerations and limitations. In summary, 61

we found that multiple aspects of physiology in 62

early adulthood mice change in response to di- 63

etary intervention. Using a diverse set of experi- 64

mental assays, we identified dietary interventions 65

that may improve or degrade health along multi- 66

ple axes of physiology. It is unknown how changes 67

observed at one year of age, after six months of 68

treatment, will impact health at later ages. As 69

these mice age, we will continue to monitor them 70

with the ultimate goal of identifying the physio- 71

logical mechanisms by which dietary interventions 72

improve or deteriorate health at advanced age. 73

Acknowledgments 74

The authors would like to acknowledge Na- 75

talie Telis, J. Graham Ruby, Nick van Bruggen 76

and David Botstein for their comments on the 77

manuscript. Funding was provided by Calico Life 78

Sciences LLC. 79

Literature Cited 80

Ahmet, I., H. J. Tae, R. de Cabo, E. G. Lakatta, and 81

M. I. Talan, 2011 Effects of calorie restriction 82

on cardioprotection and cardiovascular health. 83

Journal of Molecular and Cellular Cardiology 84

51: 263–271. 85

Ahmet, I., R. Wan, M. P. Mattson, E. G. Lakatta, 86

and M. Talan, 2005 Cardioprotection by inter- 87

mittent fasting in rats. Circulation 112: 3115– 88

3121. 89

Benjamini, Y. and Y. Hochberg, 1995 Controlling 90

the False Discovery Rate: A Practical and Power- 91

ful Approach to Multiple Testing. Journal of the 92

Royal Statistical Society: Series B (Methodologi- 93

cal) 57: 289–300. 94

Broman, K. W., D. M. Gatti, P. Simecek, N. A. 95

Furlotte, P. Prins, et al., 2019 R/qtl2: Software 96

for mapping quantitative trait loci with high- 97

dimensional data and multiparent populations. 98

Genetics 211: 495–502. 99

Brommage, R., 2003 Validation and calibration of 100

DEXA body composition inmice. American Jour- 101

nal of Physiology-Endocrinology andMetabolism 102

285: E454–E459. 103

Bruss, M. D., C. F. Khambatta, M. A. Ruby, 104

I. Aggarwal, and M. K. Hellerstein, 2010 Calo- 105

rie restriction increases fatty acid synthesis 106

and whole body fat oxidation rates. Ameri- 107

can Journal of Physiology - Endocrinology and 108

Metabolism 298: 108–116. 109

Zhang et al. | Diet and genetics shape physiological health bioRχiv | 15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.02.438251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438251
http://creativecommons.org/licenses/by-nc-nd/4.0/


LITERATURE CITED

Cao, S. X., J. M. Dhahbi, P. L. Mote, and S. R.1

Spindler, 2001 Genomic profiling of short- and2

long-term caloric restriction effects in the liver of3

aging mice. Proceedings of the National Academy4

of Sciences of the United States of America 98:5

10630–10635.6

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee,7

B. Goodrich, et al., 2017 Stan: A probabilis-8

tic programming language. Journal of Statistical9

Software 76.10

Churchill, G. A. and R. W. Doerge, 1994 Empirical11

threshold values for quantitative trait mapping.12

Genetics 138.13

Churchill, G. A., D. M. Gatti, S. C. Munger,14

and K. L. Svenson, 2012 The Diversity Out-15

bred mouse population. Mammalian Genome16

23: 713–718.17

Colman, R. J., R. M. Anderson, S. C. Johnson,18

E. K. Kastman, K. J. Kosmatka, et al., 200919

Caloric restriction delays disease onset and mor-20

tality in rhesus monkeys. Science 325: 201–21

204.22

Commo, F. and B. M. Bot, 2016 N-Parameter Lo-23

gistic Regression [R package nplr version 0.1-7]24

.25

Crawley, J. N., 2007 What’s Wrong With My26

Mouse?. John Wiley & Sons, Inc., Hoboken, NJ,27

USA.28

Dhahbi, J. M., H. J. Kim, P. L. Mote, R. J. Beaver,29

and S. R. Spindler, 2004 Temporal linkage be-30

tween the phenotypic and genomic responses to31

caloric restriction. Proceedings of the National32

Academy of Sciences of the United States of33

America 101: 5524–5529.34

Dickinson, M. E., A. M. Flenniken, X. Ji, L. Teboul,35

M. D. Wong, et al., 2016 High-throughput dis-36

covery of novel developmental phenotypes. Na-37

ture 537: 508–514.38

Doucet-Beaupré, H., C. Gilbert, M. S. Profes,39

A. Chabrat, C. Pacelli, et al., 2016 Lmx1a and40

Lmx1b regulate mitochondrial functions and41

survival of adult midbrain dopaminergic neu-42

rons. Proceedings of the National Academy of43

Sciences of the United States of America 113:44

E4387–E4396.45

Dreyer, S. D., G. Zhou, A. Baldini, A. Winterpacht,46

B. Zabel, et al., 1998 Mutations in LMX1B cause47

abnormal skeletal patterning and renal dyspla-48

sia in nail patella syndrome. Nature Genetics 19:49

47–50.50

Dwyer-Lindgren, L., A. Bertozzi-Villa, R. W.51

Stubbs, C. Morozoff, M. J. Kutz, et al., 2016 US52

County-Level Trends in Mortality Rates for Major53

Causes of Death, 1980-2014. JAMA 316: 2385.54

Escabi, C. D., M. D. Frye, M. Trevino, and E. Lo-55

barinas, 2019 The rat animal model for noise-56

induced hearing loss. The Journal of the Acous-57

tical Society of America 146: 3692–3709. 58

Furlotte, N. A. and E. Eskin, 2015 Efficient 59

multiple-trait association and estimation of ge- 60

netic correlation using the matrix-variate linear 61

mixed model. Genetics 200: 59–68. 62

Gelman, A. and D. B. Rubin, 1992 Inference from 63

Iterative Simulation Using Multiple Sequences. 64

Statistical Science 7: 457–472. 65

Goodrick, C. L., D. K. Ingram, M. A. Reynolds, J. R. 66

Freeman, and N. Cider, 1990 Effects of inter- 67

mittent feeding upon body weight and lifespan 68

in inbred mice: interaction of genotype and age. 69

Mechanisms of Ageing and Development 55: 69– 70

87. 71

Gräff, J., M. Kahn, A. Samiei, J. Gao, K. T. Ota, 72

et al., 2013 A dietary regimen of caloric restric- 73

tion or pharmacological activation of SIRT1 to 74

delay the onset of neurodegeneration. Journal 75

of Neuroscience 33: 8951–8960. 76

Gredilla, R. and G. Barja, 2005 The role of oxida- 77

tive stress in relation to caloric restriction and 78

longevity 146: 3713–3717. 79

Gulinello, M., H. A. Mitchell, Q. Chang, W. Timothy 80

O’Brien, Z. Zhou, et al., 2019 Rigor and repro- 81

ducibility in rodent behavioral research. Neuro- 82

biology of Learning and Memory 165: 106780– 83

106780. 84

Halagappa, V. K. M., Z. Guo, M. Pearson, Y. Mat- 85

suoka, R. G. Cutler, et al., 2007 Intermit- 86

tent fasting and caloric restriction ameliorate 87

age-related behavioral deficits in the triple- 88

transgenic mouse model of Alzheimer’s disease. 89

Neurobiology of Disease 26: 212–220. 90

Harper, J. M., C. W. Leathers, and S. N. Austad, 91

2006 Does caloric restriction extend life in wild 92

mice? Aging Cell 5: 441–449. 93

Heilbronn, L. K. and E. Ravussin, 2003 Calorie 94

restriction and aging: Review of the literature 95

and implications for studies in humans 78: 361– 96

369. 97

Hood, R. D., 2011 Developmental and Reproductive 98

Toxicology. CRC Press. 99

Imuta, Y., N. Nishioka, H. Kiyonari, and H. Sasaki, 100

2009 Short limbs, cleft palate, and delayed for- 101

mation of flat proliferative chondrocytes in mice 102

with targeted disruption of a putative protein ki- 103

nase gene, Pkdcc (AW548124). Developmental 104

Dynamics 238: 210–222. 105

Kaeberlein, M., R. W. Powers, K. K. Steffen, E. A. 106

Westman, D. Hu, et al., 2005 Cell biology: Reg- 107

ulation of yeast replicative life span by TOR and 108

Sch9 response to nutrients. Science 310: 1193– 109

1196. 110

Kafkafi, N., J. Agassi, E. J. Chesler, J. C. Crabbe, 111

W. E. Crusio, et al., 2018 Reproducibility and 112

replicability of rodent phenotyping in preclinical 113

studies 87: 218–232. 114

16 | bioRχiv Zhang et al. | Diet and genetics shape physiological health

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.02.438251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438251
http://creativecommons.org/licenses/by-nc-nd/4.0/


LITERATURE CITED

Kang, H. M., N. A. Zaitlen, C. M. Wade, A. Kirby,1

D. Heckerman, et al., 2008 Efficient control of2

population structure in model organism associ-3

ation mapping. Genetics 178: 1709–1723.4

Keane, T. M., L. Goodstadt, P. Danecek, M. A.5

White, K. Wong, et al., 2011Mouse genomic vari-6

ation and its effect on phenotypes and gene reg-7

ulation. Nature 477: 289–294.8

Kim, J. U., H. J. Lee, H. H. Kang, J. W. Shin,9

S. W. Ku, et al., 2005 Protective Effect of Isoflu-10

rane Anesthesia on Noise-Induced Hearing Loss11

in Mice. The Laryngoscope 115: 1996–1999.12

Kraus, W. E., M. Bhapkar, K. M. Huffman, C. F.13

Pieper, S. Krupa Das, et al., 2019 2 years of14

calorie restriction and cardiometabolic risk (CA-15

LERIE): exploratory outcomes of a multicentre,16

phase 2, randomised controlled trial. The Lancet17

Diabetes and Endocrinology 7: 673–683.18

Lettice, L. A., L. A. Purdie, G. J. Carlson, F. Ki-19

lanowski, J. Dorin, et al., 1999 The mouse bag-20

pipe gene controls development of axial skele-21

ton, skull, and spleen. Proceedings of the Na-22

tional Academy of Sciences of the United States23

of America 96: 9695–9700.24

Liang, Y., C. Liu, M. Lu, Q. Dong, Z. Wang, et al.,25

2018 Calorie restriction is the most reasonable26

anti-ageing intervention: A meta-analysis of sur-27

vival curves. Scientific Reports 8: 1–9.28

Liao, C. Y., B. A. Rikke, T. E. Johnson, V. Diaz,29

and J. F. Nelson, 2010 Genetic variation in the30

murine lifespan response to dietary restriction:31

From life extension to life shortening. Aging Cell32

9: 92–95.33

Lincoln, S. E. and E. S. Lander, 1992 Systematic34

detection of errors in genetic linkage data. Ge-35

nomics 14: 604–610.36

Lindsey, M. L., Z. Kassiri, J. A. Virag, L. E. De Cas-37

tro Brás, and M. Scherrer-Crosbie, 2018 Guide-38

lines for measuring cardiac physiology in mice39

314: H733–H752.40

Mandillo, S., V. Tucci, S. M. Hölter, H. Meziane,41

M. Al Banchaabouchi, et al., 2008 Reliability,42

robustness, and reproducibility in mouse be-43

havioral phenotyping: A cross-laboratory study.44

Physiological Genomics 34: 243–255.45

Mattison, J. A., R. J. Colman, T. M. Beasley, D. B.46

Allison, J. W. Kemnitz, et al., 2017 Caloric re-47

striction improves health and survival of rhesus48

monkeys. Nature Communications 8: 1–12.49

Maurissen, J. P., B. R. Marable, A. K. Andrus,50

and K. E. Stebbins, 2003 Factors affecting grip51

strength testing. Neurotoxicology and Teratology52

25: 543–553.53

Medrano, G., J. Hermosillo-Rodriguez, T. Pham,54

A. Granillo, C. J. Hartley, et al., 2016 Left atrial55

volume and pulmonary artery diameter are non-56

invasive measures of age-related diastolic dys-57

function in mice. Journals of Gerontology - Se- 58

ries A Biological Sciences and Medical Sciences 59

71: 1141–1150. 60

Mitchell, S. J., J. Madrigal-Matute, M. Scheibye- 61

Knudsen, E. Fang, M. Aon, et al., 2016 Effects of 62

Sex, Strain, and Energy Intake on Hallmarks of 63

Aging in Mice. Cell Metabolism 23: 1093–1112. 64

Morgan, A. P., C. P. Fu, C. Y. Kao, C. E. Welsh, J. P. 65

Didion, et al., 2016 The mouse universal geno- 66

typing array: From substrains to subspecies. 67

G3: Genes, Genomes, Genetics 6: 263–279. 68

Mulligan, J. D., A. M. Stewart, and K. W. Saupe, 69

2008 Downregulation of plasma insulin levels 70

and hepatic PPARγ expression during the first 71

week of caloric restriction in mice. Experimen- 72

tal Gerontology 43: 146–153. 73

Oshima, Y., N. Ouchi, K. Sato, Y. Izumiya, D. R. 74

Pimentel, et al., 2008 Follistatin-like 1 is an Akt- 75

regulated cardioprotective factor that is secreted 76

by the heart. Circulation 117: 3099–3108. 77

Patel, N. V., M. N. Gordon, K. E. Connor, R. A. 78

Good, R. W. Engelman, et al., 2005 Caloric re- 79

striction attenuates Aβ-deposition in Alzheimer 80

transgenic models. Neurobiology of Aging 26: 81

995–1000. 82

Pifferi, F., J. Terrien, M. Perret, J. Epelbaum, 83

S. Blanc, et al., 2019 Promoting healthspan and 84

lifespan with caloric restriction in primates 2: 85

1–3. 86

Redman, L. M., S. R. Smith, J. H. Burton, C. K. 87

Martin, D. Il’yasova, et al., 2018 Metabolic Slow- 88

ing and Reduced Oxidative Damage with Sus- 89

tained Caloric Restriction Support the Rate of 90

Living and Oxidative Damage Theories of Aging. 91

Cell Metabolism 27: 805–815.e4. 92

Sajan, S. A., J. Ganesh, D. N. Shinde, Z. Powis, 93

M. I. Scarano, et al., 2019 Biallelic disruption 94

of PKDCC is associated with a skeletal disor- 95

der characterised by rhizomelic shortening of ex- 96

tremities and dysmorphic features. Journal of 97

Medical Genetics 56: 850–854. 98

Schweizer, H., R. L. Johnson, and B. Brand- 99

Saberi, 2004 Characterization of migration be- 100

havior of myogenic precursor cells in the limb 101

bud with respect to Lmx1b expression. Anatomy 102

and Embryology 208: 7–18. 103

Shimano, M., N. Ouchi, K. Nakamura, B. Van 104

Wijk, K. Ohashi, et al., 2011 Cardiac myocyte 105

follistatin-like 1 functions to attenuate hypertro- 106

phy following pressure overload. Proceedings of 107

the National Academy of Sciences of the United 108

States of America 108: E899–E906. 109

Someya, S., T. Yamasoba, R. Weindruch, T. A. 110

Prolla, and M. Tanokura, 2007 Caloric restric- 111

tion suppresses apoptotic cell death in the mam- 112

malian cochlea and leads to prevention of pres- 113

bycusis. Neurobiology of Aging 28: 1613–1622. 114

Zhang et al. | Diet and genetics shape physiological health bioRχiv | 17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.02.438251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438251
http://creativecommons.org/licenses/by-nc-nd/4.0/


Someya, S., W. Yu, W. C. Hallows, J. Xu, J. M.1

Vann, et al., 2010 Sirt3 mediates reduction of2

oxidative damage and prevention of age-related3

hearing loss under Caloric Restriction. Cell 143:4

802–812.5

Stan Development Team, 2020 RStan: the R inter-6

face to Stan. R package version 2.21.2.7

Svenson, K. L., D. M. Gatti, W. Valdar, C. E. Welsh,8

R. Cheng, et al., 2012 High-Resolution Genetic9

Mapping Using the Mouse 190: 437–447.10

Tereshchenko, L. G., N. Sotoodehnia, C. M. Sitlani,11

F. N. Ashar, M. Kabir, et al., ???? Journal of the12

American Heart Association p. e008160.13

Tukey, J. W., 1977 Exploratory data analysis.14

Reading, Mass. : Addison-Wesley Pub. Co., 17th15

edition.16

Villareal, D. T., L. Fontana, S. K. Das, L. Red-17

man, S. R. Smith, et al., 2016 Effect of Two-18

Year Caloric Restriction on BoneMetabolism and19

Bone Mineral Density in Non-Obese Younger20

Adults: A Randomized Clinical Trial. Journal of21

Bone and Mineral Research 31: 40–51.22

Villareal, D. T., L. Fontana, E. P. Weiss, S. B.23

Racette, K. Steger-May, et al., 2006 Bone mineral24

density response to caloric restriction-induced25

weight loss or exercise-induced weight loss: A26

randomized controlled trial. Archives of Internal27

Medicine 166: 2502–2510.28

Weindruch, R., S. R. Gottesman, and R. L. Wal-29

ford, 1982 Modification of age-related immune30

decline in mice dietarily restricted from or af-31

ter midadulthood. Proceedings of the National32

Academy of Sciences of the United States of33

America 79: 898–902.34

Weiss, E. P., S. B. Racette, D. T. Villareal,35

L. Fontana, K. Steger-May, et al., 2007 Lower36

extremity muscle size and strength and aero-37

bic capacity decrease with caloric restriction but38

not with exercise-induced weight loss. Journal39

of Applied Physiology 102: 634–640.40

Westfall, P. H., S. S. Young, and S. P. Wright, 199341

On Adjusting P-Values for Multiplicity. Biomet-42

rics 49: 941.43

Wright, K. M., A. Deighan, A. D. Francesco, A. Fre-44

und, V. Jojic, et al., 2020 Age and diet shape the45

genetic architecture of body weight in diversity46

outbred mice. bioRxiv 2020: 11.04.364398.47

Yu, B. P., E. J. Masoro, and C. A. McMahan, 198548

Nutritional influences on aging of Fischer 34449

rats: I. Physical, metabolic, and longevity char-50

acteristics. Journals of Gerontology 40: 657–51

670.52

Supplemental Material53

Heritability analysis model details. We estimated her-54

itability by fitting the Bayesian model Y = Xβ+ ε55

where ε follows multivariate normal distribution 56

with mean 0 and covariance matrix σ2(2h2K+(1− 57

h2)I) where σ2 is the total phenotypic variance, h2
58

is heritability, K is the kinship matrix and I is 59

identity matrix. The prior information is as fol- 60

lows: 61

σ2 ∼ InverseGamma(1,0.5)
62

h2 ∼ Uniform(0,1)
63

β ∼MultivariateNormal(M,Σ)

where M = [0,0,0,0,0] and Σ = 2I5X5. 64

Genetic correlation analysis model details. Consid- 65

ering two traits Y1 and Y2, we estimated genetic 66

correlation by fitting the Bayesian model:
[
Y1
Y2

]
= 67[

Xβ1
Xβ2

]
+ ε, where ε follows multivariate normal 68

distribution with mean 0 and covariance matrix 69[ 2σ2
g1K+σ2

e1I 2γσg1σg2K+λσg1σg2I

2γσg1σg2K+λσg1σg2I 2σ2
g2K+σ2

e2I

]
where K is 70

the kinship matrix; I is the identity matrix; σ2
g1 71

and σ2
e1 are genetic and environmental variance for 72

trait Y1 respectively; σ2
g2 and σ2

e2 are genetic and 73

environmental variance for trait Y2 respectively; γ 74

is genetic correlation and λ represents the correla- 75

tion due to an individual’s environment. The prior 76

information is as follows: 77

γ,λ∼ Uniform(−1,1)
78

β1,β2 ∼MultivariateNormal(M,Σ)

where M = [0,0,0,0,0] and Σ = 2I5X5. σ2
g1, σ2

g2, σ2
e1 79

and σ2
e2 are estimated by fitting each trait individ- 80

ually with diet as fix effect and kinship as random 81

effect using maximum likelihood method. 82

Supplemental Tables and Figures. 83
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Table S1. Total number of samples per trait and per diet after outlier removal.
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Table S2. Significance threshold for unsupervised hierarchical clustering analysis.
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Table S3. For trait groups identified in hierarchical clustering analysis, we list the directly measured and the principal component derived traits.
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Table S4. Reduced genotype x diet association model test. For each lead marker at a GxD interaction QTL, we compare the LOD scores of full (Model I) and
reduced (Model II) genetic association models. Reduced models test the effect of four, non AL diets in isolation, and for the single diet with the maximum
difference between Model I and Model II LOD score, the three possible two diet combinations are also tested.
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Fig. S1. Sixteen DEXA and echocardiogram derived trait values for each diet. Horizontal bars display Mean +/- SD. For cardiac output (EC_COUT) and stroke
volume (EC_STRO) we present the raw values and body weight corrected values (calculated following the same procedure as applied to grip strength and rotarod).
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Fig. S2. Diet-specific pairwise phenotypic correlation values. Size and color of squares represent the positive (blue) or negative (red) correlation values. Purple
box highlights pairwise correlations between cardiac output and stroke volume (EC_COUT, EC_STRO) and multiple body composition traits (DX_PFAT, DX_TARE,
DX_BODY, and DX_TTME).

Fig. S3. Scatterplot of phenotypic versus genetic correlations. Grey line depicts linear correlation with 95% CI in shaded area.
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Fig. S4. Pairwise Pearson correlation values between PC_ECE2 and the two directly measured traits used to calculate this principle component analysis trait:
EC_EFRA and EC_LVIS.
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Fig. S5. A. Manhattan plot of diet-dependent genome-wide linkage mapping results for EC_LVIS. B. Fine-mapping of chromosome 2 locus. Rank 1, 2, and 3 FAP
variants shown in red, orange, and yellow circles. C. Diet-specific effect of lead genotyped variant for each of the eight founder variants.
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