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 16 

Significance 17 

Protein liquid-liquid phase separation (LLPS) is associated with human health and diseases. 18 

Identifying the minimalistic building blocks and sequence determinants of LLPS is of urgent 19 

importance but remains computationally challenging partially due to the lack of methodologies 20 

characterizing the liquid condensates. Herein we provide approaches to evaluate LLPS ability of 21 

dipeptides, and screen all 400 dipeptides by MD simulations combined with multi-bead-per-22 

residue models which capture key interactions driving LLPS that are missing in one-bead-per-23 

residue models. Three categories of LLPS dipeptides are identified and the experimentally-verified 24 

QW dipeptide is by far the smallest LLPS system. Our results suggest that dipeptides, minimal but 25 

complete, possess multivalent interactions sufficient for LLPS, and LLPS is a general property of 26 

peptides/proteins, independent of their length. 27 

 28 

Abstract 29 

Liquid-liquid phase separation (LLPS) of proteins mediates the assembly of biomolecular 30 

condensates involved in physiological and pathological processes. Identifying the minimalistic 31 

building blocks and the sequence determinant of protein phase separation is of urgent importance 32 

but remains challenging due to the enormous sequence space and difficulties of existing 33 

methodologies in characterizing the phase behavior of ultrashort peptides. Here we demonstrate 34 

computational tools to efficiently quantify the microscopic fluidity and density of liquid-35 

condensates/solid-aggregates and the temperature-dependent phase diagram of peptides. 36 

Utilizing our approaches, we comprehensively predict the LLPS abilities of all 400 dipeptide 37 

combinations of coded amino acids based on 492 micro-second molecular dynamics simulations, 38 

and observe the occurrences of spontaneous LLPS. We identify 54 dipeptides that form solid-like 39 

aggregates and three categories of dipeptides with high LLPS propensity. Our predictions are 40 
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validated by turbidity assays and differential interference contrast (DIC) microscopy on four 1 

representative dipeptides (WW, QW, GF, and VI). Phase coexistence diagrams are constructed to 2 

explore the temperature dependence of LLPS. Our results reveal that aromatic moieties are crucial 3 

for a dipeptide to undergo LLPS, and hydrophobic and polar components are indispensable. We 4 

demonstrate for the first time that dipeptides, minimal but complete, possess multivalent 5 

interactions sufficient for LLPS, suggesting that LLPS is a general property of peptides/proteins, 6 

independent of their sequence length. This study provides a computational and experimental 7 

approach to the prediction and characterization of the phase behavior of minimalistic peptides, 8 

and will be helpful for understanding the sequence-dependence and molecular mechanism of 9 

protein phase separation. 10 

  11 
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Introduction 1 

Accumulating evidence demonstrates the importance of protein phase separation in physiological 2 

and pathological processes (1–3). Liquid-liquid phase separation (LLPS) of proteins underlies the 3 

formation of membraneless compartments in cells (4, 5), possessing important intercellular 4 

functions, such as facilitating bio-chemical reactions, activating stress response, and regulating 5 

gene transcriptions (6–8). In addition, aberrant LLPS and the liquid-solid phase separation (LSPS) 6 

can lead to formation of neurotoxic aggregates such as amyloid plaques in Alzheimer’s disease, 7 

fibrillary aggregates in Amyotrophic Lateral Sclerosis (ALS) (9, 10), aberrant stress granules in 8 

Frontotemporal Dementia (FTD) (11), and Lewy bodies in Parkinson’s disease (12). Identifying the 9 

sequence determinants and the molecular mechanisms underlying phase separation is yet an 10 

unmet need crucial for designing therapeutic targets to treat protein-aggregation disorders. 11 

 12 

A rapidly increasing number of proteins have been demonstrated to have LLPS capabilities. 13 

Examples include the transactive response DNA binding protein (TDP-43) (13, 14), Tau (15–17) and 14 

Fused in Sarcoma (FUS) (18–20). It has been reported that LLPS is driven by multivalent interactions 15 

entailed by the amino acid sequence (1, 21, 22). In addition, it is considered that a minimum 16 

sequence length of protein is required and below which LLPS cannot occur. For example, the LLPS 17 

of the poly-PR/poly-GA requires a minimum peptide length of 50/100 (23, 24). In contrast, 18 

numerous experiments demonstrate that even very short peptides can self-assemble into ordered 19 

solid-like nanoarchitectures. For example, FF, FW, and IF can respectively form nanotubes, tubular 20 

and fibrous nanostructures (25–27). In this context, we suspect that ultrashort peptides, as short 21 

as dipeptides, may also possess LLPS capacity. In order to identify the minimalistic building blocks 22 

and the sequence determinant of protein phase separation, we decipher the LLPS/LSPS ability of 23 

all 400 dipeptide combinations of coded amino acids by conducting a combined computational and 24 

experimental study. 25 

 26 

Different theoretical and computational approaches have shown success in probing the phase 27 

behaviors of intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions 28 

(IDRs) (28, 29). Such methods include random phase approximation theory by Lin and Chan (30), 29 

field-theoretic simulations by Shea et al. (31), Gibbs-ensemble simulations by Zhou et al. (32, 33), 30 

and slab simulations by Mittal et al. (34–36) and others (37). Those studies greatly enhance our 31 

understanding of key physical principles and sequence features crucial to phase separation of IDPs 32 

or IDR-containing proteins. Following these studies, we have attempted to investigate the phase 33 

separation of dipeptides by utilizing the slab simulation protocol in combination with the 34 

hydrophobicity-scaled (HPS) one-bead-per-residue model. Unexpectedly, dipeptides with known 35 

high aggregation capability (such as FF, FW and IF) display totally no sign of aggregation 36 

(Supplementary Part 1), probably due to the fact that highly-simplified protein models significantly 37 

reduces the molecular interaction sites, thus lack molecular details to explicitly describe aromatic 38 

stacking, hydrogen-bonding interactions and peptide-water interactions crucial for ultrashort 39 
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peptide phase separation (22, 38–40). On the other hand, the slab simulation protocol, which has 1 

become a de facto standard for computing the LLPS phase diagrams (29), underestimates the 2 

density of dilute phases (i.e., the saturation concentration for phase separation) probably due to 3 

the lack of explicit solvents. Thus, a more detailed description of ultrashort peptides in combination 4 

with explicit solvent model is necessary for the investigation of their LLPS.  5 

 6 

Hereby, we have carried out micro-second explicit solvent molecular dynamics (MD) simulations 7 

on each of the 400 dipeptides in combination with the multiple-bead-per-residue MARTINI model 8 

which explicitly capture specific physical interactions (such as aromatic stacking, and protein-water 9 

interactions). A similar simulation protocol has been used by Tuttle and coworkers to screen out 10 

dipeptides with high self-assembly ability (41), albeit with a short simulation time scale. 11 

Nevertheless, the LLPS ability of dipeptides and their phase behaviors remain completely elusive. 12 

We have developed a novel, efficient approach to predict the LLPS propensities of ultrashort 13 

peptides which consists of two steps: (1) the aggregation capability of each dipeptide is quantified 14 

by the clustering degree and the collapse degree of initially randomly dispersed dipeptide 15 

molecules, and (2) we define two physical parameters (the fluctuation extent of clustering degree 16 

and the exchange rate of inter-peptide interactions) to characterize the microscopic fluidity of the 17 

aggregates and distinguish between LLPS and LSPS. Our extensive simulations demonstrate that 18 

dipeptides can spontaneously phase separate into solid- or liquid-like condensates, and predict the 19 

LLPS and LSPS propensities of all 400 dipeptides, among which QW possesses the highest LLPS 20 

propensity. Our predictions are further verified through temperature dependent turbidity assays 21 

and differential interference contrast (DIC) microscopy. Moreover, we unravel the molecular 22 

mechanism underlying the QW LLPS and construct the temperature-dependent density profiles 23 

(i.e., the phase diagram). To the best of our knowledge, this is the first study demonstrating the 24 

LLPS behavior of dipeptides (the minimalistic peptide) which is intractable by existing theoretical 25 

and computational methods for studying protein LLPS. 26 

 27 

Results 28 

The aggregation capability of each of the 400 dipeptides 29 

For each of the 400 dipeptides, we have performed 1~2 individual micro-second simulations 30 

starting from 720 dipeptide molecules randomly dispersed in aqueous solution. Reaching 31 

equilibrium is essential to characterizing the phase behavior of peptides, so we assess the 32 

convergence of each simulation by tracking the time evolution of solution accessible surface area 33 

(SASA) (Fig. S4), and the length of each simulation varies from 2.5~10.0 μs (the number of 34 

simulations for each dipeptide as well as the time length of each simulation are given in Table S1-35 

3). 36 

 37 

An important feature of LLPS is the separation of a solute-rich dense phase from the homogenous 38 

solution, thus the first step in deciphering the LLPS propensity of a dipeptide is to identify its 39 
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aggregation capability. Tuttle and Ulijn have performed short time-scale MD simulations on all 400 1 

dipeptides, and screened out dipeptides with high self-assembly tendencies by defining an 2 

“aggregation propensity” (AP) parameter (41), which is calculated by the ratio of the solvent-3 

accessible surface area (SASA) of all dipeptide molecules in the initial state to their SASA in the final 4 

configuration. Those high-AP peptides usually form solid-like aggregates (25, 27, 42), suggesting 5 

their low ability to undergo LLPS. As shown in Fig. S5a, the AP parameter is highly degenerate for 6 

relatively low aggregation capability peptides. We therefore introduce a new parameter: the 7 

clustering degree (defined by the number of dipeptide molecules in the largest cluster divided by 8 

total number of dipeptide molecules in the system), and characterize the aggregation capability of 9 

each dipeptide by two parameters (clustering degree and AP). For clarity, the AP parameter (41, 10 

43) is hereinafter referred as the collapse degree. Figure 1a shows the clustering degree of the 400 11 

dipeptides as a function of their collapse degree. A gap exists around the collapse degree value of 12 

3.0, dividing 400 dipeptides into two groups. The first group contains 54 dipeptides which present 13 

large values of collapse degree (3.0~7.0) and clustering degree (>0.9), suggesting that those 14 

dipeptides have high aggregation capabilities (see snapshots of YF/WW/YY). Dipeptides in the first 15 

group include: (1) dipeptides composed by aromatic residues F/W/Y, (2) dipeptides containing an 16 

F/W residue and a hydrophobic residue (H/L/I/V/M/P/C) or S/T residue (Fig. 1b). These results 17 

reaffirm that aromatic residues are crucial for the aggregation of dipeptides, and hydrophobic 18 

residues enhance the aggregation. 19 

 20 

Dipeptides in the second group have smaller values of collapse degree (1.0~3.0), suggesting their 21 

relatively lower aggregation capabilities. However, they present a broad and continuous 22 

distribution of clustering degree. Dipeptides with high clustering degree values can aggregate into 23 

a large but loosely-packed cluster (see snapshots of WA/QW/KE/GF), while those with low 24 

clustering degree values cannot aggregate at all (see snapshots of VI). Therefore, this parameter 25 

can be used to further estimate the aggregation ability of dipeptides in the second group (they are 26 

colored from blue to yellow in the order of increasing clustering degree in Fig. 1b). We note that 27 

there is no gap in the clustering degree value distribution, so further classification of dipeptides in 28 

the second group requires alternative measurements. 29 

 30 
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 1 
Fig. 1. Sequence-dependent aggregation capabilities of all 400 dipeptides. (a) The clustering 2 

degree value of all dipeptides as a function of their collapse degree value. Final snapshots of 8 3 

representative dipeptides are given. (b) The aggregation capability map of all dipeptides. 4 

Dipeptides with high aggregation capabilities are colored red, while those with relatively low 5 

aggregation capabilities are colored from blue to yellow in the order of increasing clustering degree 6 

values. The horizontal and vertical axes correspond respectively to the N- and C-terminal residue.   7 

 8 

The fluidity of the dipeptide aggregates  9 

Aggregation capability is an effective measurement of whether a dipeptide forms a peptide-rich 10 

dense phase, but additional parameters are needed to understand the dynamical properties of the 11 

aggregates and to distinguish between LLPS and LSPS. Based on physical principles on state of 12 

matters, liquids can be distinguished from solids by their fluidity: molecules in solids keep their 13 

specific neighborhood for a long time, and rarely exchange with their surroundings, while 14 

molecules in liquids can easily rearrange (8, 44). Thus, the liquid-like dipeptide aggregates can be 15 

distinguished from solid-like aggregates by the rapid exchange of contents between dense and 16 

dilute phase, and the rapid exchange of inter-molecular interactions within dense phase (44) (Fig. 17 

2a). These two properties of liquid can respectively be described by the fluctuation extent of 18 

clustering degree parameter (FE, defined by the root mean square fluctuation of the dense phase 19 

size) and the exchange rate of interaction parameter (ER, defined as the fraction of inter-molecular 20 

interactions within the dense phase that are lost per unit time). 21 

𝐹𝐸 = $〈[𝐶𝐷(𝑡) − 〈𝐶𝐷(𝑡)〉]!〉 22 

𝐸𝑅 = 〈
∑ #	of	lost	interaction"#$%#	'()%# (𝑡 → 𝑡 + ∆𝑡)
∑ #	of	inter-peptide	interaction"#$%#	'()%# (𝑡) ×

1
∆𝑡
〉 23 

where CD(t) represents the clustering degree at a given time t, the angular bracket á ñ indicate 24 

averaging over conformation and over time during the last 100 ns of each simulation trajectory, 25 

and the summation is performed on all molecules within the dense phase. The FE and ER 26 
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 7 

parameters reflect two independent aspect of the microscopic fluidity of the dipeptide aggregates, 1 

and they are both positively correlated with the fluidity.  2 

 3 

We calculate respectively the fluidity of dipeptides in group 1 and 2 (corresponding to dipeptides 4 

with high and low aggregation capability, respectively). Dipeptides in group 1 display small values 5 

of both FE and ER, suggesting poor fluidity and formation of solid-like aggregates (Fig. 2b and 6 

Supplementary Video 1). They are classified as dipeptides with high LSPS propensities. In contrast, 7 

dipeptides in group 2 present a broad distribution of both FE and ER values (Fig. 2c). They are 8 

further classified into three clusters using a k-means algorithm (45). NQ/GF/QW dipeptide, which 9 

is located closest to the centroid of each cluster, is taken as the representative of the corresponding 10 

cluster. NQ (centroid of cluster 1) molecules do not aggregate at all (Fig. 2d and Supplementary 11 

Video 2). Its clustering degree values maintain a small value of 0.02, and the interaction exchange 12 

rate fluctuates around a large value of 0.6 (Fig. 2e), suggesting poor phase separation ability. 13 

Interestingly, many hydrophobic dipeptides (such as VI) belong to this cluster and don’t phase 14 

separate (Supplementary Video 3). GF (centroid of cluster 2) molecules can self-assemble into a 15 

single aggregate, but the aggregate rapidly dissociates and reassociates within a microsecond 16 

timescale (Fig. 2f and Supplementary Video 4), which can be reflected by the rapid fluctuation of 17 

clustering degree (Fig. 2g). The excessive liquidity of GF aggregates suggests its inability to form 18 

liquid-like droplets. In contrast, QW (centroid of cluster 3) molecules self-associate into a single 19 

ellipsoid-like aggregate, which maintains its overall stability albeit with a certain degree of fluidity 20 

(Fig. 2h and Supplementary Video 5). The clustering degree of QW fluctuates slightly, and the ER 21 

value of QW maintain a much smaller value of ~0.09 compared to that of NQ (~0.6) and GF (~0.25), 22 

indicative of liquid-like QW aggregates and possibility of forming liquid-like droplets (Fig. 2i). We 23 

thus infer that QW has a high LLPS propensity.  24 

 25 
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 1 

Fig. 2. The fluidity of the dipeptide aggregates. (a) Illustration of the two parameters (the 2 

fluctuation extent of clustering degree, and the exchange rate of interactions) to characterize the 3 

fluidity of dipeptide aggregates. (b) The exchange rate of interactions values of dipeptides in group 4 

1 (with high aggregation propensity) as a function of their fluctuation extent of clustering degree 5 

values. (c) Similar to (b) but for dipeptides in group 2 (with low aggregation propensity). The points 6 

are colored from blue to yellow in the order of increasing clustering degree values. All points are 7 

grouped into three clusters using a k-means algorithm. (d) Snapshots of NQ (closest to the centroid 8 

of cluster 1) molecules at five different time points. (e) Degree of clustering and exchange rate of 9 

contacts parameters as a function of simulation time for NQ molecules. (f-i) Similar to (d-e) but for 10 

(f-g) GF (closest to the centroid of cluster 2) molecules and (h-i) QW (closest to the centroid of 11 

cluster 3) molecules. 12 

 13 

Experimental verifications and characterization of QW LLPS 14 

To verify the differences in the phase behavior of dipeptides belong to different groups, we choose 15 

four dipeptides (WW, QW, GF and VI) and perform temperature dependent turbidity assay (a 16 

standard process to monitor liquid-liquid demixing (46)). We fix the peptide concentration (1.5 mM) 17 

at physiological pH=7.4 and measure the turbidity at 350 nm upon variation of the solution 18 
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 9 

temperature from 5°C to 55°C (Fig. 3a-c). We detect very little turbidity for all four dipeptide 1 

solutions below 20°C, indicating the presence of dispersed monomers. With temperature 2 

increasing, the turbidity of QW gradually rises, reaches to a maximum around the temperature 37-3 

42°C and decreases again at even higher temperature (Fig. 3a). The variation of solution turbidity 4 

can arise from LLPS or formation of other aggregates (LSPS). To identify the presence of specific 5 

phase separated state, we employ the DIC microscopy. At 5°C, the solution is clear and no evidence 6 

of liquid-demixing is identified (Fig. 3d). Upon increasing the temperature to 25°C, various sizes of 7 

liquid droplets are observed with both larger diameter ~20 µm and smaller (1 µm or below) (Fig. 8 

3d and Supplementary video 6). The number and size of the droplets increase with the 9 

temperature rising to 37°C, in agreement with the observed high turbidity (Fig. 3d and 10 

Supplementary video 7). However, further increase of temperature (65°C) results in disappearance 11 

of the droplets after 1h but reappear on cooling down the solution to 37°C for 3 h, indicative of 12 

temperature dependent LLPS of QW (Fig. 3d). We study the dynamics of peptide molecules in the 13 

droplets during their formation and maturation over time. A time-lapse detailed inspection of the 14 

droplets shows the coalescence of two droplets to form single larger droplets through droplet 15 

fusion, confirming their liquid-like nature (Fig. 3e). The presence of peptide molecules in the liquid 16 

droplets is confirmed from the observation that the droplets converted to solid aggregates upon 17 

complete evaporation of the solvent (Fig. S6 and Supplementary video 8). On the other hand, WW 18 

shows continuous increase of turbidity with rise of temperature probably due to formation of static 19 

solid aggregates at higher temperature (Fig. 3b). Starting from clear solution at 5°C, DIC images of 20 

WW at 25°C exhibit the formation of smaller spherical assemblies with diameter below 1 µm (Fig. 21 

3f). These assemblies gradually transform into elongated structure at higher temperature, 37°C. 22 

Further increase of temperature (65°C) results into the formation of solid-like bigger elongated 23 

aggregates, in sharp contrast to the temperature-dependent behavior of QW. The solid-nature of 24 

these aggregates is further confirmed from the fact that these structures remain undamaged and 25 

the shape persists unaltered for long time after coming out from the peptide solution (Fig. S7 and 26 

Supplementary video 9,10). Therefore, WW undergoes temperature dependent LSPS. Both the GF 27 

and VI were unable to show any kind of phase behavior depending on the solution temperature. 28 

The turbidity of the solutions slightly decreases with rise of temperature, probably due to increase 29 

of solubility at higher temperature (Fig. 3c and S8). DIC images exhibit presence of clear solution 30 

at a range of temperature from 5°C to 65°C (Fig. 3g and S8). As phase separation ability is 31 

concentration-dependent, we increase the concentration of peptide solutions by 3 times and still 32 

unable to identify any kind of structure formation in the solution. These results clearly unveil the 33 

inability of GF and VI to undergo phase separation.  34 

 35 
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 1 

Fig. 3. Temperature dependent phase behavior of QW, WW and GF dipeptides. (a-c) Temperature-2 

dependent changes in turbidity (at 350 nm) of (a) QW, (b) WW, and (c) GF solutions containing 1.5 3 

mM peptide at pH 7.4 adjusted by adding dilute HCl or NaOH (20 mM final concentration). (d-g) 4 

Temperature-dependent DIC micrographs: (d) Reversible dispersed monomer and phase-separated 5 

liquid droplets formation of QW depending on the temperature of the solution of concentration 6 

3.01 mM at pH 7.4, (e) Time-lapse images showing fusion of two small droplets and formation of a 7 

single larger droplet over time. (f) Temperature dependent LSPS behavior of WW. (g) Images of GF 8 

solution at different temperatures indicating the inability of phase separation.  9 

 10 

The microscopic formation mechanism of QW liquid droplets 11 

We perform interaction analysis to unravel the molecular mechanism underlying the QW LLPS. The 12 

QW molecule can be divided into four groups (Fig. 4a). The contact probability of each group pair 13 

in Fig. 4b shows that the Trp sidechain-sidechain pair has the highest contact probability (1.79). 14 

This interaction is characterized by the free energy landscape (FES) of Trp sidechain aromatic rings. 15 

The deep energy minimum basin located at (distance, angle) values of (0.45 nm, 10°) and the 16 

shallow basin centered at distance=0.6 nm with a widespread angle distribution (60~90°) suggest 17 

strong parallel and T-shaped aromatic stackings (Fig. 4c). The contact number between Trp/Gln 18 

mainchain and Trp sidechain (0.89/0.76) is ranked second/third. The probability density functions 19 

(PDF) of distances between Trp/Gln mainchain and Trp aromatic rings both exhibit a peak centered 20 
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at ~0.65 nm (Fig. 4d-e), reflecting anion-/cation-π interactions (47). The contact probability 1 

between Gln mainchain and Trp mainchain is also high (0.47), implying hydrogen-bonding 2 

interactions. An active debate exists in literatures regarding whether proteins within liquid-like 3 

condensates form cross-β structures or remain mostly disordered (9, 15, 48–50). We examine the 4 

possible existence of β structures by calculating the FES of mainchain interactions (Fig. 4f) and 5 

observe a deep (0.7 nm, 90°) basin and a much shallower (0.5 nm, 170°) basin, indicating that QW 6 

has certain preference towards forming anti-parallel β structures, albeit with a low propensity. The 7 

solute-solvent interactions are also important for LLPS (8). Single peak is observed in the PDF curves 8 

of contact numbers between water molecules and each group in QW molecule (Fig. 4g). The 9 

ranking of peak values suggests that Gln sidechain has the highest propensity to interact with water, 10 

the Gln and Trp mainchain groups also have solvent-exposure propensity, and the aromatic Trp 11 

sidechains prefer to be buried inside the aggregate.  12 

 13 

Taken together, the QW LLPS is a result of the interplay among different non-covalent interactions. 14 

The inter-QW aromatic stacking interaction plays a leading role, and cooperates with the anion-15 

/cation-π, and hydrogen-bonding interactions to drive the phase separation of QW. Meanwhile, 16 

the QW-water interaction adds to the solubility of QW, thus increase the fluidity of the aggregate. 17 

Eventually, the delicate balance between QW-QW interactions and QW-water interactions leads to 18 

the formation of liquid-like droplets.  19 

 20 

 21 

Fig. 4. Multivalent interactions governing the LLPS of QW. (a) Mapping from all-atom model of 22 

QW molecules to the coarse-grained model. The atoms in each dashed circle are mapped to a 23 

single bead. (b) The contact probabilities or each pair of groups (mainchain/sidechain of Gln/Trp) 24 

in QW. (c) The FES as a function of centroid distance and angle between two aromatic rings of 25 

different QW molecules. (d-e) The PDF of centroid distance between Trp aromatic rings and 26 

mainchain bead of (d) Trp or (e) Gln in different QW molecules. (f) The FES as a function of centroid 27 
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distance and angle between mainchains of different QW molecules. (g) The contact number 1 

between each QW group and water molecules. 2 

 3 

The temperature-dependent phase diagram of QW 4 

 5 

Many factors including temperature, salt concentration and pH condition have been shown to 6 

affect the phase separation of diverse proteins (49, 51). Changes to the phase behavior of 7 

dipeptides in response to temperature is of key importance to gain a fundamental understanding 8 

of the thermodynamics of their phase separation. According to the phase rule, temperature and 9 

the composition of the original homogeneous mixture are sufficient for determining whether 10 

phase separation occurs, and for predicting the compositions of coexisting phases (52). However, 11 

determining LLPS phase diagram of proteins using standard sampling techniques (such as explicit-12 

solvent MD simulation in cubic box) remains a great challenge due to the computational cost 13 

needed to reach thermodynamical equilibrium (29) and the difficulty in calculating the densities of 14 

dense/dilute phases. Existing computational approaches proposed as settlements are all based on 15 

highly-simplified (patchy particle or one-bead-per-residue) protein models in combination with 16 

slab simulation or Gibbs-ensemble simulation (33, 35) which cannot properly describe the LLPS of 17 

ultrashort peptides. Compared to proteins, the greatly reduced conformational space of dipeptide 18 

monomers enable the determination of phase equilibria for LLPS directly from micro-second MD 19 

simulations. In addition, we develop a novel and efficient protocol to determine the densities of 20 

both dense phase and dilute phase (see below for more details).  21 

 22 

We evenly choose 26 temperature points ranging from 300 to 350 K and perform three 1.8-μs 23 

simulations at each temperature. For each simulation, we first identify the QW molecules 24 

belonging to the dense/dilute phase, calculate the total mass of peptides in the dense/dilute phase 25 

by summing up the molecular weight of the QW molecules in that phase, estimate the volume of 26 

the dense/dilute phase by a Monte Carlo sampling algorithm (53), and obtain the density of each 27 

phase by dividing its corresponding mass of peptides by volume. We then generate the coexistence 28 

curve by fitting the density profiles to the critical exponent equation ( 𝜌"#$%# − 𝜌"*+,-# =29 

𝐴(𝑇. − 𝑇)/ ), where β is the critical exponent which is set to 0.365 (universality class of 3D-30 

Heisenberg model). A detailed description to the methodology is given in the Method section and 31 

supplementary information.  32 

 33 

As shown in Fig. 5a, the densities of the dilute phase range from 20~50 mg/mL, and those of the 34 

dense phase are within 125~250 mg/mL, in agreement with the experimental determined 35 

concentrations for several proteins (the dilute/dense phase concentration for Ddx4 is within 0~50 36 

and 160~320 mg/mL (48), and the FUS LC domain dense phase concentration is ~120 mg/mL (13)) . 37 

The concentration of the dilute/dense phase increases/decreases with the rise of temperature and 38 

displays a temperature dependent phase behavior described by an upper critical solution 39 
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temperature (UCST) at ~330 K. QW molecules phase separate into a well-concentrated dense phase 1 

and a dilute phase at temperatures lower than the critical point (Fig. 5b). The phase separation 2 

capability weakens as temperature increases. Around the critical temperature, the QW molecules 3 

form several small loosely-packed aggregates (Fig. 5c). Above the critical temperature, QW totally 4 

loses its phase separation ability (Fig. 5d). The UCST behavior of QW is consistent with a previous 5 

study showing that proteins with abundant polar residues generally follow an UCST phase 6 

separation(54) (the sidechain of Gln, and mainchain of Gln and Trp are all polar, and the sidechain 7 

of Trp also has a polar nitrogen atom).  8 

 9 

 10 

Fig. 5. Temperature-dependent LLPS behavior of QW dipeptide. (a) The coexistence phase 11 

diagram as a function of temperature and density of the two phases. The critical point is obtained 12 

by fitting the density profiles to the critical exponent equation. (b-d) The final snapshot of a 13 

representative simulation at temperature (b) lower than, (c) near, and (d) higher than the critical 14 

temperature. 15 

 16 

Prediction of the LLPS propensities of all dipeptides 17 

We predict the LLPS propensity of dipeptides (excluding the 54 LSPS dipeptides) by comparing their 18 

fluidities with QW. We define the difference between a dipeptide (A) and QW as the Euclidean 19 

distance between the (𝐹𝐸, 𝐸𝑅) values of the dipeptide and those of QW: 20 

𝑑0→23 = JK𝐹𝐸0 − 𝐹𝐸23L
! + K𝐸𝐹0 − 𝐸𝑅23L

!
 21 

The LLPS propensity of dipeptide A (𝑃04456 ) is thus defined using the equation 𝑃04456 = 1 −22 

𝑑0→23 𝑑"*'#'-*"#→23
(8)9)N , which is distributed between 0 (lowest LLPS propensity) and 1 (highest 23 

LLPS propensity). The predicted LLPS/LSPS propensities (Fig. 6a) are supported by experimental 24 

observations by us and other groups. On one hand, some dipeptides (FF, FK, FW, IF, VF, WF, WW, 25 

and WY) have been experimentally shown to form solid-like aggregates (41). They are all classified 26 

as LSPS dipeptides in our prediction. On the other hand, QW is predicted to be the most probable 27 

LLPS candidate, GF and VI are predicted to have low phase separation ability. The ability of QW and 28 

the inability of GF and VI to form liquid droplet are verified by our experiments (Fig. 3 and Fig. S8). 29 

 30 
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From Fig. 6a, which shows the LLPS and LSPS propensities for all dipeptides, we propose that LLPS 1 

propensity > 0.7 indicates a good candidate for further experimental investigation. We decipher 2 

the sequence determinant of LLPS by studying the sequence characteristics of these high-LLPS-3 

propensity dipeptides. It is apparent that aromatic residues are crucial for both LLPS and LSPS of 4 

dipeptides. Dipeptides with high LLPS propensities can be classified into three classes (Fig. 6b): 1) 5 

dipeptides composed of Y (an aromatic residue with polarity) and a hydrophobic residue L/I/V/C, 6 

2) dipeptides composed of W (an aromatic residue with high hydrophobicity) and a polar residue 7 

A/G/Q/N (Fig. 6b), and 3) dipeptides with large dipole moment (KE/KD/RE/RD). Class 1 and 2 show 8 

that the LLPS of dipeptides requires a cooperation among aromatic stacking, hydrophobic and polar 9 

interactions. The crucial role of strong aromatic stacking interactions can be evidenced by the 10 

inability of all non-aromatic hydrophobic dipeptides to undergo LLPS, and by the lower LLPS 11 

propensities of F/H-containing dipeptides than Y/W-containing dipeptides (the π electron densities 12 

of F/H are lower than those of Y/W). The indispensability of hydrophobic and polar interactions for 13 

LLPS can be respectively shown by the inability of dipeptides composed of Y and A/G/Q/N residue 14 

to undergo LLPS, and the LSPS capability of dipeptides composed of W and L/I/V/C. Dipeptides in 15 

class 3 possess the largest dipole moment (both the mainchain and sidechain beads of the N-/C-16 

terminal residues are positively-/negatively-charged), revealing that strong dipole-dipole 17 

interaction promotes LLPS. We notice that some dipeptides containing S and/or T residues show 18 

abnormally high LLPS/LSPS propensities compared to dipeptides containing A/G/Q/N residues. 19 

This is probably an artifact of force field, which needs to be investigated in future studies (the 20 

amber99sb/amber03ws force field parameters of S/T residues have been shown to lead to 21 

significant deviation of computational-calculated chemical shifts from experimental values (55)).  22 

 23 

Taken together, our predictions show that LLPS of dipeptides is driven by a cooperation among 24 

different types of physical interactions provided by aromatic, hydrophobic, and polar components. 25 

Compared to literature-reported proteins with LLPS capability, dipeptides have extremely short 26 

amino acid sequence lengths, but still encompass different non-covalent interaction sites, enabling 27 

them to undergo LLPS.  28 

 29 

 30 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.03.438298doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.03.438298
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 1 

Fig. 6. Predicted phase separation propensities of all 400 dipeptides. (a) The LSPS capability or 2 

LLPS propensity of all 400 dipeptides. The horizontal and vertical axes correspond respectively to 3 

the N- and C-terminal residue. The dipeptides with LSPS capability are represented by slash lines, 4 

while other dipeptides are colored from white to red in increasing order of LLPS propensity. The 5 

three categories of high-LLPS-propensity dipeptides are highlighted in dashed circles. (b) The 6 

illustrations to the sequence characteristics of the three categories of high-LLPS-propensity 7 

dipeptides. 8 

 9 

 10 

Discussion 11 

On the basis of microsecond explicit-solvent MD simulations in combination with multi-bead-per-12 

residue coarse-grained Martini model, we comprehensively explore the LLPS abilities of all 400 13 

dipeptide combinations of coded amino acids. A similar simulation protocol has been used by 14 

Tuttle and coworkers to predict the self-assembly propensity of dipeptides/tripeptides, albeit with 15 

a short simulation time scale. They find that aromatic dipeptides have high self-assembly 16 

propensities. Nevertheless, the LLPS ability of dipeptides and their phase behaviors remain 17 

completely elusive. We have developed a novel, efficient approach to predict the LLPS propensities 18 

of ultrashort peptides which consists of two steps: (1) determine the aggregation capability of a 19 

peptide, and (2) evaluate the fluidity of the peptide aggregates to distinguish between LLPS and 20 

LSPS. Tuttle and co-workers define the AP parameter to characterize the aggregation capability of 21 

dipeptides(41). The AP parameter, defined as the fraction of decrease in SASA, which reflects the 22 

compactness of a dipeptide aggregate, is a good quantity to screen out dipeptides with high self-23 

assembly ability within short simulation time-scales, but is highly degenerative for low-AP 24 

dipeptides. In order to quantify aggregation capabilities of both high-AP and low-AP dipeptides, 25 

we perform micro-second-long simulations and use two parameters by introducing a new 26 

parameter, i.e., the clustering degree. On the other hand, computational characterization of the 27 
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microscopic fluidity of peptides is an unexplored area. Based on physical principles on state of 1 

matters (44), we define the exchange rate of interactions and the fluctuation extent of clustering 2 

degree parameters to effectively evaluate the fluidity of the peptide aggregates.  3 

 4 

One of the most important progresses of this work is the identification of spontaneous LLPS in 5 

dipeptide systems. We have identified 54 dipeptides with LSPS capability, and predicted the LLPS 6 

propensity of the other 346 dipeptides, among which QW possess the highest LLPS propensity. Our 7 

predictions are validated by temperature dependent turbidity assays and DIC microscopy on four 8 

representative dipeptides (WW with LSPS capacity, and QW, GF, and VI with high, medium, and low 9 

LLPS propensities, respectively). The identified QW peptide is by far the simplest LLPS system. The 10 

computational observation of dipeptide LLPS in this work is mainly attributed to the use of multi-11 

bead-per-residue force-field and explicit solvent model, which explicitly captures key interactions 12 

(such as aromatic stacking and peptide-water interactions) driving LLPS that are missing in one-13 

bead-per-residue models.  14 

 15 

Another important progress of this work is the success in constructing the LLPS phase diagram 16 

using non-slab simulations. We determine the phase diagram of QW which displays a temperature 17 

dependent phase behavior described by an UCST of ~330 K. Our constructed phase diagram can 18 

better describe the temperature dependence of the densities of both dense and dilute phases 19 

mostly due to the use of explicit solvents. The protocol provided in this work can be easily applied 20 

to other short peptide systems, thus offers a way of exploring temperature dependent phase 21 

behaviors of peptides. We note that a limitation of Martini force-field is the overestimation of 22 

water freezing point (290±5 K) (56), thus this force-field cannot properly describe phase behavior 23 

at temperature around or lower than 290 K. As a result, for peptides which display a lower critical 24 

solution temperature (LCST) behavior, a more refined water model (such as polarizable Martini 25 

water) is needed. However, this will greatly increase computational costs.  26 

 27 

In summary, our systematic investigation suggests that dipeptides, minimal but complete, possess 28 

multivalent interactions sufficient for LLPS. Three distinct categories of dipeptides are identified to 29 

have high LLPS propensities. Our results reveal that aromatic residues are crucial for a dipeptide to 30 

have LLPS capacity, and hydrophobic and polar compartments are indispensable. Our findings, 31 

together with previous reports showing the LLPS capacity of various IDPs or IDRs with varying 32 

sequence length (57–59), suggest that LLPS is a general property of peptides/proteins, 33 

independent of their length. Our protocols, which efficiently and effectively predict the LLPS 34 

propensity of dipeptides, provides a comprehensive framework for predicting and characterizing 35 

the phase behaviors of minimalistic peptides. This study set the basis for the prediction of phase 36 

behavior at the sequence level and in-depth understanding molecular mechanisms of protein 37 

phase separation. 38 

 39 
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 1 

Materials and methods 2 

Molecular dynamics simulations 3 

All dipeptide molecules are modeled using the MARTINI coarse-grained protein model (version 2.1) 4 

with positive and negative charges assigned to main-chain beads at N and C terminal, respectively. 5 

In the initial state of each MD simulation, 720 dipeptide molecules are randomly displaced in 6 

aqueous solution containing 40,000 water beads. For dipeptides with net charges, adequate 7 

number of Na+ or Cl- ions are randomly added to the solution to neutralize the system. The details 8 

of each simulation and the analysis protocols are given in the supplementary information. 9 

Graphical analysis are preformed using the PyMOL package (60). 10 

 11 

LLPS propensity determination 12 

Two dipeptide molecules are considered to be in contact if their minimum distance is within 0.7 13 

nm. The dense phase is defined as the maximized subset of all dipeptide molecules in the system 14 

where each molecule forms contact with another molecule in this subset. The aggregation 15 

propensity of each dipeptide is modeled using clustering degree and collapse degree parameters, 16 

and the fluidity of the aggregate is modeled using two parameters: the fluctuation of cluster size 17 

and the exchange rate of interactions. Definition and calculation protocols of these four parameters 18 

are given in the supplementary information. All dipeptides with low aggregation propensity are 19 

grouped into three clusters using a k-means clustering algorithm. The LLPS propensity of each of 20 

these dipeptides are defined as the additive inverse of the Euclidean distance between the 21 

(fluctuation of cluster size, exchange rate of interactions) values of this dipeptide and those of QW. 22 

The LLPS propensity is scaled between 0 (lowest LLPS propensity) and 1 (highest LLPS propensity).  23 

 24 

Phase diagram construction 25 

Three independent 1.8-μs simulations are performed at each of the 26 temperature points ranging 26 

from 300 to 350 K. The dense phase is defined as the maximized subset of all dipeptide molecules 27 

in the system where each molecule forms contact with another molecule in this subset. The mass 28 

of the dense phase is calculated by summing up the molecular weight of the QW molecules in that 29 

phase. The volume of the dense phase is calculated by a refined Monte Carlo sampling algorithm 30 

(see details in supplementary information). The mass and volume of the dilute phase is calculated 31 

by subtracting the mass and volume of the total system from those of the dense phase. The critical 32 

temperature Tc is obtained using a similar method to the work by Mittal and coworkers (34). The 33 

densities of the dense and dilute phase (ρdilute and ρdense) as functions of temperature are fitted to 34 

the equation 𝜌"#$%# − 𝜌"*+,-# = 𝐴(𝑇. − 𝑇)/, where β is the critical exponent which is set to 0.365 35 

(universality class of 3D-Heisenberg model). The minimum fitting temperature is chosen as the 36 

physiological temperature (310 K), and the maximum fitting temperature (326 K) is chosen to 37 

maximize the coefficient of determination R2. The density at the critical temperature is defined as 38 

the average peptide density of the simulation at that temperature.  39 
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 1 

Preparation of peptide solutions 2 

Peptide solutions are prepared by dissolving the corresponding peptide at required concentration 3 

(1.5 mM or 3.01 mM or 9 mM) in double distilled water at pH 7.4 adjusted by drop wise addition 4 

of 0.1 M HCl or NaOH to a final concentration of 20 mM. The samples are first vortexed for 2 mins, 5 

followed by sonication until the peptides dissolved completely. 6 

 7 

Turbidity analysis and DIC microscopy 8 

Turbidity analysis for the dipeptides is conducted by preparing solutions at concentrations of 1.5 9 

mM in DD water at pH 7.4. Then, 200 mL aliquots are pipetted into a 96-well plate, sealed using a 10 

Breathe-Easy sealing membrane (Sigma Aldrich, Rehovot, Israel), and absorbance at 350 nm is 11 

measured. All measurements are performed using a Synergy HT plate reader (Biotek, Winooski, VT, 12 

USA) at temperature range 5°C-55°C. The heating or cooling is performed at a rate of 1 °C min−1. 13 

Temperature-dependent phase behavior of dipeptide samples is monitored by DIC microscopy. An 14 

aliquot of 15 μl peptide solutions at concentration 3.01 mM or 9 mM from said temperature are 15 

loaded onto glass coverslips and DIC images are acquired on a LSM 510 META (Zeiss) microscope 16 

with a x100 objective (oil immersion). Images are processed using ImageJ. 17 

 18 
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