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Abstract 1

Previous laboratory studies have measured the energetic costs to humans of running at 2

uphill and downhill slopes on a treadmill. This work investigates the extension of those 3

results to the prediction of relative performance of athletes running on flat, hilly, or very 4

mountainous outdoor courses. Publicly available race results in the Los Angeles area 5

provided a set of 109,000 times, with 2200 runners participating in more than one race, 6

so that their times could be compared under different conditions. I compare with the 7

results of a traditional model in which the only parameters considered are total distance 8

and elevation gain. Both the treadmill-based model and the gain-based model have 9

some shortcomings, leading to the creation of a hybrid model that combines the best 10

features of each. 11

Author summary 12

Running a race on a road allows absolute measures of performance. Trail running, 13

however, has traditionally been thought of as a sport in which the only valid comparison 14

is between different runners competing on the same course on the same day. Even the 15

exact measurement of distance is considered to be unimportant, since courses and 16

conditions vary so much. 17

An extreme example is the relatively new genre of “vertical” races, in which runners 18

race up a mountain. In a typical example, the competitors cover a horizontal distance of 19

5 km, while climbing about 1000 m. The winner in one such race had a time almost 20

triple that expected for a state-champion high school runner in a 5k road race. Clearly 21

no comparison can be made here without taking into account the amount of climbing. 22

In noncompetitive contexts, many runners venture onto mountain trails, lightly 23

dressed and with little equipment, so that it becomes important to be able to anticipate 24

whether they will have the endurance needed to be able to safely complete a planned 25

route. Again, this is impossible without some model of the effect of hill climbing. 26

1 Introduction 27

This paper presents a method for predicting relative performance on trail runs — 28

“relative” meaning that we can predict the time for course A divided by the time for 29

course B. 30

Traditionally, runners and hikers have described a trail using two numbers, the 31

horizontal distance and the total elevation gain. For example, if the route is an 32

out-and-back voyage consisting of steady climbing to a peak and a return, then the total 33

elevation gain is simply the elevation of the peak minus the elevation of the trailhead. If 34

the elevation profile of the trip consists of multiple clearly defined ascents and descents, 35
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then one adds up the ascents. Although this two-parameter description of the route is 36

easy to derive from a paper topographic map, knowledge of the two numbers is not 37

sufficient to make a very useful estimate of the total energy expenditure. 38

It has been known for a long time among the officials who measure road races that 39

the effect of elevation change has a nonlinear dependence on the grade. The following 40

argument was advocated by R. Baumel. [1] Consider a closed course whose elevation 41

profile is described by some function y(x). The derivative y′ is the trail’s slope i. The 42

total energy expenditure is an integrated effect of the slope, of the form
∫ L
0
C(i)dx, 43

where C is a function that describes the energetic cost of running up or down a hill. We 44

will see that C has been measured in laboratory experiments, but for the moment we 45

assume only that C is a smooth function, so that for small slopes it can be well 46

approximated by the first few terms of its Taylor series, C(i) ≈ c0 + c1i+ c2i
2. Then for 47

any closed loop over a distance L, the contribution from the c1 term vanishes, and the 48

energy cost is c0L+ c2
∫ L
0
i2dx. The dependence on the slope is therefore quadratic 49

rather than linear. For example, if we were to exaggerate the elevation profile by a 50

factor of 2, y → 2y, then the size of the c2 term would go up by a factor of four, not two 51

(in the low-slope limit, on a closed course). 52

Fig 1. The cost of running as a function of slope. Solid line: the function Ct, fit to
Minetti’s treadmill data, Eq 10. Dashed line: the function Cg, Eq 1, with c0 chosen to
agree with Minetti’s C(0) and cg = 6.0.

From conversations with runners and hikers, I have found that the result of Baumel’s 53

argument almost always elicits total disbelief, especially when presented as a numerical 54

example showing the extreme smallness of the slope effect when the slope is small. One 55

of the goals of this paper is to test this empirically. As an alternative hypothesis, it is 56

commonly believed that one can get a good measure of the relative energy cost by 57

taking the horizontal distance and adding in a term proportional to the total elevation 58

gain. If the total gain is determined down to a fine enough scale (which with modern 59

technology has become more practical), then this hypothesis is equivalent to the 60

assumption that the cost of running is given by a function of the form 61

Cg(i) =

{
c0, i ≤ 0

c0(1 + cgi), i ≥ 0,
(1)
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whose graph is shaped like a hockey stick (dashed line in Fig 1). Popularly proposed 62

rules are that 100 m of elevation gain is equivalent to either 400 m or 800 m of 63

horizontal distance, so that cg is said to be approximately in the range from 4 to 8. 64

There is nothing mathematically impossible about this hypothesis. A function C(i) of 65

this form evades Baumel’s argument because its hockey-stick shape is not smooth at 66

i = 0, and therefore cannot be approximated by its Taylor series. 67

In a more sophisticated approach, Minetti et al. [2] have used oxygen consumption 68

to measure the energy expenditure of runners on a treadmill at slope i, for both running 69

and walking. The results are expressed as C = (1/m)dE/ds, where m is the person’s 70

body mass, E is the energy expended, and ds is the increment of three-dimensional 71

distance, which usually differs negligibly from the increment of horizontal distance d`. 72

C has units of J/kg ·m. The correctness of the factor of 1/m has empirical support. [3] 73

Efficiency varies by ∼ 25% even among elite athletes, [2] [4] and differences are also 74

to be expected between elite and recreational athletes. This is one of the reasons why 75

this study presents a comparative technique, rather than an absolute method for 76

determining a particular runner’s actual energy expenditure in units of kilocalories. 77

The function C(i), shown as the solid line in Fig 1, resembles a hyperbola, with a 78

minimum occurring at i ≈ −0.1 to −0.2. The asymptotes at large positive and negative 79

values of i are interpreted in [2] as being determined by the efficiency of eccentric and 80

concentric muscle contraction. For the purposes of this work, a new analytic 81

approximation to the curve found by ref. [2] is used (Appendix 1), and is referred to as 82

Ct, where “t” stands for “treadmill.” 83

Nearly all real-world walking and running is done at −0.2 . i . 0.2, where the 84

graph of C(i) is nearly parabolic. 85

2 Methods 86

2.1 Analysis of publicly available race data 87

To test these models, I use publicly available race results from the Los Angeles area. 88

This area has a large population and tall mountains. The large population makes it 89

possible to pick out a significant number of runners who have competed in several 90

different races. If the ratio of the runner’s time on courses 1 and 2 is t2/t1, then we take 91

this as a measure of the ratio E2/E1 of the energy expenditure, which can be compared 92

with the model. It was possible to find courses with a variety of elevation profiles, 93

allowing a test of the dependence of the predictions on the amount of hill climbing. 94

Table 1. Courses used in this study. Notes: 1. Times up to 2:30 were used. 2. Times
up to 1:11 were used for course S. A map of course S was not available, so a flat
elevation profile was assumed.

dist. gain years
(km) (km) CF (20xx)

W Mount Wilson Trail Race 12.7 0.70 20% 18-19
B Mount Baldy Run to the Top 10.3 1.21 47% 17-18
V Broken Arrow Vertical Kilometer 5.0 0.85 58% 19
P Pasadena Half Marathon1 21.1 0.17 1% 17-20
C Agoura Hills Chesebro Half Marathon1 21.1 0.34 5% 19
H Into the Wild OC Half Marathon1 21.1 0.57 8% 17-18
I Irvine Half Marathon1 21.1 0.09 0.2% 19-20
G Griffith Park 30k 28.5 1.07 11% 18-19
X Revel Big Bear Half Marathon1 21.1 0 -27% 18-19
S Santa Monica 10k Classic2 10 19
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Table 1 lists the races used as sources of data. One-letter mnemonics are defined so 95

that courses can be referred to succinctly in the text. Because a runner’s performance 96

can change over time due to training and aging, the time period of the study was 97

restricted as much as possible to January 2017 through March 2020 (before the COVID 98

epidemic ended races other than virtual ones in California). Distance and elevation data 99

were analyzed as described in Appendix 3. 100

Runners’ names and times were obtained by web-scraping public race results, and 101

runners were assumed to be the same person if their first and last names matched. 102

When a runner ran the same race more than once, their best time was used. To avoid 103

biases in comparisons of times in different races, it is necessary here to define an upper 104

limit on the times that will be used from a given race, and to do so in some consistent 105

and unbiased way. Some such limit is in any case defined by race organizers, but is 106

different for different races and usually quite long, often about 4-5 hours for a 107

half-marathon. Competitors who clock the longer times are generally either walking the 108

entire race or alternating between walking and jogging, and especially in more casual 109

races may be pushing a stroller, running alongside their tween-age child, or staying in a 110

costumed group for fun and emotional support. Because the physiological data and 111

models used in this work are not applicable to walking, I impose a somewhat arbitrary 112

time limit of 2.5 hours on half-marathon times. These limits, as well as others, where 113

imposed, are described in the notes in Table 1. For course S, the time limit was derived 114

by scaling down the half-marathon time limit in proportion to the distance. The other 115

courses in this study are of a qualitatively different character, so for them I simply used 116

the race organizers’ cut-off. The resulting bias is an inherent limitation of this work. 117

Exertion depends most strongly on distance, and the goal of this work is to tease out 118

effects from other factors, which are often weaker. For this reason, distance is a 119

confounding variable in this study and has been controlled for as much as possible by 120

using races at a consistent distance, the half marathon (21.1 km), or distances that, 121

taking extreme climbing into account, result in similar times. These are the distances at 122

which the largest sample sizes are available for mountain trail races. Section 2.2 123

describes how the remaining inevitable variations in distance have been taken into 124

account, as much as possible. 125

In table 1, two measures of hilliness are given. The total elevation gain is the only 126

parameter needed in order to calculate an energy expenditure using the function Cg. 127

The next column gives a statistic I will refer to as the climb factor, CF, which is defined 128

as the fraction of the runner’s total energy expenditure that is devoted to climbing. 129

That is, if E is the actual energy required for the course, and E0 the energy that would 130

have been required if the race had been perfectly flat, then 131

CF =
E − E0

E
. (2)

Inverting this equation gives E = E0/(1− CF ), so that if the horizontal distance is 132

known, a measure of effort can be found by dividing the distance by 1− CF . 133

To define quantitative tests of the models, consider a comparison of courses 1 and 2. 134

The observed data are the runner’s times t1 and t2, and the model predicts the ratio of 135

the energy consumption E1/E2. Define 136

E = 100 ln

(
t1
t2
· E2

E1

)
. (3)

For small errors, E is approximately the relative error in the prediction, expressed as a 137

percentage. The use of the logarithm transforms multiplicative sources of error into 138

additive quantities. 139

We pick a feature of the model that is to be tested. For example, we would like to 140

see whether the model does a good job of predicting the relative times for flat races 141
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compared to steep uphill-only races (Fig 3, c). For this example, we make a list of 142

courses that are relatively flat (P, C, H, and I), and a list of some that are steep 143

uphill-only courses (B and V). We then find every case where the same runner did a run 144

j from the first list and a run k from the second, and compute the error Ejk, which will 145

be positive if the runner’s time in the uphill race k is overpredicted by the model 146

relative to their time in the flat race j. 147

2.2 Model of endurance 148

Animals run more slowly at long distances, and mathematical modeling of this fact 149

dates back about a century. [6] Recent workers have described methods for fitting 150

parameters to the data for individual runners, [7] [8] which for example allows a 151

first-time marathon runner to estimate an appropriate pace. In the present work, there 152

are not enough data available to allow this kind of individualized description of the 153

runners. For this reason, I have concentrated on data from a narrow range of middle 154

distances, with the total energy expenditure being close to that of a flat half-marathon 155

road race. But the endurance required for these races does vary, and this makes it 156

desirable to have some rough method of compensating for the variation in pace with 157

distance. Here I describe a very simple model that has the following characteristics that 158

make it suitable for this study: (1) its two parameters are universal rather than fits to 159

the characteristics of an individual; (2) its dependence on the parameters is purely 160

multiplicative, i.e., varying the parameters only rescales the axes on a graph of speed 161

versus distance. The model is essentially a simplification of the one constructed by 162

Rapoport, [7] with modifications to suit these purposes. 163

First we compute an equivalent distance d, which is the distance of flat running that 164

would require the same energy expenditure as the actual run. If the runner’s time is t, 165

then v = d/t has dimensions of speed, but is in fact a measure of energy per unit time, 166

or power. We then have 167

Pt = d/ε, (4)

where P is the power and ε is a measure of the runner’s efficiency. For example, a 168

recreational runner with a slight roll of belly fat will have a lower value of ε because of 169

the increased energetic cost of transporting the additional body weight. Although it 170

would seem that we are now introducing an individualized parameter ε, the model is 171

designed so that at the end of the calculation, cancellations occur that allow κ to be 172

predicted on a universal basis. 173

The power P depends on aerobic fitness and on the proportions of fat and 174

carbohydrates being burned in aerobic metabolism. Fat burning is slower than 175

carbohydrate burning by a factor β ≈ 0.4. [7] If we let f be the fraction of energy 176

production from carbohydrates, then 177

P = A[f + β(1− f)], (5)

where the proportionality constant A is another per-individual parameter that it will be 178

possible to normalize away later. This expression’s linearity in f is an approximation to 179

results from real-world data that provide evidence for slightly nonlinear behavior. [7] 180

The runner’s supply of carbohydrates c is limited by the amount of glycogen that 181

can be stored in the liver and the leg muscles. If f is chosen optimally, then there will 182

be some distance dc = cε that can be run with pure carbohydrate fuel, while longer 183

distances will require f < 1. Thus, 184

f =

{
1, d ≤ dc
c/At, d ≥ dc.

(6)
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Under these assumptions, the runner’s speed will be the same in races at all distances 185

less than dc, which is unrealistic. We will first work out the consequences of Eq 4-6 and 186

the introduce a simple elaboration that more realistically reproduces the effects of 187

fatigue. 188

Solving Eq 4-6 and expressing κ as a correction factor relative to the short-distance 189

maximum speed vm = Aε, we find 190

κ0 =

{
1, d ≤ dc

β
1−(1−β)dc/d , d ≥ dc.

(7)

This depends on the universal parameter β ≈ 0.4 and also on the critical distance dc. 191

The latter is a measure of endurance and does depend on individual factors such as 192

body composition and training, as well as on strategies such as carbohydrate loading. 193

However, for the sample of recreational athletes studied here, I hypothesize that one can 194

fix a universal value of dc lying somewhere around the half-marathon distance, and find 195

a reasonable description of real-world data. 196

Fig 2. Relative speed versus equivalent distance d. All speeds are normalized relative
to the speed at half-marathon distance. The black curve is the function defined by Eq 8,
with dc set to a half-marathon distance. The red curve is a fit to world-record
times. [10] The green and red violin plots show the distribution of speeds in races S and
G relative to the same runners in half-marathon race P (sample sizes 1303 and 11,
respectively). The gray dots are the author’s personal-record times from a variety of
courses. The equivalent distances were determined from the horizontal distances using
the curvilinear function Ct(i) in Eq 10, which is based on treadmill data.

It is not true in reality that runners can maintain the same pace at any of the 197

distances below dc, for which glycogen suffices. As the distance increases from 5 km to 198

the half-marathon distace of 21 km, one observes a decrease in speed which, as 199

originally observed by Hill, [6] appears linear on a graph of speed versus the logarithm 200

of distance. In the men’s and women’s world-record times, this decrease is about 5%. 201

The graph then shows a knee, like the one described by Eq 7. The more gradual 202

decrease for distances before the knee is generically described as being due to fatigue, 203

which is a complicated and poorly understood phenomenon involving a variety of 204

factors, many of which are mediated by the central nervous system rather than by any 205
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change at the chemical or tissue level. As an ad hoc correction, we multiply the result of 206

Eq 7 by a factor controlled by a small parameter Q: 207

κ =

(
1 + (1− 3Q)d/dc

1 + d/dc

)
κ0. (8)

The factor of 3 is introuced so that Q is approximately equal to the reduction in speed 208

between a 5k and a half-marathon, and we set Q = 0.05. 209

Empirically, for the mostly recreational runners studied here, a reasonable 210

description of the data is achieved when dc is set to the half-marathon distance, which 211

is the value adopted in this work. Fig 2 shows that setting dc to half-marathon distance 212

gives a good fit to some real-world data. 213

Although the fit in Fig 2 is rather good, much higher values of dc might be more 214

appropriate for higher-level endurance runners. For example, Eliud Kipchoge’s 215

personal-record speed is only 8% lower in the marathon than in the 1500 m. This can 216

only be reproduced in this model if dc is roughly marathon distance for him. For 217

high-level running competitions, Gardner and Purdy give a method of comparing with a 218

standard performance curve, based on a compilation of world records. [9] The red curve 219

in Fig 2 is an approximation to the locus of world-record times (Appendix 2). 220

Although fitting parameters to individual runners’ characteristics is not the main 221

purpose of this work, doing so is very easy with the model 8, due to its purely 222

multiplicative structure. When data are viewed in the format used in Fig 2, as a log-log 223

plot of speed versus distance, the standard curve κ(d) is simply slid around horizontally 224

and vertically to match the data, which has the effect of determining the runner’s vm 225

and dc. 226

3 Results 227

Fig 3 shows a comparison of the quality of the predictions of the functions Cg and Ct as 228

descriptions of the effects of going up and down hills. The third model Cr is a hybrid of 229

these, introduced in section 4.2. All predictions were corrected for distance as described 230

in section 2.2. Each of the four sub-figures a through d has been constructed so as to 231

test a particular feature of these models. We discuss each in turn. 232

(a) Here we compare the extremely flat half-marathon I, having only 90 m of 233

elevation gain, to half-marathon P, which is slightly more hilly with 170 m of gain, or 234

about twice as much. According to the treadmill-based model Ct, the effects of climbing 235

and descending nearly cancel out, giving a negligible CF < 1% for each run, as 236

expected from Baumel’s argument. In the gain-based model Cg, however, the effect of 237

the hills on course P is 6 times its elevation gain, which is equivalent to adding 1.0 km 238

to its length. The effect for I would be half as much, causing the model to predict a 239

considerable difference in the times on the two courses. In the figure we see that 240

Baumel’s approximation is a good one here. The median error for Ct (open circles) is 241

only 1.7%, while that for Cg (filled circles) is +6.4%, the positive sign showing that the 242

effect of the small hills is over-predicted. 243

Of the four tests a-d, this is the only one where the effect being probed is small 244

enough to require statistical analysis rather than simple visual inspection. Such an 245

analysis (Appendix 4) show that systematic error in Cg is significant (p = 3× 10−6), 246

while any such evidence against Ct is statistically marginal. 247

(b) In this portion of Fig 3, we compare times in a set of fairly flat half-marathons 248

(with CF values ranging from 0.2% to 8%) with course W, a trail race up and down half 249

of Mount Wilson, CF = 20%. Although the distance of W is much shorter, most 250

runners’ times are only slightly lower. We see that both models greatly underpredict the 251

runners’ times in the mountain race. Most of the running in this race is on slopes with 252
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Fig 3. Tests of the predictions of the functions Ct derived from treadmill data (open
circles), Cg based on eleveation gain (black circles), and the hybrid “recreational” model
Cr (gray circles). Positive E means that the runner’s time in the first-listed race is
greater in reality than in the model.

|i| ≈ 0.10 to 0.15. A likely interpretation is that on the uphills, Cg is an underestimate 253

(see c, below), while on the downhills Ct is an underestimate. The race is run on a trail 254

that is mostly a narrow single track, with steep hillsides on the climber’s right. Safety is 255

likely to inhibit many runners from going downhill at anything like the pace that would 256

be possible for the elite mountain runners in ref. [2] on a treadmill, and trail etiquette 257

dictates that they yield the right of way when encountering people who are still on their 258

way up. 259

(c) This test compares runners’ times on the same flattish half-marathons with their 260

performances in two races, B and V, in which runners go up a mountain and finish at 261

the top. Of the sample size of n = 32, only one person was on course V, a “vertical 262

kilometer”-style race which was run in Northern California. Although both models 263

systematically underestimated the difficulty of the uphill races (E < 0), the 264

underestimate is far more severe for Cg than for Ct. Course B consists almost entirely 265

of climbing on grades 0.05 < i < 0.25, at which Cg is less than Ct and is apparently a 266

considerable underestimate. Additional factors leading to E < 0 in both cases are 267

certain to include the aerobic challenge of finishing the race at an elevation of over 3000 268
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m, as well as the difficult footing on the final section. 269

(d) Here we compare the same set of fairly flat half-marathons with a road 270

half-marathon, course X, which consists entirely of running down a mountain. The 271

downhill race is run along with a marathon, which the race’s organizers advertise as 272

being extremely fast and a good way to achieve a “BQ” or qualifying time for the 273

Boston Marathon. Surprisingly, most runners’ times in the downhill half-marathon were 274

only about 10 minutes shorter than in the flat ones, and quite a few runners in the 275

sample actually took longer for the downhill race. We have already seen evidence in part 276

b above that the high physiological efficiencies observed in the lab for downhill running 277

may not translate proportionately into speed. In W, the issues may have been safety 278

and courtesy, which would not have been relevant in this race on a wide asphalt road. A 279

more likely explanation here is that for recreational runners who have not trained 280

extensively on steep hills, a long downhill of this length can be physically difficult due to 281

the strong eccentric strain on the quadriceps, as well as testing the tensor fascia latae. 282

4 Discussion 283

4.1 Interpretation of results 284

Fig 4 presents a graphical summary of the interpretation of these results. 285

Fig 4. A graphical summary of the interpretation of the systematic errors in the
models Ct and Cg, observed in parts a, b, c, and d of Fig 3. Portions of the model that
are interpreted as being inaccurate are circled and labeled with the test that provides
the evidence for the inaccuracy. The interpretation is more conjectural for b, since both
models had similar errors, but hypothetically for different reasons. The solid line is the
treadmill-based function Ct and the dashed one Cg. The dotted line is a modified
version Cr of the treadmill function, defined in Eq 9 and found here empirically to be
more appropriate for recreational runners in real-world trail conditions.

The observations mainly support the model Ct, except that as downhill grades get 286

steeper and steeper, it appears that most recreational runners in real-world conditions 287

reach a point of diminishing returns far earlier than is the case in treadmill studies. The 288

results for course X, which has an average i ≈ −0.05, suggest that this point of 289

diminishing returns is reached at relatively small negative slopes, perhaps i ≈ −0.03. 290
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The factors causing this effect probably have as much to do with safety and etiquette as 291

with physiology, so that they cannot be quantified in any universal way. However, it 292

would be irresponsible to provide runners, especially recreational athletes, with scientific 293

advice that would give an unrealistically rosy picture of the difficulty of a run. 294

4.2 Hybrid model 295

I have therefore investigated some possible modifications to the function Ct. A 296

modification that did not work well was to adjust the values of the parameters p and d 297

given in Table 2 so as to shift the minimum of the function up and to the right. This 298

was unsuccessful, because the smooth analytic character of Eq (10) makes it impossible, 299

by varying its parameters, to dramatically modify the function’s behavior for 300

−0.06 . i . −0.03 while retaining its apparently correct behavior at −0.03 . i . 0. A 301

more successful ad hoc recipe was simply to introduce a cut-off in C, i.e., to define a 302

“recreational” version of the function, 303

Cr =

{
Ct(i), Ct(i) > Ct(i0)

Ct(i0), otherwise,
(9)

where i0 = −0.03. In other words, we simply chop the bottom off of the curve of Ct, at 304

the dotted line in Fig 4. 305

The results of the hybrid model Cr are shown as gray circles in Fig 3 and are in 306

general fairly good. The main remaining inaccuracy is the underprediction of the effect 307

of steep hills in test c. It would be tempting to modify the function C to give it an even 308

more severe upward curve for i & 0.3. This does not seem warranted by the present 309

data, since other factors may be at work, including altitude and rough footing. 310

5 Conclusions 311

This paper presents a model that can be used to predict the time of a runner on a 312

course, given their time on some other course. This model is a hybrid of two others that 313

have been previously proposed. Testing against a sample of times clocked by mostly 314

recreational athletes shows that the model usually gives predict corrections to within 315

about 10-20%, even when the route includes extreme climbing or descents. It would be 316

desirable for future work to refine this work by controlling better for factors such as 317

altitude, training, and the quality of footing on mountain trails. 318

Appendix 1. Analytic approximation to the treadmill function 319

Ct 320

It is convenient to describe the function C(i) using a fit to the form 321

Ct(i) = a

[
(|i|p + b)1/p +

i

c
+ d

]
, (10)

where the subscript t stands for treadmill. Parameters fitted to the results of ref. [2] are 322

given in Table 2. The purpose of using this form, rather than the polynomial fit given 323

by [2], is to make the computations degrade gracefully in cases where the limitations of 324

GPS tracks or data from digital elevation models produce unrealistically steep slopes. 325

In such cases, this expression approaches the physiologically expected asymptotic 326

behavior. Although the present work focuses only on running, parameters for walking 327

are presented as well. The results for running are empirically found to be nearly 328

independent of speed, whereas the ones for walking are not. For walking, ref. [2] 329
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measured the energy consumption at the speed that was found to be most efficient for 330

that particular subject. 331

Table 2. Parameters for Eq (10). These parameters were found by constraining Eq 10
to agree with the polynomial fits in ref. [2] on the following degrees of freedom: the
function is minimized at the same i, and has the same value of C there; the functions
agree at i = 0. Furthermore, the slopes at ±∞ were constrained to have the asymptotic
values found in that work.

running walking
a 26.07 J/kg ·m 22.91 J/kg ·m
b 0.03104 0.02621
c 1.381 1.315
d -0.06547 -0.08317
p 2.181 2.209

Appendix 2. Analytic approximation to world-record speeds 332

Cameron [10] has given a convenient closed-form approximation to world-record speeds 333

of runners at various distances, 334

v ∝ 1−Ad+Bd−C . (11)

This is shown as the red curve in figure 2. The parameters are given in Table 3 335

Table 3. Parameters for Eq (11), for d in meters.

A B C
2.25× 10−6 61.9 0.790

Appendix 3: Analysis of elevation data 336

Digital maps projected into a horizontal plane were obtained from the race organizers’ 337

web site or in some cases by tracing roads and trails in a Google Maps application. 338

Elevation data were obtained from publicly available digital elevation models (SRTM1) 339

having a horizontal resolution of 30 meters. (Elevation data from handheld GPS/GNSS 340

units are more difficult to obtain from public sources, and are in any case of 341

questionable reliability for this purpose, since the uncertainty can be very large when all 342

satellites are near the horizon or when the terrain is rough, causing radio echoes from 343

the walls of canyons.) 344

The use of these data is inherently subject to certain errors, which need to be 345

minimized. Trails and roads are intentionally constructed so as not to go up and down 346

steep hills, but the DEM may not accurately reflect this. The most common situation 347

seems to be one in which a trail or road takes a detour into a narrow gully in order to 348

maintain a steady grade. If the gully is narrower than the horizontal resolution of the 349

DEM, then the DEM doesn’t know about the the gully, and the detour appears to be a 350

steep excursion up and then back down the prevailing slope. 351

Empirically, I have found that sensitivity to these effects can be minimized if the 352

elevation profile of the run y(x) is filtered by convolving it with a rectangular 353

windowing function having width w = 200 meters. This tends to eliminate unrealistic 354

glitches in the elevation data, and also seems to give a fairly close reproduction of race 355

organizers’ estimates of total elevation gain. This choice of w gives sane results for 356

routes in mountainous terrain, and is used throughout this work, even for flat courses 357
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on city streets. For a course that is relatively flat and has many small, short hills, 358

w ≈ 60 m gives more accurate results, but I have used the larger value of w throughout 359

this work in an effort to maintain consistency. 360

The mileage derived from a GPS track can vary quite a bit depending on the 361

resolution of the GPS data. Higher resolution increases the mileage, because small 362

wiggles get counted in. This has a big effect on the energy calculation, because the 363

energy is mostly sensitive to mileage, not gain. For races that were advertised as 5k or 364

half-marathon races, I have therefore used the advertised distance, as shown in Table 1, 365

in order to calculate the first-order estimate of the energy, but have used the elevation 366

gain and CF value derived from the actual GNSS data. 367

Appendix 4: Statistical analysis 368

In section 3, test (a) probes an effect small enough that visual inspection of the scatter 369

plots is not a satisfactory way of testing hypotheses. Specifically, we want to know 370

whether the apparent systematic error in the model Cg is statistically consistent with 371

zero. 372

We do not know a priori the underlying probaility distribution of the ratio of times or 373

of its logarithm E . One might have expected based on previous work [5] that the times 374

would be log-normal, in which case E would be normally distributed. However, a Q-Q 375

plot shows that this is not the case for the present data-set, and in fact the distribution 376

of E is asymmetric. The ratio of times, however, has a symmetric and leptokurtic 377

distribution. Its symmetry allows the use of the one-sample Wilcoxon test. For Cg the 378

null hypothesis is rejected with p = 4× 10−6, while for Ct, p = 0.07. Thus the defect in 379

Cg is significant, while any such evidence against Ct is statistically marginal. 380
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