- 1 Title:
- 2 The response of desert biocrust bacterial communities to hydration-desiccation cycles
- 3
- 4 Authors:
- 5 Capucine Baubin[§], Noya Ran, Hagar Siebner, Osnat Gillor[§]
- 6

7 Affiliation:

- 8 Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-
- 9 Gurion University of the Negev, 8499000, Israel

10

- 11 Corresponding authors:
- 12 [§]Capucine Baubin, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert
- 13 Research, Ben-Gurion University of the Negev, 8499000, Israel. Tel: 972-8-6596363; e-mail:

```
14 <u>baubin@bgu.ac.il</u>
```

- ¹⁵ [§]Osnat Gillor, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert
- 16 Research, Ben-Gurion University of the Negev, 8499000, Israel. Tel: 972-8-6596986; e-mail:
- 17 gilloro@bgu.ac.il

19 ABSTRACT

20	Rain events in arid environments are highly unpredictable, interspersing extended periods of
21	drought. Therefore, following changes in desert soil bacterial communities during hydration-
22	desiccation cycles in the field, was seldom attempted. Here, we assessed rain-mediated
23	dynamics of active community in the Negev Desert biological soil crust (biocrust), and
24	evaluated the changes in bacterial composition, potential function, and photosynthetic
25	activity. We predicted that increased biocrust moisture would resuscitate the phototrophs,
26	while desiccation would inhibit their activity. Our results show that hydration increased
27	chlorophyll content, resuscitated the biocrust Cyanobacteria, and induced potential
28	phototrophic functions. However, decrease in the soil water content did not immediately
29	decrease the phototrophs activity, though chlorophyll levels decreased. Moreover, while the
30	Cyanobacteria relative abundance significantly increased, Actinobacteria, the former
31	dominant taxa, significantly decreased in abundance. We propose that, following a rain event
32	biocrust moisture significantly decreased, almost to drought levels, yet the response of the
33	active bacterial community lagged, in contrast to topsoil. Possible explanations to the
34	described rain-mediated bacteria dynamics are discussed.
35	

36 Key words: hydration; biocrust; bacteria; *Cyanobacteria*; *Actinobacteria*;

37 1. INTRODUCTION

38	Arid environments are the largest terrestrial biomes on Earth and accounts for 35% of the
39	landmass (Pointing and Belnap, 2012). Since rain in arid environments is rare and
40	unpredictable, the main source of water is dew (Malek et al., 1999) and fog (Kidron et al.,
41	2002). This moisture is readily absorbed to the soil surface, but would quickly evaporates due
42	to high temperatures and low humidity (Cameron and Blank, 1966). The long droughts in
43	drylands limit plant growth and in their stead, the soil is covered by microbial mats, called
44	biological soil crust (biocrust). Biocrusts are a matrix of phototroph and heterotroph
45	microorganisms that bind together with soil particles, by using extracellular polymeric
46	substances (EPS) (Belnap and Lange, 2001; Campbell et al., 1989; Kidron et al., 2020).
47	Biocrust phototrophs are the main primary producers in this desolate habitat and together with
48	the heterotrophs form a rigid and stable mat that is able to resist to xerification and soil
49	erosion (Aanderud et al., 2019; Bowker et al., 2018).
50	
51	Biocrusts are the main source of carbon and nitrogen (Agarwal et al., 2014), and a strong
52	contributor of soil respiration (Castillo-Monroy et al., 2011) in deserts. It was recently shown
53	that, during long droughts many of the biocrust microorganisms rely not only on
54	photosynthesis but also on oxidation of atmospheric trace gases (Leung et al., 2020; Meier et
55	al., 2021). Yet, once the biocrust is hydrated, the phototrophs respond quickly by inducing
56	their photosynthetic systems and related functions to take full advantage of the rare water

57 abundance before the soil dehydrates (Murik et al., 2017). To that end, photosynthetic

58 members of the biocrust community form a seed bank of species that are able to spring to life

59 whenever the water content increases (Kedem et al., 2020; Lennon and Jones, 2011; Murik et

60 al., 2017). Yet, the abrupt hydration may also cause osmotic shock that could result in

61 massive cell lysis and the release of osmoregulatory solutes (Halverson et al., 2000; Harris,

62 1981). The period of water abundance is usually brief, and the soil quickly dehydrates forcing

63 the bacteria to cease their activity (Murik et al., 2017; Oren et al., 2019). Therefore, the

64 members of the biocrust community must respond quickly and efficiently not only to

65 hydration but also to the subsequent desiccation.

66

67 Earlier studies focused on community structure and cyanobacterial response to hydration-68 desiccation cycles under controlled conditions (Angel and Conrad, 2013; Meier et al., 2020; 69 Oren et al., 2019; Wu et al., 2013). To the best of our knowledge, these cycles were never 70 monitored in the field during a rain event. Under natural conditions, the biocrust community 71 dynamics of the hydration-desiccation cycle may be affected by plethora of variables, such as 72 temperature, rain intensity, or soil local structure, which could not be applied in a laboratory 73 setting. Thus, it is imperative to elucidate the resuscitated community and its response to the 74 gradual dehydration after a rain event in the field.

75

76 In this study, we followed the community structure and activity before, during, and after a 77 rain event in the arid Negev Desert (Israel). We studied the active biocrust community by 78 using SSU ribosomes as a proxy to active bacterial community (Št'ovíček et al., 2017). 79 Although ribosomes do not quickly degrade in dormant or even dead cells (Sukenik et al., 80 2012; Sunyer-Figueres et al., 2018), under field conditions they present a reliable mean to 81 distinguish between active and inactive cells (Angel et al., 2013; Št'ovíček et al., 2017). We 82 hypothesised that the biocrust community would quickly respond to hydration and to 83 desiccation. We predicted that high soil moisture would trigger photosynthetic activity and a 84 decreasing soil moisture will lead to an inactivation of the phototrophs within the biocrust 85 community. We further predicted that heterotrophs response to hydration-desiccation would 86 differ among phyla as previously reported for biocrust (Angel and Conrad, 2013) and topsoil

- 87 (Št'ovíček et al., 2017) collected from the same site. The most apparent change detected in
- 88 both soil horizons was the sharp decrease in the relative abundance of Actinobacteria that
- 89 dominant the soil during droughts but decline upon hydration.

91 2. MATERIAL AND METHODS

92 2.1. Sampling

93	The study was conducted in the long-term ecological research station in the Negev Desert
94	Highlands (Zin Plateau, 30°86'N, 34°80'E, Israel; Figure 1). In this arid environment, the
95	average annual rainfall is around 90 mm and extends from October to April. Biocrust samples
96	were collected on 20/06/17 during the dry season (T[0]; average temperature: 32.4°C) and
97	during a rain event in the wet season from $29/01/18$ through $01/02/18$ at 24 hr intervals. The
98	rain event (5.1 mm, maximum average temperature 14.6 °C) occurred 29/01/18 (T[R]) and
99	samples were collected till the biocrust dried (T[1], T[2], T[3]; Figure 1) For each time point,
100	five samples at least 10 m apart were collected ($N = 25$ samples). The biocrust samples were
101	homogenised using a 2 mm sieve and then four subsamples were stored: (1) at -80°C for
102	molecular analysis; (2) at -20°C for chlorophyll extraction; (3) at 60°C for 3 days and then
103	kept at room temperature for chemical analysis; and (4) was used immediately to evaluate the
104	water content.
105	

105

106 2.2. Physico-chemical analyses

107 Water content, organic carbon and total nitrogen were measured in the soil samples. Biocrust 108 water content was determined by the gravimetric method, the soil was weighed before and 109 after oven drying at 105 \square C, then the percentage of moisture in the soil was determined 110 (Scrimgeour, 2008). Organic carbon content was determined using the loss-on-ignition 111 method. 30 g of the dry soil sample was weighedburnt at 380°C for 6 hours, and the fraction 112 of organic carbon content was calculated as previously described (Hoogsteen et al., 2015; 113 Scrimgeour, 2008). Total nitrogen was measured in 50 mg of soil using the FlashSmart 114 CHNS/O elemental analyser (ThermoFischer, Waltham, MA, USA). The standards: BBOT

- 115 (2,5-Bis (5-tert-butyl-benzoxazol-2-yl) thiophene), Tocopherol Nicotinate and a soil reference
- 116 material were used to calibrate the instrument.
- 117
- 118 2.3. Chlorophyll concentration and water content
- 119 The chlorophyll of each sample was extracted using a protocol based on Castle et al., (2010)
- 120 and Ritchie, (2006). The extraction was done using methanol, with a soil:methanol ratio of
- 121 3:9, followed by a 15-minutes incubation at 65°C and a 2-hour incubation at 4°C. The
- samples were measured by spectrophotometry at 665 nm and the concentration of chlorophyll
- 123 was calculated following Ritchie, (2006). Positive controls were spirulina with a
- 124 concentration of 0.003g/g of soil and negative controls were distilled water. The
- 125 concentrations are presented in mg of chlorophyll per gram of soil (mg chla/g soil).

- 127 2.4. RNA extraction and preparation for sequencing
- 128 RNA was extracted from 0.5 1 g of soil using phenol-chloroform, following the protocol
- 129 from Angel (2012). The extracted total nucleic acid was treated with DNase to remove the
- 130 DNA. The remaining RNA was cleaned using parts of the MagListo RNA Extraction kit
- 131 (Bioneer, Daejeon, South Korea). The RNA was reverse transcribed to cDNA using
- 132 Superscript IV (ThermoFischer, Waltham, MA, USA), and purified using the PCR
- 133 purification kit (Bioneer, Daejeon, South Korea) in accordance with the manufacturers'
- 134 instructions. The cDNA was used as a template to amplify the V3F(341) and V4R(806)
- regions of the 16S rRNA with CS1/CS2 extensions (Table A.1), in triplicates. Library
- 136 preparations and sequencing were performed at the Research Resource Centre at the
- 137 University of Illinois with pair end (2 x 300 bp) MiSeq platform (Illumina, San Diego, CA,
- 138 USA). Due to low concentrations of ribosomes in the dry soil collected during the summer of
- 139 2017, we had to re-extract and re-sequence these samples. However, COVID-19 restrictions

140 prohibit us from using the same sequencing platform, and we were forced to use the fa	le facilities
---	---------------

- 141 and resources available to us at the time. Therefore, RNA was extracted using the RNeasy
- 142 PowerSoil Total RNA Kit (Qiagen, Hilden, Germany), following the manufacturer's protocol.
- 143 Then, the V3-V4 region of the 16S rRNA was amplified in triplicates using the CS1-
- 144 V3F(341) and CS2-V4R(515) primers (Table A.1). The samples were sequenced (2 x 150 bp)
- 145 on the iSeq platform (Illumina, San Diego, CA, USA) at the Central and Northern Arava
- 146 R&D Center (Israel).
- 147

148 2.5. Community analysis

- 149 Reads were merged, quality checked, and trimmed following the NeatSeq-Flow pipeline
- 150 (Sklarz et al., 2018). The sequences were analysed using QIIME2 (Bolyen et al., 2018) and
- 151 Dada2 (Callahan et al., 2016). Reads were clustered in amplicon sequence variants (ASVs)
- and taxonomy was assigned using Silva v138 (Quast et al., 2013). The total number of
- 153 sequences can be found in Table A.2. All raw sequences used in this study can be found in
- 154 BioProject (https://www.ncbi.nlm.nih.gov/ bioproject) under the submission number
- 155 PRJNA718159.
- 156
- 157 2.6. Functional predictions
- 158 Functional predictions of the 16S amplicons was done using Piphillin (Iwai et al., 2016;
- 159 Narayan et al., 2020) and the KEGG database with a 97%-identity cut-off (May 2020)
- 160 (Kaneshisa and Goto, 2000). Steps of metabolic pathways for different methods of harvesting
- 161 energy (organotrophy, lithotrophy and phototrophy) (Cordero et al., 2019; Greening et al.,
- 162 2016; León-Sobrino et al., 2019; Tveit et al., 2019), for parts of the nitrogen cycle (Madigan
- 163 et al., 2009), and for the survival of the individual during a drought (DNA conservation and
- 164 repair, sporulation and Reactive Oxygen Species (ROS)-damage prevention) (Borisov et al.,

165	2013; Hansen et al., 2007; Henrikus et al., 2018; Preiss, 1984; Preiss and Sivak, 1999; Rajeev
166	et al., 2013; Repar et al., 2012; Slade and Radman, 2011) were selected. Then, we picked out
167	genes of interest from each step in the KEGG database and built our own database (Table
168	A.3). The assignment of function to the KEGG numbers of the abundance table from Piphillin
169	was done in R using phyloseq (McMurdie et al., 2017). The significance of temporal
170	differences in predicted functionalities was evaluated using a non-parametric test (Kruskal-
171	Wallis test and a post-hoc Dunn test (Dinno, 2017; Dunn, 1964; Kruskal and Wallis, 1952).
172	
173	2.7. Statistical analysis
173 174	2.7. Statistical analysis All statistical analysis was done using R (R Core Team, 2016) using the phyloseq (McMurdie
174	All statistical analysis was done using R (R Core Team, 2016) using the phyloseq (McMurdie
174 175	All statistical analysis was done using R (R Core Team, 2016) using the phyloseq (McMurdie et al., 2017) along with the ggplot2 (Wickham, 2016), vegan (Oksanen et al., 2014), magritt
174 175 176	All statistical analysis was done using R (R Core Team, 2016) using the phyloseq (McMurdie et al., 2017) along with the ggplot2 (Wickham, 2016), vegan (Oksanen et al., 2014), magritt (Wickham and Bache, 2014), dplyr (Wickham et al., 2018), scales (Wickham, 2017), grid

181 3. RESULTS

182 3.1. Temporal changes in the biocrust chlorophyll and chemical analyses

- 183 We have followed changes in the biocrust before, during and after a rain event and noted that
- a day after the rain (at T[1]) the biocrust in the sampling site was visibly greener than at any
- 185 other sampling point (Figure 1). Following our observations, Figure 2 depicts the average
- 186 chlorophyll concentrations along with the soil water content in the biocrust at each sampling
- 187 point (Table A.4). The biocrust water content significantly increased between the dry season
- 188 T[0] and the rain event T[R] (2.26% and 16.2%, respectively, p = 0.05; Table A.5). Then soil
- moisture significantly decreased to 3.67% at T[3] (p < 0.05). The chlorophyll concentrations
- 190 significantly increased right after the rain event (from 8.45 mg chl/g soil to 14.57 mg chl/g
- soil, during the rain event, p = 0.0002; Table A.5), but decreased significantly in later days
- 192 (from 14.57 mg chl/g to 11.17 mg chl/g soil, three days after the rain, p > 0.02; Table A.5).
- 193 The total organic carbon (Figure A.1) and total nitrogen (Figure A.2) showed slight temporal
- 194 changes (Table A.4) that were not significant (Table A.5).
- 195
- 196 3.2. Temporal changes in the microbial community composition
- 197 Figure 3 shows the bacterial community composition at the order level for each sampling
- 198 point. The community is mostly composed of Cyanobacteria, Actinobacteria, and
- 199 Proteobacteria (Figure 3; Table A.6). During the dry season, biocrust community
- 200 composition differed significantly from the community depicted during the rain event (Table
- A.7). The differences were shown mostly in orders belonging to the Actinobacteria and
- 202 *Cyanobacteria* phyla (Figure 3; p < 0.05, Table A.7). The relative abundance of
- 203 Cyanobacteria, dominated by the Cyanobacteriales, increased during the rain event (from
- 204 22% to 41%, Table A.6; p < 0.05, Table A.7). While the relative abundance of
- 205 Actinobacteria, dominated by Micrococcales, decreased during the rain event (from 50% to

206	19%, Table A.6; <i>p</i> < 0.0	5, Table A.7). In th	e days following th	ne rain event, no	major changes
-----	--------------------------------	----------------------	---------------------	-------------------	---------------

207 were detected in the biocrust community (Figure 3; Table A.6 and A.7).

208

- 209 3.3. Temporal changes in the microbial function
- 210 Figure 4 shows the predicted function based on the taxonomic composition using Piphillin
- 211 (Iwai et al., 2016; Narayan et al., 2020). The values of the putative functional genes are
- 212 displayed in copy number (CN). The values were mostly lower in the dry season compared to
- 213 the hydration-desiccation cycle, except for light and energy sensing (Figure 4; Table A.8).
- These differences were shown to be statistically significant (p < 0.03; Table A.9).

216 4. DISCUSSION

217	In the Negev Desert, biocrust bacterial communities were shown to alter during hydration.
218	Most apparent was the change in the relative abundance of Cyanobacteria which increased
219	while the abundance of Actinobacteria decreased (Figure 3) similar to results obtained under
220	controlled conditions that hydrated the biocrust to saturation (Angel and Conrad, 2013). In
221	another controlled experiment, the filamentous cyanobacterium Leptolyngbya sp. isolated
222	from desert biocrust, was shown to respond quickly to both hydration and desiccation (Oren et
223	al., 2019, 2017). Slight increase in biocrust moisture, triggered by dew simulation, induced
224	DNA repair and associated regulatory genes for activating the photosynthetic system of the
225	cyanobacterium (Murik et al., 2017; Rajeev et al., 2013). However, in this study we show that
226	during a rain event of the Negev Desert biocrust, soil moisture increased and resulted in: (i) a
227	sharp rise in chlorophyll concentrations (Figure 2), (ii) a significant increase in the relative
228	abundance of various cyanobacterial orders (Figure 3; Table A.6 and A.7), and (iii) a
229	significant increase in putative phototrophy of the community (Figure 4; Table A.8 and A.9).
230	The concentration of the chlorophyll pigment was suggested to be linked to the water content
231	(Péli et al., 2011) and to the activity of dominating primary producer in the biocrust, i.e.,
232	Cyanobacteria and/or green algae (Madigan et al., 2009). While cyanobacterial activity
233	increased with soil moisture, no significant changes were detected in the total organic carbon
234	and nitrogen content (Figure A.1 and A.2; Table A.4 and S5). This observation suggests that
235	the immediate change in these parameters is negligible compared to existing soil reservoir;
236	thus, it cannot be used as an indicator for the reaction of the local community to rain events.
237	Moreover, it was recently proposed that in arid biocrusts, the dominant Cyanobacteria
238	exchange carbon for nitrogen with copiotrophic diazotrophs, thus rapidly utilizing available
239	nutrients and enabling the colonisation of the oligotrophic dryland soils (Couradeau et al.,
240	2019).

241

242	In desert soil, rain events were shown to entail a decrease in the abundance of Actinobacteria
243	both in the biocrust (Angel and Conrad, 2013) and topsoil (Št'ovíček et al., 2017). Members
244	of this phylum were shown to be well adapted to living in harsh environments (Goodfellow
245	and Williams, 1983; Zvyagintsev et al., 2007), and were found to be abundant in the Negev
246	Highland biocrust (Meier et al., 2021). Here we showed that the increase of water content
247	may lead to an increase in activity in all gene groups linked to energy usage or production
248	(Figure 4; Table A.8). The generally dry biocrust experiences a narrow window of hydration
249	conditions after a rain event of only a couple of days (Figure 2). These conditions are rapidly
250	exploited by phototrophs before the soil dries (Figure 2 and 3), and inhibit resilient
251	heterotrophs (Figure 3), as was previously shown in controlled (Cordero et al., 2019;
252	Greening et al., 2016; León-Sobrino et al., 2019; Tveit et al., 2019), and naturel (León-
253	Sobrino et al., 2019) settings.
254	
255	We showed that re-hydration stage is quick and bacterial activity restarts within hours.
256	However, during the desiccation stage, changes are slower. The biocrust dries quickly after
257	the rain (Figure 2) due to evaporation, encouraged by the strong radiation, high winds, and
258	low air humidity (Kidron and Tal. 2012). Yet, unlike the response to dew hydration (Oren et

low air humidity (Kidron and Tal, 2012). Yet, unlike the response to dew hydration (Oren et

al., 2019, 2017), the community does not immediately inactivates. We sampled the soil along

260 the hydration-desiccation cycle and stopped sampling when the soil was dehydrated because

we expected inactivation of the community. In a previous study (Št'ovíček et al., 2017), we

showed that the topsoil community bounces back to its original structure as soon as the soil

263 dries. Yet in the biocrust, dehydration was associated by a decrease in chlorophyll

264 concentrations, yet we detected no significant changes in the community composition (Figure

265 3). This may be possible due to the EPS produced by the *Cyanobacteria* (Mager and Thomas,

266	2011; Mazor et al., 1996) that dominate the biocrust. Cyanobacteria were shown to secrete
267	copious amounts of EPS that bind the soil particles together (Kidron et al., 2020; Kidron and
268	Tal, 2012). The EPS in the biocrust was shown to retain water in the soil, slowing down the
269	drying process (Roberson and Firestone, 1992). Likewise, EPS in soil was shown to create
270	microhabitats that retain humidity (Colica et al., 2014), thus stabilising the biocrust (Lan et
271	al., 2012), and protecting the residing microorganisms from desiccation (Mazor et al., 1996).
272	EPS is a key component in the Negev Desert biocrusts (Kidron et al., 2020). Here we propose
273	that EPS may benefit the microbial community by creating microhabitats in which moisture is
274	retained longer, enabling extended active phase following a rain event. This extra time to
275	propagate after a rain event, may justify the ample resources invested by the Cyanobacteria in
276	EPS production (Mager and Thomas, 2011). To validate this hypothesis further study is
277	required.
278	
279	5. CONCLUSION

280 In desert biocrusts, bacterial communities must respond quickly to hydration, in order to take 281 advantage of the short windows of opportunity to photosynthesize, and then to desiccation to 282 prevent cells damage. Our findings reinforce controlled studies showing that biocrust 283 hydration change the bacterial community, increasing the Cyanobacteria abundance over 284 Actinobacteria. However, here we have shown that under field conditions the response to soil 285 desiccation is slower, allowing for a longer period of activity and production even a day after 286 soil moisture decrease. we speculate that the lag in response to dehydration is due to EPS-287 based water retention in the soil mediated by the Cyanobacteria producers, justifying the 288 metabolic cost of biocrust formation. 289

291

292 ACKNOWLEDGEMENT

- 293 The authors are grateful to Lusine Ghazaryan for technical support and to Ben Poodiack for
- 294 editing the manuscript. This study was partially supported by the Israel Science Academy,
- 295 grant no. 993/11.

297 REFERENCES

- Aanderud, Z.T., Bahr, J., Robinson, D.M., Belnap, J., Campbell, T.P., Gill, R.A., McMillian,
- B., St. Clair, S., 2019. The Burning of Biocrusts Facilitates the Emergence of a Bare Soil
- 300 Community of Poorly-Connected Chemoheterotrophic Bacteria With Depressed
- 301 Ecosystem Services. Front. Ecol. Evol. 7, 1–14. https://doi.org/10.3389/fevo.2019.00467
- 302 Agarwal, L., Qureshi, A., Kalia, V.C., Kapley, A., Purohit, H.J., Singh, R.N., 2014. Arid
- 303 ecosystem: Future option for carbon sinks using microbial community intelligence. Curr.
- 304 Sci. 106, 1357–1363.
- 305 Angel, R., 2012. Total Nucleic Acid Extraction from Soil.
- 306 Angel, R., Conrad, R., 2013. Elucidating the microbial resuscitation cascade in biological soil
- 307 crusts following a simulated rain event. Environ. Microbiol. 15, 2799–2815.
- 308 https://doi.org/10.1111/1462-2920.12140
- 309 Angel, R., Pasternak, Z., Soares, M.I.M., Conrad, R., Gillor, O., 2013. Active and total
- 310 prokaryotic communities in dryland soils. FEMS Microbiol. Ecol. 86, 130–138.
- 311 https://doi.org/10.1111/1574-6941.12155
- 312 Belnap, J., Lange, O.L., 2001. Biological Soil Crusts: Structure, Function, and Management,

313 Springer. https://doi.org/10.1639/0007-2745(2002)105[0500:]2.0.co;2

- 314 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C., Al-Ghalith, G.A.,
- 315 Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger,
- 316 K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez,
- 317 A.M., Chase, J., Cope, E., Da Silva, R., Dorrestein, P.C., Douglas, G.M., Durall, D.M.,
- 318 Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M.,
- 319 Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H.,
- 320 Huttenhower, C., Huttley, G., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B., Kang,
- 321 K. Bin, Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T.,

322	Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, YX., Loftfield, E., Lozupone, C.,
323	Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A. V,
324	Metcalf, J.L., Morgan, S.C., Morton, J., Naimey, A.T., Navas-Molina, J.A., Nothias,
325	L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E.,
326	Rasmussen, L.B., Rivers, A., Robeson Michael S, I.I., Rosenthal, P., Segata, N., Shaffer,
327	M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R.,
328	Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J.,
329	Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.,
330	Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z.,
331	Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2018. QIIME 2:
332	Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr.
333	6, e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2
334	Borisov, V.B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., Giuffrè, A., 2013.
335	Cytochrome bd oxidase from Escherichia coli displays high catalase activity: An
336	additional defense against oxidative stress. FEBS Lett. 587, 2214–2218.
337	https://doi.org/10.1016/j.febslet.2013.05.047
338	Bowker, M.A., Reed, S.C., Maestre, F.T., Eldridge, D.J., 2018. Biocrusts: the living skin of
339	the earth. Plant Soil 429, 1–7. https://doi.org/10.1007/s11104-018-3735-1
340	Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016.
341	DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods
342	13, 581–583. https://doi.org/10.1038/nmeth.3869
343	Cameron, R.E., Blank, G.B., 1966. Desert algae: soil crusts and diaphanous substrata as algal
344	habitats.
345	Campbell, S.E., Seeler, J., Golubic, S., 1989. Desert crust formation and soil stabilization.
346	Arid Soil Res. Rehabil. 3, 217–228. https://doi.org/10.1080/15324988909381200

	347	Castillo-Monroy,	A.P., Maestre,	F.T., Rey, A.	, Soliveres, S.,	Garc??a-Palacios,	, P., 2011.
--	-----	------------------	----------------	---------------	------------------	-------------------	-------------

- 348 Biological Soil Crust Microsites Are the Main Contributor to Soil Respiration in a
- 349 Semiarid Ecosystem. Ecosystems 14, 835–847. https://doi.org/10.1007/s10021-011-
- 350 9449-3
- 351 Castle, S.C., Morrison, C.D., Barger, N.N., 2010. Extraction of chlorophyll a from biological
- 352 soil crusts: A comparison of solvents for spectrophotometric determination. Soil Biol.
- 353 Biochem. 43, 853–856. https://doi.org/10.1016/j.soilbio.2010.11.025
- 354 Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., De Philippis, R., 2014. Microbial secreted
- 355 exopolysaccharides affect the hydrological behavior of induced biological soil crusts in
- desert sandy soils. Soil Biol. Biochem. 68, 62–70.
- 357 https://doi.org/10.1016/j.soilbio.2013.09.017
- 358 Cordero, P.R.F., Bayly, K., Man Leung, P., Huang, C., Islam, Z.F., Schittenhelm, R.B., King,
- 359 G.M., Greening, C., 2019. Atmospheric carbon monoxide oxidation is a widespread
- 360 mechanism supporting microbial survival. ISME J. 13, 2868–2881.
- 361 https://doi.org/10.1038/s41396-019-0479-8
- 362 Couradeau, E., Giraldo-Silva, A., De Martini, F., Garcia-Pichel, F., 2019. Spatial segregation
- 363 of the biological soil crust microbiome around its foundational cyanobacterium,
- 364 Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome
- 365 7, 1–12. https://doi.org/10.1186/s40168-019-0661-2
- 366 Dinno, A., 2017. Package 'dunn.test.' CRAN Repos. 1–7.
- 367 Dunn, O.J., 1964. Multiple Comparisons Using Rank Sums. Technometrics 6, 241–252.
- 368 Goodfellow, M., Williams, S.T., 1983. Ecology of actinomycetes. Annu. Rev. Microbiol. 37,
- 369 189–216. https://doi.org/10.1146/annurev.mi.37.100183.001201
- 370 Greening, C., Biswas, A., Carere, C.R., Jackson, C.J., Taylor, M.C., Stott, M.B., Cook, G.M.,
- 371 Morales, S.E., 2016. Genomic and metagenomic surveys of hydrogenase distribution

- 372 indicate H 2 is a widely utilised energy source for microbial growth and survival. ISME
- 373 J. 10, 761–777. https://doi.org/10.1038/ismej.2015.153
- 374 Halverson, L.J., Jones, T.M., Firestone, M.K., 2000. Release of Intracellular Solutes by Four
- 375 Soil Bacteria Exposed to Dilution Stress. Soil Sci. Soc. Am. J. 64, 1630–1637.
- 376 https://doi.org/10.2136/sssaj2000.6451630x
- 377 Hansen, B.B., Henriksen, S., Aanes, R., Sæther, B.E., 2007. Ungulate impact on vegetation in
- a two-level trophic system. Polar Biol. 30, 549–558. https://doi.org/10.1007/s00300-006-
- 379 0212-8
- 380 Harris, R.F., 1981. Effect of Water Potential on Microbial Growth and Activity. Water
- 381 Potential Relations Soil Microbiol., SSSA Special Publications.
- 382 https://doi.org/https://doi.org/10.2136/sssaspecpub9.c2
- 383 Henrikus, S.S., Wood, E.A., McDonald, J.P., Cox, M.M., Woodgate, R., Goodman, M.F., van
- 384 Oijen, A.M., Robinson, A., 2018. DNA polymerase IV primarily operates outside of
- 385 DNA replication forks in Escherichia coli. PLoS Genet. 14, 1–29.
- 386 https://doi.org/10.1371/journal.pgen.1007161
- 387 Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, J.C.J., Tittonell, P.A., 2015.
- 388 Estimating soil organic carbon through loss on ignition: Effects of ignition conditions
- and structural water loss. Eur. J. Soil Sci. 66, 320–328.
- 390 https://doi.org/10.1111/ejss.12224
- 391 Iwai, S., Weinmaier, T., Schmidt, B.L., Albertson, D.G., Poloso, N.J., Dabbagh, K., DeSantis,
- 392 T.Z., 2016. Piphillin: Improved prediction of metagenomic content by direct inference
- from human microbiomes. PLoS One 11, 1–18.
- 394 https://doi.org/10.1371/journal.pone.0166104
- 395 Kaneshisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
- 396 Acids Res. 28, 27–30. https://doi.org/10.3892/ol.2020.11439

- 397 Kedem, I., Treves, H., Noble, G., Hagemann, M., Murik, O., Raanan, H., Oren, N., Giordano,
- 398 M., Kaplan, A., 2020. Keep your friends close and your competitors closer: novel
- interspecies interaction in desert biological sand crusts. Phycologia 00, 1–8.
- 400 https://doi.org/10.1080/00318884.2020.1843349
- 401 Kidron, G.J., Herrnstadt, I., Barzilay, E., 2002. The role of dew as a moisture source for sand
- 402 microbiotic crusts in the Negev Desert, Israel. J. Arid Environ. 52, 517–533.
- 403 https://doi.org/10.1006/jare.2002.1014
- 404 Kidron, G.J., Tal, S.Y., 2012. The effect of biocrusts on evaporation from sand dunes in the
- 405 Negev Desert. Geoderma 179–180, 104–112.
- 406 https://doi.org/10.1016/j.geoderma.2012.02.021
- 407 Kidron, G.J., Wang, Y., Herzberg, M., 2020. Exopolysaccharides may increase biocrust
- 408 rigidity and induce runoff generation. J. Hydrol. 588, 125081.
- 409 https://doi.org/10.1016/j.jhydrol.2020.125081
- 410 Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O.,
- 411 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and
- 412 next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, 1–11.
- 413 https://doi.org/10.1093/nar/gks808
- 414 Kruskal, W.H., Wallis, W.A., 1952. Use of Ranks in One-Criterion Variance Analysis. J. Am.
- 415 Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441
- 416 Lan, S., Wu, L., Zhang, D., Hu, C., 2012. Successional stages of biological soil crusts and
- 417 their microstructure variability in Shapotou region (China). Environ. Earth Sci. 65, 77–
- 418 88. https://doi.org/10.1007/s12665-011-1066-0
- 419 Lennon, J.T., Jones, S.E., 2011. Microbial seed banks: The ecological and evolutionary
- 420 implications of dormancy. Nat. Rev. Microbiol. 9, 119–130.
- 421 https://doi.org/10.1038/nrmicro2504

- 422 León-Sobrino, C., Ramond, J.B., Maggs-Kölling, G., Cowan, D.A., 2019. Nutrient
- 423 acquisition, rather than stress response over diel cycles, drives microbial transcription in
- 424 a hyper-arid Namib desert soil. Front. Microbiol. 10, 1–11.
- 425 https://doi.org/10.3389/fmicb.2019.01054
- 426 Leung, P.M., Bay, S.K., Meier, D. V., Chiri, E., Cowan, D.A., Gillor, O., Woebken, D.,
- 427 Greening, C., 2020. Energetic Basis of Microbial Growth and Persistence in Desert
- 428 Ecosystems. mSystems 5, 1–14. https://doi.org/10.1128/msystems.00495-19
- 429 Madigan, M.T., Martinko, J.M., Dunlap, P. V, Clark, D.P., 2009. Brock Biology of
- 430 microoragnisms.
- 431 Mager, D.M., Thomas, A.D., 2011. Extracellular polysaccharides from cyanobacterial soil
- 432 crusts: A review of their role in dryland soil processes. J. Arid Environ. 75, 91–97.

433 https://doi.org/10.1016/j.jaridenv.2010.10.001

- 434 Malek, E., McCurdy, G., Giles, B., 1999. Dew contribution to the annual water balances in
- 435 semi-arid desert valleys. J. Arid Environ. 42, 71–80.
- 436 https://doi.org/10.1006/jare.1999.0506
- 437 Mazor, G., Kidron, G.J., Vonshak, A., Abeliovich, A., 1996. The role of cyanobacterial
- 438 exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21,
- 439 121–130. https://doi.org/10.1016/0168-6496(96)00050-5
- 440 McMurdie, P.J., Holmes, S., Jordan, G., Chamberlain, S., 2017. Phyloseq: handling and
- 441 analysis of high-throughput microbiome census data.
- 442 Meier, D. V., Imminger, S., Gillor, O., Woebken, D., 2021. Distribution of Mixotrophy and
- 443 Desiccation Survival Mechanisms across Microbial Genomes in an Arid Biological Soil
- 444 Crust Community. mSystems 6, 1–20. https://doi.org/10.1128/msystems.00786-20
- 445 Meier, D. V, Imminger, S., Gillor, O., Woebken, D., 2020. Versatility of energy metabolism
- 446 and drought survival strategies characterize microbial genomes in biological soil crust.

447	Prep.
-----	-------

- 448 Murik, O., Oren, N., Shotland, Y., Raanan, H., Treves, H., Kedem, I., Keren, N., Hagemann,
- 449 M., Pade, N., Kaplan, A., 2017. What distinguishes cyanobacteria able to revive after
- 450 desiccation from those that cannot: the genome aspect. Environ. Microbiol. 19, 535–550.
- 451 https://doi.org/10.1111/1462-2920.13486
- 452 Murrell, P., 2004. grid Graphics Creating and Controlling Graphics Regions and Co- ordinate
- 453 Systems. Differences 1–17. https://doi.org/doi:10.1201/b10966-6
- 454 Narayan, N.R., Weinmaier, T., Laserna-Mendieta, E.J., Claesson, M.J., Shanahan, F.,
- 455 Dabbagh, K., Iwai, S., Desantis, T.Z., 2020. Piphillin predicts metagenomic composition
- 456 and dynamics from DADA2- corrected 16S rDNA sequences. BMC Genomics 21, 1–12.
- 457 https://doi.org/10.1186/s12864-020-6537-9
- 458 Oksanen, J., Blanchet, F.G., Kindt, R., Legen-, P., Minchin, P.R., Hara, R.B.O., Simpson,
- 459 G.L., Solymos, P., Stevens, M.H.H., 2014. Package 'vegan .' https://doi.org/ISBN 0460 387-95457-0
- 461 Oren, N., Raanan, H., Kedem, I., Turjeman, A., Bronstein, M., Kaplan, A., Murik, O., 2019.
- 462 Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light
- 463 and temperature sensing. Mol. Ecol. 28, 2305–2320. https://doi.org/10.1111/mec.15074
- 464 Oren, N., Raanan, H., Murik, O., Keren, N., Kaplan, A., 2017. Dawn illumination prepares
- desert cyanobacteria for dehydration. Curr. Biol. 27, R1056–R1057.
- 466 https://doi.org/10.1016/j.cub.2017.08.027
- 467 Péli, E.R., Lei, N., Pócs, T., Laufer, Z., Porembski, S., Tuba, Z., 2011. Ecophysiological
- 468 responses of desiccation-tolerant cryptobiotic crusts. Cent. Eur. J. Biol. 6, 838–849.
- 469 https://doi.org/10.2478/s11535-011-0049-1
- 470 Pointing, S.B., Belnap, J., 2012. Microbial colonization and controls in dryland systems. Nat.
- 471 Rev. Microbiol. 10, 551–562. https://doi.org/10.1038/nrmicro2831

- 472 Preiss, J., 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38,
- 473 419–458.
- 474 Preiss, J., Sivak, M., 1999. 3.14 Starch and Glycogen Biosynthesis, in: Barton, S.D.,
- 475 Nakanishi, K., Meth-Cohn, O.B.T.-C.N.P.C. (Eds.), Pergamon, Oxford, pp. 441–495.
- 476 https://doi.org/https://doi.org/10.1016/B978-0-08-091283-7.00082-5
- 477 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner,
- 478 F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing
- 479 and web-based tools. Nucleic Acids Res. 41, D590–D596.
- 480 https://doi.org/10.1093/nar/gks1219
- 481 R Core Team, I., 2016. R: A language and environment for statistical computing [WWW
- 482 Document]. R Found. Stat. Comput. URL http://www.r-project.org
- 483 Rajeev, L., Da Rocha, U.N., Klitgord, N., Luning, E.G., Fortney, J., Axen, S.D., Shih, P.M.,
- 484 Bouskill, N.J., Bowen, B.P., Kerfeld, C.A., Garcia-Pichel, F., Brodie, E.L., Northen,
- 485 T.R., Mukhopadhyay, A., 2013. Dynamic cyanobacterial response to hydration and
- 486 dehydration in a desert biological soil crust. ISME J. 7, 2178–2191.
- 487 https://doi.org/10.1038/ismej.2013.83
- 488 Repar, J., Briski, N., Buljubašić, M., Zahradka, K., Zahradka, D., 2012. Exonuclease VII is
- 489 involved in "reckless" DNA degradation in UV-irradiated Escherichia coli. Mutat. Res.
- 490 750. https://doi.org/10.1016/j.mrgentox.2012.10.005
- 491 Ritchie, R.J., 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone,
- 492 methanol and ethanol solvents. Photosynth. Res. 89, 27–41.
- 493 https://doi.org/10.1007/s11120-006-9065-9
- 494 Roberson, E.B., Firestone, M.K., 1992. Relationship between desiccation and
- 495 exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58,
- 496 1284–1291. https://doi.org/10.1128/aem.58.4.1284-1291.1992

497	Scrimgeour, C	C., 2008. So	oil Sampling an	d Methods of An	alysis (Second Edi	tion).

- 498 Experimental Agriculture. https://doi.org/10.1017/s0014479708006546
- 499 Sklarz, M.Y., Levin, L., Gordon, M., Chalifa-Caspi, V., 2018. NeatSeq-Flow: A Lightweight
- 500 High Throughput Sequencing Workflow Platform for Non-Programmers and
- 501 Programmers alike. bioRxiv 173005. https://doi.org/10.1101/173005
- 502 Slade, D., Radman, M., 2011. Oxidative Stress Resistance in Deinococcus radiodurans,
- 503 Microbiology and Molecular Biology Reviews. https://doi.org/10.1128/mmbr.00015-10
- 504 Št'ovíček, A., Kim, M., Or, D., Gillor, O., 2017. Microbial community response to hydration-
- desiccation cycles in desert soil. Sci. Rep. 7, 45735. https://doi.org/10.1038/srep45735
- 506 Sukenik, A., Kaplan-Levy, R.N., Welch, J.M., Post, A.F., 2012. Massive multiplication of
- 507 genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum
- 508 (Cyanobacteria). ISME J. 6, 670–679. https://doi.org/10.1038/ismej.2011.128
- 509 Sunyer-Figueres, M., Wang, C., Mas, A., 2018. Analysis of ribosomal RNA stability in dead
- 510 cells of wine yeast by quantitative PCR. Int. J. Food Microbiol. 270, 1–4.
- 511 https://doi.org/10.1016/j.ijfoodmicro.2018.01.020
- 512 Tveit, A.T., Hestnes, A.G., Robinson, S.L., Schintlmeister, A., Dedysh, S.N., Jehmlich, N.,
- 513 Von Bergen, M., Herbold, C., Wagner, M., Richter, A., Svenning, M.M., 2019.
- 514 Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. U.
- 515 S. A. 116, 8515–8524. https://doi.org/10.1073/pnas.1817812116
- 516 Wickham, H., 2017. R: Package 'scales.' Cran.
- 517 Wickham, H., 2016. Ggplot2: Elegant graphics for data analysis.
- 518 Wickham, H., Bache, S.M., 2014. Magrittr: A forward-pipe operator for R.
- 519 Wickham, H., Francois, R., Henry, L., Müller, K., 2018. Package "dplyr."
- 520 Wu, L., Lan, S., Zhang, D., Hu, C., 2013. Recovery of chlorophyll fluorescence and
- 521 CO2exchange in lichen soil crusts after rehydration. Eur. J. Soil Biol. 55, 77–82.

522 https://doi.org/10.1016/j.ejsobi.2012.12.006

- 523 Zvyagintsev, D.G., Zenova, G.M., Doroshenko, E.A., Gryadunova, A.A., Gracheva, T.A.,
- 524 Sudnitsyn, I.I., 2007. Actinomycete growth in conditions of low moisture. Biol. Bull. 34,
- 525 242–247. https://doi.org/10.1134/S1062359007030053

526

528 APPPENDIX A

529 Table A.1. Primers used in this study

530

	Primer	Primers (5' – 3')	Reference
	name		
	V3F(341)	CCTACGGGAGGCAGCAG	
16S rRNA	V4R(515)	TTACCGCGGCKGCTGGCAC	(Vlin days ath
	V4R(806)	GGACTACHVGGGTWTCTAAT	(Klindworth et al., 2013)
Universal	CS1	ACACTGACGACATGGTTCTACA	et al., 2013)
tags	CS2	TACGGTAGCAGAGACTTGGTCT	

531

533 Table A.2. Statistics from Dada2

Sample (Time point)	Input	Filtered	Percentage of input passed filter	Denoised	Non- chimeric	Percentage of input non- chimeric
T[R]	99090	87403	88.21	76272	68762	69.39
T[R]	102014	87207	85.49	75796	64954	63.67
T[R]	107763	94407	87.61	80242	72676	67.44
T[R]	94175	81352	86.38	69460	61519	65.32
T[R]	97752	85658	87.63	76694	65590	67.10
T[1]	102147	89670	87.79	79436	68611	67.17
T[1]	110406	96638	87.53	86745	76384	69.18
T[1]	94247	81576	86.56	72289	65755	69.77
T[1]	107731	94180	87.42	83504	72831	67.60
T[1]	96982	84993	87.64	77197	67547	69.65
T[2]	95525	82453	86.32	73811	63892	66.89
T[2]	90500	79303	87.63	75977	74636	82.47
T[2]	84648	74376	87.87	71060	69017	81.53
T[2]	96778	85143	87.98	75971	66483	68.70
T[2]	83749	72395	86.44	65649	60857	72.67
T[3]	85527	74977	87.66	66324	56872	66.50
T[3]	92648	81056	87.49	74512	67015	72.33
T[3]	98388	86526	87.94	78048	69910	71.06
T[3]	92219	79938	86.68	69799	62666	67.95
T[3]	88140	77515	87.95	73273	72113	81.82
T[0]	22095	21646	97.97	19900	12628	57.15
T[0]	23457	22888	97.57	18342	11627	49.57
T[0]	26072	25368	97.30	20726	12867	49.35

536 Table A.3. List of the genes used for function prediction ordered by groups and subgroups.

Group	Metabolic traits	KE GG ID	Function
	Putative DNA- binding protein	K02 524	K10; DNA binding protein (fs(1)K10, female sterile(1)K10)
	Putative DNA- binding protein	K03 111	ssb; single-strand DNA-binding protein
	Putative DNA- binding protein	K03 530	hupB; DNA-binding protein HU-beta
	Putative DNA- binding protein	K03 622	ssh10b; archaea-specific DNA-binding protein
	Putative DNA- binding protein	K03 746	hns; DNA-binding protein H-NS
	Putative DNA- binding protein	K04 047	dps; starvation-inducible DNA-binding protein
	Putative DNA- binding protein	K04 494	CHD8, HELSNF1; chromodomain helicase DNA binding protein 8 [EC:3.6.4.12]
DNA	Putative DNA- binding protein	K04 680	ID1; DNA-binding protein inhibitor ID1
conservation	Putative DNA- binding protein	K05 516	cbpA; curved DNA-binding protein
	Putative DNA- binding protein	K05 732	ARHGAP35, GRLF1; glucocorticoid receptor DNA- binding factor 1
	Putative DNA- binding protein	K05 787	hupA; DNA-binding protein HU-alpha
	Putative DNA- binding protein	K09 061	GCF, C2orf3; GC-rich sequence DNA-binding factor
	Putative DNA- binding protein	K09 423	BAS1; Myb-like DNA-binding protein BAS1
	Putative DNA- binding protein	K09 424	REB1; Myb-like DNA-binding protein REB1
	Putative DNA- binding protein	K09 425	K09425; Myb-like DNA-binding protein FlbD
	Putative DNA- binding protein	K09 426	RAP1; Myb-like DNA-binding protein RAP1

1	1	
Putative DNA- binding	K10	DDB2; DNA damage-binding protein 2
protein	140	2222, 21 Training of the proton 2
Putative DNA-	K10	DDP1, DNA domogo hinding protoin 1
binding protein	610	DDB1; DNA damage-binding protein 1
Putative DNA-	K10	
binding	728	TOPBP1; topoisomerase (DNA) II binding protein 1
protein Putative DNA-		
binding	K10	tus, tau; DNA replication terminus site-binding protein
protein	748	····, ····, <u>-</u> ····································
Histone-like	K10	RBBP4, HAT2, CAF1, MIS16; histone-binding protein
protein	752	RBBP4
Putative DNA- binding	K10	ku; DNA end-binding protein Ku
protein	979	ku, Divit end-oniding protein Ku
Putative DNA-	K11	CHD1; chromodomain-helicase-DNA-binding protein 1
binding	367	[EC:3.6.4.12]
protein Histone-like	K11	
protein	495	CENPA; histone H3-like centromeric protein A
Putative DNA-	K11	CBF2, CBF3A, CTF14; centromere DNA-binding
binding	574	protein complex CBF3 subunit A
protein Putative DNA-		
binding	K11	CEP3, CBF3B; centromere DNA-binding protein
protein	575	complex CBF3 subunit B
Putative DNA-	K11	CTF13, CBF3C; centromere DNA-binding protein
binding protein	576	complex CBF3 subunit C
Putative DNA-	K11	CHD3, MI2A; chromodomain-helicase-DNA-binding
binding	642	protein 3 [EC:3.6.4.12]
protein Putative DNA-		
binding	K11	CHD4, MI2B; chromodomain-helicase-DNA-binding
protein	643	protein 4 [EC:3.6.4.12]
Histone-like	K11	RBBP7; histone-binding protein RBBP7
protein Putative DNA-	659	
binding	K11	stpA; DNA-binding protein StpA
protein	685	
Putative DNA-	K12	ZDD1 DAL Z DNA hinding matrix 1
binding protein	965	ZBP1, DAI; Z-DNA binding protein 1
Putative DNA-	V12	
binding	K13 102	KIN; DNA/RNA-binding protein KIN17
protein	102	
Putative DNA- binding	K13	GCFC; GC-rich sequence DNA-binding factor
protein	211	ser e, ee nen sequence brar omding factor
Putative DNA-	K14	CHD5; chromodomain-helicase-DNA-binding protein 5
binding	435	[EC:3.6.4.12]
protein	-	

Putative DNA- binding protein	K14 436	CHD6; chromodomain-helicase-DNA-binding protein 6 [EC:3.6.4.12]
Putative DNA- binding protein	K14 437	CHD7; chromodomain-helicase-DNA-binding protein 7 [EC:3.6.4.12]
Putative DNA- binding protein	K14 438	CHD9; chromodomain-helicase-DNA-binding protein 9 [EC:3.6.4.12]
Putative DNA- binding protein	K14 507	ORCA2_3; AP2-domain DNA-binding protein ORCA2/3
Histone-like protein	K15 719	NCOAT, MGEA5; protein O-GlcNAcase / histone acetyltransferase [EC:3.2.1.169 2.3.1.48]
Putative DNA- binding protein	K16 640	ssh7; DNA-binding protein 7 [EC:3.1.27]
Putative DNA- binding protein	K17 693	ID2; DNA-binding protein inhibitor ID2
Putative DNA- binding protein	K17 694	ID3; DNA-binding protein inhibitor ID3
Putative DNA- binding protein	K17 695	ID4; DNA-binding protein inhibitor ID4
Putative DNA- binding protein	K17 696	EMC; DNA-binding protein inhibitor ID, other
Histone-like protein	K18 710	SLBP; histone RNA hairpin-binding protein
Putative DNA- binding protein	K18 946	gp32, ssb; single-stranded DNA-binding protein
Putative DNA- binding protein	K19 442	ICP8, DBP, UL29; Simplexvirus major DNA-binding protein
Histone-like protein	K19 799	RPH1; DNA damage-responsive transcriptional repressor / [histone H3]-trimethyl-L-lysine36 demethylase [EC:1.14.11.69]
Putative DNA- binding protein	K20 091	CHD2; chromodomain-helicase-DNA-binding protein 2 [EC:3.6.4.12]
Putative DNA- binding protein	K20 092	CHD1L; chromodomain-helicase-DNA-binding protein 1-like [EC:3.6.4.12]
Putative DNA- binding protein	K22 592	AHDC1; AT-hook DNA-binding motif-containing protein 1
Putative DNA- binding protein	K23 225	SATB1; DNA-binding protein SATB1
Putative DNA- binding	K23 226	SATB2; DNA-binding protein SATB2

	protein		
	Putative DNA-		
		K23	TADDD TDD42, TAD DNA 1: dias mastein 42
	binding	600	TARDBP, TDP43; TAR DNA-binding protein 43
	protein		
	DNA	IZOO	
	polymerase	K02	POLA1; DNA polymerase alpha subunit A [EC:2.7.7.7]
	PolA	320	
	(COG0258)		
	DNA		
	polymerase	K02	POLA2; DNA polymerase alpha subunit B
	PolA	321	
	(COG0258)		
	DNA		
	polymerase	K02	polA; DNA polymerase I [EC:2.7.7.7]
	PolA	335	point, Drift polymoruse i [De.2]
	(COG0258)		
	DNA	K02	dinB; DNA polymerase IV [EC:2.7.7.7]
	polymerase IV	346	dind, DivA polyinerase iv [EC.2.7.7.7]
DNA repair	Exodeoxyribo	K03	xseA; exodeoxyribonuclease VII large subunit
_	nuclease VII	601	[EC:3.1.11.6]
	Exodeoxyribo	K03	xseB; exodeoxyribonuclease VII small subunit
	nuclease VII	602	[EC:3.1.11.6]
	DNA	K04	dbh; DNA polymerase IV (archaeal DinB-like DNA
	polymerase IV	479	polymerase) [EC:2.7.7.7]
	Exodeoxyribo	K10	real and a survivariant and the second se
	nuclease VII	906	recE; exodeoxyribonuclease VIII [EC:3.1.11]
	DNA	K10	DOI 4: DNA nalumanasa IV (EC:27777)
	polymerase IV	981	POL4; DNA polymerase IV [EC:2.7.7.7]
	DNA	K16	NRPD1; DNA-directed RNA polymerase IV subunit 1
	polymerase IV	250	[EC:2.7.7.6]
	DNA	K16	NRPD2, NRPE2; DNA-directed RNA polymerase IV
	polymerase IV	252	and V subunit 2 [EC:2.7.7.6]
	DNA	K16	NRPD7, NRPE7; DNA-directed RNA polymerase IV
	polymerase IV	253	and V subunit 7
	NiFe	K00	
	hydrogenase	437	hydB; [NiFe] hydrogenase large subunit [EC:1.12.2.1]
	NiFe	K02	nifE; nitrogenase molybdenum-cofactor synthesis
	hydrogenase	587	protein NifE
	CO-		
	dehydrogenase	K03	coxS; aerobic carbon-monoxide dehydrogenase small
	CoxM & CoxS	518	subunit [EC:1.2.5.3]
	CO-		
	dehydrogenase	K03	coxM, cutM; aerobic carbon-monoxide dehydrogenase
	CoxM & CoxS	519	medium subunit [EC:1.2.5.3]
Litotrophy	CO-		
	dehydrogenase	K03	coxL, cutL; aerobic carbon-monoxide dehydrogenase
	large subunit	520	large subunit [EC:1.2.5.3]
	(coxL) Form I		
	NiFe	K05	hoxE; bidirectional [NiFe] hydrogenase diaphorase
	hydrogenase	586	subunit [EC:7.1.1.2]
	NiFe	K05	hoxF; bidirectional [NiFe] hydrogenase diaphorase
	hydrogenase	587	subunit [EC:7.1.1.2]
	NiFe	K05	hoxU; bidirectional [NiFe] hydrogenase diaphorase
	hydrogenase	588	subunit [EC:7.1.1.2]
	njarogenase	200	50000111 [LO.1.1.1.2]

SOX sulfur- oxidation system	K17 218	sqr; sulfide:quinone oxidoreductase [EC:1.8.5.4]
SOX sulfur- oxidation system	K17 222	soxA; L-cysteine S-thiosulfotransferase [EC:2.8.5.2]
SOX sulfur- oxidation system	K17 223	soxX; L-cysteine S-thiosulfotransferase [EC:2.8.5.2]
SOX sulfur- oxidation system	K17 224	soxB; S-sulfosulfanyl-L-cysteine sulfohydrolase [EC:3.1.6.20]
SOX sulfur- oxidation system	K17 225	soxC; sulfane dehydrogenase subunit SoxC
SOX sulfur- oxidation system	K17 226	soxY; sulfur-oxidizing protein SoxY
SOX sulfur- oxidation system	K17 227	soxZ; sulfur-oxidizing protein SoxZ
NiFe hydrogenase	K18 005	hoxF; [NiFe] hydrogenase diaphorase moiety large subunit [EC:1.12.1.2]
NiFe hydrogenase	K18 006	hoxU; [NiFe] hydrogenase diaphorase moiety small subunit [EC:1.12.1.2]
NiFe hydrogenase	K18 008	hydA; [NiFe] hydrogenase small subunit [EC:1.12.2.1]
Propane monooxygenas e (soluble)	K18 223	prmA; propane 2-monooxygenase large subunit [EC:1.14.13.227]
Propane monooxygenas e (soluble)	K18 224	prmC; propane 2-monooxygenase small subunit [EC:1.14.13.227]
Propane monooxygenas e (soluble)	K18 225	prmB; propane monooxygenase reductase component [EC:1.18.1]
Propane monooxygenas e (soluble)	K18 226	prmD; propane monooxygenase coupling protein
SOX sulfur- oxidation system	K22 622	soxD; S-disulfanyl-L-cysteine oxidoreductase SoxD [EC:1.8.2.6]
SOX sulfur- oxidation system	K24 007	soxD; cytochrome aa3-type oxidase subunit SoxD
SOX sulfur- oxidation system	K24 008	soxC; cytochrome aa3-type oxidase subunit III
SOX sulfur- oxidation system	K24 009	soxB; cytochrome aa3-type oxidase subunit I [EC:7.1.1.4]
SOX sulfur- oxidation system	K24 010	soxA; cytochrome aa3-type oxidase subunit II [EC:7.1.1.4]

	COV and from		
	SOX sulfur-	K24	soxM; cytochrome aa3-type oxidase subunit I/III
	oxidation	011	[EC:7.1.1.4]
	system		
	ABC sugar	K02	ABC.MS.P; multiple sugar transport system permease
	transporters	025	protein
	ABC sugar	K02	ABC.MS.P1; multiple sugar transport system permease
	transporters	026	protein
	ABC sugar	K02	ABC.MS.S; multiple sugar transport system substrate-
	transporters	027	binding protein
	ABC sugar	K02	ABC.SS.A; simple sugar transport system ATP-binding
	transporters	056	protein [EC:7.5.2]
	ABC sugar	K02	ABC.SS.P; simple sugar transport system permease
	transporters	057	protein
	ABC sugar	K02	ABC.SS.S; simple sugar transport system substrate-
	transporters	058	binding protein
	PTS sugar	K02	
	importers	777	crr; sugar PTS system EIIA component [EC:2.7.1]
	Amino acid	K03	
	transporter	293	TC.AAT; amino acid transporter, AAT family
	Peptide	K03	TC.POT; proton-dependent oligopeptide transporter,
	transporter	305	POT family
	Amino acid	K03	TC.LIVCS; branched-chain amino acid:cation
		311	transporter, LIVCS family
	transporter		
	Carboxylate	K03	TC.DCUC, dcuC, dcuD; C4-dicarboxylate transporter,
	transporters	326 K02	DcuC family
	Amino acid	K03	SLC7A; solute carrier family 7 (L-type amino acid
	transporter	450	transporter), other
Organotrophy	Glycosyl	K04	ycjT; hypothetical glycosyl hydrolase [EC:3.2.1]
	hydrolases	844	
	Amino acid	K05	SLC6A15S; solute carrier family 6 (neurotransmitter
	transporter	048	transporter, amino acid/orphan) member 15/16/17/18/20
	Amino acid	K05	SLC1A4, SATT; solute carrier family 1 (neutral amino
	transporter	615	acid transporter), member 4
	Amino acid	K05	SLC1A5; solute carrier family 1 (neutral amino acid
	transporter	616	transporter), member 5
	Amino acid	K07	yuiF; putative amino acid transporter
	transporter	084	5 /1 ···································
	Carboxylate	K07	dcuA; anaerobic C4-dicarboxylate transporter DcuA
	transporters	791	,
	Carboxylate	K07	dcuB; anaerobic C4-dicarboxylate transporter DcuB
	transporters	792	
	ABC sugar	K10	ABC.GGU.S, chvE; putative multiple sugar transport
	transporters	546	system substrate-binding protein
	ABC sugar	K10	ABC.GGU.P, gguB; putative multiple sugar transport
	transporters	547	system permease protein
	ABC sugar	K10	ABC.GGU.A, gguA; putative multiple sugar transport
	transporters	548	system ATP-binding protein [EC:7.5.2]
	Carboxylate	K11	dctQ; C4-dicarboxylate transporter, DctQ subunit
	transporters	689	ucių, C4-uicarboxyraie transporter, Dcių subuill
	Carboxylate	K11	datM: C4 diagrammatic transmontan DatM and main
	transporters	690	dctM; C4-dicarboxylate transporter, DctM subunit
	Amino acid	K13	SLC38A3, SNAT3; solute carrier family 38 (sodium-
	transporter	576	coupled neutral amino acid transporter), member 3

I		
Carboxylate	K13	SLC25A10, DIC; solute carrier family 25
transporters	577	(mitochondrial dicarboxylate transporter), member 10
Amino acid	K13	SLC7A5, LAT1; solute carrier family 7 (L-type amino
transporter	780	acid transporter), member 5
Amino acid	K13	SLC7A8, LAT2; solute carrier family 7 (L-type amino
transporter	781	acid transporter), member 8
Amino acid	K13	SLC7A10, ASC1; solute carrier family 7 (L-type amino
transporter	782	acid transporter), member 10
Amino acid	K13	SLC7A1, ATRC1; solute carrier family 7 (cationic
transporter	863	amino acid transporter), member 1
Amino acid	K13	SLC7A2, ATRC2; solute carrier family 7 (cationic
transporter	864	amino acid transporter), member 2
Amino acid	K13	SLC7A3, ATRC3; solute carrier family 7 (cationic
transporter	865	amino acid transporter), member 3
Amino acid	K13	SLC7A4; solute carrier family 7 (cationic amino acid
transporter	866	transporter), member 4
Amino acid	K13	SLC7A7; solute carrier family 7 (L-type amino acid
transporter	867	transporter), member 7
Amino acid	K13	SLC7A9, BAT1; solute carrier family 7 (L-type amino
transporter	868	acid transporter), member 9
Amino acid	K13	SLC7A11; solute carrier family 7 (L-type amino acid
transporter	869	transporter), member 11
Amino acid	K13	SLC7A13, AGT1; solute carrier family 7 (L-type amino
transporter	870	acid transporter), member 13
Amino acid	K13	SLC7A14; solute carrier family 7 (cationic amino acid
transporter	871	transporter), member 14
Amino acid	K13	SLC7A6; solute carrier family 7 (L-type amino acid
transporter	872	transporter), member 6
Peptide	K14	SLC15A1, PEPT1; solute carrier family 15
transporter	206	(oligopeptide transporter), member 1
Amino acid	K14	SLC38A2, SNAT2; solute carrier family 38 (sodium-
transporter	207	coupled neutral amino acid transporter), member 2
Amino acid	K14	SLC36A, PAT; solute carrier family 36 (proton-coupled
transporter	209	amino acid transporter)
Amino acid	K14	SLC3A1, RBAT; solute carrier family 3 (neutral and
transporter	210	basic amino acid transporter), member 1
Carboxylate	K14	SLC5A8_12, SMCT; solute carrier family 5 (sodium-
transporters	388	coupled monocarboxylate transporter), member 8/12
Carboxylate	K14	SLC13A2_3_5; solute carrier family 13 (sodium-
transporters	445	dependent dicarboxylate transporter), member 2/3/5
Peptide	K14	SLC15A2, PEPT2; solute carrier family 15
transporter	637	(oligopeptide transporter), member 2
Peptide	K14	SLC15A3_4, PHT; solute carrier family 15
transporter	638	(peptide/histidine transporter), member 3/4
aansporter		SLC38A1, SNAT1, GLNT; solute carrier family 38
Amino acid	K14	(sodium-coupled neutral amino acid transporter),
transporter	990	(solum-coupled neutral annuo acid transporter), member 1
Amino acid	K14	SLC38A4, SNAT4; solute carrier family 38 (sodium-
transporter	8991	coupled neutral amino acid transporter), member 4
Amino acid	K14	SLC38A5, SNAT5; solute carrier family 38 (sodium-
	кт4 992	coupled neutral amino acid transporter), member 5
transporter		
Amino acid	K14	SLC38A6, SNAT6; solute carrier family 38 (sodium-
transporter	993	coupled neutral amino acid transporter), member 6
Amino acid	K14	SLC38A7_8; solute carrier family 38 (sodium-coupled

	4	004	
	transporter	994	neutral amino acid transporter), member 7/8
	Amino acid	K14	SLC38A9; solute carrier family 38 (sodium-coupled
	transporter	995	neutral amino acid transporter), member 9
	Amino acid	K14	SLC38A10; solute carrier family 38 (sodium-coupled
	transporter	996	neutral amino acid transporter), member 10
	Amino acid	K14	SLC38A11; solute carrier family 38 (sodium-coupled
	transporter	997	neutral amino acid transporter), member 11
	Amino acid	K15	SLC32A, VGAT; solute carrier family 32 (vesicular
	transporter	015	inhibitory amino acid transporter)
	Carboxylate	K15	SLC25A21, ODC; solute carrier family 25
	transporters	110	(mitochondrial 2-oxodicarboxylate transporter),
	-		member 21
	Amino acid	K16	YAT; yeast amino acid transporter
	transporter	261	1111, youst uninto uoto transportor
	Amino acid	K16	yjeH; amino acid efflux transporter
	transporter	263	yjerr, annio acid erritax transporter
	Peptide	K17	sbmA, bacA; peptide/bleomycin uptake transporter
	transporter	938	som v, oach, peptice ocomyen uptake it ansporter
	RuBisCO	K01	rbcL; ribulose-bisphosphate carboxylase large chain
		601	[EC:4.1.1.39]
	Chlorophyll	K01	phrB; deoxyribodipyrimidine photo-lyase [EC:4.1.99.3]
	synthesis	669	
	Chlorophyll	K02	psaA; photosystem I P700 chlorophyll a apoprotein A1
	synthesis	689	
	Chlorophyll	K02	psaB; photosystem I P700 chlorophyll a apoprotein A2
	synthesis	690	
	Chlorophyll	K02	psaC; photosystem I subunit VII
	synthesis	691	
	Chlorophyll	K02	psaD; photosystem I subunit II
	synthesis	692	
	Chlorophyll	K02	psaE; photosystem I subunit IV
	synthesis	693	
	Chlorophyll	K02	psaF; photosystem I subunit III
	synthesis	694 K02	
Photothrophy	Chlorophyll	K02	psaH; photosystem I subunit VI
· - 1 - J	synthesis	695 K02	
	Chlorophyll	K02	psaI; photosystem I subunit VIII
	synthesis	696 K02	
	Chlorophyll synthesis	K02 697	psaJ; photosystem I subunit IX
	Chlorophyll	K02	
	synthesis	K 02 698	psaK; photosystem I subunit X
	Chlorophyll	K02	
	synthesis	K02 699	psaL; photosystem I subunit XI
	Chlorophyll	K02	
	synthesis	K02 700	psaM; photosystem I subunit XII
	Chlorophyll	K02	
	synthesis	K 02 701	psaN; photosystem I subunit PsaN
	Chlorophyll		
	synthesis	K02 702	psaX; photosystem I 4.8kDa protein
	Chlorophyll	K02	psbA; photosystem II P680 reaction center D1 protein
	synthesis	703	[EC:1.10.3.9]
	Chlorophyll	K02	psbB; photosystem II CP47 chlorophyll apoprotein
	Chlorophyn	N 02	psob, photosystem in Cr47 chlorophyn apoprotem

synthesis	704	
Chlorophyll	K02	
synthesis	705	psbC; photosystem II CP43 chlorophyll apoprotein
Chlorophyll	K02	psbD; photosystem II P680 reaction center D2 protein
synthesis	706	[EC:1.10.3.9]
Chlorophyll	K02	
synthesis	707	psbE; photosystem II cytochrome b559 subunit alpha
Chlorophyll	K02	
synthesis	708	psbF; photosystem II cytochrome b559 subunit beta
Chlorophyll	K02	
synthesis	709	psbH; photosystem II PsbH protein
Chlorophyll	K02	
synthesis	710	psbI; photosystem II PsbI protein
Chlorophyll	K02	
synthesis	711	psbJ; photosystem II PsbJ protein
Chlorophyll	K02	
synthesis	712	psbK; photosystem II PsbK protein
Chlorophyll	K02	
synthesis	713	psbL; photosystem II PsbL protein
Chlorophyll	K02	
synthesis	714	psbM; photosystem II PsbM protein
Chlorophyll	K02	psbO; photosystem II oxygen-evolving enhancer protein
synthesis	716	1
Chlorophyll	K02	psbP; photosystem II oxygen-evolving enhancer protein
synthesis	717	2
Chlorophyll	K02	
synthesis	718	psbT; photosystem II PsbT protein
Chlorophyll	K02	
synthesis	719	psbU; photosystem II PsbU protein
Chlorophyll	K02	
synthesis	720	psbV; photosystem II cytochrome c550
Chlorophyll	K02	
synthesis	721	psbW; photosystem II PsbW protein
Chlorophyll	K02	
synthesis	722	psbX; photosystem II PsbX protein
Chlorophyll	K02	
synthesis	723	psbY; photosystem II PsbY protein
Chlorophyll	K02	a h 7 a h sta and an H D h 7 a t
synthesis	724	psbZ; photosystem II PsbZ protein
Chlorophyll	K03	LTB, TNFC; lymphotoxin beta (TNF superfamily,
synthesis	157	member 3)
Chlorophyll	K03	TNFRSF3, LTBR; lymphotoxin beta receptor TNFR
synthesis	159	superfamily member 3
Chlorophyll	K03	
synthesis	541	psbR; photosystem II 10kDa protein
Chlorophyll	K03	nah St. nhotogyatam II 20kDa zrataje
synthesis	542	psbS; photosystem II 22kDa protein
Chlorophyll	K03	an Bu anone nhotoproduct lucas [EC:4.1.00.14]
synthesis	716	splB; spore photoproduct lyase [EC:4.1.99.14]
Chlorophyll	K05	LTA, TNFB; lymphotoxin alpha (TNF superfamily,
synthesis	468	member 1)
Chlorophyll	K06	splA; transcriptional regulator of the spore photoproduct
synthesis	315	lyase operon

	CI 1 1 11	TTO	
	Chlorophyll	K06	K06876; deoxyribodipyrimidine photolyase-related
	synthesis	876	protein
	Chlorophyll	K08	psbQ; photosystem II oxygen-evolving enhancer protein
	synthesis	901	3
	Chlorophyll	K08	psb27; photosystem II Psb27 protein
	synthesis	902	psoz7, photosystem n r soz7 protein
	Chlorophyll	K08	nah29, nhotogystem II 12kDa protain
	synthesis	903	psb28; photosystem II 13kDa protein
	Chlorophyll	K08	
	synthesis	904	psb28-2; photosystem II Psb28-2 protein
	Chlorophyll	K08	
	synthesis	905	psaG; photosystem I subunit V
	Chlorophyll	K08	~
	synthesis	928	pufL; photosynthetic reaction center L subunit
	Chlorophyll	K08	
	synthesis	929	pufM; photosynthetic reaction center M subunit
	Chlorophyll	K08	
	synthesis	940	pscA; photosystem P840 reaction center large subunit
	Chlorophyll	940 K08	neaD: photosystem D840 repetion contar iron suffer
	1 .		pscB; photosystem P840 reaction center iron-sulfur
	synthesis Chloromhyll	941 V09	protein
	Chlorophyll	K08	pscC; photosystem P840 reaction center cytochrome
	synthesis	942	c551
	Chlorophyll	K08	pscD; photosystem P840 reaction center protein PscD
	synthesis	943	
	Chlorophyll	K11	pixI; positive phototaxis protein PixI
	synthesis	524	F, F F
	Chlorophyll	K13	puhA; photosynthetic reaction center H subunit
	synthesis	991	
	Chlorophyll	K13	pufC; photosynthetic reaction center cytochrome c
	synthesis	992	subunit
	Chlorophyll	K13	pufX; photosynthetic reaction center PufX protein
	synthesis	994	
	Chlorophyll	K14	psaO; photosystem I subunit PsaO
	synthesis	332	
	Chlorophyll	K19	IMPG1, SPACR; interphotoreceptor matrix
	synthesis	016	proteoglycan 1
	Chlorophyll	K19	IMPG2, SPACRCAN; interphotoreceptor matrix
	synthesis	017	proteoglycan 2
	Chlorophyll	K20	PHOT; phototropin [EC:2.7.11.1]
	synthesis	715	
	Chlorophyll	K22	FAP; fatty acid photodecarboxylase [EC:4.1.1.106]
	synthesis	464	
	Chlorophyll	K22	Aequorin; calcium-regulated photoprotein
	synthesis	619	[EC:1.13.12.24]
	Chlorophyll	K24	PCARE; photoreceptor cilium actin regulator
	synthesis	165	
	Cytochrome C	K00	ccoN; cytochrome c oxidase cbb3-type subunit I
	oxidase	404	[EC:7.1.1.9]
	Cytochrome C	K00	ccoO; cytochrome c oxidase cbb3-type subunit II
ROS-damage	oxidase	405	
prevention	Cytochrome C	K00	and be autochrome a ovidese shh? tune subunit III
_	oxidase	406	ccoP; cytochrome c oxidase cbb3-type subunit III
	Cytochrome C	K00	and with a brown a pridage ath? turns where it W
	oxidase	407	ccoQ; cytochrome c oxidase cbb3-type subunit IV

[1	
Cytochrome bd ubiquinol oxidase	K00 424	cydX; cytochrome bd-I ubiquinol oxidase subunit X [EC:7.1.1.7]
Cytochrome C oxidase	K00 424	cydX; cytochrome bd-I ubiquinol oxidase subunit X [EC:7.1.1.7]
Cytochrome bd ubiquinol oxidase	K00 425	cydA; cytochrome bd ubiquinol oxidase subunit I [EC:7.1.1.7]
Cytochrome C oxidase	K00 425	cydA; cytochrome bd ubiquinol oxidase subunit I [EC:7.1.1.7]
Cytochrome bd ubiquinol oxidase	K00 426	cydB; cytochrome bd ubiquinol oxidase subunit II [EC:7.1.1.7]
Cytochrome C oxidase	K00 426	cydB; cytochrome bd ubiquinol oxidase subunit II [EC:7.1.1.7]
Cytochrome C oxidase	K00 428	E1.11.1.5; cytochrome c peroxidase [EC:1.11.1.5]
Cytochrome C oxidase	K02 256	COX1; cytochrome c oxidase subunit 1 [EC:7.1.1.9]
Cytochrome C oxidase	K02 258	COX11, ctaG; cytochrome c oxidase assembly protein subunit 11
Cytochrome C oxidase	K02 259	COX15, ctaA; cytochrome c oxidase assembly protein subunit 15
Cytochrome C oxidase	K02 260	COX17; cytochrome c oxidase assembly protein subunit 17
Cytochrome C oxidase	K02 261	COX2; cytochrome c oxidase subunit 2
Cytochrome C oxidase Cytochrome C	K02 262	COX3; cytochrome c oxidase subunit 3
oxidase	K02 263	COX4; cytochrome c oxidase subunit 4
Cytochrome C oxidase Cytochrome C	K02 264	COX5A; cytochrome c oxidase subunit 5a
oxidase	K02 265	COX5B; cytochrome c oxidase subunit 5b
Cytochrome C oxidase Cytochrome C	K02 266 K02	COX6A; cytochrome c oxidase subunit 6a
cytochrome C oxidase Cytochrome C	267 K02	COX6B; cytochrome c oxidase subunit 6b
oxidase Cytochrome C	268 K02	COX6C; cytochrome c oxidase subunit 6c
oxidase Cytochrome C	269 K02	COX7; cytochrome c oxidase subunit 7
oxidase Cytochrome C	270 K02	COX7A; cytochrome c oxidase subunit 7a
oxidase Cytochrome C	271 K02	COX7B; cytochrome c oxidase subunit 7b
oxidase Cytochrome C	272 K02	COX7C; cytochrome c oxidase subunit 7c
oxidase Cytochrome C	273 K02	COX8; cytochrome c oxidase subunit 8 coxA, ctaD; cytochrome c oxidase subunit I
oxidase Cytochrome C	274 K02	[EC:7.1.1.9] coxB, ctaC; cytochrome c oxidase subunit II
Cytoemonie C	1102	cond, cue, cytoenionie e oniuase subunit n

	r	
oxidase	275	[EC:7.1.1.9]
Cytochrome C	K02	coxC, ctaE; cytochrome c oxidase subunit III
oxidase	276	[EC:7.1.1.9]
Cytochrome C	K02	coxD, ctaF; cytochrome c oxidase subunit IV
oxidase	277	[EC:7.1.1.9]
Cytochrome C	K02	cyoA; cytochrome o ubiquinol oxidase subunit II
oxidase	297	[EC:7.1.1.3]
Cytochrome C	K02	cyoB; cytochrome o ubiquinol oxidase subunit I
oxidase	298	[EC:7.1.1.3]
Cytochrome C	K02	
oxidase	299	cyoC; cytochrome o ubiquinol oxidase subunit III
Cytochrome C	K02	
oxidase	300	cyoD; cytochrome o ubiquinol oxidase subunit IV
Cytochrome C	K02	qoxA; cytochrome aa3-600 menaquinol oxidase subunit
oxidase	826	II [EC:7.1.1.5]
Cytochrome C	K02	qoxB; cytochrome aa3-600 menaquinol oxidase subunit
oxidase	827	I [EC:7.1.1.5]
Cytochrome C	K02	qoxC; cytochrome aa3-600 menaquinol oxidase subunit
oxidase	828	III [EC:7.1.1.5]
Cytochrome C	K02	qoxD; cytochrome aa3-600 menaquinol oxidase subunit
oxidase	829	IV [EC:7.1.1.5]
	K07	
Mn2+ catalase	217	K07217; Mn-containing catalase
Cytochrome C	K15	coxAC; cytochrome c oxidase subunit I+III
oxidase	408	[EC:7.1.1.9]
Cytochrome C	K15	ccoNO; cytochrome c oxidase cbb3-type subunit I/II
oxidase	862	[EC:7.1.1.9]
Cytochrome C	K18	
oxidase	173	COA1; cytochrome c oxidase assembly factor 1
Cytochrome C	K18	
oxidase	174	COA2; cytochrome c oxidase assembly factor 2
Cytochrome C	K18	CCDC56, COA3; cytochrome c oxidase assembly factor
oxidase	175	3, animal type
Cytochrome C	K18	COA3; cytochrome c oxidase assembly factor 3, fungi
oxidase	176	type
Cytochrome C	K18	
oxidase	177	COA4; cytochrome c oxidase assembly factor 4
Cytochrome C	K18	COA5, PET191; cytochrome c oxidase assembly factor
oxidase	178	5
Cytochrome C	K18	
oxidase	179	COA6; cytochrome c oxidase assembly factor 6
Cytochrome C	K18	COA7, SELRC1, RESA1; cytochrome c oxidase
oxidase	180	assembly factor 7
Cytochrome C	K18	•
oxidase	181	COX14; cytochrome c oxidase assembly factor 14
Cytochrome C	K18	COX16; cytochrome c oxidase assembly protein subunit
oxidase	182	16
Cytochrome C	K18	COX19; cytochrome c oxidase assembly protein subunit
oxidase	183	19
Cytochrome C	K18	COX20; cytochrome c oxidase assembly protein subunit
oxidase	184	20
Cytochrome C	K18	COX23; cytochrome c oxidase assembly protein subunit
oxidase	185	23
Smanbe	105	

	1	1			
	Cytochrome C	K18	TACO1; translational activator of cytochrome c oxidase		
	oxidase	189	1		
	Cytochrome	K22	appX; cytochrome bd-II ubiquinol oxidase subunit		
	bd ubiquinol	501	AppX [EC:7.1.1.7]		
	oxidase		· · · ·		
	Cytochrome C	K22	appX; cytochrome bd-II ubiquinol oxidase subunit		
	oxidase	501	AppX [EC:7.1.1.7]		
	Cytochrome C	K24	soxD; cytochrome aa3-type oxidase subunit SoxD		
	oxidase	007	, , , , , , , , , , , , , , , , , , ,		
	Cytochrome C	K24	soxC; cytochrome aa3-type oxidase subunit III		
	oxidase	008			
	Cytochrome C	K24	soxB; cytochrome aa3-type oxidase subunit I		
	oxidase	009	[EC:7.1.1.4]		
	Cytochrome C	K24	soxA; cytochrome aa3-type oxidase subunit II		
	oxidase	010	[EC:7.1.1.4]		
	Cytochrome C	K24	soxM; cytochrome aa3-type oxidase subunit I/III		
	oxidase	011 V00	[EC:7.1.1.4]		
	Glycogen	K00 693	GYS; glycogen synthase [EC:2.4.1.11]		
	synthesis Sporulation	093			
	Sporulation (Actinobacteri	K02	spo0F; two-component system, response regulator,		
	(Actinobacteri a)	490	stage 0 sporulation protein F		
	Sporulation				
	(Actinobacteri	K02	kinA; two-component system, sporulation sensor kinase		
	a)	491	A [EC:2.7.13.3]		
	Glycogen	K03	GSK3B; glycogen synthase kinase 3 beta		
	synthesis	083	[EC:2.7.11.26]		
	Sporulation				
	(Actinobacteri	K03	sigH; RNA polymerase sporulation-specific sigma		
	a)	091	factor		
	Sporulation	K04	spoVT; AbrB family transcriptional regulator, stage V		
	(Actinobacteri	769	sport i, nord raining transcriptional regulator, stage v sporulation protein T		
	a)	10)			
	Sporulation	K06	spoIIID; putative DeoR family transcriptional regulator,		
Sporulation	(Actinobacteri	283	stage III sporulation protein D		
▲ · · ·	a)	-			
	Sporulation	K06	las De ses saleties inhibites Key D		
	(Actinobacteri a)	348	kapD; sporulation inhibitor KapD		
	Sporulation				
	(Actinobacteri	K06	rapA, spo0L; response regulator aspartate phosphatase		
	a)	359	A (stage 0 sporulation protein L) [EC:3.1]		
	Sporulation	170 -			
	(Actinobacteri	K06	sda; developmental checkpoint coupling sporulation		
	a)	371	initiation to replication initiation		
	Sporulation	K06	ano (P) stage () anomilation protein P (anomilation		
	(Actinobacteri	K06 375	spo0B; stage 0 sporulation protein B (sporulation initiation phosphotransferase) [EC:2.7]		
	a)	575			
	Sporulation	K06			
	(Actinobacteri	376	spo0E; stage 0 sporulation regulatory protein		
	a)				
	Sporulation	K06	and OM, and analytican 1		
	(Actinobacteri	377	spo0M; sporulation-barren protein		
	a)				

Sporulation (Actinobacteri a)	K06 378	spoIIAA; stage II sporulation protein AA (anti-sigma F factor antagonist)
Sporulation (Actinobacteri a)	K06 379	spoIIAB; stage II sporulation protein AB (anti-sigma F factor) [EC:2.7.11.1]
Sporulation (Actinobacteri a)	K06 380	spoIIB; stage II sporulation protein B
Sporulation (Actinobacteri a)	K06 381	spoIID; stage II sporulation protein D
Sporulation (Actinobacteri a)	K06 382	spoIIE; stage II sporulation protein E [EC:3.1.3.16]
Sporulation (Actinobacteri a)	K06 383	spoIIGA; stage II sporulation protein GA (sporulation sigma-E factor processing peptidase) [EC:3.4.23]
Sporulation (Actinobacteri a)	K06 384	spoIIM; stage II sporulation protein M
Sporulation (Actinobacteri a)	K06 385	spoIIP; stage II sporulation protein P
Sporulation (Actinobacteri a)	K06 386	spoIIQ; stage II sporulation protein Q
Sporulation (Actinobacteri a)	K06 387	spoIIR; stage II sporulation protein R
Sporulation (Actinobacteri a)	K06 388	spoIISA; stage II sporulation protein SA
Sporulation (Actinobacteri a)	K06 389	spoIISB; stage II sporulation protein SB
Sporulation (Actinobacteri a)	K06 390	spoIIIAA; stage III sporulation protein AA
Sporulation (Actinobacteri a)	K06 391	spoIIIAB; stage III sporulation protein AB
Sporulation (Actinobacteri a)	K06 392	spoIIIAC; stage III sporulation protein AC
Sporulation (Actinobacteri a)	K06 393	spoIIIAD; stage III sporulation protein AD
Sporulation (Actinobacteri a)	K06 394	spoIIIAE; stage III sporulation protein AE
Sporulation (Actinobacteri a)	K06 395	spoIIIAF; stage III sporulation protein AF
	(Actinobacteria)Sporulation(Acti	(Actinobacteri a)N00 378Sporulation (Actinobacteri a)K06 379Sporulation (Actinobacteri a)K06 380Sporulation (Actinobacteri a)K06 381Sporulation (Actinobacteri a)K06 381Sporulation (Actinobacteri a)K06 382Sporulation (Actinobacteri a)K06 383Sporulation (Actinobacteri a)K06 383Sporulation (Actinobacteri a)K06 384Sporulation (Actinobacteri a)K06 385Sporulation (Actinobacteri a)K06 387Sporulation (Actinobacteri a)K06 387Sporulation (Actinobacteri a)K06 387Sporulation (Actinobacteri a)K06 389Sporulation (Actinobacteri a)K06 389Sporulation (Actinobacteri a)K06 390Sporulation (Actinobacteri a)K06 390Sporulation (Actinobacteri a)K06 390Sporulation (Actinobacteri a)K06 390Sporulation (Actinobacteri a)K06 391Sporulation (Actinobacteri a)K06 392Sporulation (Actinobacteri a)K06 393Sporulation (Actinobacteri a)K06 393Sporulation (Actinobacteri a)K06 393Sporulation (Actinobacteri a)K06 393Sporulation (Actinobacteri a)K06 393Sporulation (Actinobacteri a)K06 393

1		
Sporulation (Actinobacteri a)	K06 396	spoIIIAG; stage III sporulation protein AG
Sporulation (Actinobacteri a)	K06 397	spoIIIAH; stage III sporulation protein AH
Sporulation (Actinobacteri a)	K06 398	spoIVA; stage IV sporulation protein A
Sporulation (Actinobacteri a)	K06 399	spoIVB; stage IV sporulation protein B [EC:3.4.21.116]
Sporulation (Actinobacteri a)	K06 401	spoIVFA; stage IV sporulation protein FA
Sporulation (Actinobacteri a)	K06 402	spoIVFB; stage IV sporulation protein FB [EC:3.4.24]
Sporulation (Actinobacteri a)	K06 403	spoVAA; stage V sporulation protein AA
Sporulation (Actinobacteri a)	K06 404	spoVAB; stage V sporulation protein AB
Sporulation (Actinobacteri a)	K06 405	spoVAC; stage V sporulation protein AC
Sporulation (Actinobacteri a)	K06 406	spoVAD; stage V sporulation protein AD
Sporulation (Actinobacteri a)	K06 407	spoVAE; stage V sporulation protein AE
Sporulation (Actinobacteri a)	K06 408	spoVAF; stage V sporulation protein AF
Sporulation (Actinobacteri a)	K06 409	spoVB; stage V sporulation protein B
Sporulation (Actinobacteri a)	K06 412	spoVG; stage V sporulation protein G
Sporulation (Actinobacteri a)	K06 413	spoVK; stage V sporulation protein K
Sporulation (Actinobacteri a)	K06 414	spoVM; stage V sporulation protein M
Sporulation (Actinobacteri a)	K06 415	spoVR; stage V sporulation protein R
Sporulation (Actinobacteri a)	K06 416	spoVS; stage V sporulation protein S

	T	
Sporulation (Actinobacteri a)	K06 417	spoVID; stage VI sporulation protein D
Sporulation (Actinobacteri a)	K06 437	yknT; sigma-E barrenled sporulation protein
Sporulation (Actinobacteri a)	K06 438	yqfD; similar to stage IV sporulation protein
Sporulation (Actinobacteri a)	K07 697	kinB; two-component system, sporulation sensor kinase B [EC:2.7.13.3]
Sporulation (Actinobacteri a)	K07 698	kinC; two-component system, sporulation sensor kinase C [EC:2.7.13.3]
Sporulation (Actinobacteri a)	K07 699	spo0A; two-component system, response regulator, stage 0 sporulation protein A
Sporulation (Actinobacteri a)	K08 293	SMK1; sporulation-specific mitogen-activated protein kinase SMK1 [EC:2.7.11.24]
Sporulation (Actinobacteri a)	K08 384	spoVD; stage V sporulation protein D (sporulation- specific penicillin-binding protein)
Glycogen synthesis	K08 822	GSK3A; glycogen synthase kinase 3 alpha [EC:2.7.11.26]
Sporulation (Actinobacteri a)	K12 576	SPO12; sporulation-specific protein 12
Sporulation (Actinobacteri a)	K12 771	SPS1; sporulation-specific protein 1 [EC:2.7.11.1]
Sporulation (Actinobacteri a)	K12 772	SPS4; sporulation-specific protein 4
Sporulation (Actinobacteri a)	K12 773	SPR3; sporulation-regulated protein 3
Sporulation (Actinobacteri a)	K12 783	SSP1; sporulation-specific protein 1
Sporulation (Actinobacteri a)	K13 532	kinD; two-component system, sporulation sensor kinase D [EC:2.7.13.3]
Sporulation (Actinobacteri a)	K13 533	kinE; two-component system, sporulation sensor kinase E [EC:2.7.13.3]
Glycogen synthesis	K16 150	K16150; glycogen synthase [EC:2.4.1.11]
Exopolysaccha ride synthesis	K16 566	exoY; exopolysaccharide production protein ExoY
Exopolysaccha ride synthesis	K16 567	exoQ; exopolysaccharide production protein ExoQ
 Exopolysaccha	K16	exoZ; exopolysaccharide production protein ExoZ

ride synthe	sis 568	
Sporulation (Actinobac a)	K 16	SPR28; sporulation-regulated protein 28
Glycogen synthesis	K20 812	glgA; glycogen synthase [EC:2.4.1.242]
7		

- 539 Table A.4. Chlorophyll concentrations and water content values in the biocrust at each
- 540 sampling point and site.

Time	Chlorophyll concentration (mg chla/ g soil)	Water content (%)	Total organic carbon (%)	Total nitrogen (%)
T[0]	7.670	1.850	4.225	0.112
T[0]	8.553	2.670	4.107	0.114
T[0]	6.835	2.290	4.188	0.107
T[R]	10.145	13.610	2.999	0.104
T[R]	16.144	16.930	3.898	0.104
T[R]	15.703	16.550	3.787	0.109
T[R]	12.745	16.340	3.967	0.104
T[R]	14.160	17.520	3.972	0.071
T[1]	10.519	5.300	3.269	0.065
T[1]	16.003	5.620	3.238	0.065
T[1]	16.877	7.140	3.955	0.085
T[1]	15.262	6.220	3.964	0.073
T[1]	14.177	6.830	3.948	0.098
T[2]	10.092	3.920	3.879	0.087
T[2]	11.829	4.490	4.031	0.082
T[2]	11.840	4.510	4.244	0.100
T[2]	13.045	5.070	4.134	0.115
T[2]	12.975	6.900	4.050	0.095
T[3]	9.881	2.860	3.834	0.092
T[3]	12.751	3.670	3.709	0.100
T[3]	9.314	3.710	3.706	0.076
T[3]	9.366	4.320	4.511	0.081
T[3]	14.520	3.780	4.589	0.093

- 543 Table A.5. Dunn tests p values for chlorophyll concentration (mg chla/g of soil), water
- 544 content (%), total organic carbon content (%) and total nitrogen (%) in biocrust samples

Comparison	Chlorophyll	Water content	Total organic Carbon	Total Nitrogen
T[0] - T[1]	0.00538004	0.05699315	0.89	0.169
T[0] - T[2]	0.02846706	0.35971877	0.64	0.525
T[1] - T[2]	0.25895220	0.02620581	0.55	0.448
T[0] - T[3]	0.17516547	0.20434975	0.75	0.065
T[1] - T[3]	0.05299877	0.00804845	0.85	0.611
T[2] - T[3]	0.16605599	0.32025932	0.43	0.210
T[0] - T[R]	3.5589E-06	0.15725837	0.84	0.723
T[1] - T[R]	0.02620581	0.28273460	0.95	0.300
T[2] - T[R]	0.00485039	0.08612648	0.51	0.776
T[3] - T[R]	0.00018814	0.03347764	0.90	0.128

Phylum	Order	Time Point	Relative Abundanc
		T[0]	0.022907633
		T[R]	0.03574372
	Frankiales	T[1]	0.012995761
		T[2]	0.032045929
		T[3]	0.02063487
		T[0]	0.009681202
		T[R]	0.005259368
	IMCC26256	T[1]	0.008388448
		T[2]	0.008617354
		T[3]	0.006227356
		T[0]	0.385359194
	Micrococcales	T[R]	0.009765818
		T[2]	0.008171044
		T[3]	0.00669884
		T[R]	0.013939918
	Micromonosporales	T[1]	0.005556665
		T[2]	0.007483088
		T[3]	0.007512356
Actinobacteria			0.00532056
	Microtrichales		0.005352285
			0.010647015
	Propionibacteriales		0.006196615
	Tropionioucteriales		0.009500737
			0.005302327
			0.007935732
	Pseudonocardiales		0.005403369
			0.015244484
			0.075369688
	Rubrobacterales		0.088221276
			0.103851434
			0.08049968
		T[0]	0.076522403
			0.039879122
	Solirubrobacterales	T[1]	0.043060268
		T[2]	0.045998142
		T[3]	0.031839496
		T[0]	0.020862309
		T[R]	0.011650182
	Chloroplast		0.026512447
Cyanobacteria			0.028141321
		T[1] T[2] T[R] T[1] T[2] T[3] T[2] T[7] T[2] T[7] T[2] T[7] T[7] <t< td=""><td>0.018079461</td></t<>	0.018079461
-	Cyanobacteriales		0.19073226

547 Table A.6. Relative abundance of the taxa in the biocrust community at each time point.

		T[1]	0.333676493
		T[2]	0.292463654
		T[3]	0.350595706
-		T[R]	0.013481119
	Unknown Ownhotchostoria	T[1]	0.015453064
	Unknown Oxyphotobacteria	T[2]	0.013590863
		T[3]	0.015066421
-	Thermosynechococcales	T[0]	0.010799313
Acidobacteriota	Bryobacterales	T[R]	0.005153526
Acidobacteriota	Bryobacterales	T[0]	0.006236605
	Chitinophagales	T[R]	0.005163481
		T[2]	0.007262191
Destantiate		T[0]	0.009163053
Bacteroidota		T[R]	0.096453172
	Cytophagales	T[1]	0.11996715
		T[2]	0.079192234
		T[3]	0.090668802
		T[R]	0.090008802
	Kallotenuales	T[2]	0.01633687
Chloroflexi		T[3]	0.008408777
	Thermomicrobiales	T[2]	0.005146914
	Thermonneroblates	T[R]	0.005436359
Commetine and to to	Gemmatimonadales	T[2]	0.006908222
Gemmatimonadota	Longimicrobiales	T[R]	0.016006999
		T[2]	0.005421611
		T[R]	0.005678943
	Haliangiales	T[3]	0.006010924
-		T[R]	0.020299082
	Mawaaaaaalaa	T[1]	0.010755355
	Myxococcales	T[2]	0.013671351
		T[3]	0.014621574
Muxococcto		T[R]	0.008809035
Myxococcota	Nannocystales	T[1]	0.01090915
	ivalinocystates	T[2]	0.005558526
		T[3]	0.006743362
-		T[R]	0.008294912
	Polyangiales	T[1]	0.008084686
		T[2]	0.005990088
		T[3]	0.006645987
	Acetobacterales	T[R]	0.014783181
		T[1]	0.012028303
	Acciobaciciales	T[2]	0.012020303
Proteobacteria		T[3]	0.016407297
-	Azospirillales	T[0]	0.030702093
	Burkholderiales	T[0]	0.056796051
Proteobacteria	Burkholderiales	T[R]	0.012959379

		T[1]	0.010671657
		T[2]	0.013591631
		T[3]	0.012713217
	Caulobacterales	T[0]	0.012899179
		T[R]	0.022042144
		T[1]	0.034822507
		T[2]	0.020704156
		T[3]	0.024863575
	Pseudomonadales	T[0]	0.013867311
		T[0]	0.087344626
		T[R]	0.043724525
	Rhizobiales	T[1]	0.063099159
		T[2]	0.070129812
		T[3]	0.068004988
	Rhodobacterales	T[0]	0.00551081
		T[R]	0.016305263
		T[1]	0.016673137
		T[2]	0.021005185
		T[3]	0.016425317
		T[0]	0.018796014
		T[R]	0.038019558
		T[1]	0.044013044
		T[2]	0.044435076
		T[3]	0.033523863
		T[R]	0.012024879
Verrucomicrobiota	Chthoniobacterales	T[1]	0.066714297
		T[2]	0.044130375
		T[3]	0.094877543

Table A.7. P-values of the Dunn tests between time points on the relative abundance of the

Comparison	Cyanobacteria	Actinobacteria
T[0] - T[1]	6.13E-10	8.15E-13
T[0] - T[2]	5.13E-08	2.52E-14
T[0] - T[3]	5.98E-10	6.89E-11
T[0] - T[R]	6.52E-10	6.47E-14
T[1] - T[3]	0.498128567	0.228324880
T[1] - T[2]	0.191797281	0.294405229
T[1] - T[R]	0.495469243	0.345672443
T[2] - T[R]	0.194912395	0.442935801
T[3] - T[R]	0.493597980	0.126850627
T[2] - T[3]	0.190519550	0.099407424

553 actinobacterial and cyanobacterial orders. Bold numbers are significant (<0.05).

554

Gene Group	Time points	Abundance
	T[0]	20590
	T[R]	91433
DNA conservation	T[1]	92496
	T[2]	78321
	T[3]	81983
	T[0]	13579
	T[R]	66132
DNA repair and degradation	T[1]	67048
	T[2]	55948
	T[3]	58457
	T[0]	85
	T[R]	43
Light energy or sensing	T[1]	59
	T[2]	64
	T[3]	17
	T[0]	7554
	T[R]	37972
Lithotrophs	T[1]	38632
•	T[2]	31341
	T[3]	32758
	T[0]	10027
	T[R]	50708
Nitrogen	T[1]	58068
C	T[2]	48225
	T[3]	45638
	T[0]	60007
	T[R]	108275
Organotrophs	T[1]	111044
	T[2]	88557
	T[3]	89148
	T[0]	50301
	T[R]	445432
Phototrophy	T[1]	425819
1 noton opiny	T[2]	342188
	T[3]	407532
	T[0]	26126
	T[R]	138367
ROS-damage prevention	T[1]	143726
ress annage provention	T[2]	143720
	T[3]	121507
	T[0]	31075
Sensing & motility	T[R]	81947
Sensing & mounty	T[1]	92070

556	Table A.8. Abundance (in copy number (CN)) of each time	points within each group of gene.

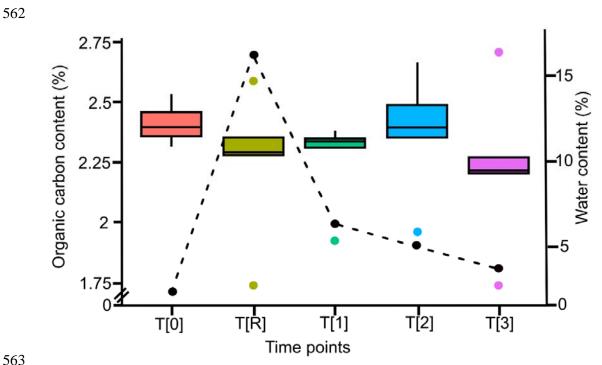
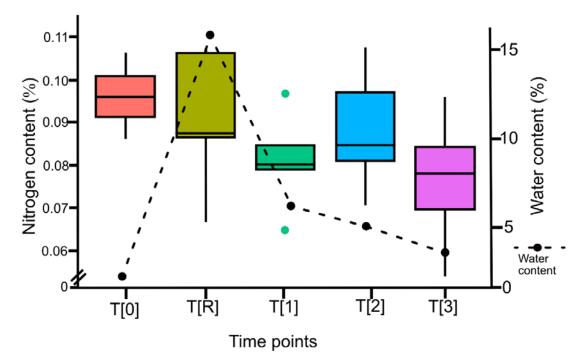
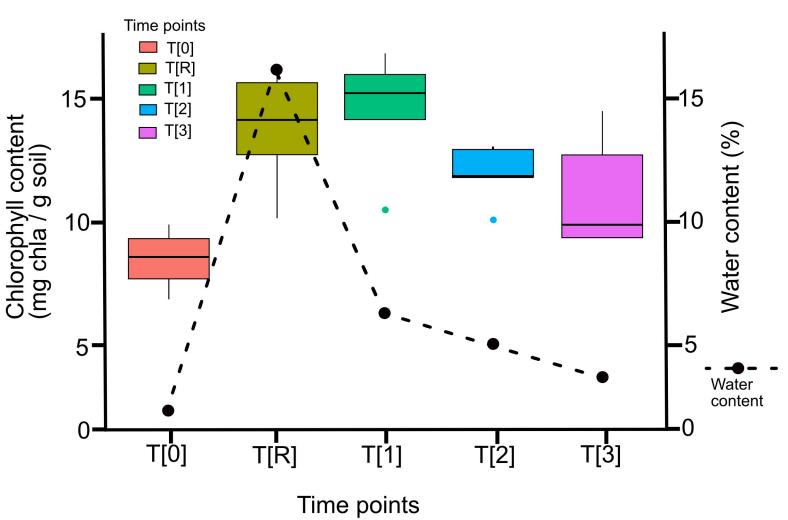

Sonsing & motility	T[2]	90844
Sensing & motility	T[3]	74436
	T[0]	7302
	T[R]	48141
Sporulation capsule & C-storage	T[1]	48944
	T[2]	38998
	T[3]	42341

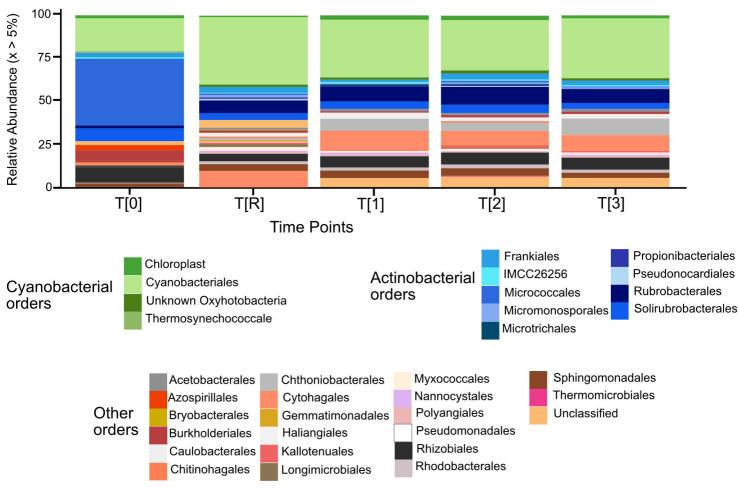
Table A.9. Chi-square values and p-values of the Dunn tests between time points done on the

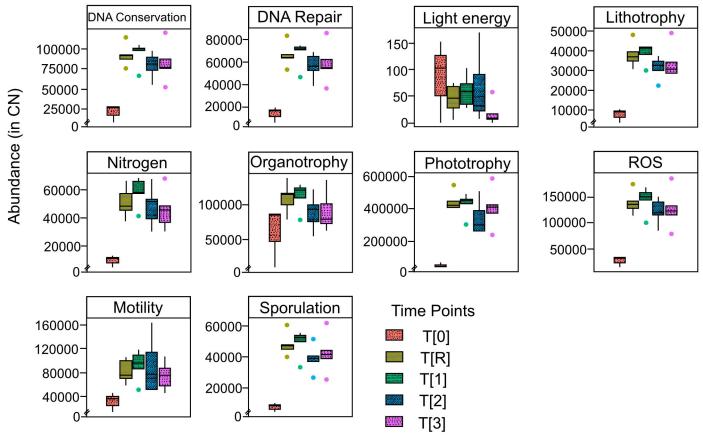

Comparison	DNA Conservation	DNA Repair	Light energy	Lithotrophy	Nitrogen
T[0] - T[1]	0.00489293	0.00293591	0.19388801	0.00030834	4.22E-17
T[0] - T[2]	0.02033475	0.0097339	0.44831059	0.00749298	8.12E-12
T[0] - T[3]	0.02906312	0.01558465	0.2755365	0.01520981	8.15E-10
T[0] - T[R]	0.02863121	0.00520412	0.37990911	0.00162909	1.30E-12
T[1] - T[3]	0.21328302	0.24422913	0.04593218	0.072911	0.00403999
T[1] - T[2]	0.26782432	0.31450078	0.19843215	0.12613918	0.03331074
T[1] - T[R]	0.21549186	0.41187192	0.25970621	0.28894927	0.06264837
T[2] - T[3]	0.43027457	0.41697806	0.20090041	0.37842665	0.20768207
T[2] - T[R]	0.43325114	0.3972775	0.41957403	0.27813996	0.38159137
T[3] - T[R]	0.49697916	0.31916653	0.14884666	0.184595	0.13225512
Chi-square	7.021623874	8.913054423	2.944440598	12.94456096	75.97487673

functional prediction results. Bold numbers are significant (< 0.05)

Comparisons	Organotrophy	Phototrophy	ROS	Motility	Sporulation
T[0] - T[1]	0.00189691	5.38E-36	5.70E-06	1.09E-18	7.48E-05
T[0] - T[2]	0.02110913	8.46E-17	2.77E-05	2.10E-14	3.01E-09
T[0] - T[3]	0.04112206	8.77E-26	8.96E-05	2.41E-11	0.0008838
T[0] - T[R]	0.01948721	4.27E-35	6.29E-05	1.22E-14	0.00040669
T[1] - T[3]	0.09077588	0.00930641	0.22920864	0.00608522	0.22132375
T[1] - T[2]	0.15937532	5.23E-07	0.33993514	0.08422197	0.00969216
T[1] - T[R]	0.16882618	0.42394382	0.26107583	0.09739203	0.30432515
T[2] - T[3]	0.3673185	0.00570786	0.37114762	0.12925022	0.00094887
T[2] - T[R]	0.48475837	1.36E-06	0.41005945	0.46785414	0.00218557
T[3] - T[R]	0.35302059	0.01533294	0.45960721	0.11302291	0.39907998
Chi-square	8.60329063	195.4178784	22.91571278	87.21260295	34.5684137


564 Figure A.1. Barplot of the organic carbon content for each sampling point.




568 Figure A.2. Barplot of the nitrogen content (in g) for each time point.

(c) many com - Man Data: OpenStreetMan ODbl

