1 Species boundaries among extremely diverse and sexually dimorphic Arrenurus water

2 mites (Acariformes: Hydrachnidiae: Arrenuridae)

3

4 Mariusz Więcek^{a*}, Łukasz Broda^a, Heather Proctor^b, Miroslawa Dabert^c, Bruce P.

5 Smith^d, Jacek Dabert^a

- 6 ^a Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University,
- 7 Uniwersytetu Poznańskiego 6, PL-61-614 Poznań, Poland
- 8 ^b Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- 9 ° Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz
- 10 University, Uniwersytetu Poznańskiego 6, PL-61-614 Poznań, Poland
- ^d Department of Biology, Ithaca College, 953 Danby Road, Ithaca, NY, U.S.A. 14850
- 12 * Corresponding author
- 13 E-mail addresses: <u>roztoc@wp.pl</u> (Mariusz Więcek, corresponding author),
- 14 <u>l.t.broda@gmail.com (Łukasz Broda) hproctor@ualberta.ca</u> (Heather Proctor),
- 15 mirkad@amu.edu.pl (Miroslawa Dabert), parasitengona@gmail.com (Bruce P. Smith),
- 16 <u>dabert@amu.edu.pl</u> (Jacek Dabert).
- 17

18 Abstract Arrenurus (Arrenuridae) is the most species-rich genus of mites with about 950 named species that inhabit standing, and to a lesser extent, running water habitats around the 19 world. To date, distinguishing species of Arrenurus has been based on male reproductive 20 morphology. Here, we use morphological and molecular approaches to examine species 21 boundaries among 42 named species of Arrenurus, including four named species that have 22 colour variants (red and green A. americanus, and red and blue A. intermedius, A. 23 manubriator and A. apetiolatus), and two unnamed morphospecies. In this study, we examine 24 male genital structures with the use of SEM techniques, and apply mitochondrial (COI 25 barcode region) and nuclear (28S rRNA) gene fragments to test whether male morphology 26 reflects species boundaries in Arrenurus assessed by molecular analyses. Our results reveal 27 28 that male reproductive morphology parallels species boundaries as judged by molecular data. We discuss the cases of genetically poorly diversified, yet morphologically clearly defined 29 named species. Moreover, we show that based on the species we examined, colour morphs 30 within otherwise morphologically similar specimens represent within-species variation and, in 31 the absence of other diagnostic traits, colour itself can be misleading in distinguishing species. 32

Our outcomes on molecular taxonomy of *Arrenurus* provide a background for testing
hypotheses about speciation rate in water mites.

35

Keywords: 28S rRNA; Arachnida; COI; barcoding; species delimitation; genitalia;
reproductive morphology

38

39 **1. Introduction**

Water mites (Actinotrichida: Parasitengonina: Hydrachnidiae) are one of the most species-40 rich groups of arthropods in fresh water (Di Sabatino et al., 2008); however, despite being 41 42 widespread and taxonomically diverse, they are poorly studied compared to freshwater insects and crustaceans (Martin et al., 2010; Proctor et al., 2015). The number of studies of water 43 44 mites that incorporate molecular data is growing, and previously unrecognized diversity has been frequently revealed (e.g. Stålstedt et al., 2013; Pešić et al., 2017; Pešić & Smit, 2017; 45 García-Jiménez et al., 2017). However, considering more than 6,000 described species found 46 on all continents except Antarctica, placed into 57 families, 81 subfamilies and over 400 47 genera (Di Sabatino et al., 2008), only small number of water mite taxa have been involved in 48 those studies. 49

Based on molecular clock estimates, the highly successful and cosmopolitan genus 50 Arrenurus Dugès (Dugès, 1834) began to diversify 15 MYA (Dabert et al., 2016), and clearly 51 underwent an explosive speciation that made it the most species-rich genus of arachnids that 52 comprises approximatelly 950 named species worldwide (Cook, 1974; Smit, 2012; Gerecke et 53 al., 2016). Depending on the species, larvae parasitize hosts from the insect orders Odonata, 54 Diptera, and, more rarely, Coleoptera (Cook, 1974; Böttger & Martin, 2003). Deutonymphs 55 and adults are predators of ostracods, cladocerans and to a lesser extent small insect larvae 56 (Proctor & Prichard, 1989). 57

Sperm transfer behaviour in *Arrenurus* is often complex and species-specific (Proctor, 58 1992). It involves close pairing between males and females, and is correlated with 59 modifications of the male's hindbody (the 'cauda') and hind legs (presence or absence of a 60 spur-like extension of the genu designed to clasp the female's legs), and presence or absence 61 of the petiole, a structure involved in transferring sperm (Proctor & Wilkinson, 2001). In 62 those Arrenurus for which sperm transfer behaviour has been described, species whose males 63 have well-developed petioles use them as intromittent structures to introduce sperm into the 64 genital tract of females, whereas those that do not have well-developed petioles deposit 65

spermatophores on the substrate and then manoeuvre the genital opening of the female 66 overtop the sperm packet (e.g. Proctor, 1992; Proctor & Smith, 1994; Proctor & Wilkinson, 67 2001). Females of petiolate species may have less control over whether they take in sperm 68 from a particular male. Because uptake of sperm seems to be more under female control in 69 species lacking a well developed intromittent organ, female choice is supposed to be the 70 dominant force of selection in these species, whereas sexual conflict is assumed to play a 71 bigger role in species with males equipped with elaborate intromittent organs (Proctor & 72 73 Smith, 1994; Proctor & Wilkinson, 2001). Female Arrenurus show relatively little variation in 74 body shape, and species-level taxonomy of Arrenurus is based on the external reproductive morphology of males (Smit, 2012; Gerecke et al., 2016). 75

76 In nature, species arise in many ways including geographical isolation through to diversification of ecological niches and ending with rarely examined sexual selection (De 77 Queiroz, 2007). The last scenario is still to a great extent a riddle, because it is especially 78 difficult to test experimentally (Mendelson & Shaw, 2005). Theory predicts that genitalia 79 80 (Eberhardt, 1985), pheromonal communication (Lassance et al., 2019) and courtship behaviour (Mendelson & Shaw, 2005) can evolve rapidly, increase sexual isolation and 81 accelerate speciation in animals (Arnqvist et al., 2000; Janicke et al., 2018). While in some 82 species of Arrenurus males differ little from females, most of the diversity in the genus 83 composes of species with males that have extravagant dimorphism. Hence, subgenus 84 Arrenurus s. str. with males characterized by hindbody and hind legs modifications and 85 presence of the elaborated intromittent organ groups about 300 species. Further 300 species 86 belong to the subgenus Megaluracarus that composes of males with exaggerated, very 87 elongated and modified hindbody and hind legs designed to grasp and hold females during 88 copulation. However, the least modified male phenotype, with males that does not differ very 89 much from females is the least frequent (54 species (subgenus Truncaturus)); data found at 90 website: https://bugguide.net/node/view/428959). 91

Here, we test species boundaries among *Arrenurus* water mites based on morphological investigation and molecular analysis of DNA barcode sequences, i.e. the mitochondrial cytochrome *c* oxidase subunit I (COI) and the hypervariable D2 region of 28S rRNA gene (28S rDNA). In order to evaluate species borders among *Arrenurus* using phenotypic characters we examined the variation of morphological secondary sexual traits in males, which is the basis for the traditional classification at the subgenus and species level (Cook, 1974). In addition, we examined what appeared to be intraspecific colour phenotypes

99 of some of the examined species to ask whether distinctive colour forms among otherwise100 morphologically similar specimens might represent cryptic species.

101

102 2. Materials and methods

2.1. Water mite collecting and morphological analyses

In total, 262 Arrenurus mite specimens were collected in North America and Europe in 104 various types of freshwater habitats including springs, streams, rivers, lakes, ponds, and 105 temporary water bodies (Table 1). Most of the North American species came from water 106 107 bodies located around the Queen's University Biological Station (Ontario, Canada; 44°34'03.6"N 76°19'26.6"W), with one species collected on a private property near Elk Island 108 109 National Park (Alberta, Canada; 53°39'23.7"N 112°45'37.0"W). Specimens of Arrenurus (Megaluracarus) manubriator Marshall that were originally from San Marcos River (Texas, 110 US) and Lake Opinicon (Ontario) were taken from separate laboratory cultures maintained by 111 B.P.S. in the Department of Biology, Ithaca College, New York, U.S.A. The collection sites 112 in Europe were located in the Netherlands, Germany, Austria, Poland, and Italy (Table 1). 113

Most samples were collected using a net with mesh size 250 µm, but some were 114 collected using underwater light traps. In the laboratory, live water mites were sorted under a 115 stereoscope microscope and preserved in 96% ethyl alcohol. European water mites were 116 identified to species using key of Viets (1936), whereas North American ones were identified 117 with keys by Cook (1954a, 1954b, 1955). A number of North American individuals included 118 119 in the molecular analyses were determined with the assistance of Dr. Ian Smith from the Canadian National Collection of Insects, Arachnids and Nematodes in Ottawa. Only males 120 were identified to species based on morphology; species represented only by female 121 specimens were identified by matching COI and D2 28S rDNA sequences with those from 122 conspecific males. When possible, representatives of named and putative species were 123 examined using scanning electron microscopy. After dehydration through an alcohol-HMDS 124 (hexamethyldisilazane) series, these mites were mounted on stubs using double-sided tape, 125 126 sputter coated with gold, and examined using a JEOL 630 I field emission scanning electron microscope (SEM) in the Department of Earth and Atmospheric Sciences, University of 127 128 Alberta. The layout of SEM images was prepared using Photoshop 6.0. Specimen and DNA vouchers from this study are deposited in the Department of Animal Morphology, Adam 129 Mickiewicz University in Poznań, Poland. 130

131

132 **2.2. DNA amplification and sequencing**

Total genomic DNA was isolated from individual mites using the nondestructive method 133 described by Dabert et al. (2008). The COI gene fragment was amplified using bcdF01 (5'-134 (5'-CATTTTCHACTAAYCATAARGATATTGG-3') bcdR04 and 135 TATAAACYTCDGGATGNCCAAAAAA-3') primers (Dabert et al., 2010). The D2 region of 136 the 28S rDNA was amplified with 28SF0001 (5'-ACCCVCYNAATTTAAGCATAT-3') and 137 28SR0990 (5'-CCTTGGTCCGTGTTTCAAGAC-3') primers (Mironov et al., 2012). PCR 138 amplifications were carried out in 10 µl reaction volumes containing 5 µl Type-it 139 140 Microsatellite PCR Kit (Qiagen, Hilden, Germany), 0.5 µM of each primer, and 4 µl (1-5 ng) of DNA template using a thermocycling profile of one cycle of 5 min at 95 °C followed by 35 141 steps of 30 sec at 95°C, 1 min at 50°C, 1 min at 72°C, with a final step of 5 min at 72°C. After 142 amplification, the PCR reactions were diluted with 10 µl of water and 5 µl was analysed by 143 agarose electrophoresis. Samples containing visible bands were purified with exonuclease I 144 and FastAP Alkaline Phosphatase (Thermo Scientific) and sequenced using a BigDye version 145 3.1 kit and ABI Prism 3130XL Genetic Analyzer (Applied Biosystems), following the 146 147 manufacturer's instructions. Trace files were checked for accuracy and edited with ChromasPro v. 1.32 (Technelysium Pty Ltd.). The sequences generated in this study have 148 been published in GenBank under accession numbers listed in Table 1. 149

150

151 2.3. Sequence analyses and species delimitation

From a total number of 262 Arrenurus specimens collected in this study, 129 were 152 153 successfully sequenced with respect either to mitochondrial or nuclear marker (Table 1). The COI dataset obtained based on specimens collected in this study consisted of 123 sequences 154 155 belonging to 38 named Arrenurus spp. (including four species possessing colour variants) and two unnamed morphospecies, and had length of 537 bp with 241 variable nps. Furthermore, 156 we compiled a joint dataset consisting of 123 sequences obtained in this study and 54 157 haplotypes (from the total 196 downloaded sequences representing Arrenurus species) 158 159 gathered from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and BOLD System (http:// www.boldsystems.org/) (Table 1). The haplotype sequences were selected with the use of 160 161 ALTER software (http://www.sing-group.org/ALTER/). The final alignment length and also overlapping homologous region in the joint dataset was 471 bp (221 variable nps). Since four 162 sequence haplotypes of A. planus Marshall (MG312595, MG320457, MG312775, 163 HQ924310) that were gathered from BOLD did not match conspecific sequences from this 164

study, which could suggest possible identification errors, we excluded these sequences from the final alignment and further analyses. The D2 28S rDNA alignment comprised 68 sequences representing 41 named *Arrenurus* spp. and two morphospecies and gave 660 bp and had 241 polymorphic characters, including 29 indels. Sequences were aligned with Clustal X 2.0.10 (Larkin et al., 2007) and trimmed in GeneDoc v. 2.7.0 (Nicholas & Nicholas, 1997).

NJ tree for species-delimitation was calculated based on 177 sequences (471 bp) 171 obtained in this study (123 sequences) and gathered from GenBank and BOLD (54 sequences) 172 with the Kimura 2-parameter model (Kimura, 1980) in MEGA X (Kumar et al. 2018). 173 Support for tree branches was calculated by the nonparametric bootstrap method (Felsenstein, 174 1985) with 1000 replicates. The critical value of bootstrap support \geq 70% was considered to 175 support monophyly (Douady et al., 2003). We included (Arrenuroidea Bogatiidae: 176 Horreolanus orphanus Mitchell) as an outgroup species. COI (K2P) distances were 177 reconstructed on COI alignment comprising 123 sequences belonging to specimens collected 178 only in this study with the length of 537 nucleotide positions (nps) using MEGA X (Kumar et 179 al., 2018). K2P distances for 68 D2 28S rDNA sequences (660 nps) from this study were 180 computed in MEGA X (Kumar et al., 2018). The Automatic Barcode Gap Discovery (ABGD) 181 method was applied to detect a barcode gap in the pairwise distance distribution and to sort 182 the 123 COI sequences into hypothetical species (Puillandre et al., 2011) with the use of web-183 based program (https://bioinfo.mnhn.fr/abi/public/abgd/) with default settings except X 184 (relative gap width) set to 1, because higher values failed to detect more than one group. Gene 185 genealogies were estimated on the basis of 123 COI sequences from this project in TCS 1.21 186 (Clement et al., 2000) using statistical parsimony networks (SP) (Templeton et al., 1992). The 187 95% connection limit for species boundaries was applied in searching for putative species 188 (Hart & Sunday, 2007). Additionally, the probability of species distinctiveness was estimated 189 for closely related species by two measures estimating probability that the observed branching 190 structure of the haplotypes originated due to random coalescence processes and not speciation 191 events: reciprocal monophyly PAB (Rosenberg, 2007) and Randomly Distinct PRD (Rodrigo et 192 al., 2008) as implemented in Geneious 9.1.5 species delimitation plugin (Masters et al., 2011). 193 Editing of trees was performed using MEGA X (Kumar et al., 2018) editing tools and 194 Inkscape 0.48.4-1 (Harrington, 2004-2005). Box plots were calculated in order to obtain 195 196 medians and quartiles and to get a visual interpretation of genetic distances using the statistical software PAST 4.03 (Hammer et. Al, 2001). 197

198

199 **3. Results**

200 **3.1. Male sexual morphology and colour variants**

Examination of morphological structures, in particular structures used by males for the 201 process of sperm transfer, allowed us to assign 129 individual mites (only specimens from 202 which DNA barcode sequences were obtained were analysed for morphology) to 42 named 203 species of Arrenurus, which included colour variants of four described species that could 204 potentially represent unnamed species: red and blue A. (Megaluracarus) apetiolatus Piersig, 205 red and green Arrenurus (Arrenurus) americanus Marshall, red and blue Arrenurus 206 (Megaluracarus) intermedius Marshall, and red and blue A. (Megaluracarus) manubriator. 207 208 We also found two morphospecies that did not key to known species, which we refer to as Arrenurus sp. 1 represented only by female specimens which was not sufficient to identify 209 them at a species level, and Arrenurus sp. 2 consisted of female and male specimens with 210 males possessing unmodified hindbody not clearly demarcated from the body proper and 211 therefore resembling representatives of subgenus Truncaturus (Fig. 2C). In the examined 212 species four main male phenotypes were identified: a) males with short and least modified 213 cauda (e.g. A. (Truncaturus) stecki Koenike, A. (Truncaturus) fontinalis Viets), b) males with 214 complex, but short cauda with medial cleft and petiole (sometimes with functionally not 215 defined membranous structure) (e.g. A. (Micruracarus) perforatus George, A. (Micruracarus) 216 biscissus Lebert, Fig. 2B), c) males equipped with very elongated and exaggerated hindbody 217 without medial cleft and pygal lobes (e.g. A. (Megaluracarus) buccinator (Müller), A. 218 (Megaluracarus) globator (Müller) (Fig. 1A, Fig. 2F), d) males that possess elaborated cauda 219 with humps, clearly marked pygal lobes and complex petiole (subgenus Arrenurus e.g. A. 220 221 bleptopetiolatus Cook, A. magnicaudatus Marshall, Fig. 2D, E, G). Moreover, we found species with males that deviate from above mentioned phenotypes and have short cauda with 222 pygal lobes and membranous sub-petiolar cavity (A. (Micrarrenurus) albator (Müller) (Fig. 223 2A), A. (Micrarrenurus) crassicaudatus Kramer). Sexual dimorphism and subset of the 224 diversity of male reproductive structures are presented in Figs. 1 and 2. 225

226

227 **3.2.** Molecular species delimitation and morphospecies with high genetic distance

The examined 42 named species formed distinct and well supported clusters in the NJ tree inferred based on the COI sequences obtained in this study and gathered from GenBank and BOLD (Fig. 3). Levels of interspecific COI genetic differentiation based on K2P distances were in most cases well above 11% (Table S1) and had an average value of $26.06\% \pm 2.06\%$

(mean \pm standard error) and median value was 24.65%. The intraspecific distances ranged 232 from 0.0% (e.g. Arrenurus (Megaluracarus) globator) to 2.09% (Arrenurus (Arrenurus) 233 *bruzelii* Koenike). The interspecific D2 28S rDNA distances had an average value $14\% \pm 0.98$ 234 (mean \pm standard error, Table S2) and median value of 13.34%. However, genetic 235 differentiation expressed in genetic distances varied within differend subgenera (Fig. S2). The 236 ABGD method was applied in order to estimate a barcode gap between K2P distances 237 (Puillandre et al., 2011), which was identified between 3 and 7% (Fig. 4A, B). The analysis of 238 123 sequences from this study revealed 38 Arrenurus species in all initial partitions (Fig. S5) 239 and 39-55 species in recursive partitions. Furthermore, in the network analysis the 123 240 sequences displayed 81 unique haplotypes that formed 21 distinct networks of which 17 241 corresponded with single named species and one unidentified morphospecies (Fig. S3), one 242 network contained haplotypes from more than one species and two represented split networks 243 of single species (Fig. S4). In conclusion, all applied methods confirmed species status of 35 244 out of 42 named species, and unnamed Arrenurus sp. 1, Arrenurus sp. 2 were identified as 245 genetically differentiated at the species level. 246

247

3.3. Morphospecies and colour variants with low genetic divergence

In the present study, except for genetically well separated species, pairs of named species 248 characterized by low genetic distances were identified. Hence, relatively low diversification 249 250 of COI sequences was found in closely related Arrenurus (Arrenurus) mucronatus Levers and A. (Arrenurus) americanus (5.1%). This species pair showed a very low level of 28S 251 differentiation (0.15%). Similarly, low 28S distances were observed among following 252 Arrenurus s.str. species pairs: A. gennadus Cook - A. mucronatus (0.00%, consistently 253 separated as distinct species based on the COI fragment), A. americanus - A. gennadus 254 (0.15%, distinct species based on the COI) and A. maryellenae Cook - A. magnicaudatus 255 (0.31%; recognized as separate species in COI based analyses). The ABGD initial partitions 256 did not separate A. mucronatus from A. americanus (Fig. S5). Furthermore, the red and green 257 A. americanus showed intraspecific genetic variation. In the network analysis haplotypes A. 258 americanus (green) and A. americanus (red) formed a single network, but A. mucronatus 259 260 remained unconnected (Fig. S3). Rodrigos's P(RD) suggested that both colour forms of A. americanus were one single species (Table 2). 261

In the species pair Arrenurus (Megaluracarus) megalurus Marshall and A.
 (Megaluracarus) intermedius (red and blue) COI distances ranged from 0.95% - 1.58%

(Table S1). The ABGD initial partitions did not separate A. megalurus from A. intermedius 264 (both red and blue) (Fig. S5), and statistical parsimony networks grouped together haplotypes 265 of A. megalurus and A. intermedius (Fig. S4). Similarly, Rosenberg's PAB suggested that these 266 species are conspecific (Table 2). In addition, a low 28S distance value occurred between A. 267 intermedius and A. megalurus (0.46%). Moreover, the blue and red A. (Megaluracarus) 268 apetiolatus were separated by distance of 0.31% (28S), which could suggest that two separate 269 species are present. However, the result remains inconclusive, because COI sequences were 270 271 not successfully obtained for this species. In the colour-polymorphic A. (Megaluracarus) manubriator red specimens originated from Texas and blue ones from Ontario were separated 272 by 0.99% (COI) and 2.18% (28S). Rosenberg's P_{AB} and Rodrigos's P(RD) indicated that red 273 and blue A. manubriator should be considered as separate species (Table 2). Nevertheless, the 274 contradictory results were obtained after inclusion in the analysis sequences gathered from 275 BOLD (Fig. S1). Results of species delimitation in species that were not concordantly 276 recovered as conspecific are summarized in Table 2. 277

278

279 4. Discussion

Our data show that male reproductive morphology, which provides the rationale for most 280 taxonomic decisions in Arrenurus tends to parallel species boundaries as judged by molecular 281 data. The ABGD analysis identified barcode gap between 3-7%, which is lower than threshold 282 obtained for spring-dwelling water mites by Blattner et al. (2019) (6-9%). Interspecific COI 283 barcode distances have been estimated for congeneric vs. congeneric water mite species most 284 frequently for > 10% (Pešić & Smit, 2017; Pešić et al., 2017; Więcek et al., 2020), and 285 286 correspond to the values obtained in this study. However, noteworthy, among closely related Atractides species distances had values of about 5% (Pešić et al., 2020). García-Jiménez et al. 287 (2017) obtained a statistical support for separating endemic island Lebertia water mites that 288 exhibited distances of about 2% and shared the common ancestor about 4.6-5.2 Mya. The 289 290 simulation study found bias against discovering young species in taxa undergoing adaptive radiation and demonstrated that single-gene thresholds can consistently discover new species 291 with error rates of <10% if isolation was >4 million generations ago (Hickerson et al., 2006). 292 Therefore, we suppose that low sequence divergence in species groups examined in this study 293 may indicate young, but reproductively isolated species. In addition, the mean distance value 294 for 28S sequences obtained in this study (14%) is in agreement with sequence diversification 295 observed for a broad set of water mites inhabiting springs (15%K2P ± SD: 0.10%) found by 296 Blattner et al. (2019), and in most cases paralleled results obtained with mitochondrial 297

sequences. Interestingly, we observed low differentiation at nuclear loci among members of 298 subgenus Arrenurus s. str. as compared to representatives of other examined subgenera. The 299 subgenus Arrenurus str. is considered as monophyletic (when excluding members of the 300 subgenus Micrarrenurus proposed later by Cassagne-Méjean, 1966) and molecular dating 301 analysis suggested its recent origin in relation to other examined Arrenurus taxa (5-10 Mya 302 Dabert et al., 2016). Similar low distance values were also obtained for young eriophyoid mite 303 species (Skoracka & Dabert 2010). To date, there are very few studies targeting certain 304 305 aspects of taxonomical assessments of Arrenurus, where the validity of morphospecies is tested with the application of molecular markers (e.g. Blattner et al., 2019; Alarcón-Elbal et 306 al., 2020). However, in the recent published article of Alarcón-Elbal et al. (2020) phylogenetic 307 relationships among Arrenurus species were missinterpreted. Whereas the authors stated that 308 subgenera Arrenurus, Megaluracarus and Micruracarus are "natural" and only subgenus 309 *Truncaturus* is an arbitrary assemblage of species, in fact non of the examined by the authors 310 subgenera is monophyletic when interpreting results of the phylogenetic tree presented by the 311 authors (Alarcón-Elbal et al., 2020). 312

We obtained equivocal results for closely related A. (Megaluracarus) intermedius and 313 A. (Megaluracarus) megalurus, which show very low genetic differentiation. Moreover, other 314 than colour, there is no morphological evidence for separating the blue and red A. 315 intermedius. It is noteworthy that A. intermedius, A. megalurus and A. (Megaluracarus) 316 marshallae Piersig have been considered in literature as closely related, morphologically 317 similar species that exhibit subtle differences in male structures associated with hindbody and 318 319 that tend to occur in the same habitats at the same time (Cook, 1954b; Mitchell, 1964). Furthermore, the two colour forms of A. (Megaluracarus) apetiolatus are probably recently-320 diverged species, however we have insufficient evidence given that we were unable to obtain 321 mitochondrial sequences. Moreover, we obtained ambiguous evidence for distinguishing 322 species in closely related A. (Arrenurus) mucronatus and A.(Arrenurus) americanus (both red 323 and green individuals). Arrenurus americanus is highly variable in colour: they are 324 predominantly either dark green or brick red, but various other colours also occur (grey, tan, 325 etc.) with more or less a continuum of variation (B.P.S., pers. obs.). In this study, we observed 326 intraspecific sequence differences between both colour variants of A. americanus. However, 327 we found initial stages of sequence diversification between A. americanus and A. mucronatus, 328 which may indicate the presence of a young and potentially hybridising species. Given that A. 329 mucronatus has consistent differences relating to size differences and structure of hindbody 330 and intromittent organ when compared to A. americanus, the low differentiation in barcode 331

sequences could indicate that morphology evolves more rapidly than mitochondrial 332 sequences, as would be expected under continuous directional sexual selection (Wojcieszek & 333 Simmons, 2011). Nevertheless, other forces as stabilizing natural selection could be 334 potentially responsible for divergence of male genitalia. In view of the fact, that male 335 genitalia in males in Arrenurus are highly complex and include presumably functionally 336 different components, it is likely that different sections of male genitalia in Arrenurus may be 337 subject of different evolutionary processes as it was suggested for grasshopper species (Song 338 339 & Wenzel, 2008).

We observed a clear pattern within the geographically widespread and color-340 polymorphic A. (Megaluracarus) manubriator, from which we had representatives from 341 distinct habitats and distant regions represented by laboratory colonies established from two 342 populations located approx. 2,500 km apart (red mites from a river in Texas vs. blue mites 343 from a lake in Ontario). The genetic differentiation of these populations is probably the result 344 of processes associated with speciation, as random coalescence was rejected as explanation of 345 346 this divergence. However, only limited conclusions can be drawn with regard to A. manubriator, because split into two distinct clades observed based on specimens from this 347 study is not retained after including sequences of specimens collected in a wider range of 348 habitats (data from BOLD databasis). In the apparently closely related Arrenurus s.str. species 349 group A. fissicornis Marshall - A. reflexus Marshall - A. bleptopetiolatus all applied methods 350 were consistent and confirmed genetic separation at the species-level. Interestingly, we found 351 well supported clade structure of coalescent origin within A. fissicornis, which was also 352 present after including data from BOLD. Overall, the comparison of our data with sequences 353 deposited in BOLD databasis was, however, limited to a few species, because only a small 354 part of sequences was publically available. 355

Its clear from our study that colour is a questionable character to use when separating 356 species: sometimes it is informative, other times it is a false lead. There are species that are 357 highly variable, some are remarkably consistent and colour is a useful cue for identification 358 359 (esp. within site). Furthermore, we observed that body colour can be either consistent within population but varying among populations (e.g., A. intermedius), or in other cases also highly 360 variable within population (e.g., A. americanus). The occurrence of colour variants that 361 showed within-species sequence divergence was also found in melon aphids (Lokeshwari et. 362 al., 2014), pabble crabs (Prakash & Kumar, 2020) and sea cucumbers (Jo et. al., 2016). 363 However, Soto-Adames (2002) revealed that most populations of springtails differing only in 364 color pattern showed significant genetic divergence and thus were recognized as distinct 365

species. We suggest that in the absence of other morphological differences, body colour itself is not a good diagnostic trait for species separation in the genus *Arrenurus*. However, in a few cases it may be a clue that there is underlying genetic differentiation (*A. manubriator*, laboratory colonies, B.P.S., pers. obs.). Although it's possible that variation in color in some cases may be caused by local water chemistry, body colour may have adaptive value for instance as photoprotectants (red and orange carotenoid pigments) (Proctor & Garga, 2002).

Although our outcomes suggest that certain pairs of named species could be conspecific, we believe that the patterns found in this study should be further tested on larger numbers of individuals from broader geographic ranges.

375

376 Acknowledgements

The authors thank Dr. Ian Smith, Ottawa, Canada, for assistance in identification of 377 specimens collected in Canada. We are grateful to Dr. Reinhard Gerecke, Tübingen, 378 Germany, and Dr. Harry Smit, Leiden, The Netherlands, for the loan of many specimens. Dr. 379 Peter Martin, Kiel, Germany, supported the study through providing specimens and 380 discussing parasitic associations in water mites. The study is part of the International PhD 381 Programme 'From genome to phenotype: A multidisciplinary approach to functional 382 genomics' (MPD/2010/3) funded by the Foundation for Polish Science (FNP). Additional 383 funding was provided by a Natural Sciences and Engineering Research Council of Canada 384 (NSERC) Discovery Grant to HCP. 385

386

387 **Conflict of interest**

388 The authors have no conflict of interest to declare.

389

390 References

Alarcón-Elbal, P.M., García-Jiménez, R., Peláez, M.L., Horreo, J. L., Valdecasas, A.G., 2020.

Molecular correlation between larval, deutonymph and adult stages of the water
mite *Arrenurus (Micruracarus) novus*. Life (Basel, Switzerland), 10(7), 108.
https://doi.org/10.3390/life10070108.

Arnqvist, G., Edvardsson, M., Friberg, U., Nilsson, T., 2000. Sexual conflict promotes
speciation in insects. Proc. Natl. Acad. Sci. U.S.A.; 97: 10460–10464,
https://doi.org/10.1073/pnas.97.19.10460.

- 398 Blattner, L., Gerecke, R., Von Fumetti, S., 2019. Hidden biodiversity revealed by integrated
- 399morphology and genetic species delimitation of spring dwelling water mite species400(Acari, Parasitengona: Hydrachnidia). Parasit Vectors 12: 492.
- 401 https://doi.org/10.1186/s13071-019-3750-y.
- 402 Böttger, K., Martin, P., 2003. On the morphology and parasitism of Arrenurus globator (O.F.
- 403 Müller, 1776) (Hydrachnidia, Acari) a water mite with an unusual extensive host
 404 spectrum. Acarologia 43: 49–57.
- 405 Cassagne-Méjean, F., 1966. Contribution a l'étude des Arrenuridae (Acari, Hydrachnellae) de
 406 France. Acarologia, supplement, 8: 1–186.
- Clement, M., Posada, D., Crandall, K. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657–1660. https://doi.org/10.1046/j.1365–
 294x.2000.01020.x.
- 410 Cook, D.R., 1954a. Preliminary list of the arrenuri of Michigan. Part I. The subgenus
 411 *Arrenurus*. Trans Amer. Micros. Soc., 73: 39–58.
- 412 Cook, D.R., 1954b. Preliminary list of the arrenuri of Michigan. Part II. The subgenus
 413 *Megaluracarus*. Trans Amer. Micros. Soc., 73: 367–380.
- 414 Cook, D.R., 1955. Preliminary list of the arrenuri of Michigan. Part III. The subgenera
 415 *Micruracarus* and *Truncaturus*. Trans Amer. Micros. Soc., 74: 60–67.
- 416 Cook, D.R., 1974. Water mite genera and subgenera. Mem. Am. Ent. Inst. 21: 1–860.
- 417 Dabert, J., Ehrnsberger, R., Dabert, M., 2008. Glaucalges tytonis sp. n. (Analgoidea:
- Xolalgidae) from the barn owl *Tyto alba* (Strigiformes: Tytonidae): compiling
 morphology with DNA barcode data for taxon descriptions in mites (Acari) Zootaxa
 1719: 41–52. http://dx.doi.org/10.11646/zootaxa.1719.1.2.
- 421 Dabert, M., Witalinski, W., Kaźmierski, A., Olszanowski, Z., Dabert, J., 2010. Molecular
 422 phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic
 423 signal and long branch attraction artifacts. Mol. Phylogenet. Evol. 56: 222–241.
 424 https://doi.org/10.1016/j.ympev.2009.12.020.
- 425 Dabert, J., Proctor, H., Dabert, M., 2016. Higher-level molecular phylogeny of the water
 426 mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae). Mol. Phylogenet.
 427 Evol. 101: 75e90. https://doi.org/10.1016/j.ympev.2016.05.004.
- 428 De Queiroz, K., 2007. Species concepts and species delimitation, Syst. Biol., 56: 879–886,
 429 https://doi.org/10.1080/10635150701701083.

- 430 Di Sabatino, A., Smit, H., Gerecke, R., Goldschmidt, T., Matsumoto, N., Cicolani, B., 2008.
- 431 Global diversity of water mites (Acari, Hydrachnidia). Hydrobiologia 595: 303–315.
 432 https://doi.org/10.1007/s10750–007–9025–1.
- 433 Douady, C.J., Delsuc, F., Boucher, Y., Doolittle, W.F., Douzery, E.J.P., 2003. Comparison of
 434 Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol.
- 435 Biol. Evol. 20: 248–254. https://doi.org/10.1093/molbev/msg042.
- 436 Dugès, A.L.D., 1834. Deuxième mémoire sur l'ordre des Acariens. Recherches sur l'ordre des
 437 Acariens. Rémarques sur la famille des Hydracnés. Annales des Sciences Naturelles (2e
 438 Série), 1: 144–174.
- Eberhardt, W.G., 1985. Sexual Selection and Animal Genitalia. Cambridge, Mass.: Harvard
 University Press.
- 441 Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap.
 442 Evolution 39: 783–791. https://doi.org/10.1111/j.1558–5646.1985.tb00420.x.
- García-Jiménez, R., Horreo, J.L., Valdecasas, A.G., 2017. Minimal barcode distance between
 two water mite species from Madeira Island: a cautionary tale. Exp. Appl. Acarol. 72:
 133–143. https://doi.org/10.1007/s10493–017–0147–5.
- 446 Gerecke, R., Gledhill, T., Pešić, V., Smit, H., 2016. Süßwasserfauna Von Mitteleuropa, Bd
 447 7/2–3. Chelicerata: Acari III. Heidelberg: Springer.
- Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software
 package for education and data analysis. Palaeontologia Electronica 4(1):
 9pp. http://palaeo-electronica.org/2001 1/past/issue1 01.htm.
- 451 Harrington, B., 2004-2005. Inkscape. http://www.inkscape.org/.
- Hart, M.W., Sunday, J., 2007. Things fall apart: biological species form unconnected
 parsimony networks. Biol. Lett., 3: 509–512. http://dx.doi.org/10.1098/rsbl.2007.0307.
- Hickerson, M., Meyer, C.P., Moritz, C., 2006. DNA Barcoding will often fail to discover new
 animal species over broad parameter space. Syst. Biol., 55: 729–39.
 https://doi.org/10.1080/10635150600969898.
- Janicke, T., G. Ritchie, M., H. Morrow, E., Marie–Orleach, L., 2018. Sexual selection
 predicts species richness across the Animal kingdom". Philos. Trans. R. Soc. Lond., B,
 Biol. Sci. . 285: 20180173. https://doi.org/10.6084/m9.figshare.c.4070984.v1.
- Jo, J., Park, C., Kim, M., Park, C., 2016. Phylogenetic Analysis of the three color variations of
 the sea cucumber *Apostichopus japonicus*. Jo et al., J Aquac Res Development, 7:3.
- 462 https://doi.org/:10.4172/2155-9546.1000418.

Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions
through comparative studies of nucleotide sequences. Journal of Molecular Evolution
16:111-120. https://doi.org/10.1007/BF01731581.

- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular
 evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35,
 1547e1549. https://doi.org/10.1093/molbev/msy096.
- 469 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,
- Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J.,
 Higgins, D.G., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–
 2948. https://doi.org/10.1093/bioinformatics/btm404.
- 473 Lassance, J., Svensson, G.P., Kozlov, M.V. et al., 2019. Pheromones and barcoding delimit
 474 boundaries between cryptic species in the primitive moth genus *Eriocrania*475 (Lepidoptera: Eriocraniidae). J. Chem. Ecol. 45: 429–439.
 476 https://doi.org/10.1007/s10886-019-01076-2.
- 477 Lokeshwari, D., Kumar, N., Manjunatha, H., 2014. Color polymorphism does not affect
 478 species diagnosis of the melon aphid *Aphis gossypii* (Hemiptera: Aphididae). The
 479 Florida Entomologist, 97(3), 1199–1207. http://www.jstor.org/stable/24722619.
- Martin, P., Dabert, M., Dabert, J., 2010. Molecular evidence for species separation in the
 water mite *Hygrobates nigromaculatus* Lebert, 1879 (Acari, Hydrachnidia):
 evolutionary consequences of the loss of larval parasitism. Aquat Sci 72: 347–360.
 https://doi.org/10.1007/s00027–010–0135–x.
- Masters, B.C, Fan, V., Ross, H.A., 2011. Species delimitation a Geneious plugin for the
 exploration of species boundaries. Mol Ecol Resour 11: 154–157.
 https://doi.org/10.1111/j.1755–0998.2010.02896.x.
- 487 Mendelson, T., Shaw, K., 2005. Rapid speciation in an arthropod. Nature 433: 375–376.
 488 https://doi.org/10.1038/433375a.
- Mironov, S.V., Dabert, J., Dabert, M., 2012. A new feather mite species of the genus *Proctophyllodes* Robin, 1877 (Astigmata: Proctophyllodidae) from the Long-tailed Tit *Aegithalos caudatus* (Passeriformes: Aegithalidae) morphological description with
 DNA barcode data. Zootaxa 3253: 54–61. http://dx.doi.org/10.11646/zootaxa.3253.1.2.
- 493 Mitchell, R.D., 1964. A study of sympatry in the water mite genus Arrenurus. Ecology 45:
- 494 546–558. https://doi.org/10.2307/1936107.

495 Nicholas, K.B., Nicholas, H.B., 1997. GeneDoc: a tool for editing and annotating multiple
496 sequence alignments. Pittsburgh Supercomputing Center's National Resource for
497 Biomedical Supercomputing. Available from: http://www.nrbsc.org/downloads/>.

- Pešić, V., Asadi, M., Cimpean, M., Dabert, M., Esen, Y., Gerecke, R., Martin, P., Savic, A.,
 Smit, H., Stur, E., 2017. Six species in one: evidence of cryptic speciation in the *Hygrobates fluviatilis* complex (Acariformes, Hydrachnidia, Hygrobatidae). Syst. Appl.
- 501 Acarol. 22, 1327e1377. https://doi.org/10.11158/saa.22.9.4.
- Pešić, V., Smit, H., 2017. *Neumania kyrgyzica* sp. nov. a new water mite from Kyrgyzstan
 based on morphological and molecular data (Acari, Hydrachnidia: Unionicolidae),
 Syst. Appl. Acarol 22, 885–894. https://doi.org/10.11158/saa.22.6.12.
- Pešić, V., Zawal, A., Bańkowska, A., Jovanović, M., Dabert, M., 2020. A new crenobiontic 505 water mite species of the genus Atractides Koch, 1837 from Montenegro and Bulgaria, 506 based on morphological and molecular data (Acariformes, Hydrachnidia, 507 1889–1900. Hygrobatidae). Syst. Appl. Acarol.25(10), 508 http://dx.doi.org/10.11158/saa.25.10.12. 509
- Prakash, S., Kumar, A., 2020. Varying colour pattern, yet genetically similar: Pebble 510 Crab Seulocia vittata (Stimpson, 1858) (Brachyura: Leucosiidae) 511 from the southeastern coast of India. J. threat. 512 taxa 12(5): 15612–15618. https://doi.org/10.11609/jott.5801.12.5.15612-15618. 513
- Proctor, H., Pritchard, G., 1989. Neglected predators: water mites (Acari: Parasitengona:
 Hydrachnellae) in freshwater communities. J. N. Amer. Benthol. Soc. 8: 100-111.
 https://www.jstor.org/stable/1467406.
- 517 Proctor, H., 1992. Mating and spermatophore morphology of water mites (Acari:
 518 Parasitengona). Zool. J. Linn. Soc. 106: 341–384. https://doi.org/10.1111/j.1096–
 519 3642.1992.tb01250.x.
- 520 Proctor, H.C. and N. Garga. 2002. Red, distasteful water mites: did fish make them that way?
 521 Exp. Appl. Acarol. 34: 127–147.
- Proctor, H.C., Smith, B.P., 1994. Mating behaviour of the water mite *Arrenurus manubriator*(Acari: Arrenuridae). J. Zool., London, 232: 473–483. https://doi.org/10.1111/j.1469–
 7998.1994.tb01588.x.
- Proctor, H.C., Smith, I.M., Cook, D.R., Smith, B.P., 2015. Subphylum Chelicerata, Class
 Arachnida. In: Thorp, J., Rogers, D.C. (Eds.), Ecology and General Biology: Thorp and
 Covich's Freshwater Invertebrates, Academic Press, 599–660.

528 Proctor, H.C., Wilkinson, K., 2001. Coercion and deceit: water mites (Acari: Hydracarina)

- and the study of intersexual conflict. pp. 155–169 In Halliday, R. B., Walter, D. E.,
- 530 Proctor, H. C., Norton, R. A. and Colloff, M. J. (eds.) Acarology: Proceedings of the
- 53110th International Congress. CSIRO Publishing, Melbourne.
- Puillandre, N., Lambert, A., Brouillet, S., Achaz, G., 2011. ABGD, Automatic Barcode Gap
 Discovery for primary species delimitation. Mol. Ecol. 21: 1864e1877. https://doi.org/
 10.1111/j.1365–294X.2011.05239.x.
- Rodrigo, A.G., Bertels, F., Heled, J., Noder, R., Shearman, H., Tsai, P., 2008. The perils of
 plenty: what are we going to do with all these genes? Philos. Trans. R. Soc. Lond., B,
 Biol. Sci. 363: 3893–3902. https://doi.org/10.1098/rstb.2008.0173.
- Rosenberg, N.A., 2007. Statistical tests for taxonomic distinctiveness from observations of
 monophyly. Evolution 61: 317–323. https://doi.org/10.1111/j.1558–5646.2007.00023.x.
- 540 Skoracka, A., Dabert, M., 2010. The cereal rust mite *Abacarus hystrix* (Acari: Eriophyoidea)
 541 is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull
 542 Entomol Res, 100(3), 263–272. https://doi.org/10.1017/S0007485309990216.
- Smit, H., 2012. New records of the water mite family Arrenuridae from the Afrotropical
 region, with the description of 11 new species and two new subspecies (Acari:
 Hydrachnidia). Zootaxa 3187: 1–31. http://dx.doi.org/10.11646/zootaxa.3187.1.1.
- Soto-Adames, F.N., 2002. Molecular phylogeny of the Puerto Rican Lepidocyrtus and
 Pseudosinella (Hexapoda: Collembola), a validation of Yoshii's "color pattern species".
 Mol. Phylogenet. Evol. 25: 27–42. https://doi.org/10.1016/S1055-7903(02)00250-6.
- 549 Stålstedt, J., Bergsten, J., & Ronquist, F., 2013. "Forms" of water mites (Acari:
 550 Hydrachnidia): intraspecific variation or valid species? Ecol Evol, 3, 3415–3435.
 551 https://doi.org/10.1002/ece3.704.
- Song, H., Wenzel, J.W., 2008. Mosaic pattern of genital divergence in three populations of *Schistocerca lineata* Scudder, 1899 (Orthoptera: Acrididae: Cyrtacanthacridinae). Biol.
 J. Linn. Soc. 94: 289–301. https://doi.org/10.1111/j.1095-8312.2008.00983.x.
- Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic
 associations with haplotypes inferred from restriction endonuclease mapping and DNA
 sequence data. III. Cladogram estimation. Genetics 132: 619–633.
- Viets, K.H., 1936. Wassermilben oder Hydracarina (Hydrachnellae und Halacaridae). Gustav
 Fischer Verlag, Jena. [Tierw. Dtl. 31. 288pp.; 32: 289–574].
- Więcek, M., Szydło, W., Dabert, J., Proctor, H., 2020. Delimiting species of water mites of
 the genus *Hydrodroma* (Acari: Hydrachnidiae: Hydrodromidae) from North America

and Europe: Integrative evidence of species status from COI sequences and
morphology. Zool. Anz., 284: 16–29. https://doi.org/10.1016/j.jcz.2019.11.004.

564 Wojcieszek, J.M., Simmons, L.W., 2011. Evidence for stabilizing selection and slow

- divergent evolution of male genitalia in a millipede (*Antichiropus variabilis*). Evolution,
- 566 66: 1138-1153. https://doi.org/10.1111/j.1558-5646.2011.01509.x.
- 567

Figure 1. Sexual dimorphism in *Arrenurus (Megaluracarus) globator*: A. male with elongated and
modified hindbody ("spur" on IVth leg not visible), B. female possesses very little diversified body
and lacks cauda.

- 571
- 572
- 573
- 574
- 575

Figure 2.Male hindbody (cauda), intromittent, and grasping organs in Arrenurus spp.; A. hindbody of 593 A. (Micrarrenurus) albator with membranous sub-petiolar cavity, petiole without central piece, B. 594 cauda of A. (Micruracarus) biscissus equipped with small and partly membranous petiole located in 595 elaborated medial cleft, C. slightly elongated hindbody of Arrenurus (Truncaturus) sp. 2 with peg-like 596 597 petiole, D. IVth leg of A. (Arrenurus) bicuspidator with spur (clasper organ), E. elaborate cauda with pygal lobes and petiole, A. (Arrenurus) magnicaudatus, F. very elongated and tubular cauda with peg-598 like petiole of A. (Megaluracarus) globator, G. intromittent organ with central piece, A. (Arrenurus) 599 bicuspidator; abbreviations: cp - central piece of petiole, dh - dorsal hump, g - glandularium, mc -600 medial cleft, mpc - membranous sub-petiolar cavity, p - petiole, pl - pygal lobe, spur (grasping 601 structure). 602

Figure 3. Kimura 2-parameter neighbor-joining tree of *Arrenurus* spp. based on 177 COI sequences
from this study and data downloaded from GenBank and BOLD; bootstrap supports are given next to
branches (only bootstrap values > 50 are shown). Clades consisted of more than one specimen are
condensed; clades 1 - 6 represent closely related lineages – species delimitation analyses are
summarized in Table 2. The NJ tree with expanded clades is shown in Supplementary Material, Fig.
S1. *Horreolanus orphanus* is an outgroup species. See Table 1 for sequence codes and accession
numbers.

611

612

613

Figure 4. Results of ABGD species delimitation for 123 COI sequences from this study that belong to *Arrenurus* spp.; A - frequency histogram of K2P pairwise distances, B – ranked distances.

626 Table 1. Sampling of Arrenurus spp. used in DNA barcoding. 'Species' is the a priori assignment that is based

627 on morphology. Voucher information and accession numbers of sequences obtained in this study and

628 downloaded from GenBank and BOLD are given.

GenBank/BOLD Accession No.								
Subgenus	Species	DNA voucher	28S rDNA	COI	Lat/Long	Locality		
<i>Arrenurus</i> s. str.	A. gennadus Cook, 1954	AMUmw255	KP836122	KP836187	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada		
	A. tricuspidator (O. F. Müller, 1776)	AMUmw164	KP836133	KP836199	53°06'52.6"N 08°47'45.3"E	ditches, Bremen, Germany		
	A. tricuspidator (O. F. Müller, 1776)	AMUmw167	MT895115	KP836200	53°06'52.6"N 08°47'45.3"E	ditches, Bremen, Germany		
	A. tricuspidator (O. F. Müller, 1776)	AMUmw168	-	MT891216	53°06'52.6"N 08°47'45.3"E	ditches, Bremen, Germany		
	A. bruzelii Koenike, 1885	AMUmw103	-	MT891199	53°06'52.6"N 08°47'45.3"E	ditches, Bremen, Germany		
	A. bruzelii Koenike, 1885	AMUmw104	KP836113	KP836177	53°06'52.6"N 08°47'45.3"E	ditches, Bremen, Germany		
	A. bruzelii Koenike, 1885	AMUmw105	MT895114	KP836178	48°32'31.42"N 09°09'03.38" E	Baggersee, Kirchentellinsfurt, Baden- Württemberg, Germany		
	A. robustus Koenike, 1894	AMUmw143	KP836131	KP836197	-	Schleswig-Holstein, Germany		
	A. robustus Koenike, 1894	AMUmw132	-	MT891215	-	Schleswig-Holstein, Germany		
	A. cuspidifer Piersig, 1896	AMUmw161	KP836116	KP836181	-	Italy		
	A. maculator (O. F. Müller, 1776)	AMUmw120	KP836120	-	-	peatland near Borne Sulinowo, Poland		
	A. pustulator (O. F. Müller, 1776)	AMUmw152	KP836128	KP836194	53°29'56.5"N 16°28'38.6"E	Bagnisko Lake, Borne Sulinowo, Polano		
	A. pustulator (O. F. Müller, 1776)	AMUmw153	-	MT891211	53°29'56.5"N 16°28'38.6"E	Bagnisko Lake, Borne Sulinowo, Polano		
	<i>A. americanus</i> (red) Marshall, 1908	AMUmw258	MT895111	KP836171	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada		
	A. americanus (red) Marshall, 1908	AMUmw051	MT895112	KP836173	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Canada		

A. americanus (green) Marshall, 1908	AMUmw052	-	MT891191	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
A. americanus (red) Marshall, 1908	AMUmw060	-	MT891192	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
A. americanus (red) Marshall, 1908	AMUmw079	-	MT891193	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. americanus Marshall, 1908	UAWM095-14	-	MG313272	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. americanus Marshall, 1908	UAWM102-14	-	MG319546	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. americanus Marshall, 1908	UAWM131-14	-	MG317722	53°33'10.8"N 114°29'45.6"W	Lake Wabamun, Alberta, Canada
A. americanus Marshall, 1908	UAWM100-14	-	MG320543	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. americanus Marshall, 1908	UAWM098-14	-	MG315444	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. americanus Marshall, 1908	UAWM096-14	-	MG320266	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. hungerfordi Cook, 1954	AMUmw093	_	KP836185	-	Dancing Elephant Lake, east of Elk Island National Park, Alberta, Canada
A. hungerfordi Cook, 1954	AMUmw094	-	MT891202	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. hungerfordi Cook, 1954	AMUmw096	-	MT891203	53°39'23.7"N 112°45'37.0"W	private property near Elk Island National Park, Alberta, Canada
A. reflexus Marshall, 1908	AMUmw013	KP836129	KP836195	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. reflexus Marshall, 1908	AMUmw017		KP836196	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. reflexus Marshall, 1908	AMUmw014	KP836130 -	MT891212	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. reflexus Marshall, 1908	AMUmw016	-	MT891213	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. reflexus Marshall, 1908	AMUmw091	-	MT891214	-	Le Roi swamp near QUBS, Ontario, Canada
A. reflexus Marshall, 1908	RRMFE2487-15	-	KT604056	43°22'25.0"N 80°21'54.7"W	Charitable Research Reserve, Ontario, Canada
A. reflexus Marshall, 1908	RRMFE2272-15	-	KT605287	43°22'25.0"N 80°21'54.7"W	Charitable Research Reserve, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw001		KP836175	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw002	MT895113 -	MT891194	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw003	-	MT891195	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw004	-	MT891196	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw005	-	MT891197	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw006	-	MT891198	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. bleptopetiolatus Cook, 1954	AMUmw007	KP836112	KP836176	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. magnicaudatus Marshall, 1908	AMUmw031	KP836121	KP836186	-	Stonehouse Creek near QUBS, Ontario, Canada
A. magnicaudatus Marshall, 1908	AMUmw245	-	MT891204	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. maryellenae Cook, 1954	AMUmw250	KP836123	KP836188	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. planus Marshall, 1908	AMUmwpla1	-	KP836193	-	pond on Indian Lake Road nr Chaffey's Lock, Ontario, Canada
A. mucronatus Levers, 1945	AMUmw048	VD926124	KP836189	-	Le Roi swamp near QUBS, Ontario, Canada
A. fissicornis Marshall, 1908	AMUmw008	KP836124 KP836117	KP836182	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. fissicornis Marshall, 1908	AMUmw009	-	MT891200	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada

	A. fissicornis Marshall, 1908	AMUmw010	-	MT891201	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
	A. fissicornis Marshall, 1908	AMUmw011	KP836118	KP836183	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
	A. fissicornis Marshall, 1908	AMUmw012	KP836119	KP836184	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2372-17	-	BOLD:ACL 1937 (SWCHL237 2-17)	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2344-17	-	BOLD:ACL 1937 (SWCHL234 4-17)	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2350-17	-	BOLD:ACL 1937 (SWCHL235 0-17)	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2343-17	-	· ·	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2351-17	-	/	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2384-17	-	BOLD:ACL 1937 (SWCHL238 4-17)	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. fissicornis Marshall, 1908	SWCHL2366-17	-	BOLD:ACL 1937 (SWCHL236 6-17)	44°30'56.2"N 76°01'28.9"W	Charleston Lake Provincial Park, Ontario, Canada
	A. claviger Koenike 1885	AMUmwcla	MT895124	017)	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
Micrarrenurus	A. crassicaudatus Kramer 1875	AMUmw235	KP836156	KP836225	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	A. crassicaudatus Kramer 1875	AMUmw236	-	MT891240	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	A. albator (O.F. Müller, 1776)	AMUmw098_100	KP836155	KP836224	53°0630,4"N 08°49'27,9''E	ditches, Bremen, Germany
	A. fimbriatus Koenike, 1885	AMUmw225	KP836157	KP836226	53°32'43.4"N 16°27'55.0"E	peatland Celnikowo near Borne Sulinowo, Poland
	A. fimbriatus Koenike, 1885	AMUmw300	-	MT891241	53°06'30.4"N 08°49'27.9"E	ditches, Bremen, Germany
Micruracarus	A. biscissus Lebert, 1879	AMUmw140	KP836158	KP836227	-	Schleswig-Holstein, Germany
	A. biscissus Lebert, 1879	AMUmw102	-	MT891242	53°06'32.0"N 08°49'26.9"E	ditches, Bremen, Germany
	A. sinuator (O. F. Müller, 1776)	AMUmw169	-	MT891244	53°07'37.6"N 08°47'31.1"E	ditches, Bremen, Germany
	A. sinuator (O. F. Müller, 1776)	AMUmw171	MT895121	KP836232	53°07'37.6"N 08°47'31.1''E	ditches, Bremen, Germany
	A. sinuator (O. F. Müller, 1776)	AMUmw234	KP836164	KP836233	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	A. sinuator (O. F. Müller, 1776)	AMUmw159	KP836163	KP836231	53°07'39,8"N 08°47'30,1"E	ditches, Bremen, Germany
	<i>A. perforatus</i> George, 1881 <i>A. perforatus</i> George, 1881	AMUmw157 AMUmw158	KP836162 -	KP836230 MT891243	53°06'52.6"N 08°47'45.3"E -	ditches, Bremen, Germany Stadtwaldsee, Bremen, Germany
	Arrenurus spl	AMUmw237	KP836165	KP836234	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	Arrenurus spl	AMUmw238	MT895122	KP836235	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	Arrenurus sp1	AMUmw240	-	MT891245	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	A. cf. inexploratus Viets, 1930	AMUmw232	KP836159	KP836228	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland

	A. lyriger Marshall, 1908	AMUmw046	KP836161	KP836229	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
	A. setiger Koenike, 1895	AMUmw039	KP836166	KP836236	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
	A. setiger Koenike, 1895	AMUmw040	MT895120	KP836237	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
	A. setiger Koenike, 1895	AMUmw042	-	KP836238	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
	A. setiger Koenike, 1895	AMUmw043	-	MT891246	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, Ontario, QUBS
	A. setiger Koenike, 1895	AMUmw080	-	MT891247	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
	A. infundibularis (Marshall, 1908)	AMUmw251	KP836160	-	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
Truncaturus	A. stecki Koenike, 1894	AMUmw223	KP836170	KP836242	53°32'43.4"N 16°27'55.0"E	peatland Celnikowo near Borne Sulinowo
	A. stecki Koenike, 1894	AMUmw200	MT895123	KP836241	53°32'43.4"N 16°27'55.0"E	Poland peatland Celnikowo near Borne Sulinowo
	A. stecki Koenike, 1894	AMUmw199	-	MT891249	53°32'43.4"N 16°27'55.0"E	Poland peatland Celnikowo near Borne Sulinowo
	A. stecki Koenike, 1894	AMUmw215	-	MT891250	53°32'43.4"N 16°27'55.0"E	Poland peatland Celnikowo near Borne Sulinowo
	A. stecki Koenike, 1894	AMUmw216	-	MT891251	53°32'43.4"N 16°27'55.0"E	Poland peatland Celnikowo near Borne Sulinowo
	A. stecki Koenike, 1894	AMUmw217	-	MT891252	53°32'43.4"N 16°27'55.0"E	Poland peatland Celnikowo near Borne Sulinowo
	A. stecki Koenike, 1894	AMUmw219	-	MT891253	53°32'43.4"N 16°27'55.0"E	Poland peatland Celnikowo near Borne Sulinowo
	A. fontinalis Viets, 1920	AMUmw141	KP836168	_	_	Poland Schleswig-Holstein, Germany
	A. fontinalis Viets, 1920	NMB-TROM-	-	MK889748	_	Oberallgäu, Imberg, Straussbergmoos,
	A. jonunuus vices, 1920	10237	-	WIK009740	-	Germany
	A. fontinalis Viets, 1920	NMB-TROM- 10236	-	MK889747	-	Oberallgäu, Imberg, Straussbergmoos, Germany
	A cf. truncatellus (O. F. Müller, 1776)	AMUmw201	KP836167	KP836239	53°32'43.4"N 16°27'55.0"E	peatland Celnikowo near Borne Sulinowo Poland
	Arrenurus sp2	AMUmw303	KP836169	KP836240	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
	Arrenurus sp2	AMUmw304	-	MT891248	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
<i>Aegaluracarus</i>	A. cylindratus Piersig, 1896	AMUmw165	KP836138	KP836206	47°37'12.7"N 9°56'07.5"E	Limnocrene spring, Bayern, Germany
	A. cylindratus Piersig, 1896	AMUmw127	-	MT891222	-	Schleswig-Holstein, Germany
	A. cylindratus Piersig, 1896	AMUmw175	-	MT891223	47°37'12.7"N 9°56'07.5"E	Limnokrene, Bayern, Germany
	A. securiformis Piersig, 1894	AMUmw124	MT895119	KP836218	-	Schleswig-Holstein, Germany
	A. securiformis Piersig, 1894	AMUmw139	KP836150	KP836219	-	Schleswig-Holstein, Germany
	A. securiformis Piersig, 1894	AMUmw156	KP836151	KP836220	53°06'30.4"N 08°49'27.9"E	ditches, Bremen, Germany
	A. securiformis Piersig, 1894	AMUmw137	-	MT891238	-	Schleswig-Holstein, Germany
	A. mediorotundatus Thor, 1898	AMUmw142	KP836146	KP836215	-	Schleswig-Holstein, Germany
	A. scutiliformis Garms, 1961	AMUmw256	KP836149	-	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
	A. cardiacus Marshall, 1903	AMUmw259	KP836137	KP836205	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
		AMUmw211	KP836139	KP836207	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	o (, , , ,	AMUmw112	-	MT891224	52°27'59.1"N 16°55'58.8"E	Morasko Campus, ponds, Poznań, Poland
	A. globator (O. F. Müller, 1776)	AMUmw113	-	MT891225	-	peatland near Borne Sulinowo, Poland
	A. globator (O. F. Müller, 1776)	AMUmw118	-	MT891226	-	peatland near Borne Sulinowo, Poland
		AMUmw119	-	MT891227	-	peatland near Borne Sulinowo, Poland
	A. buccinator (O.F. Müller, 1776)		KP836136	-	53°06'52.6"N 08°47'45.3"E	ditches, Bremen, Germany
	<i>A. apetiolatus</i> (blue) Piersig, 1904		-	KP836201		Stonehouse Creek near QUBS, Canada
	<i>A. apetiolatus</i> (blue) Piersig, 1904 <i>A. apetiolatus</i> (blue) Piersig, 1904		- KP836135	KP836201 KP836202		Lake Opinicon, QUBS, Ontario, Canada
				NPA30/U/	44°34'03.6"N 76°19'26.6"W	LAKE COLLICOL CULBS UNIATIO CANADA
	<i>A. apetiolatus</i> (blue) Piersig, 1904 <i>A. apetiolatus</i> (blue) Piersig, 1904		MT895116	KP836203	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada

A. apetiolatus (blue) Piersig, 1904	AMUmw082	MT895117	KP836204	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. apetiolatus (red) Piersig, 1904	AMUmw248	KP836134	-	-	Hebert's Bog, QUBS, Ontario, Canada
A. apetiolatus (blue) Piersig, 1904	AMUmw083	-	MT891219	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. apetiolatus (blue) Piersig, 1904	AMUmw086	-	MT891220	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. apetiolatus (blue) Piersig, 1904	AMUmw075	-	MT891218	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. apetiolatus (blue) Piersig, 1904	AMUmw087	-	MT891221	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. apetiolatus (blue) Piersig, 1904	AMUmw038	-	MT891217	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
A. apetiolatus Piersig, 1904	BACZP1279-16	-	MG449549	44°33'47.2"N 76°33'12.6"W	Eel Lake, Ontario, Canada
A. marshallae Piersig, 1904	AMUmw247	KP836148	KP836217	44°34'03.6"N 76°19'26.6"W	Lake Opinicon, QUBS, Ontario, Canada
A. marshallae Piersig, 1904	GMOEF2171-15	-	MG314930	42°52'58.8"N 82°11'02.4"W	L.C. Henderson Conservation Area, Ontario, Canada
A. marshallae Piersig, 1904	GMOEF2175-15	-	MG314834	42°52'58.8"N 82°11'02.4"W	Petrolia - LC Henderson CA, Ontario, Canada
A. marshallae Piersig, 1904	GENWM167-16	-	MG313280	43°32'54.2"N 80°13'22.4"W	Eramosa River, Ontario, Canada
A. marshallae Piersig, 1904	SWTHI1242-17	-	BOLD:ACL 2521 (SWTHI124 2-17)	44°29'49.6"N 75°49'32.2"W	Thousand Island NP, Ontario, Canada
A. marshallae Piersig, 1904	GMOEF2170-15	-	MG317870	42°52'58.8"N 82°11'02.4"W	Petrolia - LC Henderson Conservation Area, Ontario, Canada
A. marshallae Piersig, 1904	SWCHL654-15	-	MG314823	44°30'17.3"N 76°02'26.9"W	Charleston Lake Provincial Park, Ontario, Canada
A. marshallae Piersig, 1904	GMOEF2173-15	-	MG318581	42°52'58.8"N 82°11'02.4"W	Petrolia - LC Henderson Conservation Area, Ontario, Canada
A. intermedius (blue) Marshall, 1940	AMUmw306	KP836140	KP836208	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. intermedius (blue) Marshall, 1940	AMUmw307	KP836141	KP836209	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
<i>A. intermedius</i> (blue) Marshall, 1940	AMUmw308	KP836142	KP836210	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
<i>A. intermedius</i> (blue) Marshall, 1940	AMUmw089	-	MT891228	-	marshy stream on Indian Lake Road, near QUBS, Ontario, Canada
A. intermedius (red) Marshall, 1940	AMUmw263	KP836152	KP836221	-	East Pitlk. Nr Wabamoun Village, Alberta, Canada
A. megalurus Marshall, 1903	AMUmw249	KP836147	KP836216	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. manubriator (blue) Marshall, 1903	AMUmw028	KP836143	KP836211	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator (blue) Marshall, 1903	AMUmw030	MT895118	KP836212	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator (red) Marshall, 1903	AMUmw020	KP836144	KP836213	-	originally from San Marcos River, San Marcos, Texas, USA
<i>A. manubriator</i> (red) Marshall, 1903	AMUmw023	KP836145	KP836214	-	originally from San Marcos River, San Marcos, Texas, USA
<i>A. manubriator</i> (red) Marshall, 1903	AMUmw018	-	MT891233	-	originally from San Marcos River, San Marcos, Texas, USA
A. manubriator (red) Marshall, 1903	AMUmw019	-	MT891234	-	originally from San Marcos River, San Marcos, Texas, USA
<i>A. manubriator</i> (red) Marshall, 1903	AMUmw021	-	MT891235	-	originally from San Marcos River, San Marcos, Texas, USA
A. manubriator (red) Marshall,	AMUmw022	-	MT891236	-	originally from San Marcos River, San

1903

Marcos, Texas, USA

A. manubriator (red) Marshall, 1903	AMUmw024	-	MT891237	-	originally from San Marcos River, San Marcos, Texas, USA
A. manubriator (blue) Marshall, 1903	AMUmw025	-	MT891229	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator (blue) Marshall, 1903	AMUmw026	-	MT891230	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator (blue) Marshall, 1903	AMUmw027	-	MT891231	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator (blue) Marshall, 1903	AMUmw028	KP836143	KP836211	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator (blue) Marshall, 1903	AMUmw029	-	MT891232	44°34'03.6"N 76°19'26.6"W	originally from Lake Opinicon, QUBS, Ontario, Canada
A. manubriator Marshall, 1903	GENWM151-16	-	MG313573	44°33'47.2"N 76°33'12.6"W	Eel Lake Cottage, Ontario, Canada
A. manubriator Marshall, 1903	SWTHI1056-17	-	BOLD:ACL 2991 (SWTHI105 6-17)	44°29'49.6"N 75°49'32.2"W	Thousand Island NP, Ontario, Canada
A. manubriator Marshall, 1903	GENWM152-16	-	MG317929	44°33'47.2"N 76°33'12.6"W	Eel Lake Cottage, Ontario, Canada
A. manubriator Marshall, 1903	PPGB134-12	-	MN359717	45°37'19.2"N 80°25'08.4"W	Georgian Bay, Ontario, Canada
A. manubriator Marshall, 1903	SWTHI1006-17	-	BOLD:ACL 2991 (SWTHI100 6-17)	44°29'49.6"N 75°49'32.2"W	Thousand Island NP, Ontario, Canada
A. wardi Marshall, 1940	AMUmw078	-	MT891239	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. wardi Marshall, 1940	AMUmw301	KP836153	KP836222	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. wardi Marshall, 1940	AMUmw309	KP836154	KP836223	44°32'15.8"N 76°23'27.1"W	Lindsey Lake, QUBS, Ontario, Canada
A. wardi Marshall, 1940	SSPAA2249-13	-	KM839514	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SSPAA2246-13	-	KM833758	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	CNGBG1826-14	-	KR096679	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	SSPAA2294-13	-	KM828158	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	CNGBF1016-14	-	KR096062	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBF1072-1	-	KR098901	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBF1646-14	-	KR100183	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBE870-14	-	KR104611	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBH715-14	-	KR102634	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBG1910-14	-	KR098840	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBH769-14	-	KR100298	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	SSPAA2265-13	-	KM830004	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SIOCA017-10	-	JN309443	53°54'21.6"N 106°01'48.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SIOCA018-10	-	JN309444	53°54'21.6"N 106°01'48.0"W	Prince Albert National Park, Saskatchewan, Canada

A. wardi Marshall, 1940	SSPAA2302-13	-	KM824466	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SSPAA2274-13	-	KM838807	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	CNGBG1877-14	-	KR102519	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBO974-14	-	KR099957	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	CNGBG1957-14	-	KR105143	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
A. wardi Marshall, 1940	SSPAA2281-13	-	KM827656	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SSPAA2296-13	-	KM836945	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SSPAA2256-13	-	KM831767	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	SSPAA2264-13	-	KM826410	53°54'19.8"N 106°01'30.0"W	Prince Albert National Park, Saskatchewan, Canada
A. wardi Marshall, 1940	CNGBG1913-14	-	KR102059	44°51'05.4"N 79°52'27.8"W	Georgian Bay Islands NP, Ontario, Canada
Horreolanus orphanus Mitchell, 1955	-	KM100946	KM101004	-	USA

629

Table 2. Results of species delimitation analyses based on COI DNA sequences obtained in this study. Remaining well-supported clades within species were concordantly recovered as conspecific by all methods. Abbreviations used (+): separate species, (-): the same species, (?): ambiguous result.

	Distance cor	nparison		$P_{\left(AB\right)}$	Conclusion		
Clade number	Distance between groups (%)	Inter /Intra- group distance ratio	ABGD	TCS	P _(RD)		
1 A. fissicornis	1.4 (-)	11.1 (+)	(-)	(-)	<0.05 (+)	0.05 (+)	Conspecific, two well- supported clades of coalescent origin yet genetically poorly diversified
2 A. americanus (red and green), A. mucronatus	4.9-5.1 (?)	12.5 (+)	(-)	(+)	<0.05 (+)	0.07 (-)	Speciation or hybridization of <i>A. americanus</i> and <i>A. mucronatus</i> is not finished
3 A. bruzelii	2.7-3.0 (-)	6.25 (-)	(-)	(+)	NA	0.33 (-)	Conspecific, well genetically separated clades of coalescent origin
4 A. setiger	2.4-2.8 (-)	7.69 (-)	(-)	(+)	NA	0.1 (-)	Conspecific, well genetically separated clades of coalescent origin
5 A. megalurus, A. intermedius (red and blue)	1.3-1.7 (-)	2.38 (-)	(-)	(-)	NA	0.07 (-)	A. megalurus and A. intermedius are conspecific
<i>6</i> <i>A. manubriator</i> Ontario (blue) and Texas (red)	2.18 (-)	9 (+)	(-)	(-)	<0.05 (+)	<<0.001 (+)	Conspecific, but well separated groups being formed by speciation mechanism rather than coalescence

630

631 Supplementary material

632 Figure S1. Kimura 2-parameter neighbor-joining tree of Arrenurus spp. based on 177 COI sequences

633 from this study and data downloaded from GenBank and BOLD (bootstrap supports next to branches,

only values > 50 are shown). There are included GenBank sequences of *Arrenurus fontinalis* since we

635 have failed to obtain COI sequences from our samples. *Horreolanus orphanus* is an outgroup species.

636 Clades 1 - 6 are closely related lineages and relate to results of species delimitation analyses shown in

637 Table 2. Table 1 includes sequence codes and accession numbers.

638

Figure S2. The box plots show medians, quartiles and standard errors of genetic distances within the
genus *Arrenurus* and within subgenera *Arrenurus* s.str., *Megaluracarus*, *Micruracarus*, *Truncaturus*and *Micrarrenurus*; species with exceptionally low distance values and colour variants were excluded

- 642 from statistical analysis; A. COI (K2P) distances A. intermedius vs. A. megalurus were excluded
- 643 from statistical analysis; B. 28S (K2P) distances A. intermedius vs. A. megalurus and A. gennadus

- vs. *A. mucronatus* were not included; subgenera *Truncaturus* and *Micrarrenurus* were represented
 only by 6 (3 for COI) and 3 observations, respectively.
- 646
- Figure S3. Haplotype networks of the COI gene under the 95% parsimony criterion. Networks
 corresponding with named species and one unnamed morphospecies are shown. The size of ovals
 reflects haplotype frequencies. Dots on lines indicate one missing unsampled haplotype.
- 650
- Figure S4. Haplotype networks of the COI gene under the 95% parsimony criterion. Networksconsisted of several named species or splitted networks are presented. The size of ovals reflects
- haplotype frequencies. Each bar indicates one missing unsampled haplotype.
- 654
- Figure S5. ABGD output tree based on 123 COI sequences of *Arrenurus* spp. from this study. The number of groups in initial partitions is presented. See Table 1 for sequence codes and accession numbers.
- 658
- Table S1. Kimura 2-parameter (K2P) distances (and standard errors) for COI sequences obtained inthis study calculated within (in grey) and between species.
- 661
- 662 Table S2. Kimura 2-parameter (K2P) distances (and standard errors) for 28S sequences obtained in
- this study calculated within (in grey) and between species.