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Abstract

It’s now common to approach questions about information
representation in the brain using multivariate statistics and
machine learning methods. What is less recognized is that, in the
process, the ability to perform data-driven discovery and func-
tional localization has diminished. This is because multivariate
pattern analysis (MVPA) studies tend to restrict themselves to
regions of interest and severely-filtered data, and sound parameter
mapping inference is lacking. Here, reproducible evidence is
presented that a high-dimensional, brain-wide multivariate linear
method can better detect and characterize the occurrence of
visual and socio-affective states in a task-oriented functional
magnetic resonance imaging (fMRI) experiment; in comparison
to the classical localizationist correlation analysis. Classification
models for a group of human participants and existing rigorous
cluster inference methods are used to construct group anatomical-
statistical parametric maps, which correspond to the most likely
neural correlates of each psychological state. This led to the
discovery of a multidimensional pattern of brain activity which
reliably encodes for the perception of happiness in the visual
cortex, cerebellum and some limbic areas. We failed to find
similar evidence for sadness and anger. Anatomical consistency
of discriminating features across subjects and contrasts despite
of the high number of dimensions, as well as agreement with the
wider literature, suggest MVPA is a viable tool for full-brain
functional neuroanatomical mapping and not just prediction of
psychological states. The present work paves the way for future
functional brain imaging studies to provide a complementary
picture of brain functions (such as emotion), according to their
macroscale dynamics.
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1 Introduction

Mapping of segregated brain functions is far from a set-
tled methodology. Take for instance the very choice of
statistical model in task-oriented functional neuroimag-
ing for modalities like fMRI and PET: while the ven-
erable mass-univariate analysis fits separate models to
encode each brain time series based on experimental vari-
ables; multivariate pattern analysis (MVPA) reverses this

— particularly multivariate pattern learning — fitting one
model to decode experimental conditions out of the joint
activity of several brain signals. The former is excellent
at uncovering simple correlations between loci and func-
tions; whereas the latter provides increased sensitivity
due to emergent informational dependencies, at the ex-
pense of computational complexity.

For this reason and because having more dimensions
than samples leads to overfitting — popular wisdom
goes — multivariate searches must be restricted to re-
gions of interests (ROI)1–3 or moving searchlights,4,5 or
otherwise greatly reduced. Furthermore, the ability to
map model parameters onto anatomy may not always
be available, depending on algorithm transparency and
nonlinearities.6 Indeed, rigorous group inference of sen-
sitivity clusters (akin to activation map thresholding) is
seldom performed in MVPA studies; casting doubt on
whether it will ever become a true match to classical
functional brain mapping.

We don’t call into question the strengths of each ap-
proach. However, how big of a difference do they make
in practice? We suspect the limits of MVPA usage
have been overestimated or don’t apply as much any-
more. With the right choice of learning algorithm and
implementation, a neuroscientist may want to explore
information-bearing patterns in the brain as a whole,
analogously to mass-univariate analysis, before (or with-
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out) narrowing down the search to some subsystem or
subjecting the data to the caveats of some dimensionality
reduction method.7 Other reasons for doing this include
avoiding the statistical pitfalls of selection bias.8 Also,
sometimes there’s no reason at all to prefer one spatial
scale a priori;9 as with pioneering studies of high-level,
poorly-understood cognitive functions and personalized
imaging of plastic ad-hoc skills.

As difficult as finding a near-optimal predictive model
might be, amid all the noise voxels relative to the task;10

it’s hard to tell beforehand whether zero evidence of in-
teresting long-range spatial patterns could be harnessed
from brain-wide activity. In fact, the most recent ad-
vances in statistical learning tell the opposite story:
against all expectations, deep architectures have come to
grips with notoriously difficult problems by embracing
their extremely high-dimensional nature.11 Meanwhile,
stringent observation of cross-validation and ROC-curve
standards already account for exaggerated (i.e. overfit-
ted) findings. Finally, this would complete the full spec-
trum of available complementary analytical perspectives
purported since the introduction of MVPA. Just as allow-
ing for multivariate dependencies might give a completely
different picture to the traditional methodology,12–14 so
could do multivariate data drawn from a different spatio-
temporal scale (e.g. neuronal ensembles vs large-scale
networks). Yet the merits of such straightforward model
have never been fully put to test, to the best of our knowl-
edge.

Just one year after introducing the general linear
model (GLM) for per-voxel analysis,15 Friston et al. ap-
plied multivariate analysis of covariance on whole-
brain data, reduced to a space of 35 canonical-variate
eigenimages.16 Importantly, this study not only estab-
lished that multidimensional distributions of brain vol-
umes could be distinguished under slight differences of
cognitive-motor task conditions, but also that their hemo-
dynamic transients were very heterogeneous despite of
indistinguishable stationary statistical momenta. In gen-
eral, detachment of focal neural response from exper-
imental condition is one of the main motivations be-
hind multivariate analysis.12,17 Ever since, the exist-
ing whole-brain experiments either keep constructing
a low-dimensional state-space from brain atlases and
parcellations,18 univariate voxel selection10,19 and multi-

variate methods like principal components analysis and
similar ones;7,20–25 or they avoid reduction altogether
but fall short of translating machine learning models
into statistically-sound parametric maps for morpho-
physiological insight.6,10,26–28

Algo./Ref. Modality Emotions ROI Accuracy

SVM29 visual fear many 78%> 50%

SVM30 auditory happiness,
anger,
sadness,
relief

auditory
cortex

33% > 20%

SMLR31 visual happiness,
anger,
sadness,
disgust,
surprise,
fear

superior
temporal
sulcus,
frontal
operculum

22% > 14%

RSA32 auditory,
visual
(faces and
body
language)

happiness,
anger,
sadness,
disgust,
fear

brain
(searchlight)

N.A.

SVM33 auditory happiness,
anger,
sadness,
surprise

brain
(searchlight)

28% > 20%

SVM34 reading,
visual
(faces)

21
appraisals

theory of
mind
network,
brain
(searchlight)

~8% > 5%
(ROIs)

MGPC35 visual
(faces)

happiness,
anger, fear

many ~32% >
25%

SVM36 visual
(faces)

happiness (canis
familiaris)
right
temporal
cortex,
caudate.
Brain
(searchlight)

~65% >
50% (ROIs)

Table 1: Survey of experimental studies regarding emotion perception
which employed MVPA. Column descriptions: Algo./Ref.: reference
in bibliography and algorithm it uses. Modality: stimuli modality.
Emotions: emotions under investigation (usually supplemented with
an extra neutral category). ROI: region of interest. Accuracy: average
classification accuracy, compared to theoretical random accuracy given
the number of emotion categories.

For instance, the latter study by Raizada et al. actually
was conducted in the same spirit as ours, and provided
promising results keeping track of behaviorally-separable
groups according to how they perceived phonemes.
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Statistical-anatomical maps were derived from voxelwise
testing of GLM-based classifiers, but correction for mul-
tiple comparisons was absent.28 Others simply don’t get
as far as performing functional localization.

Here we tested the competitiveness of pattern classi-
fication analysis (i.e., supervised pattern learning) as a
methodology for anatomical localization of the correlates
of cognitive functions in brain-wide, high-dimensional
fMRI data. To this end, we employed rather standard
and easily-interpretable support vector machine (SVM)
classifiers on a sample of 16 human participants who per-
formed a visual perception task. The task poses variable
levels of decoding difficulty: from simple visual stimula-
tion and face perception to the more ethereal perception
of three basic emotions. We evaluate whether SVM can
learn to predict task state above empirically-estimated
chance performance, and if so, whether individual mod-
els converge on what the most relevant neural correlates
of each cognitive ability are.

We expect both univariate and multivariate analyses
to reveal well-known early visual cortex areas in contrasts
intended to capture the effect of visual stimulation, and
components of the so-called face processing network in
the ventral stream during face perception.37,38 If success-
ful, this would provide greater confidence when exploring
the correlates of the more poorly-understood emotional
functions.

Although over a hundred years of affective neurobiol-
ogy research have been fruitful in identifying the anatom-
ical components of the emotional central nervous system;
ample disagreement still exists on the physiological char-
acterization of particular emotional experiences, even
among metanalytical reviews.39–45 It’s not clear how the
distributed activity of many limbic and other mid-line
structures, from the posterior perivermian cerebellum to
the medial prefrontal cortex (among others), gives rise
to such behaviorally and evolutionarily relevant phenom-
ena as sadness, rage or positive hedonic valence. This
realization has in turn prompted the advent of more sen-
sitive multivariate methods in emotion research46–54 and,
closely related, emotional perception research (see table
1); whereby multivariate activity localized in ROIs and
searchlights has been found to outperform its univariate
counterpart distinguishing among affective states.

2 Materials and Methods

2.1 Sample

Data came from a cross-sectional group of 16 volunteers
from both sexes (8 female, 8 male), and an average age
of 25 years, recruited at UNAM campus Juriquilla from
October 2019 to June 2020. Participants were briefly
interviewed to exclude those previously diagnosed with
neurological or psychiatric conditions. With the excep-
tion of one male subject, all of them reported having
right-handed phenotype. Prior to the study, subjects
formally consented to participating after being informed
of its aims, risks and procedures — in accordance with
the 1964 Declaration of Helsinki — and were compen-
sated with their brain scans and free diagnostics by a
radiologist.

𝑛 = 16

Age (years) �̄� 𝑆.𝐷.
25 3.01

Sex Female Male
8 8

Education level Undergraduate Postgraduate
(obtained or in progress) 8 8

Table 2: Demographic features of the 16 successfully included partici-
pants.

2.2 Image acquisition

Parameter EPI BOLD T1w FSPGR

Slice orientation Axial Axial or sagital
Slices 35 176
Field of view 64×64 256×256
Voxel size (4 𝑚𝑚)3 (1 𝑚𝑚)3

Flip angle 𝜋/2 3𝜋/45
TR (ms) 2000 8.18
TE (ms) 30 3.19
TInv (ms) 450

Table 3: Sequence parameters used for the MRI protocol. Abbrevi-
ations: EPI: echo planar imaging, BOLD: blood-oxygen-level depen-
dent, T1w: T1-weighted, FSPGR: fast spoiled-gradient echo (GE’s
nomenclature), TInv: inversion time parameter for FSPGR T1w imag-
ing.

Images were obtained from a 3-Tesla General Electric
Discovery MR750 scanner at the MR Unit at UNAM’s
Institute of Neurobiology, during a single session per par-
ticipant. The protocol included 5 echo-planar imaging
(EPI) blood-oxygen level-dependent (BOLD) sequences
for fMRI, 185 volumes each. A T1-weighted scan of head
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anatomy was also acquired. Sequence parameters are
described in Table 3. Electromagnetic responses were
recorded using a head-mounted 32-channel coil.

Figure 1: Raw samples of both image modalities for a single subject
in our dataset (in the same order as in Table 3).

2.3 Stimuli and task

Each of the 5 fMRI sequences was temporally coupled
to a psychological block-based task implemented in Psy-
choPy 3.0.1.55 All 5 tasks were identical, save for the
pseudo-random order in which their 30 s blocks were ad-
ministered. A total of 6 block classes were used: happy
faces, sad faces, angry faces, neutral faces, pseudo (scram-
bled) faces and low-stimulation. Neutral/inexpressive
faces might provide an extra control when contrasting
among emotions. Otherwise, one might risk mistakenly
concluding from classification analysis that 𝑛 emotions
are identified, when in fact only 𝑛 − 1 are, in addition
to something else that is neither the 𝑛 − 1 emotions nor
the remaining one. Pseudo-faces and dim blocks were
introduced so as to buttress and diagnose the analysis
pipeline, by way of more trivial contrasts (like pseudo-
faces vs low-stimulation and faces vs pseudo-faces).

Each block in turn comprises 10 randomly-presented
images belonging to that class, each one shown for about
3 seconds and without possibility of reinstantiation dur-
ing the same block. Each block occurs twice per sequence,
yielding a total of 12 of them (360 s = 6 min). After
their presentation, participants had to wait for 10 sec-
onds before concluding the sequence, in order to capture
the hemodynamic response (HR) elicited by the last stim-
uli. A selection of 10 grayscale photographs per category
of frontal human faces (male and female) served as stim-
uli. These were chosen from the classical “Pictures of Fa-
cial Affect” database.56 As for the low-stimulation (a.k.a.
“dim”) blocks, a small but visible fixation cross was made
fluctuate from quadrant to quadrant at random every 3

seconds. The whole task is summarized in Figure 2.
Additionally, behavioral responses were recorded

throughout the task in order to measure performance and
thus evaluate the suitability of physiological data for fur-
ther analysis. Participants were instructed at the begin-
ning of every sequence to indicate whether faces belonged
to a man or a woman as soon as they were perceived. The
response was submitted with the press of a button — one
at each hand. Analogously, for scrambled and dim blocks
(when no faces should have been perceived), the instruc-
tion was to simply report image change, alternating be-
tween buttons. In this fashion, motor activity remained
rather homogeneous for all blocks, minimizing a possi-
ble confounding effect when contrasting among faces and
pseudo-faces. Even though the whole task was explicitly
orthogonal to thinking about emotions, one cannot rule
out the possibility that such linguistic-conceptual pro-
cess spontaneously appeared in the participants’ train of
thought as percepts were experienced. Statistical anal-
ysis of behavioral data was conducted using the R pro-
gramming language.

Figure 2: Block-paradigm design of the psychological experiment. The
horizontal axis corresponds to the passing of time. Rectangles repre-
sent stimulation units (sequences, blocks or individual stimuli).

2.4 Analysis methods

2.4.1 Data, source code and reproducibility

All the source code necessary for reproducing, analyz-
ing or adapting the present study is made available as
free software, both for the behavioral task described in
the previous section (https://github.com/isacdaavid/
emotional- faces-psychopy-task) and the neuroimag-
ing analysis (https://github.com/isacdaavid/np-mvpa)
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as described next. Original data and final group acti-
vation maps in standard space may be downloaded re-
spectively from OpenNeuro (https://doi.org/10.18112
/openneuro.ds003548.v1.0.0) and Neurovault (https:
//identifiers.org/neurovault.collection:9492).

2.4.2 Image preprocessing

Functional and T1w scans were converted from the
DICOM format57 to NIfTI-158 and structured in a
file tree according to the BIDS 1.4.0 standard59 us-
ing the Dcm2Bids 2.1.460 tool, which in turn was con-
figured to use the dcm2niix 1.0.20170411 converter61

and anonymize the faces of participants with pydeface
2.0.0.62 The sanity of the resulting database was fur-
ther checked with BIDS Validator 1.5.4. T1w images
were submitted to the Volbrain tissue segmentation and
volumetry Web service,63 whose resulting brain and
gray/white matter masks we used for deskulling the field-
bias-corrected T1w images and, later on, for selection
of fMRI voxels. fMRI sequences were concatenated by
temporal order in one long sequence per subject, then
the result underwent the following preprocessing pipeline
due to the FSL 6.0 utilities:64 high-pass frequency filter
(>50 s) and interpolation for slice-time correction (in-
terleaved acquisition),65 affine movement correction and
coregistration66,67 with the respective T1w anatomical
reference and the standard MNI-152 T1w template68,69

at 1 mm of resolution. After registration, the correspond-
ing resulting matrices were applied to the Volbrain masks,
so as to transform them to the low-resolution subject-
space of fMRI images. Gray-matter time series were ex-
tracted afterwards (about 10000 depending on subject),
and linear trends were subtracted by preserving residuals
from a simple linear regression performed on each of the 5
sequences the long concatenated time series is composed
of. Finally, and seeking not to bias classification models
in any dimension, the composite time series at each voxel
is normalized to z-scores; pushing the covariance matrix
of the multivariate data to resemble an identity matrix
and thus decorrelating phase space.

2.4.3 Univariate analysis

In the vein of assessing the feasibility and performance of
the brain-wide multivariate approach against the golden
standard in functional brain mapping, we investigated

the same 2-way contrasts included in multivariate analy-
sis using FSL 6.0 in a classical mass-univariate analysis.
Said contrasts are grouped into visual stimulation (“dim
vs scrambled”, “dim vs neutral”, “dim vs angry”, “dim
vs sad”, “dim vs happy”), face perception (“scrambled
vs neutral”, “scrambled vs happy”, “scrambled vs sad”
y “scrambled vs angry”) and emotion perception (“an-
gry vs happy”, “sad vs happy”, “sad vs angry”, “angry
vs neutral”, “happy vs neutral”, “sad vs neutral”). Pre-
processed data (up until subtracting linear trends and
normalizing) were spatially-smoothed with a Gaussian
convolution kernel of 5 mm FWHM. Each of the 6 block
classes described for the task was considered as a column-
vector regressor in the design matrix 𝐗, after convolving
them with a zero-lag, double-gamma hemodynamic re-
sponse curve. 𝐗 was augmented with the time deriva-
tives of each convolved regressor, but no motion covari-
ates were added. General linear models are fitted af-
terwards. GLM is a matrix-form extension to multiple
linear regression, which models each physiological time
series (column 𝐲) as a linear combination of 𝐗 plus some
gaussian error 𝚬. The model reads:13

𝐘 = 𝐗𝚹 + 𝚬; 𝚬 ∼ 𝒩(0, 𝚺) (1)

Assuming trial independence and homocedasticity,
maximum likelihood estimation or ordinary least-squares
estimation may be followed to obtain the so-called nor-
mal equation, which optimizes parameters 𝚹 according
to:

�̂� = (𝐗𝑇 𝐗)−1𝐗𝑇 𝐘 (2)

After estimation, contrasts of parameter estimates are
subject to the same procedure as the multivariate model
parameters for purposes of group-level inference. This is
described in more detail in the Group inference subsec-
tion.

2.4.4 MVPA

Once preprocessed, multivariate decoding of fMRI pat-
terns was conducted using the pyMVPA 2.5.0 Python
library.70 We trained a linear support vector machine
(SVM) classifier per subject and block contrast combi-
nation using all available brain volumes (120 volumes
per class for the training phase, 30 for testing). In ad-
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dition to the contrasts described in the previous section,
emotion-related ones were augmented with the (4

3) pos-
sible 3-way classification problems and the single 4-way
contrast. The supervised SVM algorithm learns a hyper-
plane for binary classification in high-dimensional phase
space.71,72 Given a vector 𝐰 orthogonal to the hyper-
plane, the SVM decision rule is equivalent to the sign of
the projection of unseen data vectors 𝐲𝑖 on 𝐰, adding or
subtracting the necessary constant 𝑏 so as to make the
result exactly 0 at the hyperplane:

𝑠𝑔𝑛(𝑥𝑖) = 𝐰 ⋅ 𝐲𝑖 + 𝑏 (3)

Out of all possible hyperplanes, SVM’s key insight is
to estimate the one that maximizes separation margin to
the most difficult training data: the support vectors right
above opposite margin lines. Since margin width can be
calculated from pairs of positive-class and negative-class
support vectors according to:

𝑚𝑎𝑟𝑔𝑖𝑛 = (𝐲+ − 𝐲−) ⋅ 𝐰
||𝐰|| = (𝐰 ⋅ 𝐲+ − 𝐰 ⋅ 𝐲−)

||𝐰|| ; (4)

by constraining the decision rule to satisfy
|𝐰 ⋅ 𝐲𝑖 + 𝑏| ≥ 1 or similar criteria and substituting
on equation (4), one can show that maximizing the
margin — and therefore obtaining an optimal model —
is equivalent to a quadratic programming problem with
||𝐰|| as the cost function to be minimized (mathematical
details are discussed by Mahmoudi et al.13):

𝑚𝑎𝑥 𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑚𝑎𝑥 2
||𝐰|| (5)

SVM models were cross-validated using each of the 5
sequences as a fold, and their mean classification accu-
racy (hits / misses) served as a summary test statistic.
This was compared against an empirical null model in a
non-parametric rank-based test, by estimating the proba-
bility distribution of average classification accuracy given
𝐻0 via Monte-Carlo simulations: surrogate data is com-
puted by randomly shuffling the class labels of the train-
ing data partition 5000 times, and 5-fold cross-validation
is again conducted for each permutation. Then, a p-value
for that particular subject and class combination can be
calculated as the proportion of random results equal or
greater to the original classification accuracy.

We also explored the effect of different delays between
stimulus onset and volume labeling (from 0 s to 10 s,
every 2 s), instead of assuming a single optimal HR
peak;14 although, based on common practice, a delay of 4
s was fixed a priori for all group-level statistical inference,
avoiding inflation of type-I error.

2.4.5 Group inference

For every contrast, per-subject permutation tests are
brought together to be assigned an average p-value, and
to estimate effect size on classification accuracy (signal-
to-noise ratio) compared to the null distribution accord-
ing to Cohen’s D statistic.

Contrasts for which sample evidence of successful mul-
tivariate decoding above chance levels was observed were
further selected for discovery of anatomical clusters. Fail-
ing contrasts are also inspected, but only to serve as
qualitative reference for the true merits of the good ones;
we warn against doing anatomical inference in real ap-
plications in the absence of model evidence. Our con-
servative expectation is that, while parameter inspection
should only be justified for successful classifiers; the fea-
tures driving such models still may or may not display
coherence among different participants, placing an extra
statistical safeguard before drawing conclusions.

To this end, we employed yet another non-
parametric test with 5000 sign permutations using
FSL 4.0’s randomise73 with the Threshold-Free Cluster
Enhancement,74 operating on the group of SVM weight
vectors in a 2-tail test (after L2-normalization, i.e. vec-
tors are unitary, transformation to the standard 1 mm
MNI-152 space and spatial smoothing with a 5 mm
FWHM gaussian kernel). In the case of univariate anal-
ysis, input data to TFCE were the group of GLM con-
trasts of parameters (both positive and negative effects,
also transformed to the 1 mm MNI-152 space). Given a
parameter map ℎ(𝑣), the TFCE statistic at some voxel
𝑣 is defined as the integral (in the Lebesgue sense) of
cluster size 𝑠(𝑣, ℎ) times the cluster-defining “height” ℎ:

𝑇 𝐹𝐶𝐸(𝑣) = ∫
ℎ(𝑣)

ℎ=0
𝑠(𝑣, ℎ)ℎ 𝑑ℎ (6)

Equation (6) is often modified for fMRI and EEG data,
where the default is to favor ℎ, squaring it, while taking
the square root of 𝑠. Since all possible cluster-forming
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thresholds are considered, TFCE is regarded as a more
principled (as well as more powerful and specific) alter-
native to other nonparametric cluster-informed inference
methods, while still providing strong family-wise error
(FWE) control;75 as expected of permutation-based ap-
proaches. We set a cutoff significance value of 0.01 in
the corrected 𝑝_𝑣𝑎𝑙𝑢𝑒 brain maps. Under TFCE, sur-
viving voxels are interpreted as belonging to some signal-
containing cluster, but no guarantee exists as to where
the exact clusters lie (although adjacency of many such
surviving voxels may make this visually obvious).

3 Results

3.1 Behavior

Ground truth

R
e
sp

o
n

se

(by emotion)

χ2 = 1300, dof = 9, p-value = 6.9 ⋅ 10-283

(by stimulus)

χ2 = 1400, dof = 120, p-value = 3.2 ⋅ 10-225

Figure 3: Confusion matrices with the group joint frequency of re-
sponses obtained during preparatory picture validation. For datasets
true to their purpose, a strong diagonal should be observed, indicating
agreement between subjective perception and preset categories. This
is quantified with Pearson’s 𝜒2 tests, whose results are displayed be-
low each contingency table. Top: when grouping stimuli by emotion.
Bottom: grouping only by picture, to detail the fine-grained structure
of errors, Holm-corrected p-values are shown for the only two stimuli
with 𝑝 > 0.05, according to one-tail binomial tests under the hypoth-
esis that the correct category is only assigned to 1/4th of all Bernoulli
trials, presupposed to be statistically independent.

Prior to entering the MRI machine, 15 of the 16 partic-
ipants were asked to answer a brief randomized stimuli
categorization task using the same faces they would later
experiment inside the scanner. Faces could be assigned
to one of four classes with a computer mouse: angry,
happy, neutral or sad. A Pearson’s 𝜒2 test for associa-
tion strength between intended emotion and subjective
interpretation assigned a probability of 6.9 ⋅ 10−283 to
the possibility that participants were categorizing stim-
uli at random. A similar test was performed separating
by stimulus as opposed to emotion class; nonetheless, the
p-value remained very low at 3.2 ⋅ 10−225. Both results
are shown in Figure 3. Despite variability recognizing
among different basic emotions, our success rates turn
out to be similar to those reported in independent vali-
dations of other datasets.76,77 Similarly, per-participant
𝜒2 tests (with Bonferroni correction for FWE) revealed
that even the worst-performing participant had a proba-
bility of less than 5 ⋅ 10−8 of being involved in guesswork.

With regard to instantaneous responses during the
task, we ran binomial tests to quantify success proba-
bility detecting face gender and image change, assum-
ing statistical independence and a chance level of 50%.
Figure 4 shows the aggregate of hits through time. Er-
rors, in red, are comparatively low. A probability of
1.95 ⋅ 10−60 (Holm-corrected) of finding such hits/misses
ratio by chance was found for the worst participant,
and the probability for the worst block type (including
pseudo-faces and dim-stimulation) is even smaller.

Participant’s reaction times (RTs) were analyzed as
well, as a measure of attention to the task. Each curve
in Figure 4 corresponds to the RTs of some subject. The
superimposed dotted black line projects the relevant part
of a general linear mixed-effects model (GLMM). GLMM
is a generalization of GLM regression which uses two

— as opposed to one — design matrices to account for
random effects. This is specially suitable to hierarchical
factorial designs; since the variance of measurements at
some time 𝑡 could come from intrinsic differences among
participants, whose personal variance is captured by the
random effects. The model was fitted using the partici-
pant factor as a random effect, and block lapse and block
class as fixed effects. The aim is to find the effect of time
upon RTs, because big changes would signify disengage-
ment from the task. On the contrary, we observed a
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negligible, downward slope (0.11 ms faster RTs every 30
s block).

Moreover, a post-hoc Tukey test for a one-way ANOVA
of RTs was inspected, using block types as factor levels.
The only emotion to elicit considerably different reac-
tion times was anger (angry vs neutral p=.014, angry
vs happy p=.03). No significant difference was found
between reacting to pseudo-faces vs to fixation crosses.
However, we measured extremely large differences be-
tween reacting to any type of visuofacial stimulus and
any type of non-visuofacial stimuli, for which not only
stimulus complexity is lower, but task complexity is also
lower (telling gender vs noticing any change at all).

All these lines of behavioral evidence converge towards
the conclusion that participants understood the task and
that stimuli were correctly observed in general. Accord-
ingly, no participant or block type was discarded for anal-
ysis of the fMRI data after this screening.

3.2 Visual stimulation and face percep-
tion

All contrasts meant to distinguish between high and low
visual stimulation and between face and pseudo-face per-
ception presented strong evidence of successful decoding
using the multivariate model, both on an individual and
on a group-level basis. In the case of visual stimulation,
all p-values on classification accuracy per contrast (both
individual and average) were found to be lesser than
2⋅10−4: the smallest result that could have been obtained
with 5000 permutations. In other words, no classification
accuracy greater to the models’ was ever found by chance.
Moreover, we found extremely huge group effects; always
greater than Cohen’s 𝐷 = 6.5 (dim vs neutral) and as big
as 𝐷 = 7.6 (dim vs happy). Similarly, face perception
compared to a pseudoface perception baseline always re-
sulted in a 𝑝 < 2 ⋅ 10−4; both individually and as group
means. Cohen’s statistic ranged from 𝐷 = 5.2 (scram-
bled vs neutral) to 𝐷 = 6.8 (scrambled vs angry), also to
great effect. Figure 5 displays hypothesis tests for a cou-
ple of experimental contrasts, for the sake of illustrating
the nature of results.

Group analysis of model parameters is presented in
figure 6. FWE-corrected “1−𝑝” anatomical maps for the
5 visual-related contrasts are averaged and thresholded
at 1 − 𝑝 > .99, in yellow. This is repeated for the 4 face-

perception-related contrasts, shown in cyan.

dim vs scrambled faces

scrambled faces vs neutral faces

Figure 5: All 9 contrasts related to simple visual perception and face
perception (only 2 shown here) are strongly dissociable, according to
their brain-wide activity patterns. Embedded at the top-left corner of
each subfigure: time series of group-mean classification accuracy as a
function of labeling delay. Greater subfigure: hypothesis tests of clas-
sification accuracy for a preset labeling delay of 4 s (𝐻1: classification
accuracy is greater than chance performance). The rainbow-colored
dots at the bottom stand for the cross-validated classification accuracy
of each participant, compared to their respective null distributions es-
timated from 5000 permutations of data labels.

Both univariate and multivariate approaches agree on
two prominent, bilaterally-symmetric occipital clusters
whose activity correlates significantly with the presenta-
tion of our visual stimuli, relative to the “dim” fixation
cross: one posteromedial, encompassing part of the pri-
mary visual cortex (V1) and extrastriate areas like V2;
which become less specific in the univariate model, possi-
bly reaching parts of ventral V3 (so-called VP) and color
and form-related V4. From there it crosses parenchymal
boundaries to the medial posterior cerebellar lobe in its
anterior portion. The second major cluster lies at the
anterior medial occipital cortex, and on the univariate
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Binomial test for worst block class: p-value (Holm-corrected) = 1.55 ⋅ 10-209
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Figure 4: Instantaneous performance during the task. Each notch in the horizontal axis represents 10 consecutive trials; i.e., a 30 s block.
Each sequence is delimited by the 120-trial-long marks. Left: ratio between hits and misses as a function of time. Right: per-subject reaction
time, and a linear fit according to a GLMM. Each solid curve stands for the LOESS polynomial fit of a different participant and its confidence
interval at 95%. The dotted line shows the almost-null linear trend from the GLMM. The actual GLMM is shown underneath, with explicit
values for important parameters together with their respective p-values.

model is due to anticorrelation. It includes a calcarine
component at anterior V1, part of the V2 ring and then
extends more dorsally into the cuneus to motion-related
V3a and, possibly, the midline section of form-related
V3. Associated activity also survives well into dorsal-
stream regions, perhaps because of the moving fixation
cross, particularly at Brodmann area 7 of the superior
parietal lobes (SPL). This is stronger for the univariate
model, where noticeable parietal anticorrelations were
also present at the right precuneus, inside the postcentral
sulcus to be precise. Finally, both models also display
a bilateral component at the posterior middle temporal
gyrus — although more prominent on the left hemisphere
and for the univariate model — near or at the angular
gyrus and suggestive of V5/MT. On the anteroventral di-
rection, the second cluster also extends bilaterally to the
lingual gyri (LG), close to parahippocampal gyri (PG)
tissue. Interestingly, a whole stripe of medial occipital
cortex is spared, making the two clusters distinct, consis-
tent with an unexpected effect of stimuli position on the
activity of retinotopic cortical topology.

Face perception was related to two clusters: an an-
ticorrelated, bilaterally-symmetrical pattern at V1 and
V2 (roughly a subset of the first cluster described for vi-
sual stimulation). The second one comprises a bilaterally-
symmetrical portion of the inferior occipital gyri within
the lateral occipital cortex (LOC), which has been
dubbed the “occipital face area” (OFA).37,38 The mul-
tivariate approach was able to consistently localize the
fusiform face area (FFA) at the right inferior temporal
cortex as well, with important below-threshold evidence
at its left counterpart. In comparison, univariate analysis
barely detected a small cluster of correlated activity at
OFA; whereas only 2/4 contrasts showed above-threshold

evidence at FFA, which is why their average failed to
make their way into figure 6.

3.3 Emotion perception

Figure 7 is a compilation of group tests for the remain-
ing 11 emotion-related contrasts in the form of a Venn
diagram, including block combinations which included
neutral faces. Once again, the null classification accu-
racy model is represented by the white probability dis-
tribution and true decoding success is in gray. We ob-
served wide variation in model success, yet this variabil-
ity turned to be structured according to the emotions
under probe; from ̄𝑝 = 0.05 and huge effects at 𝐷 = 3.3
(happy vs neutral), to ̄𝑝 = 0.85 and 𝐷 = −1.3 (anger
vs sadness). It’s evident from the diagram in Figure 7
that contrasts which included happiness in general out-
performed their respective null models. On the other
hand, classification models that excluded this emotion
did not. The importance of happiness driving accurate
prediction was further confirmed via qualitative inspec-
tion of confusion matrices.

Group-level inference of model parameters resulted in
suprathreshold clusters with high colocalization — even
among contrasts — with two possible anatomical spans.
The two spatial configurations were contingent upon
whether neutral faces had been included in the classi-
fication problem. In their absence (“happy vs angry”,
“happy vs sad”, “happy vs angry vs sad”), detection of
happiness consistently depended on activity at the occip-
ital pole and its midline and ventral surroundings (pos-
terior V1, posterior V2, ventral V3, V4, V8) as well as
anterior V2 (both dorsal and ventral) and V3. This is
shown in yellow in figure 8. When also faced with the
neutral facial expression controls, SVM was forced to ex-

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.04.438425doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438425
http://creativecommons.org/licenses/by/4.0/


Figure 6: Average anatomical distribution of thresholded (𝑝𝐹𝑊𝐸 < 0.01) TFCE maps. Yellow: visual stimulation (average of corrected
p-values for the following contrasts: ”dim vs scrambled”, ”dim vs neutral”, ”dim vs angry”, ”dim vs sad”, ”dim vs happy”). Cyan: face
perception (average of ”scrambled vs neutral”, ”scrambled vs happy”, ”scrambled vs sad” y ”scrambled vs angry”). Two views of the T1w
MNI-152 template are included: 3D volume rendering of right hemisphere (on top), axial slices in radiological orientation (bottom). The
smaller 3D volumes include the same maps as the main 3D rendering of each model, but separated by contrast family and with an additional
lower threshold at 𝑝𝐹𝑊𝐸 < 0.5 in darker colors. This is to highlight model anatomical specificity at the minimum level that could still be
considered evidentiary. Full maps may be downloaded from https://identifiers.org/neurovault.collection:9492 .

tend the search to higher-order and lower-order struc-
tures: both SPLs, and anterior-LG/posterior-PG and the
right LOC appear again. The same medial portions of
posterior cerebellum are also included. The only new
cluster with respect to the first to be described for figure
6 is the posteromedial thalamus, likely including both
pulvinar bodies entirely. Although not shown in the fig-
ures, important subthreshold evidence (𝑝𝐹𝑊𝐸 < .05) ex-
ists at the left amygdala (“happy vs neutral”, “happy
vs angry”, “happy vs sad”), at LOC/OFA (all contrasts)
and the right inferior temporal sulcus in medial patches
(happy vs angry vs neutral). All successful subject-level
SVM models gave prominent weighting to the ventrome-
dial prefrontal cortex (orbitofrontal cortex), however, the
amount of clusters and parameter signs in that anatomi-
cal region were too heterogeneous to accumulate the evi-
dence at the group-inference level.

As discussed in our methodological considerations, un-
successful decoders returned considerably smaller or vir-
tually nonexistent anatomical clusters: the left posterior
thalamus (“angry vs neutral”, “sad vs neutral”, “angry
vs sad vs neutral”), posterior V1 and V2 (“angry vs sad”,
“angry vs sad vs neutral”) and small clusters in PG and
the quadrigeminal area in the brainstem (angry vs neu-
tral). These are rendered in the three bottom rows of

figure 8. No suprathreshold cluster or voxel, correlated
or anticorrelated, was found for any of the 6 emotion-
related GLM contrasts.

Figure 7: Group aggregates of hypothesis tests on classification ac-
curacy for all emotion combinations, together with their associated
mean p-value and effect size (Cohen’s D).
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Figure 8: Anatomical distribution of thresholded (𝑝𝐹𝑊𝐸 < 0.01) TFCE maps (SVM parameter vectors) for emotion perception contrasts, one
row per emotion combination. Contrasts in cyan color also included the neutral faces class. Slices are in radiological axial orientation in the
standard MNI-152 space. Full maps may be downloaded from https://identifiers.org/neurovault.collection:9492 .
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4 Discussion
Results validate the feasibility of looking for multivariate
correlations between functional neuroimaging and per-
ceptual phenomena of varying complexity, and of turning
learned data patterns into statistical-anatomical maps
for localization of task-related brain structures. This was
shown for an extrinsically high-dimensional phase space
using all the available gray-matter information, which dif-
fers substantially from the routes taken by classical uni-
variate analysis and other MVPA studies. It is remark-
able that an algorithm as modest as the kernel-less SVM
can characterize many psychological states of scientific
interest in a purely data-driven approach, to the point of
surpassing the en masse linear regression methodology
for its brain mapping features.

For instance, the neural correlates for the simple vi-
sual stimulation subexperiment (plus alleged stimulus-
motion artifacts) are largely identical according to both
approaches (figure 6), not to mention consistent with
the known neurophysiology of vision, pointing in the
direction of methodological validity for the multivari-
ate pipeline. However, remaining contrasts decidedly
favoured the brain-wide multivariate analysis, sample
size being equal. Classical analysis notoriously failed to
consistently discover the right FFA for the face percep-
tion subexperiment.

As to emotion perception, it might seem tempting
to disparage the multivariate approach for its major re-
liance on visual, rather than emotional areas other than
the perivermian posterior cerebellar cortex78 and the
parahippocampal gyrus. However, the fact that per-
ceived happiness reliably elicits a distributed activity fin-
gerprint — which was invisible to GLM — still counts
as a victory point for our proposal. Whether this partic-
ular “happy interlocutor state” is truly a noncollateral
biological feature of social significance is hard to answer
with our data. On one hand, recent experiments using
electrophysiological and calcium-imaging techniques on
rodents have emphasized the existence of notorious mo-
tor and arousal-related information in areas traditionally
thought of as sensory.79,80 On the other, it may be argued
that areas like V1 aren’t particularly concerned with con-
structing face or affect percepts, yet the whole of their
lower-order computation may be more readily leveraged
by a statistical model about facial expression; similar to

how artificial vision and object recognition systems emu-
late cortical computations starting from nothing but raw
pixels. That would certainly pose a methodological chal-
lenge to our approach; which we showed was alleviated to
some extent by the diligent use of control stimuli (neutral
faces).

This result is of great interest, in light of the incipi-
ent works on emotion as seen through the MVPA prism
and the relative looseness with which they have been
conducted. Some of the literature from table 1 also in-
cluded anger and sadness-loaded stimuli, with better re-
sults than us;30–33 yet it raises reasons to be skeptical
upon closer inspection. For instance, the ROI-based, au-
ditory study by Ethofer at al. reported average classifi-
cation accuracies (n=22) of 30% and >35% for sadness
and anger respectively; among 5 emotions.30 Nonetheless,
models were trained only pair-wisely: that is, contrasting
target emotion against an “everything else” metaclass.
No empirical null model was estimated. This one-vs-all
scheme without nonparametric testing was repeated by
Kotz et al. 33, yet here anger showed the poorest results.
Other issues include comparing against a scarce number
of permutations, for instance, in the study conducted by
Said et al. 31.

In conclusion, we fail to find convincing reasons in pre-
vious works to suppose that our failure decoding anger
and sadness is due to a failure on our part; other than the
choice of algorithm and input data. Perhaps results for
these two basic emotions could have improved, had we
used a more localized search. Those affective-perceptual
states might be genuinely underrepresented in the coarse
fMRI data, or they may not be linearly separable or the
system dynamics may not be sufficiently stationary in
the relevant dimensions. As argued in the Introduction,
this study aimed at testing the limits of linear SVM as a
data-driven anatomical mapping tool, at the expense of
decoding performance. In that sense, and joined by the
modest sample size, being able to retrieve just some emo-
tional states out of BOLD activity emanating from well-
defined structures already cements the accomplishment
of our goals. We think our tooling and testimony have
the potential to influence a plethora of noninvasive neu-
ronal prediction and “mind reading” studies, plus many
more regarding the neurobiological segregation of cog-
nitive, affective and behavioral features of humans and
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other organisms.
The present work also suffers from limitations and

future oportunity areas. Further analysis is required
to characterize the intrinsic dimensionality of each clus-
ter system, for instance by use of covariance-matrix de-
composition methods, information-theoretic methods or
topological/manifold embeddings. Similarly, system dy-
namics could be studied and mathematically modelled
to provide further characterization and understanding of
each succesfully decoded state, as well as the encompass-
ing attractor set. It would also be interesting to extend
the task to other emotions, modalities and theoretical
models of emotion; for instance, in order to be able to tell
whether we have a sufficient characterization of happi-
ness (as opposed to appetitive hedonic valence generally,
as posited by dimensional theories of emotion). A second
strand of further studies should explore these findings
using more direct causal interventions with a number of
techniques, so as to assess the relevance of multivariate
statistical connections.

5 Conclusions

The realization that some cognitive and affective states
are not very localized, but might emerge from the joint
activity of distributed neuronal populations has led to
the popularization of machine learning tecniques in cog-
nitive neuroscience; multivariate pattern classification in
functional neuroimaging among them. Despite of it, to
this date such analyses by an large have perpetuated lo-
calizationist presuppositions, by exploring one brain sub-
region at a time; or with no intention of deriving statis-
tical maps to infer functional localization on populations
(an important feature of the classical mass-univariate
analysis).

This work explored the extent to which MVPA can
overcome those limits and applied it to a number of prob-
lems, including the open problem of narrowing down the
slippery substrate of emotional representation in the cen-
tral nervous system. We asked ourselves whether it’s
possible to decode different basic emotions, the presence
of face percepts and simpler visual distinctions based on
the multidimensional patterns of brain activity, as mea-
sured with BOLD fMRI. If true, a classification algorithm
might be able to distinguish brain images when perceiv-

ing one emotion or another, and neuroanatomical maps
of the most relevant structures might be obtained from
successful models.

Results of visual and face perception experiments
demonstrate that commonplace functional MR imaging
indeed can be analysed in this mass and multivari-
ate fashion, with arguably better results than classical
mass univariate analysis. Moreover, we discovered an
anatomically-distributed pattern of information which
apparently encodes for happiness; which the multivari-
ate algorithm learned to identify well-beyond prediction
levels by chance, whereas the univariate correlation anal-
ysis failed to replicate this. This suggests that at least
certain forms of multivariate pattern classification anal-
ysis are a viable tool for mapping brain functions in a
whole-brain, data-driven fashion; and not merely a tool
for hard-to-interpret disease diagnosis and prediction of
psychological states.
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