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Abstract 43 

We introduce Operational Genomic Unit (OGU), a metagenome analysis strategy that directly exploits 44 

sequence alignment hits to individual reference genomes as the minimum unit for assessing the diversity 45 

of microbial communities and their relevance to environmental factors. This approach is independent 46 

from taxonomic classification, granting the possibility of maximal resolution of community 47 

composition, and organizes features into an accurate hierarchy using a phylogenomic tree. The outputs 48 

are suitable for contemporary analytical protocols for community ecology, differential abundance and 49 

supervised learning while supporting phylogenetic methods, such as UniFrac and phylofactorization, 50 

that are seldomly applied to shotgun metagenomics despite being prevalent in 16S rRNA gene amplicon 51 

studies. As demonstrated in one synthetic and two real-world case studies, the OGU method produces 52 

biologically meaningful patterns from microbiome datasets. Such patterns further remain detectable at 53 

very low metagenomic sequencing depths. Compared with taxonomic unit-based analyses implemented 54 

in currently adopted metagenomics tools, and the analysis of 16S rRNA gene amplicon sequence 55 

variants, this method shows superiority in informing biologically relevant insights, including stronger 56 

correlation with body environment and host sex on the Human Microbiome Project dataset, and more 57 

accurate prediction of human age by the gut microbiomes in the Finnish population. We provide Woltka, 58 

a bioinformatics tool to implement this method, with full integration with the QIIME 2 package and the 59 

Qiita web platform, to facilitate OGU adoption in future metagenomics studies. 60 

  61 
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Importance 62 

Shotgun metagenomics is a powerful, yet computationally challenging, technique compared to 16S 63 

rRNA gene amplicon sequencing for decoding the composition and structure of microbial communities. 64 

However, current analyses of metagenomic data are primarily based on taxonomic classification, which 65 

is limited in feature resolution compared to 16S rRNA amplicon sequence variant analysis. To solve 66 

these challenges, we introduce Operational Genomic Units (OGUs), which are the individual reference 67 

genomes derived from sequence alignment results, without further assigning them taxonomy. The OGU 68 

method advances current read-based metagenomics in two dimensions: (i) providing maximal resolution 69 

of community composition while (ii) permitting use of phylogeny-aware tools. Our analysis of real-70 

world datasets shows several advantages over currently adopted metagenomic analysis methods and the 71 

finest-grained 16S rRNA analysis methods in predicting biological traits. We thus propose the adoption 72 

of OGU as standard practice in metagenomic studies. 73 
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Introduction 78 

The rapidly developing field of shotgun metagenomics has inherited many analytical tools from the 79 

more mature field of 16S rRNA gene amplicon studies. For example, diversity analyses provided in 80 

platforms such as QIIME 2 (1) can be used for metagenomic analyses. To date, the typical 81 

metagenomics workflow starts with taxonomic profiling, which estimates the taxonomic composition of 82 

microbial communities by matching sequencing data against a reference database (2). The resulting 83 

matches are compiled into an unstructured feature table, with values usually in the form of relative 84 

abundances of taxonomic units at a fixed rank (e.g. genus or species level), followed by relevant 85 

statistical analyses. 86 

In contrast, the current standard for 16S rRNA analysis involves more advanced feature extraction, 87 

including construction of amplicon sequence variants (ASVs), which have replaced operational 88 

taxonomic units (OTUs) to deliver the finest-possible resolution from amplicon data (3). Phylogeny-89 

aware algorithms such as UniFrac (4) have been widely-adopted to model community diversity while 90 

considering how features interrelate owing to the accessibility of reference phylogenies (5, 6), and the 91 

availability of de novo and a priori phylogenetic inference methods (7). This wisdom should be adopted 92 

as well to metagenomics. Thanks to the advances in efficient sequence alignment algorithms, and the 93 

expansions of reference genome databases (8, 9) and phylogenomic trees (10, 11), it is now possible and 94 

increasingly preferable to develop a fine-resolution, structured data analysis strategy in shotgun 95 

metagenomics. 96 

Therefore, we propose an alternative method for constructing metagenomic feature tables, in which 97 

features are no longer taxonomic units, but individual reference genomes from a database, and the 98 

feature counts are the number of sequences aligned to these genomes. We refer to such features as 99 

Operational Genomic Units (OGUs). This term, in an echo of OTU but replacing “taxonomic” with 100 
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“genomic”, highlights the nature of the genome-based, taxonomy-free analysis. Meanwhile, 101 

“operational” indicates that this method does not rely on the direct observation of member genomes of 102 

the community, but uses pre-defined reference genomes as a proxy to model the community 103 

composition. However, like ASVs, OGUs are exact and do not rely on similarity thresholds as OTUs do. 104 

An OGU table represents the finest-grained resolution of observed genomes in a microbial community 105 

relative to the reference database. As such it can be used to quantify the community structure and 106 

relationships in correlation with biological traits. It can also work well with cost-efficient “shallow” 107 

shotgun metagenomics (12), where limited sequencing depth (even below the previously recommended 108 

lower threshold of 500,000 sequences per sample) is adequate for assessing community structure. It 109 

further empowers tree-based analyses, such as UniFrac and phylofactorization, which is enhanced by 110 

using the “Web of Life” (WoL) reference phylogenetic tree that we recently developed to describe 111 

accurate evolutionary relationships among genomes (10). 112 

We have implemented the method for generating OGU tables in the open-source bioinformatics tool, 113 

Woltka (https://github.com/qiyunzhu/woltka). This program serves as a versatile interface connecting 114 

choices of upstream sequence aligners (such as Bowtie2 and BLAST) and downstream microbiome 115 

analysis pipelines (such as QIIME 2). In addition to the standalone program, the package ships with a 116 

QIIME 2 (1) plugin to facilitate adoption and integration into existing protocols. We have also made this 117 

method available through the Qiita web analysis platform (13) as part of the standard operating 118 

procedure for shotgun metagenomic data analysis, thereby enabling massive reprocessing and 119 

subsequent meta-analysis of metagenome datasets with OGUs. Thus far, we have applied the OGU 120 

method to re-analyze all public and private metagenomic datasets hosted on Qiita, totaling 143 studies 121 

and 57,063 samples, as of Mar 3, 2021. 122 
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Our team and collaborators have applied prototypes of the OGU method in multiple microbiome and 123 

multiomics studies and have obtained biologically relevant results (e.g., (14–16)). In this article, we 124 

systematically introduce the principles and practices of the OGU method, demonstrate its efficacy in one 125 

synthetic and two real-world microbiome datasets, and compare it with state-of-the-art metagenome 126 

analysis approaches and the alternative data type (16S rRNA gene amplicons). Given our findings, we 127 

propose the adoption of OGUs as a good practice in metagenomic analyses. 128 

Results 129 

OGUs maximize resolution of community structures 130 

The rationale and benefits of the OGU method are demonstrated with a synthetic case study illustrated in 131 

Fig. 1, with the underlying feature tables provided in Table S1. In this simple case, three metagenomes 132 

with 12 sequences each were aligned to 10 reference genomes, which were hierarchically organized by 133 

taxonomy (left) or by phylogeny (right) (Fig. 1A). Beta diversity was calculated on feature tables at 134 

different levels: either on taxonomic units at the rank of genus or species, or directly on reference 135 

genomes (i.e., OGUs) without the need for giving them taxonomic labels. 136 

As demonstrated (Fig. 1B), the genus-level analysis, which had the lowest resolution (three genera), 137 

yielded spurious proximity between samples B and C, as relative to sample A, largely determined by the 138 

differential abundance of genera G1 and G2. The species-level analysis with moderately higher 139 

resolution (five species) was able to bring A closer to B and C, mainly contributed by the identical 140 

frequencies of species S1, which could not be revealed at the genus level. The OGU-level analysis, 141 

having the highest resolution (10 features), revealed the separation between B and C due to distinct 142 

OGU composition, despite similar species counts (e.g., O5 and O7 have different counts within S3), and 143 

the proximity between A and B due to shared OGUs (O6 and O9). Additional structure was revealed by 144 
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using the UniFrac metric, which considers the hierarchical relationships among features, hence further 145 

joining samples (here A and B) sharing longer branches in the phylogenetic tree (even by different 146 

OGUs, such as O1 and O2) and separating those sharing shorter ones. Taxonomy may serve as a 147 

replacement of phylogeny, but it has a lower resolution than phylogeny (e.g., O1 and O2 are 148 

evolutionarily closer to each other relative to O3 but taxonomy cannot reveal this), and sometimes does 149 

not reflect the true evolutionary relationships among organisms (e.g., O4 and O5 are here placed in 150 

different genera), which can impact the accurate modeling of community structures. 151 

In summary, this example illustrates the need for increasing resolution in order to better understand the 152 

diversity of microbial communities. This “resolution” has two dimensions of meaning: first, the quantity 153 

of features representing individual microbiomes; second, the granularity and accuracy of the hierarchy—154 

if any—that defines the relationships among individual features. 155 

OGUs accurately represent body environment and host sex associated microbiome patterns 156 

We demonstrated the typical use of the OGU method on the classic Human Microbiome Project (HMP) 157 

shotgun metagenomic dataset (17), which contains 210 metagenomes sampled from seven body sites of 158 

male and female human subjects. We subsampled each metagenome to one million paired-end reads—a 159 

sampling depth close to the recommended lower threshold (500k reads) for “shallow” shotgun 160 

sequencing (12). The sequences were aligned to the WoL reference genome database (totaling 10,575 161 

bacterial and archaeal genomes) and the alignments were processed using Woltka, resulting in an OGU 162 

table with 6,220 features (reference genomes) (Fig. S1A). Beta diversity analysis using the weighted 163 

UniFrac metric with the WoL reference phylogeny was performed on the OGU table (Fig. 2). For 164 

comparison, we analyzed the dataset using the currently adopted method (CAM) (e.g., (17)): using Bray-165 

Curtis on a species-level taxonomic profile. We exemplified the CAM by using the profile inferred by 166 
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Bracken (18) on the same WoL database (Fig. 2), but also tested and reported the results of SHOGUN 167 

(19), Centrifuge (20), and MetaPhlAn (21) (Fig. S1). 168 

Principal Coordinates Analysis (PCoA) of OGUs (Figs. 2A and S2A), with the first three axes 169 

explaining 71.01% of community structure variance (Figs. 2C and S1B), revealed that microbiomes 170 

were clustered mainly by the body site from which they were sampled, which overshadowed clustering 171 

by host sex, if any. This pattern is largely consistent with the previous report (17). The PCoA plot by 172 

CAM (Figs. 2B and S2B, also see S3), although with less explained variance (46.30%) (Figs. 2C and 173 

S1B), also displayed a clustering-by-site pattern. However, it is notable from the plot that sample 174 

clusters are aligned diagonally—a typical pattern indicating the saturation of distances caused by the 175 

inadequacy of shared features (species) among body sites (22) (Figs. 2B and S2B). This characteristic 176 

limits the power of resolving community diversity. 177 

Permutational multivariate analysis of variance (PERMANOVA) of the beta diversity distance matrices 178 

suggested that all methods were able to clearly differentiate samples by body site (p=0.001), with OGU 179 

generating the strongest statistic (Figs. 2E and S1C) (OGU: F=77.82; CAM: F=42.36). The distinction 180 

by host sex was less obvious. Only OGU was able to distinguish microbiome by sex (F=3.011, 181 

p=0.013), whereas CAM failed to distinguish sex with statistical significance (F=1.692, p=0.086) (Figs. 182 

2F and S1E-F). This demonstrated the power of the OGU method in capturing subtle but relevant trends, 183 

even when another primary factor (body site) is driving most of the community diversity. Three of the 184 

seven body sites are located in the oral environment: tongue, teeth and buccal mucosa (Fig. 1A, B). 185 

They together indicate weaker differentiation by sex (OGU: F=1.905, p=0.099; CAM: F=1.610, 186 

p=0.130) (Figs. 2F and S1G-H). In parallel, we reason that sites sharing the same environment likely 187 

have higher microbial connections. To test this effect, we calculated the relative distance between the 188 

three oral sites versus oral sites to non-oral sites. This distance is significantly smaller with OGU (0.699 189 
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± 0.098, mean and std. dev., same below) than with CAM (0.808 ± 0.051) (two-tailed paired t=-14.398, 190 

p=2.57e-26) (Figs. 2D and S1D), suggesting that OGU is more effective at relating subgroups of 191 

samples with shared properties. 192 

The OGU table plus the WoL tree further enabled differential abundance analysis using the phylogenetic 193 

factorization method (23) (Figs. S4-5). The result was visualized and analyzed using the recently 194 

released massive tree visualizer EMPress (24) (Fig. 2G). It revealed that the phylogenetic clade 195 

separated by Factor 1 represents the genus Lactobacillus, contained in predominantly posterior fornix 196 

samples from female hosts, which is expected (25). Meanwhile, Factor 2 (genus Neisseria), Factor 3 197 

(genus Capnocytophaga) and Factor 4 (species Leptotrichia buccalis) are more frequently observed in 198 

the oral sites of male hosts. For comparison, we applied the tree-free method ANCOM (26) on the 199 

taxonomic profiles generated by alternative methods (Table S2). At genus level, all four methods were 200 

able to capture only Lactobacillus, consistent with our Factor 1. However, at species and OGU levels, 201 

results were discordant between methods and no method reported any Lactobacillus sp., again showing 202 

the limitations of confining analyses to taxonomic ranks without phylogenetic information. 203 

Finally, we assessed the efficacy of OGUs along a gradient of decreasing sampling depths. The 204 

correlation between the original OGU table (from one million paired-end reads) and each of the 205 

subsampled OGU tables was consistently high. A Pearson’s r of 0.961 ± 0.0726 (mean and std. dev., 206 

same below) was retained even at the sampling depth of 200 (Fig. S6A). The PCoA clustering pattern 207 

largely remained the same at all sampling depths (Fig. S7). The oral-vs-other relative distance (see 208 

above) retained a Pearson’s r of 0.971 ± 0.00613 when sampling depth was 200 (Fig. S6B). The 209 

PERMANOVA F-statistics calculated based on 10 replicates of random subsampling were close to the 210 

original statistic and largely stable down to very low sampling depths. The mean difference from the 211 

original statistic was still within 5% at the sampling depth of 1,000 for body site (3.349 ± 1.361, unit: 212 
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percentage of the original statistic, same below), or 500 for host sex (2.680 ± 5.473) (Fig. S6C-D). 213 

These findings suggest that the OGU method remains valid even on very shallow metagenomic samples, 214 

including those that would otherwise be considered unusable for typical metagenomic analyses. 215 

OGUs improve prediction of host age from the gut microbiome 216 

We next analyzed 6,430 stool samples collected through a random sampling of the Finnish population 217 

using both 16S rRNA gene amplicon sequencing and shallow shotgun metagenomic sequencing. This 218 

“FINRISK” study (27) provides an opportunity to explore the dependency of feature sets (e.g. 219 

taxonomic levels and data source: 16S rRNA amplicon vs. shotgun metagenomic data) on the prediction 220 

accuracy of a machine learning model on the targeted phenotype (e.g., age). We quantitatively examined 221 

the impact of taxonomic level of microbiome features on the empirical error (mean absolute error, or 222 

MAE) in predicting human chronological age using a Random Forests regressor (28), constructed using 223 

5-fold cross-validation. 224 

Our results (Fig. 3A) showed the prediction accuracy continued to improve, resulting in lower absolute 225 

errors with finer microbial feature classification levels. Shotgun data outperformed 16S data at all levels, 226 

and was able to reduce MAE to less than 10 years at the genus level or below. At the lower limit of both 227 

16S and shotgun data, we achieved an MAE of 9.581 ± 0.116 years (mean and std. dev., same below) 228 

with OGUs (Fig. 3B), whereas ASVs, the highest possible resolution allowed by 16S data, resulted in a 229 

higher MAE of 10.110 ± 0.103 years (two-tailed t=-7.25, p=8.81e-5). Meanwhile, using the species-230 

level profile inferred by Bracken, we also obtained a higher MAE of 10.273 ± 0.089 years (vs. OGU: 231 

two-tailed t=-10.59, p=5.53e-6) (Fig. S8). Decreasing sequencing depth did not reduce the age 232 

prediction accuracy for individual samples (Fig. S9). For example, samples with 320-366k metagenomic 233 

sequences (2nd bin from low end in the figure) had an MAE of 9.290 ± 6.378 years, whereas samples 234 

with 1,386-1,931k sequences (2nd bin from high end) had an MAE of 10.118 ± 6.086 years, which were 235 
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not significantly different (two-tailed t=-1.37, p=0.170). We then explored which OGUs contributed to 236 

the superior performance in age prediction as compared to 16S rRNA ASVs. Therefore, we identified a 237 

reduced set (n=128) of the most important OGUs that can maximize the prediction accuracy via a 238 

recursive feature elimination approach (Fig. S10). Among these important features, a few gut microbial 239 

strains increased in abundance with aging, such as multiple strains from Streptococcus mutans, 240 

Eubacterium sp. (Figs. 3C, S11-12). Remarkably, those Streptococcus spp. are typically located in the 241 

oral cavity yet can be over-represented in the gut of elderly individuals, suggesting potential microbial 242 

transmissions between oral and gut microbiomes related to typical aging in a large population (29, 30). 243 

Next, we also identified a few microbial OGUs that were under-represented in the elderly, such as 244 

Anaerostipes hadrus DSM 3319 and members of Bifidobacterium, including B. longum NCC2705 and 245 

B. saguini DSM 23967 Bifsag. Many of these important taxonomic features were not identified in the 246 

16S data, putatively because the partial sequences of a 16S rRNA gene cannot provide sufficient 247 

resolution to distinguish species or strains. For example, a few 16S rRNA ASVs annotated with 248 

Lachnospiraceae have been associated with aging and were identified in either this or past studies (31), 249 

whereas our method identified several OGUs (Anaerostipes hadrus DSM 3319) within the family of 250 

Lachnospiraceae that exhibited strong predictive powers for discriminating aging. 251 

Discussion 252 

The OGU method introduced in this article provides a way to maximize the resolution of feature tables 253 

by directly considering reference genomes without the reliance on taxonomic classification in shotgun 254 

metagenomics studies. Although the strategy of taxonomy-free community structure analysis has been 255 

widely adopted in 16S data analysis (e.g., ASV or de novo OTU clustering), it remains underexplored in 256 

metagenomics, largely due to the difficulties in defining and quantifying “features” without using an a 257 
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priori classification system. Our study shows that sequence alignment hits to individual reference 258 

genomes can be used as the minimum unit for features, referred to as OGUs. 259 

Through comparative analysis of OGU and alternative methods using a synthetic case study and two 260 

real-world microbiome studies, we demonstrated that classical high-dimensional statistics and machine 261 

learning methods developed and matured in the field of 16S rRNA gene amplicon analysis can be 262 

directly applied to OGUs to provide biologically relevant insights. The OGU results often are superior to 263 

currently adopted metagenomic classification methods and ASV analysis of the 16S rRNA data. 264 

Meanwhile, we showed that the use of taxonomic units as features, as many researchers have been 265 

practicing to date, has conceptual and performance limitations compared with the OGU method, 266 

particularly at higher taxonomic ranks due to the loss of resolution. 267 

The independence from taxonomy further enables the utilization of explicit phylogenetic trees. A 268 

researcher can choose from pre-computed reference phylogenies, such as the one we introduced in the 269 

“Web of Life” (WoL) project (10), or custom phylogenomic trees computed from de novo construction 270 

or placement, through tools such as PhyloPhlAn3 (32) and DEPP (33), which are scalable to large 271 

numbers of genomes. This connects evolutionary biologists’ efforts in updating the tree of life (e.g., (10, 272 

11, 34)), computational biologists’ efforts in forging phylogeny-aware methods (e.g., UniFrac and 273 

PhyloFactor), and microbiome scientists’ pursuits of relating high-dimensional microbiome data with 274 

biology. 275 

Taxonomy, despite being relatively coarse-grained and error-prone as a classification system, may serve 276 

as an implicit replacement of phylogeny if the latter is not available. We tested this idea by applying 277 

UniFrac to an artificial taxonomic tree with constant branch lengths between ranks (analogous to (35)). 278 

Although this treatment is controversial, because taxonomic ranks do not directly indicate evolutionary 279 

distances, we did observe improvement compared to not using a tree (Fig. S13). Although there have 280 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.04.438427doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

been remarkable efforts for curating taxonomy using phylogenetics, however, the number of taxonomic 281 

ranks is limited (typically 7 to 8), and can constrain the topology for an ever-growing number of 282 

sequenced genomes. For example, the current release (R95) of GTDB (36) has 31,910 species clusters, 283 

constituting a taxonomy tree of 45,502 vertices, whereas NCBI RefSeq and GenBank host 977,729 284 

unique genomes as of March 30, 2021, and a fully resolved phylogenetic tree of them can theoretically 285 

have 1,955,456 vertices. The history of 16S rRNA studies (7) is repeating itself in whole-genome 286 

studies, such that building a phylogeny is not only advantageous but often more feasible than defining 287 

taxonomy, and the OGU method powerfully provides an analogous extension to shotgun sequencing 288 

studies. As a new notion to microbiome research, OGU’s properties in statistical analyses has yet to be 289 

characterized in a large number of studies, as was done for 16S rRNA ASVs. Unique challenges in 290 

shotgun metagenomics may impact analyses that were designed for 16S rRNA data. For example, very-291 

low-abundance false positive assignments, which are prevalent from typical metagenomic classifiers, 292 

may impair the accuracy of the recovered community composition (37). A typical treatment is to only 293 

consider features with relative abundance above a given threshold in each sample (37). While we 294 

provide this function in Woltka to facilitate user’s preferences, our tests suggested that the result of an 295 

OGU analysis is highly stable against a wide range of filtering thresholds when using abundance-based 296 

metrics (weighted UniFrac and Bray-Curtis), as compared with presence/absence-based metrics 297 

(unweighted UniFrac and Jaccard) (Fig. S14). This observation implies the OGU method is robust to 298 

noise commonly introduced into metagenomic datasets from many low abundance observations. 299 

The robustness of an OGU analysis is only limited by the comprehensiveness of the reference. Despite 300 

that available genomic data have grown to an enormous volume, the size of a reference genome database 301 

that can be realistically used in a metagenomic analysis with typical computing facilities is 302 

circumscribed, limiting the increase of resolution beyond sub-species levels. Balancing alignment 303 

accuracy and database content is therefore an important consideration in designing the analytical 304 
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strategy. The algorithm we previously designed and used in the WoL database to maximize the covered 305 

biodiversity given a fixed number of genomes (10) may be beneficial in this situation, but its efficacy 306 

needs to be further tested in the background of various biospecimens and biological questions. 307 

Leaderboard sequencing may also be a useful strategy for iteratively augmenting the reference database 308 

with the common genomes in each sample (38). In the long run, efforts to improve algorithms, increase 309 

database coverage, and improve computing efficiency are all needed to facilitate effective advances in 310 

the field of metagenomics, and the OGU method provides an important step forward in that direction. 311 

  312 
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Materials and Methods 313 

Protocol details 314 

The OGU method is flexible to the type of sequence alignment. The recommended protocol, which is 315 

also the protocol demonstrated and benchmarked in this article, is as follows: Shotgun metagenomic 316 

sequencing data were aligned against the WoL reference genome database using SHOGUN v1.0.8 (19), 317 

with Bowtie2 v2.4.1 (39) as the backend. This process is equivalent to a Bowtie2 run with the following 318 

parameters: 319 

--very-sensitive -k 16 --np 1 --mp "1,1" --rdg "0,1" --rfg "0,1" --score-min "L,0,-0.05" 320 

The sequence alignment is treated as a mapping from queries (sequencing data) to subjects (reference 321 

genomes). It is possible that one sequence is mapped to multiple genomes (up to 16 using the 322 

aforementioned Bowtie2 command). In this scenario, each genome is counted 1 / k times (k is the 323 

number of genomes to which this sequence is mapped. The frequencies of individual genomes were 324 

summed after the entire alignment was processed, and rounded to the nearest even integer. Therefore, 325 

the sum of OGU frequencies per sample is nearly (considering rounding) equal to the number of aligned 326 

sequences in the dataset. The output feature table has columns as sample IDs, rows as feature IDs 327 

(OGUs), and cell values as the frequency of each OGU in each sample. This table is ready to be 328 

analyzed using software packages such as QIIME 2 (1). 329 

Implementation 330 

The OGU method is implemented in the bioinformatics tool Woltka (Web of Life Toolkit App), under 331 

the BSD-3-Clause open-source license. The program is written in Python 3, following high-quality 332 

software engineering standards. Its unit test coverage is 100%. The source code is hosted in the GitHub 333 
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repository: https://github.com/qiyunzhu/woltka, together with instructions, tutorials, command-line 334 

references, and test datasets. The program has been included in the Python Package Index (PyPI). In 335 

addition to the standalone Woltka program, a QIIME 2 (1) plugin is included in the software package. 336 

Woltka automatically recognizes and parses multiplexed or per-sample sequence alignment files, either 337 

original or compressed using Gzip, Bzip2 or LZMA algorithms. It supports three alignment file formats: 338 

1) SAM (Sequence Alignment Map) (40), which is supported by multiple short read alignment 339 

programs, such as Bowtie2 (39), BWA (41) and Minimap2 (42); 2) the standard BLAST (43) tabular 340 

output format (“-outfmt 6”), which is supported by multiple sequence alignment programs, such as 341 

BLAST, VSEARCH (44) and DIAMOND (45); 3) A plain mapping of query sequences to subject 342 

genomes, which is customizable to adopt other tools and pipelines. 343 

In addition to OGU table generation, Woltka supports summarizing features into higher-level groups. 344 

This enables taxonomic classification, for comparison purposes. The output of Woltka’s classification 345 

function and that of SHOGUN’s “assign_taxonomy” function are identical. Woltka supports three 346 

formats of classification systems: 1) the Greengenes-style lineage strings (supported by programs such 347 

as QIIME 2 (1), MetaPhlAn (21) and GTDB-tk (46)); 2) The NCBI-style taxonomy database (47) (a.k.a. 348 

“taxdump”, supported by programs such as Kraken 2 (48), Centrifuge (20) and DIAMOND (45)); 3) 349 

One or multiple plain mappings of child-to-parent classification units. 350 

Deployment 351 

The Woltka program has been incorporated in the Qiita web analysis platform (https://qiita.ucsd.edu/) 352 

(13), as part of the standard operating procedure for analyzing shotgun metagenomic data (qp-woltka, 353 

code hosted at: https://github.com/qiita-spots/qp-woltka). It can be directly launched from the graphic 354 

user interface. A job array system is used to parallelize analyses on a per-sample base to maximize 355 
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processing speed. Each process uses eight cores of an Intel E5-2640 v3 CPU and 90 GB DDR4 memory. 356 

Two reference genome databases are available for user choice: 1) The “Web of Life” (WoL) database 357 

(10), with 10,575 bacterial and archaeal genomes that were evenly sampled through an algorithm. 2) The 358 

reference and representative genomes of microbes defined in NCBI RefSeq release 200 (8). The 359 

subsequent community ecology analyses based on the OGU table are also available from Qiita. The 360 

WoL reference phylogeny is available for choice for phylogenetic analyses (such as UniFrac (4)). 361 

This system allowed us to re-analyze all metagenomic datasets hosted on Qiita (totaling 143 studies and 362 

57,063 samples, as of Mar 3, 2021) to generate OGU tables as well as tables at multiple taxonomic 363 

ranks, which are ready for subsequent meta-analysis by Qiita users. Although runtime varies by sample 364 

size, the average wall clock time for analyzing one metagenomic sample (including sequence alignment 365 

against WoL using Bowtie2 and feature table generation using Woltka) was 13.8 minutes in this large 366 

effort. 367 

The HMP dataset 368 

The Human Microbiome Project (HMP) (17) dataset was downloaded from the official website 369 

(https://www.hmpdacc.org/hmp/). It contains 241 samples of 100 bp paired-end whole genome 370 

sequencing (WGS) reads. The sequencing data were already processed to remove human contamination 371 

and low-quality regions. We dropped samples with less than 1M paired-end reads, leaving 210 samples. 372 

They were randomly subsampled to 1M paired-end reads per sample. These samples represent both male 373 

(n=138) and female (n=72) human subjects. They represent seven body sites: stool (n=78), tongue 374 

dorsum (n=42), supragingival plaque (n=33), buccal mucosa (n=28), retroauricular crease (n=13), 375 

posterior fornix (n=10), and anterior nares (n=6). 376 
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Taxonomic profiling 377 

In comparison with the OGU method, we performed taxonomic profiling on the shotgun metagenomic 378 

data using four existing methods, specified as below. The default parameters were used for all programs. 379 

To maximize comparability, we used the WoL reference genome database (10) for all methods, except 380 

for MetaPhlAn (because it uses a special marker gene database which is difficult to customize). 381 

1. SHOGUN: SHOGUN v1.0.8 (19), which calls Bowtie2 v2.4.1 to perform sequence alignment. 382 

2. Bracken: Bracken v2.5 (18) on the results of Kraken v2.0.8 (48). 383 

3. Centrifuge: Centrifuge v1.0.3 (20). 384 

4. MetaPhlAn: MetaPhlAn v2.6.0 (21) with its database (mpa_v20_m200). Results (relative 385 

abundances) were normalized to counts per million sequences. 386 

Beta diversity analysis 387 

Beta diversity analysis of the HMP dataset was performed using QIIME 2 (1), following recommended 388 

protocols (49). Specifically, beta diversity distance matrices were constructed using the “qiime 389 

diversity beta” command with Jaccard and Bray-Curtis metrics, and using the “qiime diversity 390 

beta-phylogenetic” command (50) with unweighted UniFrac and weighted UniFrac metrics, based on 391 

the WoL reference phylogeny. Principal coordinates analysis (PCoA) was performed using the “qiime 392 

diversity pcoa” command. The correlation between biological factors (body site and host sex) and beta 393 

diversity was assessed using the PERMANOVA test, through the command “qiime diversity adonis”, 394 

with 999 permutations (the default setting). 395 

Site clustering by environment 396 

In the HMP study, we quantified the proximity of the three oral sites (tongue dorsum, supragingival 397 

plaque, and buccal mucosa) as compared with the four non-oral sites (stool, retroauricular crease, 398 
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posterior fornix, and anterior nares) as follows: For each sample in the three oral sites, we calculated the 399 

beta diversity distance to all samples in all but the current site. We then separated these distances into 400 

oral (i.e., the two oral sites other than the current one) and non-oral (i.e., the four non-oral sites). We 401 

calculated the ratio of the mean distance of the former versus the latter. Finally we reported the 402 

distribution of the mean ratios of all oral samples. 403 

Phylogenetic factorization 404 

We performed phylogenetic factorization as implemented in Phylofactor v0.0.1 to infer phylogenetic 405 

clades (“factors”) that are differentially abundant between male and female subjects. Two samples with 406 

less than 100,000 OGU counts were excluded from the analysis. OGUs with relative abundance below 407 

0.01% were dropped from each sample, and OGUs present in fewer than two samples were also 408 

excluded. We built an explained variance-maximizing (the choice parameter was set to “var”) 409 

Phylofactor model using the OGU table and the WoL phylogeny. We specified the model to return 20 410 

factors. They were labeled by the taxonomic annotation of the corresponding phylogenetic clades as 411 

provided in the WoL database. The results were visualized with EMPress. In each factor, we tested the 412 

differences in male vs female subjects by comparing the ILR-transformed vectors corresponding to each 413 

sample group using a two-tailed independent samples t-test. 414 

Subsampling of OGU tables 415 

To assess the impact of sampling depth on analysis results, we randomly subsampled the OGU tables to 416 

lower depths (sum of OGU frequencies per sample). This process mimicked lower sequencing depths in 417 

the original data, because the sum of OGU frequencies is nearly equal to the number of aligned 418 

sequences (see above). This process further considered the unaligned part of the sequencing data. For 419 

example, if m out of n sequences in a sample were aligned to at least one reference genome (therefore 420 
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the sum of OGU frequencies was m), we added an extra “unaligned” feature of frequency of n - m to the 421 

OGU table, prior to random subsampling, and removed this feature after sampling. 422 

The FINRISK 2002 datasets 423 

The FINRISK 2002 is a large, well-phenotyped, and representative cohort based on a stratified random 424 

sample of the population aged 25 to 74 years from specific geographical areas of Finland (27). All 425 

volunteer participants took a self-administered questionnaire, physical measurements and collection of 426 

blood and stool samples. The microbiome data and metadata that support the findings of this study are 427 

available from the THL Biobank based on a written application and following relevant Finnish 428 

legislation. Details of the application process are described in the website of the Biobank: 429 

https://thl.fi/en/web/thl-biobank/for-researchers. 430 

Paired 16S rRNA gene amplicon sequencing data and shotgun metagenomic sequencing data are 431 

available for 6,430 stool samples. The 16S rRNA data were demultiplexed, quality filtered, and denoised 432 

with deblur v1.1.0 (51), resulting in an average ASV frequency of 8,787 per sample, followed by 433 

normalization to 10,000 per sample. Taxonomic classification was performed using a pre-trained Naive 434 

Bayes classifier against the Greengenes 13_8 database at an OTU clustering level of 99%. Feature tables 435 

were rarefied to a sampling depth of 10,000. The shotgun metagenomic data were trimmed and quality 436 

filtered using Atropos v1.1.25 (52), resulting in an average of 1.07 million paired-end sequences per 437 

sample. They were aligned to the WoL database using SHOGUN v1.0.8. An OGU table was generated 438 

using the current approach. As a comparison, Bracken v2.5 with Kraken v2.0.8 were used to infer 439 

taxonomic profiles using the same WoL database. These analyses were the same as the corresponding 440 

analyses of the HMP shotgun metagenomic dataset, as described above. 441 
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Supervised regression for age prediction 442 

We performed machine learning analysis of microbial profiles derived from both 16S amplicon 443 

sequencing and shotgun metagenomics sequencing, at distinct levels of resolution. These included 444 

taxonomic ranks (phylum, class, order, family, genus and species) for both 16S rRNA and shotgun 445 

metagenomic data (the latter of which were inferred by either SHOGUN or Bracken), ASV for 16S 446 

rRNA data, and OGU for shotgun metagenomic data (inferred by SHOGUN with Woltka). In each 447 

profile, features with a study-wide prevalence less than 0.001 were excluded. Random Forest regressors 448 

for predicting chronological age were trained based on each profile with tuned hyperparameters with a 449 

stratified 5-fold cross-validation approach using R package ranger v0.12.1 (53). Each dataset was split 450 

into five groups with similar age distributions, and we trained the classifier on 80% of the data, and 451 

made predictions on the remaining 20% of the data in each fold iteration. We next evaluated the 452 

performance of age prediction using mean absolute error (MAE), which calculated as MAE=
∑ |𝑦𝑖−𝑥𝑖|
𝑛
𝑖=1

𝑛
, 453 

where y denotes the predicted age, x denotes the chronological age, and n is the total number of samples. 454 

Based on the MAE evaluation, we next determined the most predictive taxonomic levels derived from 455 

both 16S and shotgun metagenomics. 456 

To identify the most important taxonomic features that contributed to the age prediction, we visualized 457 

the top-128 ranked important features by built-in Random Forest importance scores and their 458 

phylogenetic relationships using EMPress (54). We next performed the feature selection analysis to 459 

identify a set of important microbial features that can maximize the model performance. We built age 460 

regressors using a series of reduced sets (n = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and the number of 461 

all features) of the most predictive taxonomic features (namely, OGU) and compared their performance. 462 

The rationale is to observe the trough in MAE when additional features are added into the regression 463 

model. 464 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.04.438427doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 24 

Statistics statement 465 

All data analysis was performed using QIIME 2 release 2020.6. PERMANOVA was performed using 466 

the “adonis” command (which wraps the “adonis” function in vegan v2.5-6). Paired t-test was performed 467 

using the “ttest_rel” function in SciPy v1.4.1. 468 
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Figure Legends 681 

Figure 1. Feature resolution impacts community structure analysis even in small conceptual 682 

examples. A. A synthetic dataset involving three microbial communities, each of which having 12 683 

unique read hits, as represented by black circles in the frequency table, to a total of 10 reference 684 

genomes (OGUs), classified under five species, three genera and one family, as noted to the left. A 685 

phylogenetic tree of the 10 genomes is shown on the right. In this simplified case, the phylogeny is not 686 

much more complex than the taxonomy (with three more edges); however, the taxonomic assignment 687 

and the phylogenetic placement of genome O5 are not consistent. B. Beta diversity of the dataset. The 688 

three samples (circles) are connected by edges representing the pairwise distances calculated by Bray-689 

Curtis (BC) or weighted UniFrac (WU) on the frequency table. For the latter measure, either the 690 

taxonomy or the phylogeny was used to quantify the hierarchical relationships among OGUs, as noted in 691 

the parentheses. The edge lengths were normalized so that their sum is equal in each graph. This 692 

synthetic case study demonstrates that different resolutions of features and feature structures can lead to 693 

very different conclusions regarding sample relationships. 694 

 695 

Figure 2. Analysis of the HMP metagenomes reveals clustering by body environment and 696 

differentiation by host sex. Beta diversity analysis was performed on 210 samples subsampled to one 697 

million paired-end shotgun reads each. A. PCoA by the method proposed in this study (OGU): weighted 698 

UniFrac metric calculated with the WoL reference phylogeny based on the OGU table. Samples (dots) 699 

are colored by body site and shaped by host sex. B. PCoA using the current adopted method (CAM): 700 

Bray-Curtis calculated on species-level taxonomic units identified by Bracken, which shows a diagonal 701 

pattern that aligns all samples of the four non-oral body sites in one plane (also see Figs. S2B and S3). 702 

C. Proportions of community structure variance explained by the first three axes of PCoA. D. Mean 703 
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ratio of the beta diversity distances from any oral sample to a sample of the two other oral sites versus to 704 

that of non-oral body sites. The lower the mean ratio is, the more similar communities of the three oral 705 

sites are to each other in the background of multiple body environments. The bold line in each box 706 

represents the median. The whiskers represent 1.5 IQR. E and F. PERMANOVA pseudo-F statistics 707 

indicating the differentiation of community structures by body site (E) and by host sex (F). The larger F 708 

is, the more distinct the community structures are between groups versus within groups. The y-axis is 709 

aligned to F=1.0 which indicates no difference. For E, all statistics have a p-value of 0.001. For F, an 710 

asterisk (*) indicates p-value ≤ 0.05. G. Differentially abundant phylogenetic clades by host sex inferred 711 

using PhyloFactor and visualized using EMPress on the WoL reference phylogeny. The tree was 712 

subsetted to only include OGUs detected in the dataset. The top 20 clades by effect size are colored (full 713 

details provided in Figs. S4-5). The top five clades are numbered 1 through 5 by decreasing effect size, 714 

circled, and labeled with corresponding taxonomic annotations. The small color ring represents phylum-715 

level annotations. The inner and outer barplot rings indicate the OGU counts split by body site (using the 716 

same color scheme as in A and B) and by host sex, respectively. 717 

 718 

Figure 3. Analysis of the FINRISK metagenomes showing superior prediction accuracy over 719 

taxonomic units and 16S rRNA data. A.  The empirical error (mean absolute error, MAE) in 720 

predicting host chronological age using microbiome features at distinct taxonomic ranks in paired 16S 721 

rRNA amplicon and shotgun metagenomics data with a Random Forests regressor. “None” represents 722 

the taxonomy-free, finest-possible level (ASV for 16S, OGU for shotgun). Small circles indicate MAEs 723 

in all iterations of five-fold cross validation. Large circles and error bars indicate the mean and standard 724 

deviations of the five MAEs. B. Scatter plot of the actual age vs. the predicted age by the best-725 

performing model with OGU features in the five-fold cross-validation. The black line was generated 726 

using ggplot2’s local polynomial regression fitting. C. Phylogenomic tree of 169 OGUs with importance 727 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.04.438427doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 37 

score ≥ 0.1 in the prediction model. The tree was subsampled based on the WoL reference phylogeny, 728 

and drawn to scale (branch lengths represent mutations per site). Branch colors indicate the mean 729 

importance score of all descendants of the clade. Taxonomic labels are displayed where needed. Circles 730 

and lines with stops are displayed where needed to assist location of taxonomic labels to target branches 731 

or clades. 732 

 733 

 734 
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