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Abstract 

The biological processes that are disrupted in the Alzheimer’s disease (AD) brain remain 

incompletely understood.  We recently performed a proteomic analysis of >2000 brains to better 

understand these changes, which highlighted alterations in astrocytes and microglia as likely key 

drivers of disease.  Here, we extend this analysis by analyzing >1000 brain tissues using a tandem 

mass tag mass spectrometry (TMT-MS) pipeline, which allowed us to nearly triple the number of 

quantified proteins across cases.  A consensus protein co-expression network analysis of this 

deeper dataset revealed new co-expression modules that were highly preserved across cohorts 

and brain regions, and strongly altered in AD.  Nearly half of the protein co-expression modules, 

including modules significantly altered in AD, were not observed in RNA networks from the same 

cohorts and brain regions, highlighting the proteopathic nature of AD.  Two such AD-associated 

modules unique to the proteomic network included a module related to MAPK signaling and 

metabolism, and a module related to the matrisome.  Analysis of paired genomic and proteomic 

data within subjects showed that expression level of the matrisome module was influenced by the 

APOE ε4 genotype, but was not related to the rate of cognitive decline after adjustment for 

neuropathology.  In contrast, the MAPK/metabolism module was strongly associated with the rate 

of cognitive decline.  Disease-associated modules unique to the proteome are sources of 

promising therapeutic targets and biomarkers for AD. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438450
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Introduction 

Alzheimer’s disease (AD) remains an immense personal and public health burden without 

effective disease-modifying therapies.  As part of a national effort to develop therapeutics and 

biomarkers for AD, the Accelerated Medicines Partnership—Alzheimer’s Disease (AMP-AD) 

Consortium has been leveraging unbiased molecular profiling data at the genomic, transcriptomic, 

proteomic, and metabolomic levels to further our understanding of AD pathogenesis.  Genetics 

has significantly advanced our understanding of AD heritable risk, yet how genetic risk factors 

affect biological pathways that influence AD pathophysiology is not always clear1.  Understanding 

the biological effects of AD risk factor polymorphisms in human brain often requires additional 

levels of analysis using other –omics approaches.  To this end, transcriptomics has been widely 

used to measure mRNA transcripts in AD brain, and the resulting transcriptomic data have been 

integrated with AD genetic risk2.  However, the ultimate biological effectors of AD genetic and 

environmental risk are often the proteins and the metabolic pathways they modulate.  Compared 

to genomics and transcriptomics, proteomics approaches have to date provided comparatively 

less in-depth coverage of the target analyte due to increased complexity and technical demands 

of analyzing amino acid polymers versus nucleic acid polymers. 

As the proteomics team of AMP-AD, we have been working to better characterize AD at the 

proteomic level, and relate observed proteomic changes to other levels of –omics data in order to 

advance our understanding of the disease.  As part of our initial efforts towards this goal, we 

recently reported a large multi-center study using an unbiased discovery approach to better 

understand the proteomic changes that occur in AD brain in both early and late stages of the 

disease3.  We used protein co-expression network analysis to cluster proteins into groups that 

reflect distinct biological functions, processes, pathways, and cell types, and related these protein 

groups—or modules—to early and late AD stages.  This protein co-expression network of 13 

modules revealed that the module most strongly related to AD was related to astrocyte and 
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microglia metabolism.  Furthermore, proteins from this module could be detected in cerebrospinal 

fluid, suggesting that they may be useful biomarkers for tracking this AD brain pathophysiology. 

Our consensus AD protein network was constructed on 3334 proteins measured across >450 

brain tissues by label-free quantitation mass spectrometry (LFQ-MS), which was an approach we 

have previously used to generate other protein co-expression networks of smaller scale4,5.  LFQ-

MS is typically performed using a “single-shot” approach where a single fractionation of the 

sample is performed prior to MS analysis and protein identification and quantification.  LFQ-MS 

suffers from missing protein measurements that accumulate across sample sets and that 

ultimately reduce the final number of reliably quantified proteins6.  This problem becomes 

particularly acute when analyzing large cohorts, and limits the depth of proteomic analysis.  More 

recently, a different quantitative mass spectrometry approach based on peptide labeling and 

quantification using tandem mass tags (TMT-MS) has been developed that helps to address, in 

part, some of the limitations inherent in LFQ-MS7-9.  The TMT-MS approach allows for orthogonal 

pre-fractionation of samples prior to a second fractionation step and analysis on the mass 

spectrometer which, along with batching of samples to partially mitigate missing measurements, 

allows for deeper proteome coverage than what can be achieved through LFQ-MS10. 

In this study, we used the TMT-MS approach and the AMP-AD consortium of brains to generate 

a deeper TMT AD protein network that significantly expanded our previous LFQ network and 

revealed new AD-related protein co-expression modules.  We leveraged brain tissues from 

cohorts that also have been profiled using other –omics modalities, including genomics and 

transcriptomics.  Multi-layer –omics data provide the opportunity to relate and integrate different 

levels of biological information into a holistic understanding of disease pathophysiology, and 

identify key molecular drivers of disease based on observations across different levels of data.  

For instance, the relationship of RNA to protein levels, as well as the genetic variants that affect 

these levels, are important considerations when prioritizing drug discovery efforts11.  To this end, 
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we undertook a multi-layer genomic, transcriptomic, and proteomic analysis of the TMT AD 

protein network to better understand the relationships among these different data types.  We 

found that some of the most strongly AD-related modules in the proteomic network had no 

cognate modules in RNA networks.  Many of these modules also correlated with cognitive 

trajectory during life, and one of them—the matrisome module—was influenced by genetic 

variation in apolipoprotein E (APOE), a known AD genetic risk factor.  Our findings highlight the 

importance of including protein measurements when studying AD pathophysiology and selecting 

potential targets for disease-modifying therapeutic development. 

 

Results 

Construction of a TMT Consensus AD Protein Co-expression Network 

For this study, we analyzed a total of 516 dorsolateral prefrontal cortex (DLPFC) tissues from 

control, asymptomatic AD (AsymAD), and AD brains from the Religious Orders Study and 

Memory and Aging Project (ROSMAP, n=84 control, 148 AsymAD, 108 AD)12-14 and Banner Sun 

Health Research Institute (Banner, n=26 control, 58 AsymAD, 92 AD)15 by tandem mass tag mass 

spectrometry (TMT-MS)-based quantitative proteomics (Figure 1A, Supplementary Table 1).  

Cases were defined based on a unified classification scheme using semi-quantitative 

histopathological measures of Aβ and tau neurofibrillary tangle deposition16-19, as well as cognitive 

function near time of death, as previously described3.  AsymAD cases were those with 

neuropathological burden of Aβ plaques and tau tangles similar to AD cases, but without 

significant cognitive impairment near time of death, which is considered to be an early preclinical 

stage of AD20.  After data processing and outlier removal, a total of 8619 proteins were used to 

build a protein co-expression network using the weighted co-expression network (WGCNA) 

algorithm21 (Figure 1B, Supplementary Tables 2 and 3).  This network consisted of 44 modules, 
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or communities of proteins related to one another by their co-expression across control and 

disease tissues.  Compared to our previous AD consensus network constructed using label-free 

quantitative (LFQ) proteomic data, the TMT consensus network contained over five times as many 

proteins that could be assigned to a module (6337 versus 1205), as well as a larger fraction of 

the total quantified proteins that could be assigned to a module (73% versus 36%), highlighting 

the improved depth and coherence of the TMT data compared to the LFQ consensus data.  Of 

the 13 modules previously identified in the LFQ consensus network3, every module except the 

smallest module (module 13 consisting of 20 proteins) was preserved in the TMT network 

(Supplementary Figure 1A), also highlighting the consistency of the LFQ and TMT proteomic 

data.  Because different network clustering algorithms can produce disparate networks, we tested 

the robustness of the TMT consensus network generated by the WGCNA algorithm by also 

generating a co-expression network using an independent algorithm—the MONET M1 algorithm.  

MONET M1 was identified as one of the top performers in the Disease Module Identification 

DREAM challenge, and is based on a modularity optimization algorithm rather than the 

hierarchical clustering approach used in WGCNA22,23.  We found that all 44 WGCNA modules 

were highly preserved in the MONET M1 network (Supplementary Figure 1B), demonstrating 

the robustness of the TMT consensus network to clustering algorithm. 

The biology represented by each TMT consensus network module was determined using gene 

ontology (GO) analysis of its constituent proteins (Figure 1B, Extended Data 1).  Most modules 

could be assigned a primary ontology, and those that were ambiguous in their ontology were left 

unannotated or assigned as “ambiguous.” Module 42 was assigned the term “matrisome,” which 

refers to the collection of extracellular matrix-associated proteins24,25, due to its strong enrichment 

in extracellular matrix and glycosaminoglycan binding proteins.  To assess whether a module was 

related to features of AD, we correlated each module eigenprotein, or the first principal component 

of module protein expression, to neuropathologic or cognitive traits present in the ROSMAP and 
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Banner cohorts (Figure 1B, Supplementary Table 4; individual protein trait correlations are 

provided in Supplementary Table 5).  We also assessed the cell type nature of each module 

by determining whether it was enriched in cell type-specific protein markers (Figure 1B, 

Supplementary Tables 6 and 7).  Because the network was highly powered, with the ability to 

observe a significant correlation of 0.1 at p=0.05 for most pathological and cognitive traits, we 

were able to observe a large fraction of the 44 modules that significantly correlated with at least 

one pathological or cognitive trait.  Twelve modules or module families were noted to correlate 

more strongly to AD traits than the others.  These included post-synaptic density, 

glycosylation/endoplasmic reticulum (ER), oligodendrocyte/myelination, RNA splicing, 

matrisome, cell-extracellular matrix (ECM) interaction, synapse/neuron, ubiquitination, MAPK 

signaling and metabolism, mitochondria, sugar metabolism, and protein transport modules 

(Figure 1B).  Four of these modules—M5 post-synaptic density (global pathology r=–0.32, 

p=2.7e-9; global cognitive function r=0.35, p=7.4e-11), M7 MAPK signaling and metabolism (global 

pathology r=0.37, p=4.9e-12; global cognitive function r=–0.42, p=1.2e-15), M11 cell-ECM 

interaction (global pathology r=0.34, p=4.1e-10; global cognitive function r=–0.33, p=1.1e-9), and 

M42 matrisome (global pathology r=0.75, p=1.1e-60; global cognitive function r=–0.4, p=2.3e-14)—

were the most strongly correlated to AD neuropathology or cognition out of the twelve.  The 

increased depth of the TMT network allowed for additional resolution of AD correlated modules 

identified in the prior LFQ consensus network.  For instance, the M4 astrocyte/microglia 

metabolism module that was most highly correlated to AD in the LFQ network was split into two 

predominant modules in the TMT network:  the M7 MAPK/metabolism module and the M11 cell-

ECM interaction module (Supplementary Figure 1C), both of which were correlated to AD.  

Similarly, the large M1 synapse/neuron module in the LFQ network was resolved into three large 

neuronal/synaptic modules (M1, M4, and M5), one of which, M5, reflected post-synaptic biology 

and was strongly correlated to AD pathology and cognitive impairment.  Sugar metabolism, which 

was the primary ontology for M4 in the LFQ network, was split into the M7 MAPK/metabolism and 
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M25 sugar metabolism modules in the TMT network, both of which were significantly correlated 

to AD but did not have strong cell type character as suggested by co-expression analysis in the 

LFQ network.  Two modules in the LFQ network that had ambiguous ontologies, M12 and M13, 

could now be assigned with additional depth in the TMT network as reflecting protein transport 

(M8) and protein folding (M14) functions.  The additional analytical depth afforded by the TMT 

pipeline also allowed us to identify a significant number of new modules that had little to no overlap 

with the LFQ network.  Among these were the M17 transcription, M21 MHC complex/immune, M6 

ribosome, M19 axonogenesis, and M9 Golgi modules, in which approximately 80% or more of the 

module proteins were not quantified in the LFQ network, including a majority of proteins with 

strong correlation to the module eigenprotein (i.e., “hub” proteins) (Supplementary Figure 1D).  

Three of these new modules—the M24 ubiquitination, M29 glycosylation/ER, and M42 matrisome 

modules—were strongly correlated to AD endophenotypes. 

To assess whether a given TMT network module was altered in the early stages of AD, we 

compared the module eigenprotein across control, AsymAD, and AD cases (Figure 1C, 

Supplementary Table 8, Extended Data 2).  Four of the twelve most highly AD correlated 

modules were either significantly increased or decreased in AsymAD compared to control, 

whereas the other eight were largely altered in AD only.  Modules that were increased in AsymAD 

included M42 matrisome and M11 cell-ECM interaction, whereas modules that were decreased 

in AsymAD included M5 post-synaptic density and M8 protein transport.  Modules that did not 

significantly change in AsymAD included M3 oligo/myelination, M20 RNA splicing, and M2 

mitochondria, among others, consistent with findings in the LFQ network3. 

In summary, TMT-MS analysis of >500 brain tissues allowed us to quantify >8600 proteins and 

construct a robust protein co-expression network that was highly powered to detect AD-correlated 

modules, including a significant number of new modules not present in the previous LFQ 

consensus network.  Some of these new modules were also altered in early stages of AD, likely 
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reflecting pathophysiologic processes that develop in the presence of AD neuropathology but 

prior to cognitive decline. 

 

TMT AD Network Modules Are Preserved Across Different Cohorts and Brain Regions 

The TMT AD protein network was generated from DLPFC Brodmann area 9 (BA9) tissues from 

two centers analyzed at one institution.  To determine whether the network modules were also 

present in other brain regions and robust to center and analytical pipeline, we analyzed 226 paired 

tissues from frontal cortex BA6 (n=113) and temporal cortex BA37 (n=113) from 113 subjects in 

the ROSMAP cohort, 151 parahippocampal gyrus (PHG) BA36 tissues from the Mount Sinai Brain 

Bank, and 40 tissues from DLPFC BA9 and anterior cingulate BA24 from the Emory Brain Bank, 

which also included Parkinson’s disease cases (Figure 2A, Supplementary Tables 9-12).  The 

Mt. Sinai tissues were analyzed at a different center using a similar mass spectrometry pipeline26.  

All tissues were analyzed using the TMT approach, with the Emory tissues analyzed using the 

synchronous precursor selection (SPS)-MS3 TMT quantification approach7,27.  We generated 

protein co-expression networks for each cohort, then assessed whether the TMT AD network 

modules were preserved in each cohort and brain region3,28.  We found that nearly all TMT AD 

network modules were preserved across both cohort and brain region (Figure 2B, 

Supplementary Figure 2).   

We assessed how TMT AD network modules were different by case status in each cohort and 

brain region by measuring TMT consensus AD network “synthetic” eigenproteins, or the top 20% 

of proteins within each consensus module, in each separate network (Figure 2C, Supplementary 

Table 13)3.  Because the ROSMAP BA6 and BA37 tissues were sampled within subject, we were 

able to compare the module synthetic eigenproteins directly between these two regions within the 

same individual.  All TMT AD network modules were altered in a similar direction to that observed 
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in DLPFC across brain region and cohort.  Interestingly, the M7 MAPK/metabolism and M42 

matrisome modules were increased more strongly in temporal cortex than frontal cortex when 

assessed in the same individual, perhaps due to earlier and more severe involvement of this brain 

region in AD29.  Most AD associated modules were not significantly altered in PD in either frontal 

cortex or anterior cingulate, although there appeared to be a trend for the M7 MAPK/metabolism 

module to increase and the M5 post-synaptic density module to decrease in anterior cingulate, 

consistent with this brain region being more severely affected in PD compared to DLPFC30,31.  In 

summary, we observed that nearly all TMT AD network modules were preserved across different 

cohorts, centers, MS methods, and brain regions, demonstrating that the protein co-expression 

relationships observed are robust to technical artefact and are not unique to the DLPFC. 

 

TMT AD Protein Network Modules Not Observed in Transcriptomic Networks 

Most co-expression network analysis in AD has been performed to date using quantitative 

RNAseq data.  However, not all mRNA transcripts correlate well with protein levels32,33.  To 

compare the similarities and differences between RNA and protein AD co-expression networks, 

we generated an AD RNA network on 15,582 transcripts measured across 532 ROSMAP DLPFC 

tissues, 168 of which overlapped with tissues used to generate the TMT AD protein network 

(Figure 3A, Supplementary Tables 14-16).  We took care to ensure that the case classification 

and WGCNA pipeline used for network construction was consistent between protein and RNA 

datasets.  Given the greater number of transcripts measured compared to proteins measured 

(n=15,582 versus 8619), the resulting RNA network contained more modules compared to the 

protein network (n=88 versus 44) (Supplementary Figure 3A, Supplementary Table 16).  We 

used network preservation statistics to determine which modules in the protein network were 

preserved in the RNA network28.  We found that slightly greater than half of the protein modules 

were preserved in the RNA network (25 out of 44 modules at Zsummary > 1.96, or p ≤ 0.05) 
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(Supplementary Figure 4A).  Among the modules preserved in the RNA network were the AD-

associated modules M1 synapse/neuron, M2 mitochondria, M3 oligo/myelination, M5 and M22 

post-synaptic density, M8 protein transport, M11 cell-ECM interaction, M20 RNA splicing, and 

M25 sugar metabolism.  However, there were also 19 protein network modules that were not 

preserved in the RNA network, including the AD-associated modules M7 MAPK/metabolism, M24 

ubiquitination, M29 glycosylation/ER, and M42 matrisome (Figure 3B).  Of these modules, the 

M7 MAPK/metabolism module—the module most highly correlated to cognitive function in the 

TMT AD network—was the least preserved, with a Zsummary score near 0, indicating its highly 

unique nature to the proteome.  We validated these findings in 193 frontal cortex (BA10) tissues 

analyzed by RNAseq from the Mt. Sinai Brain Bank, which showed similar network preservation 

results (Supplementary Figure 4B).  Co-expression analysis indicated a degree of preservation 

between protein and RNA networks that was higher than what might be expected based on 

comparison of differential expression between protein and RNA, which was modest, even in 

paired tissues (Supplementary Figure 4C, D).  This correlation remained modest when proteins 

from the M42 matrisome module, which were the most highly differentially expressed proteins in 

the TMT AD network (Supplementary Figure 5), were excluded from the analysis 

(Supplementary Figure 4C, D).  Overall, we found that protein network modules correlated more 

strongly to cognitive function than RNA network modules, but that in most cases their correlation 

to pathology was similar to RNA modules.  A striking exception was the M42 matrisome module, 

which was the module with the strongest correlation to any AD trait, with correlation of 0.75 to 

global pathology, and which was not present in the RNA network (Supplementary Figure 3B).  

The protein network also demonstrated an overall larger variance in AD trait correlations than the 

RNA network.  In summary, we observed that approximately half of the TMT AD protein network 

modules were not present in RNA networks from the same brain region, including the two protein 

network modules most strongly correlated to AD pathology and cognitive function, highlighting 

the unique contribution of the proteome to understanding AD pathophysiology. 
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The M7 MAPK/Metabolism Module Is Enriched in Proteins Co-localized with Aβ Plaques and 

Neurofibrillary Tangles 

While co-expression analyses on data obtained from bulk tissue are able to identify modules that 

are correlated with neuropathological traits such as neurofibrillary tangle (NTF) and Aβ plaque 

deposition, they do not provide spatial information regarding these relationships.  To better 

understand the potential spatial relationships between the TMT AD protein network modules and 

the hallmark AD neuropathologies Aβ plaques and NFTs, we performed a module overlap test 

with proteins that have previously been identified as co-localized with Aβ plaques and NFTs based 

on laser capture microdissection (LCM) and LFQ proteomic analysis of these structures (Figure 

3C, Supplementary Table 17)34,35.  We found that the M1 and M4 synapse/neuron, M2 

mitochondria, and M14 protein folding modules were highly enriched in proteins found in both 

plaques and tangles.  The M7 MAPK/metabolism module was also enriched in both plaques and 

tangles, but more highly enriched in Aβ plaque-associated proteins.  This was also the case for 

the M25 sugar metabolism module.  NFTs were uniquely enriched in proteins from the M28 and 

M44 ribosome/translation, M29 glycosylation/ER, and M13 RNA splicing modules.  Surprisingly, 

the M42 matrisome module was not significantly enriched with core plaque proteins identified by 

LCM, even though the amyloid precursor protein (APP) (a proteomic measurement largely driven 

by Aβ) and apolipoprotein E (ApoE) were members of this module (Supplementary Table 3).  

M42 was highly elevated in AsymAD and AD compared to control, consistent with an association 

with neuritic plaques.  When the analysis was expanded to a less stringent set of plaque-

associated proteins identified in at least one LCM experiment rather than proteins identified in 

multiple experiments, M42 was found to be significantly enriched in plaque-associated proteins 

(Supplementary Figure 3C).  This suggested that our TMT proteomic and co-expression 

analysis was perhaps capturing a significant number of plaque-associated proteins that are less 
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reliably observed by LFQ-MS approaches, even with LCM isolation, such as SPARC-related 

modular calcium-binding protein 1 (SMOC1), midkine (MDK), and netrin-1 (NTN1).  For example, 

although it was not identified as a core Aβ plaque-associated protein by LCM, MDK demonstrated 

a pattern of staining on immunohistochemistry consistent with its co-localization with Aβ plaques 

(Supplementary Figure 3D).  Many of the proteins within the M42 matrisome module shared 

heparan sulfate and glycosaminoglycan binding domains likely mediating their interaction with Aβ 

fibrils26 (Supplementary Figure 3E).  NFT and core Aβ plaque proteins that overlap with the top 

fifty M7 MAPK/metabolism and M42 matrisome module proteins by module eigenprotein 

correlation value (kME) are shown in Figure 3D.  In summary, we found that a number of TMT 

AD protein network modules were enriched in proteins that are found in NFTs and Aβ plaques, 

including the M7 MAPK/metabolism module, consistent with a spatial relationship between these 

biological processes and hallmark AD pathologies. 

 

M42 Matrisome Module Protein Levels are Influenced by ApoE4 

Because the TMT AD protein network was generated from post-mortem brain tissue, deciphering 

which biological changes are upstream of the disease process from those that are altered in later 

stages of disease presents a challenge.  One way to separate upstream from downstream 

changes is to assess genetic effects on the network, on the assumption that most genetic 

modifiers in AD are involved in causal mechanisms.  To this end, we first assessed which TMT 

AD network modules were enriched in genetic loci associated with AD as identified by GWAS 

using a gene-based test of association (Figure 4A, Supplementary Tables 18-20)3,4,36.  We 

found that M42 matrisome, M30 proteasome, and M29 glycosylation/ER modules were 

significantly enriched for AD risk genes, whereas the M7 MAPK/metabolism module 

demonstrated a trend towards enrichment.  The strong enrichment in M42 was driven by the ApoE 

protein within the module, given its large effect size on AD risk1.  Interestingly, M42 was also 
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highly enriched for proteins implicated in autism spectrum disorder (ASD), with 28 out of a total 

of 32 module proteins overlapping with ASD genetic risk factors (Supplementary Table 20).  In 

general, AD genetic risk clustered in modules that had glial cell type character or no cell type 

character, whereas autism and schizophrenia genetic risk clustered in modules with neuronal cell 

type and synaptic character.  We further probed genetic effects on the AD network by performing 

a module quantitative trait loci (mod-QTL) analysis using genome-wide genotyping available from 

both ROSMAP and Banner cohorts.  At a genome-wide level of significance and after adjusting 

for diagnosis and sex, among other variables, we found that rs429358 was a proximal mod-QTL 

(within 1MB, i.e., cis) for the M42 matrisome module (Table 1).  rs429358 is located in the APOE 

locus and is one of two SNPs involved in determining APOE genotype status.  This mod-QTL was 

further evident when we plotted the M42 eigenprotein by dose of the rs429358 SNP (Figure 4B).  

Furthermore, M42 was the only module observed to vary by APOE genotype (Figure 4C).  We 

also observed a proximal mod-QTL for the M8 protein transport module which was near the tubulin 

beta-2A (TUBB2A) gene (Table 1, Figure 4B).  There were more distal mod-QTLs (>1MB from 

module proteins, i.e., trans) observed than proximal mod-QTLs.  In summary, we found three TMT 

AD network modules that were significantly enriched for AD genetic risk factors, and the level of 

one of these modules—M42 matrisome—was influenced by APOE independent of diagnosis, 

especially in the asymptomatic stage of the disease. 

 

The M7 MAPK/Metabolism Module Is Associated with Cognitive Trajectory Independent of 

Neuropathology in ROSMAP 

The M7 MAPK/metabolism and M42 matrisome modules, among others, were strongly correlated 

with cognitive function as assessed near time of death.  Because subjects in the ROSMAP cohort 

undergo in-depth and repeated cognitive testing during life, we sought to analyze whether their 

TMT AD network module levels as assessed post-mortem would be associated with their 
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individual cognitive trajectories during life.  We conceptualized our findings into two categories: i) 

modules with higher expression levels being associated with more rapid cognitive decline (i.e., a 

negative association between module eigenprotein and cognitive trajectory), and ii) modules with 

higher expression levels being associated with a slower rate of cognitive decline (i.e., a positive 

association between module eigenprotein and cognitive trajectory), also referred to as cognitive 

preservation.  We constructed two linear models to analyze module associations with cognitive 

trajectory: one that adjusted for ten measured neuropathologies in ROSMAP (amyloid-β, tangles, 

cerebral amyloid angiopathy, cerebral atherosclerosis, arteriolosclerosis, Lewy bodies, TDP-43 

deposits, gross infarcts, microinfarcts, and hippocampal sclerosis) to exclude the potential effect 

of neuropathology on the association, and one that did not adjust for neuropathology.  Without 

adjusting for neuropathology, we found ten modules that were significantly associated with 

cognitive decline, and eleven modules that were significantly associated with cognitive 

preservation (Table 2, Supplementary Table 21).  Modules that were most strongly associated 

with cognitive decline included M7 MAPK/metabolism, M15 ambiguous, and M42 matrisome, 

whereas modules that were strongly associated with cognitive preservation included M33 

ambiguous, M5 post-synaptic density, and M2 mitochondria.  After adjustment for 

neuropathology, the M42 matrisome, M11 cell-ECM interaction, M20 RNA splicing, and M25 

sugar metabolism modules were no longer significantly associated with cognitive decline, and the 

M44 ribosome/translation, M32 ambiguous, and M9 golgi modules were no longer associated with 

cognitive preservation. M7 MAPK/metabolism and its related module M15 (ambiguous) remained 

significantly associated with rate of cognitive decline after adjustment, as well as five other 

modules, including the M24 ubiquitination module (Figure 5A, Supplementary Table 21).  Five 

out of seven modules significantly associated with rate of cognitive decline were unique to the 

protein network.  Modules that remained significantly associated with cognitive preservation after 

adjustment for neuropathology included the M2 mitochondria and related module M33 

(ambiguous), M5 post-synaptic density, and the M29 glycosylation/ER module that was unique to 
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the protein network (Figure 5B, Supplementary Table 21).  To further examine the association 

of TMT AD network modules with cognitive trajectory, we assessed which modules were enriched 

in proteins either positively associated or negatively associated with cognitive resilience after 

adjustment for neuropathology, as identified by a recent proteome-wide association study 

(PWAS) of cognitive resilience in ROSMAP37 (Figure 5C, Supplementary Tables 22 and 23).  

In our operationalized definition, a positive association with resilience would be equivalent to 

cognitive preservation, whereas a negative association with cognitive resilience would be 

equivalent to cognitive decline.  Consistent with our module association analysis, we found that 

M7 MAPK/metabolism and M15 ambiguous were significantly enriched in proteins negatively 

associated with cognitive resilience, whereas M5 post-synaptic density and M8 protein transport 

module were significantly enriched in proteins positively associated with cognitive resilience.  

Other modules, such as M2 mitochondria, M29 glycosylation/ER, and M24 ubiquitination trended 

towards significance.  Proteins identified by PWAS that were enriched in each module are 

provided in Supplementary Tables 22 and 23. 

In summary, although the M42 matrisome module was enriched in genetic risk, we found that it 

was not associated with cognitive trajectory after adjustment for neuropathology.  By contrast, the 

M29 glycosylation/ER module, unique to the protein network, was both enriched for genetic risk 

and remained associated with cognitive trajectory after adjustment for neuropathology.  The M7 

MAPK/metabolism module demonstrated a trend towards enrichment for AD genetic risk, and 

was one of several modules unique to the protein network that significantly correlated with 

cognitive trajectory even after adjustment for neuropathology, suggesting that although M7 was 

enriched in Aβ plaque and NFT proteins, at least part of its effect on cognitive function was 

independent of neuropathology.  M7 was associated with cognitive decline, and was also enriched 

in proteins independently observed to be associated with cognitive decline in a recent PWAS of 

cognitive resilience. 
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Discussion 

In this study, we analyzed more than 1000 brain tissues by TMT-MS across multiple centers, 

cohorts, and brain regions to develop a robust TMT AD protein network that significantly 

expanded upon our previous consensus LFQ AD network.  Using a multilayered –omics 

approach, we identified new protein network modules strongly associated with AD that were not 

present in RNA-based networks.  Some of these modules, such as the M7 MAPK/metabolism 

module, were associated with both AD neuropathology and cognitive trajectory in ROSMAP even 

after adjustment for neuropathology, and one of them—the M42 matrisome module—was 

influenced by the APOE locus.  These findings highlight the utility of extending proteomic 

analytical depth to uncover additional AD-related protein co-expression network changes, as well 

as the value of analyzing increasingly larger cohorts with comprehensive clinical and pathological 

phenotyping to provide the statistical power necessary to identify disease-relevant relationships 

across multi-omic datasets. 

The TMT AD network, which was robustly validated by a different algorithm for network 

generation, was able to provide additional resolution of important disease-related modules in our 

prior LFQ AD network.  The M4 microglia/astrocyte metabolism module in the LFQ network was 

the most strongly correlated to AD neuropathology and cognitive function (Braak stage r=0.49, 

p=4.7e-27; mini-mental state examination r=–0.67, p=8.5e-23).  In the TMT AD network, this module 

was split into two separate modules—the M7 MAPK/metabolism module, and the M11 cell-ECM 

interaction module.  M11 contained nearly all LFQ M4 hub proteins such as moesin (MSN), plectin 

(PLEC), and CD44, whereas M7 contained LFQ M4 proteins with lower module correlation (kME) 

that now were hubs in M7, such as MAPK1, MAPK3, and leukotriene A-4 hydrolase (LTA4H).  
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While both modules were significantly correlated with AD neuropathology and cognitive function, 

the M7 MAPK/metabolism module was more strongly correlated with cognitive function and was 

also associated with cognitive trajectory after adjustment for neuropathology, whereas the M11 

cell-ECM interaction module was not associated with cognitive trajectory after adjustment for 

neuropathology.  M11 was highly related to the M42 matrisome module, which was enriched in 

AD genetic risk primarily due to ApoE being a member of the module, with both modules 

containing a mod-QTL that influenced their levels.  For the M42 matrisome module, this mod-QTL 

was associated with the APOE locus, the strongest genetic risk factor for sporadic AD.  Similarly 

to M11, M42 was not associated with cognitive trajectory after adjustment for its association with 

neuropathology.  Given these observations, one could therefore postulate a model in which the 

pathophysiology embodied by M11 and M42 is necessary for subsequent downstream AD 

pathological changes, but that the pathological changes most closely associated with cognitive 

decline, such as those represented by the M7 MAPK/metabolism module among others, are the 

prime effectors and/or modulators of cognitive decline in AD.  Targeting both types of AD 

pathophysiology holds promise in the context of AD therapeutic development. 

The TMT AD network was able to reveal a module of proteins strongly associated with Aβ—M42.  

We did not observe a module as strongly associated with tau in the TMT AD network because of 

the stark differences in peptide levels between N-terminal and microtubule-binding regions of tau 

in AD brain which, when averaged together into a total microtubule associated protein tau (MAPT) 

quantitation, dilute significant changes in the measured levels of this protein by mass 

spectrometry.  This stands in contrast to quantitation of the amyloid precursor protein (APP), 

whose levels in AD are driven by changes in the level of peptides from the Aβ region of the protein.  

Therefore, when analyzing AD cases, APP can be considered a surrogate marker for Aβ4,38,39.  

M42, which was not present in RNA networks, contained a number of proteins that have 

previously been identified by TMT-MS and shown to be correlated with Aβ10,26,27,40.  These 
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proteins, such as MDK, NTN1, and SMOC1, appear to be less reliably detected by LFQ-MS even 

when using LCM to isolate plaques from surrounding brain parenchyma for MS analysis, likely 

reflecting their lower relative abundance to other proteins within Aβ plaques or their potential weak 

binding affinity to plaques that may be disrupted during tissue fixation.  MDK and NTN1 have 

previously been shown to bind directly to Aβ26.  Interestingly, many of the M42 proteins contain 

heparin, heparan sulfate, and glycosaminoglycan binding domains that may mediate their 

interaction with Aβ plaques.  ApoE, a member of the M42 module, has also been shown to interact 

with heparan sulfate proteoglycans, and loss of this binding interaction has been suggested as a 

possible mechanism for the remarkable protection afforded by the ApoE Christchurch loss of 

function mutation recently described in a presenilin-1 autosomal dominant AD mutation 

carrier41,42.  The APOE ε4 allele has been associated with an increase in matrisome pathways in 

mixed neuronal-glial induced pluripotent stem cell cultures43.  Other proteins in M42 may influence 

Aβ plaque pathophysiology through different mechanisms, such as secreted frizzled-related 

protein 1 (SFRP1), which modulates Wnt signaling, and has been shown to inhibit the disintegrin 

and metalloproteinase domain-containing protein 10 (ADAM10) that is important for regulation of 

Notch signaling and Aβ metabolism44-46.  To what extent modulation of M42 protein levels, 

enzymatic activity, or protein-Aβ/protein-proteoglycan interactions may affect Aβ plaque 

deposition or its downstream consequences remains to be determined, but such proteins 

represent promising therapeutic targets for AD.  They may also represent promising biofluid AD 

biomarkers.  Indeed, we have recently shown that SMOC1 is strongly elevated in AD 

cerebrospinal fluid (CSF)26,40,47.  Consistent with our mod-QTL findings, levels of SMOC1 in CSF 

were recently identified to be influenced by a pQTL associated with the APOE4 genotype48. 

Interestingly, while the M42 matrisome module was enriched in genes that fall within AD risk loci, 

it was also enriched in genetic risk for autism spectrum disorder (ASD), suggesting a key role for 

the matrisome in both diseases.  Proper function of the matrisome is known to be important for 
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cortical patterning during development49,50, and remodeling of the extracellular matrix by microglia 

is important for synaptic plasticity and experiential learning51.  Disruption of the matrisome by Aβ 

plaques and/or the response of microglia to such disruption may be a potential mechanism by 

which cognitive dysfunction occurs in AD.  A module similar to M11 cell-ECM interaction that 

contains MSN as a hub protein has been shown to be increased in ASD52.  The interplay between 

proper matrisome structure and microglia function in the context of neural development, learning, 

and memory is an area that deserves further study. 

The M7 MAPK/metabolism module was most strongly correlated to cognitive function in the TMT 

AD network, and along with the highly related M15 module of ambiguous ontology, was also the 

most strongly correlated to cognitive decline before and after adjustment for AD neuropathology.  

Like M42, M7 was unique to the protein network with no cognate module in RNA networks, and 

had stronger correlation to cognitive function than any module in the ROSMAP RNA network.  

This module represented the stress-activated MAPK cascade through hub proteins such as 

MAPK1/ERK2, MAPK3/ERK1, and ribosomal protein S6 kinase alpha-2 (RPS6KA2), but it also 

contained the hub proteins platelet-activating factor acetylhydrolase IB subunit alpha1 

(PAFAH1B3) and LTA4H—proteins both involved in cellular lipid metabolism53,54; ubiquitin-like 

modifier-activating enzyme 1 (UBA1), which catalyzes the first step in ubiquitin conjugation to 

mark cellular proteins for degradation through the ubiquitin-proteasome system55; mothers 

against decapentaplegic homolog 4 (SMAD4), part of nuclear SMAD complex required for 

transforming growth factor-β (TGF-β) signaling56; puromycin-sensitive aminopeptidase 

(NPEPPS), which degrades tau57; regulator of nonsense transcripts (UPF2) important for the 

nonsense-mediated decay (NMD) of mRNA transcripts that contain a premature stop codon58; 

and chromogranin-A (CHGA), which is important for immune and host defense responses59.  It 

also contained many proteins involved in glycolytic sugar metabolism.  Therefore, this module 

could be viewed as representing activation of a “stress-response” program, likely at least in part 
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to pathologic Aβ and tau deposits as suggested by its spatial overlap with Aβ plaques and NFTs, 

with consequent shift in cellular metabolism from oxidative phosphorylation to glycolysis.  This 

metabolic shift is clearly evident in CSF, as many of the most strongly elevated proteins in AD 

CSF are involved in glycolysis3,40,60,61.  The brain cell types that drive this shift are presumably 

microglia and/or astrocytes.  Indeed, upregulation of microglial glycolytic metabolism is a key 

event in response to plaques, and is disrupted by mutations in the triggering receptor expressed 

on myeloid cells 2 (TREM2) protein that are strong risk factors for development of AD62,63.  

Furthermore, single-cell RNA sequencing of astrocytes in humanized ApoE4 mice shows 

increased levels of proteins involved in glycolysis compared to ApoE3 mice, suggesting that 

astrocyte metabolism may be altered in AD.  However, in contrast to our previous findings from 

LFQ network in which the sugar metabolism module was strongly enriched in microglia and 

astrocyte protein markers, in the TMT network the M7 and M25 sugar metabolism module did not 

have strong cell type character.  Further elucidation of cell type metabolic shifts in AD will be 

facilitated by single-cell and single cell-type proteomics. 

As part of the stress-response program, M7 contains a number of proteins that have been shown 

to play important roles in the metabolism of misfolded proteins, including NPEPPS, UBA1, and 

valosin-containing protein (VCP).  VCP was recently identified as a tau disaggregase, with a 

hypomorph mutation leading to dementia with vacuolar changes and neurofibrillary tangle 

deposition64.  UPF2, as noted above, plays an important role in mRNA surveillance and the 

degradation of transcripts by NMD that contain premature stop codons through mutations or mis-

splicing events.  We have previously shown that aggregation of RNA binding proteins that are 

involved in mRNA splicing is an early event in AD pathogenesis, and likely leads to aberrant 

mRNA splicing events that may give rise to premature stop codons or alternative exon-exon 

junctions10,38,39,65-67.  These proteins, such as U1 small nuclear ribonucleoprotein 70 kDa 

(SNRNP70, or U1-70K) and others that are part of the U1 spliceosome complex, have been 
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shown to interact with NFTs through their low-complexity basic-acidic domains, and were strongly 

enriched in the M13 RNA splicing module68.  Module M20 RNA splicing, of which putative RNA-

binding protein luc7-like 1 (LUC7L) was the top member by kME, was highly related to M13 and 

was more strongly associated with AD neuropathological traits and cognitive function.  The effect 

of tau misfolding on mRNA splicing continues to be an area of active study69. 

In our analysis of the association between module levels and cognitive trajectory, we observed 

that M7 remained associated with cognitive decline after adjustment for neuropathology, 

suggesting that the changes in this module in AD may not be due solely to a response to plaques 

and tangles.  Indeed, while M7 trended towards an increase in AsymAD, the change was not 

significant from control.  This observation, along with its association with cognitive decline, and 

the fact that many of the M7 hub proteins such as UBA1 were independently associated with 

cognitive decline in a PWAS study of cognitive resilience37, would suggest that increased M7 

MAPK/metabolism levels would be detrimental to cognitive function.  However, as noted 

previously, robust microglial metabolic function is important for a beneficial stress response to 

amyloid plaques63, and also appears to be important for maintenance of cognitive function during 

aging70.  Furthermore, M7 trended toward enrichment in AD genetic risk in this study, suggesting 

that perhaps loss of function of M7 is detrimental to cognitive function.  This apparent paradox 

was also observed in our previous LFQ study, in which increased levels of the M4 

astrocyte/microglia metabolism module—the parent module of M7 and M11—were strongly 

associated with reduced cognitive function, yet many key M4 proteins were noted to be associated 

with beneficial inflammatory responses in mouse models and decreased in cases of rapidly 

progressive AD.  M4 was also enriched in AD genetic risk.  Therefore, the stress response 

embodied by M7 may serve both beneficial and detrimental roles in AD, and determining which 

aspects of a potential beneficial response to augment, or detrimental response to inhibit, will likely 

require direct modulation experiments in appropriate animals models or human clinical trials, as 
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well as biomarkers to measure such a response.  Further study and modulation of the biological 

response represented by M7 represents a key goal in AD therapeutic development. 

In addition to modules that were associated with cognitive decline, we identified modules that 

were associated with cognitive preservation.  We operationally defined cognitive preservation as 

the positive correlation between module eigenprotein and cognitive trajectory.  Modules 

associated with cognitive preservation included M5 post-synaptic density and M2 mitochondrial, 

as well as M29 glycosylation/ER that was unique to the protein network and enriched in AD 

genetic risk, suggesting that perhaps loss of M29 function may be detrimental to cognitive 

function.  Neuritin (NRN1), rabphilin-3A (RPH3A), and neurosecretory protein VGF were 

previously identified by PWAS to be key proteins associated with cognitive resilience37,71, and all 

are members of the M5 post-synaptic density module.  Mitochondrial homeostasis has been 

associated with cognitive preservation3,71.  Interestingly, the module most strongly associated with 

cognitive preservation was M33, which did not have a coherent ontology, but was enriched for 

AD genetic risk to nearly the same level as M7.  The hub protein with strongest kME to M33 was 

parvalbumin (PVALB), which is a marker for a class of GABA-ergic inhibitory interneurons that 

are important for generating gamma oscillatory frequencies in the brain and normal neuronal 

network function72.  Loss or dysfunction of PVALB-positive interneurons has been suggested as 

an important driver of AD cognitive dysfunction in human and animal models73,74, and it is 

therefore possible that M33 represents protein co-expression related to this brain cell type.  

Further development of cell type specific marker lists derived from proteomic experiments would 

be useful to dissect potential module overlap with additional cellular subtypes beyond the primary 

types assessed in this study, as well as eventual direct interrogation through single-cell 

proteomics to define such potential cell subtype changes at the proteomic level75,76. 

We were able to leverage both genomic and transcriptomic data in this study to better understand 

how proteomics data converge or diverge from these other –omics approaches.  We observed 
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AD genetic risk enrichment in M42 matrisome, M30 proteasome, and M29 glycosylation/ER 

modules, and a mod-QTL for M42 that showed strong genetic association with the APOE locus.  

In our LFQ consensus analysis, we observed enrichment of AD genetic risk in the LFQ M2 

myelin/oligodendrocyte and M4 astrocyte/microglia metabolism modules.  In the TMT network, 

the cognate M3 oligo/myelination module did not reach statistical significance for enrichment of 

AD genetic risk, likely due to its slightly different module protein membership such as including a 

splice variant of the AD risk factor protein Myc box-dependent-interacting protein 1 (BIN1) rather 

than the canonical BIN1 protein.  We did, however, observe a distal mod-QTL for M3 that mapped 

most closely to the transmembrane 65 (TMEM65) protein.  TMEM65 is involved in proper 

mitochondrial respiration, and mutations in this protein have been associated with mitochondrial 

encephalomyopathy77.  Although M3 was not as strongly correlated to AD traits as some other 

modules and was not elevated in AsymAD—as also observed in the LFQ network—alterations in 

this module may nonetheless play an important role in setting the stage for subsequent cognitive 

decline78,79, similar to the association of the APOE ε4 allele with the M42 matrisome module 

identified by mod-QTL analysis. 

Our study demonstrates the importance of analyzing proteins directly in addition to their coding 

transcripts.  We found only a modest correlation between mRNA and protein level changes in AD, 

consistent with previous findings on the relationship of mRNA to protein levels, even at the single 

cell level75,76,80.  Such differences are likely caused by many factors, including both translational 

and post-translational regulation.  The concordance between mRNA and protein co-expression 

was better than differential expression, yet nearly half of the modules in the TMT AD protein 

network were not preserved in RNA networks from the same brain region.  Modules that were 

preserved tended to reflect cell and organelle types, such as the M1 synapse/neuron, M2 

mitochondria, M3 oligo/myelination, and M5 post-synaptic density modules.  Modules that were 

less well preserved tended to include processes related to abnormal protein processing and 
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metabolism, including M7 MAPK/metabolism, M13 RNA splicing, M24 ubiquitination, and M42 

matrisome modules.  As might be expected for a disease defined by cognitive decline in the 

presence of characteristic protein dysmetabolism, this observation indicates that a significant 

proportion of biological changes relevant to AD pathophysiology are occurring through 

mechanisms that are not reflected through changes in mRNA abundance or co-expression, and 

highlights the importance of integrating multiple levels of –omics data to further our understanding 

of the disease. 
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(https://adknowledgeportal.synapse.org/#/DataAccess/Instructions). ROS/MAP resources can be 

requested at www.radc.rush.edu.  The algorithm used for batch correction is fully documented 

and available as an R function, which can be downloaded 

from https://github.com/edammer/TAMPOR. 
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Methods 

Brain Tissue Samples and Case Classification 

Brain tissue used in this study was obtained from the autopsy collections of the Banner Sun Health 

Research Institute15, Mount Sinai School of Medicine Brain Bank, Religious Orders Study and 

Rush Memory and Aging Project81, and Emory Alzheimer’s Disease Research Center.  Tissue 

was from the dorsolateral prefrontal cortex (Brodmann area 9), frontal cortex (Brodmann area 6 

and 10), anterior cingulate (Brodmann area 24), temporal cortex (Brodmann area 37), or 

parahippocampal gyrus (Brodmann area 36), as indicated.  Human postmortem tissues were 

acquired under proper Institutional Review Board (IRB) protocols at each respective institution.  

Postmortem neuropathological evaluation of neuritic plaque distribution was performed according 

to the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) criteria17, while extent 

of spread of neurofibrillary tangle pathology was assessed with the Braak staging system16.  Other 

neuropathologic diagnoses were made in accordance with established criteria and guidelines82.  

All case metadata are provided in Supplementary Tables 1, 9-12, and 24.  Case classification 

harmonization across cohorts was performed using the following rubric:  cases with CERAD 0-1 

and Braak 0-3 without dementia at last evaluation were defined as control (if Braak equals 3, then 

CERAD must equal 0); cases with CERAD 1-3 and Braak 3-6 without dementia at last evaluation 

were defined as AsymAD; cases with CERAD 2-3 and Braak 3-6 with dementia at last evaluation 

were defined as AD.  Dementia was defined as MMSE <24, or CDR ≥1, based on prior 

comparative study83. 

Brain Tissue Homogenization and Protein Digestion 

For ROSMAP and Banner tissues, procedures were performed essentially as described4,27.  

Approximately 100 mg (wet tissue weight) of brain tissue was homogenized in 8 M urea lysis 
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buffer (8 M urea, 10 mM Tris, 100 mM NaH2PO4, pH 8.5) with HALT protease and phosphatase 

inhibitor cocktail (ThermoFisher) using a Bullet Blender (NextAdvance).  Each Rino sample tube 

(NextAdvance) was supplemented with ~100 μL of stainless steel beads (0.9 to 2.0 mm blend, 

NextAdvance) and 500 μL of lysis buffer.  Tissues were added immediately after excision and 

homogenized with bullet blender at 4 °C with 2 full 5 min cycles. The lysates were transferred to 

new Eppendorf Lobind tubes and sonicated for 3 cycles consisting of 5 s of active sonication at 

30% amplitude, followed by 15 s on ice.  Samples were then centrifuged for 5 min at 15,000 x g 

and the supernatant transferred to a new tube.  Protein concentration was determined by 

bicinchoninic acid (BCA) assay (Pierce).  For protein digestion, 100 μg of each sample was 

aliquoted and volumes normalized with additional lysis buffer.  Samples were reduced with 1 mM 

dithiothreitol (DTT) at room temperature for 30 min, followed by 5 mM iodoacetamide (IAA) 

alkylation in the dark for another 30 min.  Lysyl endopeptidase (Wako) at 1:100 (w/w) was added 

and digestion allowed to proceed overnight.  Samples were then 7-fold diluted with 50 mM 

ammonium bicarbonate.  Trypsin (Promega) was then added at 1:50 (w/w) and digestion was 

carried out for another 16 h.  The peptide solutions were acidified to a final concentration of 1% 

(vol/vol) formic acid (FA) and 0.1% (vol/vol) trifluoroacetic acid (TFA), and desalted with a 30 mg 

HLB column (Oasis).  Each HLB column was first rinsed with 1 mL of methanol, washed with 1 

mL 50% (vol/vol) acetonitrile (ACN), and equilibrated with 2×1 mL 0.1% (vol/vol) TFA.  The 

samples were then loaded onto the column and washed with 2×1 mL 0.1% (vol/vol) TFA.  Elution 

was performed with 2 volumes of 0.5 mL 50% (vol/vol) ACN.  An equal amount of peptide from 

each sample was aliquoted and pooled as the global pooled internal standard (GIS), which was 

split and labeled in each TMT batch as described below. This was performed separately for each 

cohort except for the ROSMAP BA6 and BA37 tissues, which were batched together and shared 

a GIS at the protein level before digestion. Procedures for tissue homogenization of the Mt. Sinai 

and Emory cohorts were performed as previously described9,26. 
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Isobaric Tandem Mass Tag (TMT) Peptide Labeling 

Prior to TMT labeling, cases were randomized by covariates (age, sex, PMI, diagnosis, etc.), into 

the appropriate number of batches. Peptides from each individual case and the GIS pooled 

standard or bridging sample (at least 1 per batch) were labeled using the TMT 10-plex kit 

(ThermoFisher 90406) for ROSMAP BA9 tissues, and TMT 10-plex kit plus channel 11 (131C, lot 

#SJ258847) for ROSMAP BA6/BA37 and Banner tissues.  In each batch, up to 2 TMT channels 

were used to label GIS standards, while the remaining TMT channels were reserved for individual 

samples following randomization.  Labeling was performed as previously described9,10,27.  Briefly, 

each sample (containing 100 μg of peptides) was re-suspended in 100 mM TEAB buffer (100 μL).  

The TMT labeling reagents (5mg) were equilibrated to room temperature, and anhydrous ACN 

(256 μL) was added to each reagent channel.  Each channel was gently vortexed for 5 min, and 

then 41 μL from each TMT channel was transferred to the peptide solutions and allowed to 

incubate for 1 h at room temperature.  The reaction was quenched with 5% (vol/vol) 

hydroxylamine (8 μl) (Pierce).  All channels were then combined and dried by SpeedVac 

(LabConco) to approximately 150 μL and diluted with 1 mL of 0.1% (vol/vol) TFA, then acidified 

to a final concentration of 1% (vol/vol) FA and 0.1% (vol/vol) TFA.  Labeled peptides were desalted 

with a 200 mg C18 Sep-Pak column (Waters).  Each Sep-Pak column was activated with 3 mL of 

methanol, washed with 3 mL of 50% (vol/vol) ACN, and equilibrated with 2×3 mL of 0.1% TFA. 

The samples were then loaded and each column was washed with 2×3 mL 0.1% (vol/vol) TFA, 

followed by 2 mL of 1% (vol/vol) FA.  Elution was performed with 2 volumes of 1.5 mL 50% 

(vol/vol) ACN.  The eluates were then dried to completeness using a SpeedVac.  Procedures for 

peptide labeling of the Mt. Sinai and Emory cohorts were performed as previously described9,26. 

High-pH Off-line Fractionation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438450
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

High pH fractionation was performed essentially as described9,84 with slight modification.  Dried 

samples were re-suspended in high pH loading buffer (0.07% vol/vol NH4OH, 0.045% vol/vol 

FA, 2% vol/vol ACN) and loaded onto an Agilent ZORBAX 300 Extend-C18 column (2.1mm x 

150 mm with 3.5 µm beads).  An Agilent 1100 HPLC system was used to carry out the 

fractionation.  Solvent A consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 

2% (vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, 

and 90% (vol/vol) ACN.  The sample elution was performed over a 58.6 min gradient with a 

flow rate of 0.4 mL/min.  The gradient consisted of 100% solvent A for 2 min, then 0% to 12% 

solvent B over 6 min, then 12% to 40 % over 28 min, then 40% to 44% over 4 min, then 44% 

to 60% over 5 min, and then held constant at 60% solvent B for 13.6 min.  A total of 96 individual 

equal volume fractions were collected across the gradient and subsequently pooled by 

concatenation84 into 24 fractions and dried to completeness using a SpeedVac.  Off-line 

fractionation of the Mt. Sinai and Emory cohorts was performed as previously described9,26. 

TMT Mass Spectrometry 

All fractions were resuspended in an equal volume of loading buffer (0.1% FA, 0.03% TFA, 1% 

ACN) and analyzed by liquid chromatography coupled to tandem mass spectrometry essentially 

as described85, with slight modifications.  Peptide eluents were separated on a self-packed C18 

(1.9 μm, Dr. Maisch, Germany) fused silica column (25 cm × 75 μM internal diameter (ID); New 

Objective, Woburn, MA) by a Dionex UltiMate 3000 RSLCnano liquid chromatography system 

(ThermoFisher Scientific) for the ROSMAP samples, and an Easy-nanoLC system (ThermoFisher 

Scientific) for the Banner samples.  ROSMAP peptides were monitored on an Orbitrap Fusion 

mass spectrometer (ThermoFisher Scientific), and Banner peptides were monitored on an 

Orbitrap HF-X mass spectrometer (ThermoFisher Scientific).  For ROSMAP BA9 samples, elution 

was performed over a 180 min gradient with flow rate at 225 nL/min.  The gradient was from 3% 

to 7% buffer B over 5 min, then 7% to 30% over 140 min, then 30% to 60% over 5 min, then 60% 
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to 99% over 2 min, then held constant at 99% solvent B for 8 min, and then back to 1% B for an 

additional 20 min to equilibrate the column.  Buffer A was water with 0.1% (vol/vol) formic acid, 

and buffer B was 80% (vol/vol) acetonitrile in water with 0.1% (vol/vol) formic acid.  For ROSMAP 

BA6/BA37 samples, sample elution was performed over a 120 min gradient with flow rate of 300 

nL/min with buffer B ranging from 1% to 50% (buffer A: 0.1% formic acid in water, buffer B: 0.1% 

formic acid in 80% ACN).  The mass spectrometer was set to acquire in data dependent mode 

using the top speed workflow with a cycle time of 3 seconds.  Each cycle consisted of 1 full scan 

followed by as many MS/MS (MS2) scans that could fit within the time window.  For ROSMAP 

BA9 tissues, the full scan (MS1) was performed with an m/z range of 350-1500 at 120,000 

resolution (at 200 m/z) with AGC set at 4x105 and maximum injection time 50 ms.  The most 

intense ions were selected for higher energy collision-induced dissociation (HCD) at 38% collision 

energy with an isolation of 0.7 m/z, a resolution of 30,000, an AGC setting of 5x104, and a 

maximum injection time of 100 ms.  Five of the 50 TMT batches were run on the Orbitrap Fusion 

mass spectrometer using the SPS-MS3 method as previously described27.  For ROSMAP 

BA6/BA37 tissues, full MS scans were collected at a resolution of 120,000 (400-1400 m/z range, 

4×10^5 AGC, 50 ms maximum ion injection time). All higher energy collision-induced dissociation 

(HCD) MS/MS spectra were acquired at a resolution of 60,000 (1.6 m/z isolation width, 35% 

collision energy, 5×104 AGC target, 50 ms maximum ion time). Dynamic exclusion was set to 

exclude previously sequenced peaks for 20 seconds within a 10-ppm isolation window.  For 

Banner samples, elution was performed over a 120 min gradient at a flow rate of 300 nL/min with 

buffer B ranging from 1% to 40% (buffer A: 0.1% formic acid in water, buffer B: 0.1 % formic acid 

in ACN).  The mass spectrometer was set to acquire data in positive ion mode using data-

dependent acquisition.  Each cycle consisted of one full MS scan followed by a maximum of 10 

MS/MS scans.  Full MS scans were collected at a resolution of 120,000 (350-1500 m/z range, 

3×106 AGC, 50 ms maximum ion injection time).  All higher energy collision-induced dissociation 

(HCD) MS/MS spectra were acquired at a resolution of 45,000 (0.7 m/z isolation width, 35% 
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collision energy, 1×105 AGC target, 96 ms maximum ion time).  Dynamic exclusion was set to 

exclude previously sequenced peaks for 20 seconds within a 10-ppm isolation window.  TMT 

mass spectrometry of the Mt. Sinai and Emory cohorts was performed as previously described9,26. 

 

Database Searches and Protein Quantification 

All RAW files (1,200 RAW files generated from 50 TMT 10-plexes for ROSMAP BA9 tissues; 624 

RAW files generated from 26 TMT 11-plexes for ROSMAP BA6/BA37 tissues; 528 RAW files 

generated from 22 TMT 11-plexes for Banner tissues; 760 RAW files generated from 19 TMT 11-

plexes for Mt. Sinai tissues; 210 RAW files generated from 10 TMT 10-plexes for Emory tissues) 

were analyzed using the Proteome Discoverer suite (version 2.3, ThermoFisher Scientific).  MS2 

spectra were searched against the UniProtKB human proteome database containing both Swiss-

Prot and TrEMBL human reference protein sequences (90,411 target sequences downloaded 

April 21, 2015), plus 245 contaminant proteins.  The Sequest HT search engine was used and 

parameters were specified as follows: fully tryptic specificity, maximum of two missed cleavages, 

minimum peptide length of 6, fixed modifications for TMT tags on lysine residues and peptide N-

termini (+229.162932 Da) and carbamidomethylation of cysteine residues (+57.02146 Da), 

variable modifications for oxidation of methionine residues (+15.99492 Da) and deamidation of 

asparagine and glutamine (+0.984 Da), precursor mass tolerance of 20 ppm, and a fragment 

mass tolerance of 0.05 Da for MS2 spectra collected in the Orbitrap (0.5 Da for the MS2 from the 

SPS-MS3 batches).  Percolator was used to filter peptide spectral matches (PSMs) and peptides 

to a false discovery rate (FDR) of less than 1%.  Following spectral assignment, peptides were 

assembled into proteins and were further filtered based on the combined probabilities of their 

constituent peptides to a final FDR of 1%.  Multi-consensus was performed to achieve parsimony 

across individual batches.  In cases of redundancy, shared peptides were assigned to the protein 

sequence in adherence with the principles of parsimony.  Reporter ions were quantified from MS2 
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or MS3 scans using an integration tolerance of 20 ppm with the most confident centroid setting. 

Only unique and razor (i.e., parsimonious) peptides were considered for quantification.  

 

For the multi-consensus of Banner plus ROSMAP BA9 cases, peptide-specific TMT reporter 

abundance was first corrected within TMT batches using the “purityCorrect” function of the 

MSnbase R package prior to summing of reporter abundance of parsimonious groups of peptides. 

The “purity matrix” listing the fraction of specific reporter signal was assembled using TMT labeling 

reagent lot-specific information for the following batches (ROSMAP, batches 1-11: 10-plex kit lot 

RF234620; batches 12-50: channel-specific lots SG253447 (126), SG253458 (127N), SG255461 

(127C), SF253450 (128N), SG253451 (128C), SH255464 (129N), SH255465 (129C), SF253465 

(130N), SH253466 (130C), and SG253467 (131N)); all Banner batches used the same 10 

channel-specific lots as ROSMAP batches 12-50, plus channel 11 (131C) lot #SJ258847.  After 

correction, peptide quantitation was summed for razor plus unique peptides, thereby assembling 

protein abundances. Protein abundances were normalized by scaling sums of protein signal 

within a channel for each specific case protein sample to the maximum channel-specific protein 

abundance sum, as is typically calculated in the ‘normalized abundance’ columns in Proteome 

Discoverer output. 

Controlling for Batch-specific Variance Across Proteomics Datasets 

Each multi-batch TMT data set was batch-normalized using a median polish of ratio over within-

batch GIS signal, as previously described3,40.  This approach removes batchwise technical 

variance in a manner preserving other variance, and is robust to outliers and up to 50% missing 

values.  When a row (protein) had greater than 50% missing values, it was removed from the 

matrix.  No imputation of missing values was performed for any cohort.  The algorithm is fully 
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documented and available as an R function, which can be downloaded from 

https://github.com/edammer/TAMPOR. 

Briefly, generalizing prior descriptions of TAMPOR, each protein measurement (TMT reporter 

normalized abundance) for a given protein across all samples is adjusted as a ratio of initial 

sample abundance divided by median batch-wise abundance of a sample subset* within batch. 

This ratio is multiplied by a batch-specific correction factor comprised of the grand median of all 

batch-specific medians of a sample subset**, divided by the appropriate (batch-specific) median 

of each sample-specific abundance for the sample subset**, each divided by the median value of 

abundances within the batch for samples of the sample subset**. Sample subsets (* and **) are 

case samples which may be biological or technical replicates, or mixed pools of all samples 

(global internal standard, GIS). In TAMPOR modes 1-2 (less robust), * and ** subsets are the 

same sample type (e.g. GIS), while in mode 3 (more robust, with assumption of nominal case trait 

balancing across batches), the first subset* is typically GIS and the second** would be non-GIS 

samples. Finally, in mode 4, where no sample subset’s median value could be considered as 

central tendency for centering the population of a protein’s ratios at 1 and log2(ratios) at 0, the 

subset (identical for * and **) is expanded to all samples within each batch.  Batch in the above 

wording need not be a TMT batch, but can also be a proxy for different sites of tissue processing, 

separate cohorts, samples run on different LC-MS/MS platforms, or tissue sub-regions, or sexes, 

etc. GIS can be a true equal-part mixture (physical average) of all samples, or of a subset of 

samples; or, it can be considered as a proxy group of samples, at least 1 present in each batch, 

which are biological replicates, such as control cases. 

The above tunable approach with multiple modes describes how protein (row-wise) cleanup of 

cross-batch variance is achieved.  To do the same for samples (column-wise), the data matrix of 

ratios is log2-transformed, and each log2(ratio) is adjusted by subtraction of the sample’s median 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438450doi: bioRxiv preprint 

https://github.com/edammer/TAMPOR
https://doi.org/10.1101/2021.04.05.438450
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

log2(ratio) of all non-missing values representing protein measures for that sample.  This has the 

added benefit of correcting samples for differences in total protein loading, to meet the assumption 

of equal total protein loading.  Finally, log2(ratios) for a given protein are anti-logged and multiplied 

by the protein-specific row-wise median of all batches’ sample subset*-specific within-batch 

medians (i.e., the original denominator representing median abundance of the protein, e.g. in GIS 

samples, extracted before).  Hence, the output is of the same form as input (relative abundance), 

and the process is iterated until convergence or at least 250 iterations.  The use of median polish 

ensures that the reduction of variance is robust to outliers while the overall algorithm preserves 

biological variance, minimally requiring that batches have been randomized to avoid confounding 

batch with diagnosis or other biological traits.  Balancing of samples to include similar fractional 

numbers of cases for each trait group in each batch further allows the user to run the algorithm in 

mode 4, with no GIS.  TAMPOR also outputs the 0-centered log2(ratio) data, which has the added 

property of normality, due mainly to the fact that these measures all center row-wise and column-

wise very near zero and relative abundance information for comparison of one protein to another 

is not put back. Notably, even when the relative abundance output is considered, it should be 

taken as approximate because there has been variable ionization efficiency for the unique 

peptides measured in the spectrometer, and it is these peptides which contribute to the distinct 

protein-level abundances. 

Prior to matrix assembly for the consensus ROSMAP plus Banner BA9 analysis, the multi-

consensus normalized protein abundance matrix was split, and intra-cohort batch effects were 

first removed in the 22 Banner TMT 11-plex batches  and separately in the ROSMAP (50 batch) 

cohort.  Sample subsets * and ** were both GIS for Banner (TAMPOR mode 1), whereas for 

ROSMAP, subset * was GIS and subset ** was non-GIS (individual-specific) samples (TAMPOR 

mode 3).  Following removal of intra-cohort batch effects in Banner and ROSMAP, all samples 

(except cohort-specific GIS samples) were processed jointly with the algorithm in a single 
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reassembled multi-consensus sample-protein matrix to capture biological variance across all 

samples in both cohorts running TAMPOR in mode 1 and using the control case subset for * and 

**.  Other cohorts’ normalized abundance matrix data was cleaned of TMT batch effects using 

TAMPOR mode 1 and GIS for both subsets * and **.  Zero-centered log2(ratio) data was used as 

the clean protein abundance matrix going forward, in both the consensus TMT and other study 

cohorts.  

Outlier Removal and Regression of Unwanted Covariates 

In the consensus ROSMAP plus Banner BA9 TMT protein abundance matrix, there were 516 of 

598 individual case samples which could be classified as AD, AsymAD, or control according to 

our classification scheme.  The other 82 cases were excluded (diagnosis labeled “Exclude” in 

traits) at this point.  We removed outliers detected by network connectivity Z-transformed metric 

for a sample, |Z.k|>3 standard deviations from the mean Z.k, iteratively until no further detection, 

as previously described 3,4,86.  We then ran a pioneer round of bootstrap regression (described 

below) before repeating the outlier check procedure.  All outliers (15 before and 13 following 

pioneer regression) were removed from the unregressed data, and the remaining 488 case 

samples were regressed the same as in the pioneer round of bootstrap regression. 

The consensus ROSMAP plus Banner BA9 TMT matrix, and each of the other cohorts’ protein 

abundance matrices, were subjected to nonparametric bootstrap regression by subtracting the 

trait of interest (age at death, sex, or postmortem interval (PMI)) times the median estimated 

coefficient from 1000 iterations of fitting for each protein in the cohort-specific log2(abundance) 

matrix.  Ages at death used for regression were uncensored.  Case status/diagnosis was also 

explicitly modeled (i.e., protected) in each regression.  Following regression of each individual 

cohort, we assessed whether any cohort-specific tissue dissection bias was present by performing 

a Spearman rank correlation of traits including age, sex, PMI, and white matter markers to the top 
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five principle components (PC) of log2(abundance).  Any new outliers introduced by regression 

were not considered in the PCs.  No gross difference in percent variance explained by any of the 

top five PCs with white matter correlation was observed. 

ROSMAP and Mt. Sinai RNA Batch Correction and Preprocessing 

Regression of the RNAseq data was modeled on Sieberts et al.87,88.  Raw RNA counts were 

loaded, and variance partitioning was determined.  Only genes that were expressed at a level of 

more than 1 count per million (CPM) total reads in at least 50% of the samples were retained for 

analysis.  Genes were further filtered to include those with available gene length and percentage 

GC content from the BioMart December 2016 archive.  This left 15582 genes and 633 samples 

after filtering.  Samples with no RIN, PMI, sex or age at time of death were removed (n=2, leaving 

631 total samples).  Using our diagnostic criteria, cases were again filtered to include only those 

in the AD (n=203), AsymAD (n=205), and control (n=125) categories (total n=533). 

The raw counts were normalized in two steps.  First, to account for variations in percent GC and 

gene length, conditional quantile normalization (CQN) was used89.  Secondly, a weighted linear 

model was applied to the raw CPM counts using the voom-limma package in Bioconductor to 

estimate the confidence of sampling abundance89,90. 

Before normalization with the voom-limma package, sample outliers were detected using principal 

component analysis (PCA) and the aberrant distribution of the log(CPM)91,92. Based on the 

expression pattern and the first two prinicipal components, one sample was determined to be an 

outlier and removed from the data.  No genes were determined to be outliers.  Genes that were 

above and below 3 standard deviations of the aberrant distribution of the log(CPM) counts were 

assigned NA values. The final raw counts matrix before voom-limma normalization was n=15582 

genes by n=532 samples.  
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Using PCA analysis, the significant covariates in the data were determined (FDR<0.1).  Due to 

the correlated nature of the covariates it is advantageous to normalize and adjust the expression 

matrix using an iterative approach.  This was accomplished using the voom-limma package.  The 

primary variable of interest (diagnosis) was excluded from the pool of available covariates for 

selection, thereby protecting it from normalization.  In each round of iteration, the residual 

covariates were determined from the PCA analysis and were used to construct a design matrix.  

Voom weights were estimated for dispersion control.  A linear model was then fit to the CQN 

expression using the voom weights and design matrix.  Using the new matrix, the PCs of the 

residual gene expression and a new set of significant covariates were determined.  If any 

significant residual covariates remained with FDR<0.1, the normalization was repeated.  

 

Differential Expression Analysis 

 

Differentially expressed proteins were identified using one-way ANOVA followed by Holm post-

hoc correction of all pairwise comparisons.  Significantly altered proteins with corresponding 

adjusted p value are provided in Supplementary Table 2.  Differential expression is presented 

as volcano plots, which were generated with the ggplot2 package in R v3.5.2 or the matplotlib 

package v3.3.2 in Python v3.8.5. 

 

Weighted Correlation Network Analysis (WGCNA) 

We used the WeiGhted Correlation Network Analysis (WGCNA) algorithm for our network 

analysis pipeline, as previously described3,4,40.  A weighted protein co-expression network for the 

Banner plus ROSMAP BA9 consensus zero-centered log2(ratio) data was generated using the 

n=8,826  log2 protein abundance x n=488 case-sample matrix that had undergone reporter purity, 
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batch effect, and other covariate correction, as well as network connectivity outlier (n=28) removal 

as described above.  Soft threshold power was determined for the data set as a data set-specific 

scale free topology power based on the following two guidelines: 1) The power in a plot of power 

(x) vs R² (y) should be where the R² has approached an asymptote, usually near or above 0.80, 

and 2) the mean and median connectivity at that power should not be exceedingly high, preferably 

around 100 or less.  The power at which these criteria are met is a tradeoff between cleaning up 

spurious correlations due to chance (particularly important when total samples in the network are 

low), and maintaining sensitivity of the clustering to still be able to pick up correlations in as much 

of the data as possible. 

An initial network was built as described below with power=7.0.  Upon so doing, a single module 

of n=64 proteins was found to harbor proteins assembled from mis-cleaved tryptic peptides with 

higher variance in the Banner cohort driving module membership.  To remove this data artifact, 

the clean abundance matrix values for the 64 proteins specific to measurement in Banner case-

samples were set to missing values, and then enforcement of the 50% missing value threshold 

resulted in final input for the consensus network of n=8,619 proteins across n=488 case-samples.  

We confirmed that the 57 surviving proteins from the aberrant module were dispersed into diverse 

modules in the final network, indicating resolution of the data artifact due to this minor differential 

protein digestion in the Banner cohort. 

The WGCNA::blockwiseModules() function was used with the following settings for the consensus 

network: soft threshold power=7.0, deepSplit=4, minimum module size of 20, merge cut height of 

0.07, mean TOM denominator, a signed network with partitioning about medioids (PAM) 

respecting the dendrogram, and a reassignment threshold of p<0.05, with clustering completed 

within a single block.  Specifically, this approach calculates pair-wise biweight mid-correlations 

(bicor, a robust correlation metric) between each protein pair, and transforms this correlation 
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matrix into a signed adjacency matrix.  The connection strength of components within this matrix 

is used to calculate a topological overlap matrix (TOM), which represents measurements of 

protein expression pattern similarity across cohort samples constructed on the pairwise 

correlations for all proteins within the network.  Hierarchical protein correlation clustering analysis 

by this approach was conducted using 1-TOM, and initial module identifications were established 

using dynamic tree cutting as implemented in the WGCNA::blockwiseModules() function.  Module 

eigenproteins were defined, which are the most representative abundance value for a module 

equivalent to the module’s first principle component, and which explain covariance of all proteins 

within each module93.  Using the signedKME function in WGCNA, a table of bicor correlations 

between each protein and each module eigenprotein was obtained; this module membership 

measure is defined as kME.  After blockwiseModules network construction, 44 modules consisting 

of 18 or more proteins were detected.  To enforce a kME table with no aberrant assignments to 

modules, a post hoc cleanup procedure was applied in which proteins with an intramodular kME 

less than 0.30 were removed, then reassignment of (a) any grey proteins (unassigned to a 

module) with a maximum kME to any module of >0.30 and (b) proteins with intramodular kME 

more than 0.10 below the maximum kME of the protein’s correlation to any other module, was 

done to reassign each such protein to the module corresponding to the protein’s maximum kME. 

Then, MEs and the signed kME table were recalculated with the WGCNA::moduleEigengenes()  

and WGCNA::signedKME() functions, respectively.  Finally, the kME table individual protein 

reassignment process was repeated if additional corrections could be made, up to a total of 30 

iterations.  For the consensus network, this required 11 iterations until resolution, which increased 

the module size of the smallest module (M44) in the network to 28, and decreased grey 

(unassigned) protein count for the network from 3,156 (35.8%) to 2,282 (25.9%).    

The WGCNA::blockwiseModules() fucntion was also used to generate the Mount Sinai RNA 

network, ROSMAP RNA network, and the ROSMAP RNA-protein overlap networks. The 
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parameters used to build these networks were the same as those used in the consensus network 

build with the exception of the soft threshold power, which was 10.0, 12.5, 10.0, and 8.0 for the 

Mount Sinai RNA network, ROSMAP RNA network, ROSMAP RNA overlap network, and 

ROSMAP protein overlap network, respectively. As in the consensus network, a post-hoc kME 

table clean-up was applied to each network.  The Mount Sinai RNA network contained 93 modules 

with minimum module size of 45 genes. The ROSMAP RNA networks were similar in size, with 

88 modules and minimum module size 49 for the n=532 network, and 91 modules with minimum 

module size 44 for the n=168 network. The ROSMAP RNA-protein overlap network contained 69 

modules with minimum module size 13.  

 

MONET M1 Analysis 

The three top-performing methods from the DMI DREAM Challenge were compiled in the MONET 

toolbox and released to the public for use (https://github.com/BergmannLab/MONET.git )23.  We 

selected the M1 method from this toolbox as a complimentary network analysis method to explore 

the AD TMT network.  Unlike WGNCA’s hierarchical clustering method, the M1 method 

determines modules and communities by optimizing the well-known modularity function from 

Newman and Girvan94. However, unlike traditional modularity optimization methods, it searches 

the network at multiple topological scales resulting in a multiresolution approach.  The authors 

have added the resistance parameter, 𝑟𝑟, which averts genes from joining modules.  If 𝑟𝑟 = 0 the 

method returns to Newman and Girvan’s original modularity optimization; 𝑟𝑟 > 0 produces smaller 

modules (or reveals network substructure); and 𝑟𝑟 < 0 produces larger modules (or results in 

network superstructure)95.  Instead of manually choosing the parameter 𝑟𝑟, users are allowed to 

optimize their network by tuning four hyperparameters: minimum module size, maximum module 

size, desired average degree, and desired average degree tolerance.  The MONET M1 algorithm 
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will then fit a resistance value to the data to produce a network described by the user’s 

parameters.  Input for M1 was an edge list, obtained from a cleaned abundance matrix as follows: 

power for scale-free toplogy was determined as described in the above WGCNA methods section 

for each M1 input network, and the adjacency was calculated for the clean abundance data matrix 

raised to this power using the WGCNA adjacency function with additional parameters 

type="signed", corFnc="bicor", and the corOptions parameter set to use pairwise complete 

correlation.  As M1 takes an edge list as input, the adjacency upper triangle correlation values 

were used to populate the weights of unique pairwise correlations in the edge list.  No 

sparsification of the edge list was applied prior to running M1 and neither TOM nor 1-TOM 

(dissimilarity) were considered. 

We optimized the hyperparameters using a grid search by varying minimum module size, 𝑖𝑖 ∈

 {3, 10, 15, 20}, maximum module size, 𝑗𝑗 ∈  {100, 200, 300, 400, 500}, and desired average degree, 

𝑘𝑘 ∈  {25, 50, 75}.  The desired average degree tolerance was left at the default value of 0.2.  Here, 

the optimal model was defined as the set of parameters that minimized the percentage of proteins 

not assigned to a module.  The final parameters selected were 𝑖𝑖 = 3, 𝑗𝑗 = 100, 𝑘𝑘 = 75, which built 

a network with 373 modules and 26.91% proteins not assigned to a module.  After the network 

was built, the smallest modules were pruned from the graph so that the smallest module contained 

no less than 20 members in concordance with the WGCNA network.  This increased the percent 

of proteins not assigned to a module to 30.22% and decreased the number of modules to 87.  

This final network was used in module preservation studies with the network built using the 

WGCNA algorithm.  

 

Network Preservation 
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We used the WGCNA::modulePreservation() function to assess network module preservation 

across cohorts.  We also used this function to assess the effect of missing values on the 

consensus network.  Zsummary composite preservation scores were obtained using the consensus 

network as the template versus each other cohort or missing value threshold tested, with 500 

permutations.  Random seed was set to 1 for reproducibility, and the quickCor option was set to 

0.  We also assessed network module preservation using synthetic eigenproteins.  Briefly, protein 

module members in the consensus network template with a kME.intramodule among the top 20th 

percentile were assembled into a synthetic module in each target cohort, and synthetic modules 

with at least 4 members were used to calculate synthetic weighted eigengenes representing the 

variance of all members in the target network across case samples via the 

WGCNA::moduleEigengenes() function.  Statistics and correlation scatterplots involving target 

cohort traits were then calculated and visualized. 

Network Module Overlap and Percent Novelty Analyses 

Module membership by gene symbol was overlapped for all pairwise comparisons of modules in 

the current TMT consensus network (44 modules, this study) to those of the LFQ consensus 

network (13 modules) previously published3.  A one-tailed Fisher exact test looking for significant 

overrepresentation or overlap was employed, and p values were corrected for multiple testing 

using the Benjamini-Hochberg method.  In addition, novel gene products in the TMT network were 

identified and checked for significant overrepresentation (one-tailed) in the TMT consensus 44 

modules not including grey, and in a second analysis, only considering the top 20 percent of gene 

product members of modules as ranked by kMEintramodule. Finally, one-tailed Fisher exact tests 

were also employed to determine module-wise overrepresentation of amyloid plaque-34 and 

neurofibrillary tangle-35 associated proteins identified in previous studies.  R functions fisher.test() 

and p.adjust() were used to obtain the above statistics. 
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Gene Ontology and Cell Type Marker Enrichment Analyses 

To characterize differentially expressed proteins and co-expressed proteins based on gene 

ontology annotation, we used GO Elite v1.2.5 as previously published4,78, with pruned output 

visualized using an in-house R script.  Cell type enrichment was also investigated as previously 

published4,78.  For the cell type enrichment analyses, we generated an in-house marker list 

combining previously published cell type marker lists from Sharma et al. and Zhang et al.96,97 

(Supplementary Table 6). For each of the five cell types of interest (endothelia, microglia, 

astrocyte, neuron, and oligodendrocyte), genes from the Sharma et al. list and genes from the 

Zhang et al. list were joined into one list per cell type. If, after the lists were merged, a gene symbol 

was assigned to two cell types, we defaulted to the cell type defined by the Zhang et al. list such 

that each gene symbol was affiliated with only one cell type. The gene symbols were then 

processed through MyGene to update them to the most current nomenclature, and converted to 

human symbols using homology look up. Fisher’s Exact tests were performed using the human 

cell type marker lists to determine cell type enrichment. 

GWAS Module Association 

To determine if any protein products of GWAS targets were enriched in a particular module, we 

used the single nucleotide polymorphism (SNP) summary statistics from Kunkle et al. 98 to 

calculate the gene level association value using MAGMA v1.08b36, as previously described4.  To 

remove SNPs in linkage disequilibrium with the APOE locus from consideration in the analysis, 

we excluded SNPs within a 2 megabase window centered on APOE.  APOE was manually added 

to the gene list and assigned a –log p value of 50, given its known strong association with AD.  

SNPs associated with non-protein coding genes based on information in the current version of 

Ensembl bioMart were also removed from consideration (n=1151).  A total of 31 genes with 

MAGMA P_MULTI<0.05 were excluded from the analysis.  A final list of 1822 genes with gene-
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based GWAS p<0.05, including APOE, was used for enrichment analysis.  Similar analyses were 

performed with GWAS candidates for Schizophrenia (SCZ) and Autism Spectrum Disorders 

(ASD).  These GWAS datasets were provided and downloaded from the Psychiatric Genomics 

Consortium (http://www.med.unc.edu/pgc/downloads). 

 

PWAS Module Association 

Proteins (N=8,356) tested in the PWAS study by Yu et al. 37 for correlation to cognitive resilience 

(or decline, when negatively correlated) were split into lists of unique gene symbols representing 

protein gene products positively correlated (n=645) and negatively correlated (n=575) to cognitive 

resilience, and then these lists with corresponding p values were separately checked for 

enrichment in consensus TMT network modules using a permutation-based test (10,000 

permutations) implemented in R with exact p values for the permutation tests calculated using the 

permp function of the statmod package.  Module-specific mean p values for risk enrichment were 

determined as a Z score, specifically as the difference in mean p value of gene product proteins 

hitting a module at the level of gene symbol minus the mean p value of genes hit in the 10,000 

random replacement permutations, divided by the standard deviation of p value means also 

determined in the random permutations.  This method is identical to that used for determining 

module-wise enrichment of risk in GWAS results summarized as gene-level p values using 

MAGMA (see GWAS Module Association methods section). 

Network Module Quantitative Trait Loci Analysis 

DNA from ROS/MAP participants underwent whole genome sequencing (WGS) or genome-wide 

genotyping using either the Affymetrix GeneChip 6.0 or Illumina OmniQuad Express chip as 

previously described99. We used WGS when multiple data sources were available. Participants 

from Banner were genotyped using the Affymetrix Precision Medicine Array. Quality control of 
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WGS and array-based genotypes were performed separately using Plink as described 

previously100. Briefly, variants with Hardy Weinberg equilibrium p-value < 10-7, with missing 

genotype rate >5%, with minor allele frequency <1%, and are not single nucleotide 

polymorphisms (SNPs) were removed. KING was used to remove individuals estimated to be 

closer than second degree kinship101. Genotypes were imputed to the 1000 Genome Project 

Phase 3102 using the Michigan Imputation Server103. SNPs with imputation 𝑅𝑅2 > 0.3 were retained 

for analysis. Genetic variants associated with a protein co-expression module were identified 

using linear regression to model the first eigenprotein of the protein module as a function of 

genotype, adjusting for sex, cognitive diagnosis, 10 principal components, and genotyping chip. 

Among genetic variants with genome-wide level of significant association with a module (p <5x10-

08), we categorized them as either proximal or distal protein module quantitative trait locus (mod-

QTL). Proximal mod-QTL was defined as SNPs within 1 megabase of any of the genes in the 

corresponding module, otherwise, they were categorized as distal mod-QTLs.  Mod-pQTLs were 

clumped by Plink using default parameters so that SNPs within 250kb of one another and in 

linkage disequilibrium (LD r2 > 0.5) were represented by the lead SNP (i.e., the most statistically 

significant SNP in the clumped locus). 

 

Cognitive Trajectory Analysis 

ROS/MAP participants underwent cognitive testing annually in the domains of episodic memory, 

perceptual orientation, perceptual speed, semantic memory, and working memory as described 

in detail previously104. The raw score from each of these 17 cognitive tests was converted to a Z 

score using the mean and standard deviation of the cohorts at the baseline visit. Then the Z 

scores were averaged to create a composite annual global cognitive score. The rate of cognitive 

change over time for each participant was represented by the random slope of a linear mixed 

model where the annual global cognitive score was the longitudinal outcome, follow-up year was 
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the independent variable, adjusting for age at recruitment, sex, and years of education as 

previously described99. We used the person-specific random slope to represent the rate of change 

of cognitive performance over time for each subject. To examine associations between protein 

co-expression modules and cognitive trajectory, we performed linear regression with cognitive 

trajectory as the outcome and the first module eigenprotein as the predictor with or without 

adjusting for the 10 measured pathologies. The 10 age-related pathologies measured in 

ROS/MAP included amyloid-β, tangles, cerebral amyloid angiopathy, cerebral atherosclerosis, 

arteriolosclerosis, Lewy body, TDP-43, gross infarct, microinfarct, and hippocampal sclerosis as 

described in detail before105. Multiple testing adjustment (for multiple modules) was addressed 

with Benjamini-Hochberg false discovery rate (FDR)106.  

 

Immunohistochemistry 

Human forebrain 8µm thick sections were deparaffinized and processed for immunohistochemical 

labeling with antibodies on a ThermoFisher autostainer.  Primary antibody was rabbit anti-Midkine 

EP1143Y (Abcam).  Secondary antibody was biotinylated goat anti-mouse/rabbit (Jackson 

Immunoresearch Labs).  Sections were blocked with normal serum and incubated with primary 

antibody (1:1000), then exposed to secondary antibody (1:200) followed by avidin-biotin complex 

(Vector ABC Elite kit) and developed with diaminobenzidine (DAB).  After sections were mounted 

and coverslipped, images were captured using an Olympus bright-field microscope and camera 

(OlympusBX51). For final output, images were processed using Adobe Photoshop software. 

 

Other Statistics 

All statistical analyses were performed in R (v3.5.2).  Boxplots represent the median, 25th, and 

75th percentile extremes; thus, hinges of a box represent the interquartile range of the two middle 
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quartiles of data within a group.  The farthest data points up to 1.5 times the interquartile range 

away from box hinges define the extent of whiskers (error bars).  Correlations were performed 

using the biweight midcorrelation function as implemented in the WGCNA R package.  

Comparisons between two groups were performed by t test.  Comparisons among three or more 

groups were performed with Kruskal-Wallis nonparametric ANOVA or standard ANOVA with 

Tukey or post hoc pairwise comparison of significance.  Comparison of variance was performed 

using F test.  P values were adjusted for multiple comparisons by false discovery rate (FDR) 

correction where indicated.  Module membership graphs were generated using the network 

package v2.5 in Python v3.8.5 and in-house graphing scripts.  
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Tables 

Table 1.  TMT AD Network Module Quantitative Trait Loci (mod-QTLs).  SNPs associated 

with the first eigenprotein of a protein module at a genome-wide significant level (p < 5x10-8) were 

referred to as protein co-expression module QTLs (mod-QTLs).  mod-QTLs located within 1 

megabase of one of the module proteins were defined as proximal (cis) mod-QTLs, otherwise, 

they were categorized as distal (trans) mod-QTLs.  The associations were adjusted for cognitive 

diagnosis, sex, 10 genetic principal components, and genotyping chip.  CHR, chromosome; SNP, 

single nucleotide polymorphism; BP, base pair; A1, allele; na, not applicable 

Table 2.  Association of TMT AD Network Modules with Cognitive Trajectory.  The 

association between a module eigenprotein level for each ROSMAP subject in the TMT AD 

network and his or her individual cognitive trajectory was modeled with and without adjustment 

for neuropathology.  Modules that remained significantly associated with cognitive trajectory after 

adjustment for neuropathology are shown in Figure 5.  Modules that had a negative association 

with cognitive trajectory were defined as those involved in cognitive decline, whereas modules 

that had a positive association were defined as those involved in cognitive preservation. 

 

Figures 

Figure 1.  TMT AD Protein Co-Expression Network.  (A-C) 516 dorsolateral prefrontal cortex 

(DLPFC) tissues from the Religious Orders Study and Memory and Aging Project (ROSMAP, 

n=84 control, 148 AsymAD, 108 AD) and Banner Sun Health Brain Bank (Banner, n=26 control, 

58 AsymAD, 92 AD) were analyzed by tandem mass tag mass spectrometry (TMT-MS)-based 

proteomics (A).  After outlier removal and data processing, a total of 8619 proteins were quantified 

across 488 cases, which were analyzed by both differential expression and co-expression 

approaches.  (B) A protein co-expression network was built using the weighted co-expression 
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network algorithm (WGCNA), which consisted of 44 protein co-expression modules.  Module 

relatedness is shown in the central dendrogram.  Gene ontology analysis was used to identify the 

principal biology represented by each module.  Modules that did not have a clear ontology were 

not assigned an ontology term.  Module eigenproteins were correlated with neuropathological and 

cognitive traits present in the ROSMAP and Banner cohorts (red, positive correlation; blue, 

negative correlation).  The global pathology, Lewy body stage, TDP-43 stage, and global cognitive 

level traits were present only in ROSMAP.  Twelve of the 44 modules that were most highly 

correlated to neuropathological and/or cognitive traits are in bold, with the four most strongly trait-

related modules highlighted in red.  The cell type nature of each module was assessed by module 

protein overlap with cell type specific marker lists of neurons, oligodendrocytes, astrocytes, 

microglia, and endothelia.  (C) Module eigenprotein levels by case status for the twelve most 

strongly trait-correlated modules bolded in (B).  Modules are grouped by those that change in 

AsymAD (n=4, left), and those that change only in AD (n=8, right).  n=106 control, 200 AsymAD, 

and 182 AD.  Correlations were performed using biweight midcorrelation and corrected by the 

Benjamini-Hochberg procedure.  Cell type marker overlap was assessed using Fisher’s exact test 

(FET) and corrected using the Benjamini-Hochberg procedure.  Differences in module 

eigenprotein by case status were assessed by Kruskal-Wallis one-way ANOVA with Tukey test.  

*p<0.05, ***p<0.001.  Boxplots represent the median, 25th, and 75th percentiles, and box hinges 

represent the interquartile range of the two middle quartiles within a group.  Datapoints up to 1.5 

times the interquartile range from box hinge define the extent of whiskers (error bars).  AD, 

Alzheimer’s disease; AsymAD, asymptomatic Alzheimer’s disease; Cntl, control; ECM, 

extracellular matrix; ER, endoplasmic reticulum; MAPK, mitogen-activated protein kinase; MHC, 

major histocompatibility complex. 

Figure 2.  Preservation of the TMT AD Network Across Different Cohorts, Centers, 

Methods, and Brain Regions.  (A-C) Module preservation and synthetic eigenprotein analysis 
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of the TMT AD network generated from dorsolateral prefrontal cortex (DLPFC) Brodmann area 9 

(BA9) tissues was performed in ROSMAP Brodmann area 6 (BA6, frontal cortex) and BA37 

(temporal cortex), Emory BA9 (DLPFC) and BA24 (anterior cingulate), and Mt. Sinai Brain Bank 

BA36 (parahippocampal gyrus, PHG) tissues (A).  The Emory tissues included Parkinson’s 

disease cases, and were analyzed using a different TMT quantification approach (synchronous 

precursor selection (SPS)-MS3).  The Mt. Sinai tissues were processed and analyzed by MS2-

based TMT-MS at a different center.  (B) Module preservation of the twelve trait-correlated 

modules highlighted in Figure 1B, C.  Modules that had a Zsummary score of greater than or equal 

to 1.96 (or q=0.05, blue dotted line) were considered to be preserved, whereas modules that had 

a Zsummary score greater than or equal to 10 (or q=1e-23, red dotted line) were considered to be 

highly preserved.  Preservation statistics for all TMT AD network modules are provided in 

Supplementary Figure 2.  (C) Module eigenprotein level by case status was assessed in the 

different cohorts and brain regions by measuring a TMT AD network synthetic eigenprotein, 

representing the top 20% of module proteins by module eigenprotein correlation value (kME), in 

each cohort and region.  Synthetic eigenprotein levels are shown for the four most highly trait-

correlated TMT AD network modules.  Differences and statistics for all modules are provided in 

Supplementary Table 13.  Differences in synthetic eigenprotein levels were assessed by 

Kruskal-Wallis one-way ANOVA.  Boxplots represent the median, 25th, and 75th percentiles, and 

box hinges represent the interquartile range of the two middle quartiles within a group.  Datapoints 

up to 1.5 times the interquartile range from box hinge define the extent of whiskers (error bars).  

AD, Alzheimer’s disease; Aβ, amyloid-β; AsymAD, asymptomatic Alzheimer’s disease; ECM, 

extracellular matrix; ER, endoplasmic reticulum; MAPK, mitogen-activated protein kinase. 

Figure 3.  The TMT AD Protein Network Contains Modules Associated with AD That Are 

Not Present in the Transcriptome.  (A-D) Control, AsymAD, and AD frontal cortex tissues from 

both the ROSMAP cohort (Brodmann area 9; control=125, AsymAD=204, AD=203; 168 
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overlapping cases with proteomic analysis) and Mt. Sinai Brain Bank (Brodmann area 10; 

control=54, AsymAD=19, AD=120) were analyzed by RNAseq-based transcriptomics, and co-

expression networks generated by WGCNA in similar fashion to the TMT AD protein network (A).  

(B) Module preservation of the TMT AD protein network into the ROSMAP RNA network.  Modules 

that had a preservation Zsummary score less than 1.96 (q>0.05) were not considered to be 

preserved. Modules that had a Zsummary score of greater than or equal to 1.96 (or q=0.05, blue 

dotted line) were considered to be preserved, while modules that had a Zsummary score greater than 

or equal to 10 (or q=1e-23, red dotted line) were considered to be highly preserved.  TMT AD 

network modules that were not preserved in the RNA network, along with their correlation to global 

pathology and global cognition traits in ROSMAP, are listed on the right.  Further information on 

modules preserved in ROSMAP, as well as preservation analysis with the Mt. Sinai cohort, is 

provided in Supplementary Figure 4A, B.  (C) TMT AD network module protein overlap with 

proteins identified as co-localized with neurofibrillary tangles (NFTs, n=543) and amyloid-β (Aβ, 

n=270) plaques as described by Drummond et al.34,35.  Overlap as shown with a dark yellow hue 

or darker is considered significant.  Overlap with a less stringent set of Aβ plaque associated 

proteins is provided in Supplementary Figure 3C.  (D) The top fifty proteins by module 

eigenprotein correlation value (kME) for the M7 MAPK/metabolism (left, n=234 total proteins) and 

M42 matrisome (right, n=32 proteins) modules.  Module proteins that were found to be co-

localized with NFTs (green), Aβ plaques (orange), or both (blue) are highlighted.  Lines between 

proteins represent correlation matrix adjacency weights.  Graphs for all TMT AD network modules 

are provided in Extended Data 3. 

Figure 4.  The M42 Matrisome Module is Enriched in AD Genetic Risk and is Increased by 

ApoE4.  (A, B) Enrichment of AD genetic risk factor proteins as identified by GWAS in TMT AD 

network modules (A).  The dashed red line indicates a Z score of 1.96 (p=0.05), above which 

enrichment was considered significant.  Enrichment in M42 is driven by ApoE.  Modules are 
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ordered by relatedness as illustrated in Figure 1B.  AD, Alzheimer’s disease; ASD, autism 

spectrum disorder; SCZ, schizophrenia.  (B) Module eigenprotein levels by allele dose (0, 1, 2) 

for the three SNPs identified as proximal module quantitative trait loci (mod-QTLs), separated by 

case status.  (C) M42 matrisome module eigenprotein levels by APOE genotype, separated by 

case status.  Differences in eigenprotein levels were assessed by Kruskal-Wallis one-way ANOVA 

with Tukey test.  Only significant differences within case status group are shown. *p<0.05, 

**p<0.01, ***p<0.001. 

Figure 5.  The M7 MAPK/Metabolism Module is Associated with Cognitive Decline.  (A-C) 

TMT AD network modules associated with cognitive decline (A) or cognitive preservation (B) after 

adjustment for 10 neuropathologies in ROSMAP.  Eigenprotein values are plotted against the rate 

of cognitive change during life for each subject in ROSMAP.  Decline is highlighted in red, and 

preservation is highlighted in blue.  β is the effect size of module eigenprotein on cognitive 

trajectory after adjustment for neuropathology; q is the FDR significance level of this effect.  

Information on the association between all TMT AD network module eigenproteins and cognitive 

trajectory before and after adjustment for neuropathology is provided in Supplementary Table 

21.  (C) TMT AD network module enrichment of proteins positively associated with cognitive 

resilience (i.e., preservation) or negatively associated with cognitive resilience (i.e., decline) 

identified in a prior proteome-wide association study (PWAS) of cognitive resilience in the 

ROSMAP cohort37.  The dashed red line indicates a Z score of 1.96 (p=0.05), above which 

enrichment was considered significant.  Modules that are shaded are consistent with results in 

(A, B).  Modules are ordered by relatedness as illustrated in Figure 1B. 

 

Supplementary Figures 
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Supplementary Figure 1.  LFQ and TMT AD Network Comparison.  (A-D) LFQ AD network 

module preservation in the TMT AD network (A).  Modules that had a Zsummary score of greater 

than or equal to 1.96 (or q=0.05, blue dotted line) were considered to be preserved, while modules 

that had a Zsummary score greater than or equal to 10 (or q=1e-23, red dotted line) were considered 

to be highly preserved.  (B) Preservation of the TMT AD network built using the weighted 

correlational network algorithm (WGCNA) into the network built on the same matrix using the 

MONET M1 algorithm.  (C) Module member overrepresentation analysis (ORA) of the LFQ and 

TMT AD networks.  The dashed red box highlights modules that are unique to the TMT network.  

The numbers in each box represent the –log10(FDR) value for the overlap.  The heatmap is 

thresholded at a minimum of FDR(0.1) for clarity.  (D) Percent novelty of TMT network module 

protein members compared to LFQ network proteins for all module members (black) or the top 

20% of module proteins by strength of correlation to the module eigenprotein (kME) (blue).  The 

dashed line indicates 50% novel protein members.  Bars are shaded according to P value 

significance.  ORA and percent novelty P values were corrected by the Benjamini-Hochberg 

procedure. * <0.05, ** <0.01, *** <0.005. 

Supplementary Figure 2.  TMT AD Network Module Preservation.  Modules that had a Zsummary 

score of greater than or equal to 1.96 (or q=0.05, blue dotted line) were considered to be 

preserved, while modules that had a Zsummary score greater than or equal to 10 (or q=1e-23, red 

dotted line) were considered to be highly preserved. AD, Alzheimer’s disease; Aβ, amyloid-β; 

AsymAD, asymptomatic Alzheimer’s disease; BA, Brodmann area; ECM, extracellular matrix; ER, 

endoplasmic reticulum; MAPK, mitogen-activated protein kinase. 

Supplementary Figure 3.  Protein and RNA AD Network Trait Correlations and TMT AD 

Network Module Overlap with Neurofibrillary Tangle and Aβ Plaque Proteins.  (A-B) Module 

trait correlation analysis between protein and RNA networks.  (A) WGCNA networks of TMT AD 

protein (left) and ROSMAP RNA (right).  Protein and RNA data were obtained from the same 
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brain region (dorsolateral prefrontal cortex, Brodmann area 9), with 168 ROSMAP cases shared 

between networks.  Module eigenprotein to trait correlations are shown by red and blue heatmap.  

(B) Protein and RNA network module correlations with global pathology (left) and global cognitive 

level (right) as measured in ROSMAP.  Differences in overall positive and negative correlations 

between protein and RNA modules were assessed by Welch’s t test, whereas differences in 

overall variation in correlation were measured by F test.  P values for each test are provided.  (C) 

TMT AD network module protein overlap with proteins identified as co-localized with neurofibrillary 

tangles (NFTs, n=543) and amyloid-β (Aβ) plaques as described by Drummond et al.34,35.  Overlap 

with Aβ plaques was performed with a set of proteins consistently observed in Aβ plaques across 

multiple experiments (Aβ plaque core proteins, n=270), as well as with a set of proteins that 

included proteins observed only once across multiple experiments (Aβ plaque all proteins, 

n=1934).  Overlap was performed with Fisher’s exact test, and corrected by the Benjamini-

Hochberg procedure.  (D) Immunohistochemistry of midkine (MDK), a hub protein of the M42 

matrisome module, in control and AD brain.  Scale bar represents 500 µM.  (E) Gene ontology 

analysis of the M42 matrisome module, including biological process (green), molecular function 

(blue), and cellular component (brown) ontologies.  The red line indicates a z score of 1.96, or 

p=0.05. 

Supplementary Figure 4.  TMT AD Network Module Preservation in RNA Networks.  (A-D) 

Module preservation of the TMT AD protein network into the ROSMAP RNA network (A).  Modules 

that had a preservation Zsummary score less than 1.96 (q>0.05) were not considered to be 

preserved. Modules that had a Zsummary score of greater than or equal to 1.96 (or q=0.05, blue 

dotted line) were considered to be preserved, while modules that had a Zsummary score greater than 

or equal to 10 (or q=1e-23, red dotted line) were considered to be highly preserved.  TMT AD 

network modules that were preserved in the RNA network, along with their correlation to global 

pathology and global cognition traits in ROSMAP, are listed on the right.  (B) Module preservation 
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of the TMT AD protein network into the Mt. Sinai RNA network.  (C) Correlation of AD versus 

control RNA and protein levels between the TMT protein and ROSMAP RNA (n=532 cases) 

networks (top), as well as between cases paired between protein and RNA in ROSMAP (n=168), 

including (left) or excluding (right) M42 proteins.  (D) Correlation of AD versus control RNA and 

protein levels between the TMT protein and Mt. Sinai RNA (n=193 cases) networks, including 

(left) or excluding (right) M42 proteins.  Correlations were performed using Pearson correlation. 

Supplementary Figure 5.  TMT AD Network Protein Differential Expression.  (A-C) 

Differential expression between AD versus control (A), AsymAD versus control (B), and AsymAD 

versus AD (C).  The dashed red line indicates a P value of 0.05, above which proteins are 

considered significantly differentially expressed.  Proteins are colored by the network module in 

which they reside, according to the module color scheme provided in Figure 1B.  Proteins in the 

M42 matrisome module are colored lightcyan.  Significance was adjusted by the Holm procedure.  

Fold change and statistics for all proteins are provided in Supplementary Table 2. 

 

Extended Data 

Extended Data 1.  GO Analysis on TMT AD Network Modules. Gene ontology (GO) analysis 

was performed to gain insight into the biological meaning of each AD protein network module.  

Enrichment for a given ontology is shown by z score. 

Extended Data 2.  TMT AD Network Module Eigenprotein Levels.  Differences among case 

groups were assessed by Kruskal-Wallis one-way ANOVA with Tukey test.  Boxplots represent 

the median, 25th, and 75th percentiles, and box hinges represent the interquartile range of the two 

middle quartiles within a group.  Datapoints up to 1.5 times the interquartile range from box hinge 

define the extent of whiskers (error bars). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438450
http://creativecommons.org/licenses/by-nc-nd/4.0/


69 
 

Extended Data 3.  TMT AD Network Module Protein Graphs and Overlap with Amyloid-β 

Plaque and Tau Neurofibrillary Tangle Proteins.  The size of each circle indicates the relative 

eigenprotein correlation value (kME) in each network module.  Those proteins with the largest 

kME are considered “hub” proteins within the module, and explain the largest variance in module 

expression.  Lines represent weighted adjacency values between proteins.  Proteins colored 

orange are consistently found associated with amyloid-β plaques.  Proteins colored dark blue are 

found to be associated with tau neurofibrillary tangles (NFTs). Proteins colored green are found 

to be associated with both plaques and tangles.
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SNP CHR BP A1 
Nearest Coding Gene  

to SNP BETA P value Module mod-QTL 
Module Protein  

within 1Mb of SNP 
rs28716042 8 125418451 G TMEM65 0.04 3.7E-09 M3 Oligo/Myelination trans na 

rs112028701 13 104134726 T SLC10A2 -0.04 3.1E-08 M22 Post-synaptic Density trans na 
rs11021075 11 94940421 T SESN3 0.02 4.9E-08 M26 Complement/Acute Phase trans na 
rs1733609 7 81536375 A CACNA2D1 0.02 1.6E-08 M11 Cell-ECM Interaction trans na 
rs429358 19 45411941 C APOE 0.02 3.2E-08 M42 Matrisome cis APOE 

rs6940448 6 3810805 G FAM50B -0.02 1.4E-08 M8 Protein Transport cis TUBB2A 
rs1553484 6 91507934 A MAP3K7 -0.02 6.4E-09 M29 Glycosylation/ER trans na 
rs2352535 4 114127905 T ANK2 0.02 2.4E-08 M27 Extracellular Matrix trans na 

 

Table 1. TMT AD Network Module Quantitative Trait Loci (mod-QTLs) 
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Module BETA SD_BETA FDR q Value 

Significant After Adjustment for 
Neuropathology 

Decline      
 M7 MAPK/metabolism -0.61 0.08 1.2E-10 Yes 
 M15 Ambiguous -0.56 0.09 1.4E-08 Yes 
 M42 Matrisome -0.49 0.09 9.3E-07 No 
 M24 Ubiquitination -0.45 0.08 1.0E-06 Yes 
 M23 Ambiguous -0.45 0.09 5.2E-06 Yes 
 M11 Cell-ECM interaction -0.42 0.09 1.6E-05 No 
 M19 Axonogenesis -0.38 0.09 8.0E-05 Yes 
 M20 RNA splicing -0.35 0.09 5.0E-04 No 
 M25 Sugar metabolism -0.32 0.09 1.3E-03 No 
 M4 Synapse/Neuron -0.28 0.09 7.1E-03 Yes 

Preservation      
 M33 Ambiguous 0.51 0.09 9.8E-07 Yes 
 M10 Ambiguous 0.48 0.09 9.3E-07 Yes 
 M5 Post-synaptic density 0.47 0.09 1.5E-06 Yes 
 M2 Mitochondria 0.46 0.09 3.6E-06 Yes 
 M29 Glycosylation/ER 0.46 0.08 9.3E-07 Yes 
 M28 Ribosome/Translation 0.42 0.09 2.0E-05 Yes 
 M6 Ribosome 0.36 0.09 2.5E-04 Yes 
 M8 Protein transport 0.35 0.09 3.0E-04 Yes 
 M44 Ribosome/Translation 0.33 0.11 7.2E-03 No 
 M32 Ambiguous 0.31 0.09 2.6E-03 No 
 M9 Golgi 0.27 0.09 7.1E-03 No 

 

Table 2.  Association of TMT AD Network Modules with Cognitive Trajectory 
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