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Abstract  

Glioblastoma multiforme (GBM) is a heterogeneous, invasive primary brain tumor that develops 

chemoresistance post therapy. Theories regarding the aetiology of GBM focus on transformation 

of normal neural stem cells (NSCs) to a cancerous phenotype or tumorigenesis driven via glioma 

stem cells (GSCs). Comparative RNA-Seq analysis of GSCs and NSCs can provide a better 

understanding of the origin of GBM. Thus, in the current study, we performed various 

bioinformatics analyses on transcriptional profiles of a total 40 RNA-seq samples including 20 

NSC and 20 GSC, that were obtained from the NCBI-SRA (SRP200400). First, differential gene 

expression (DGE) analysis using DESeq2 revealed 358 significantly differentially expressed genes 

between GSCs and NSCs (padj. value <0.05, log2fold change ±3) with 192 upregulated and 156 

downregulated  genes in GSCs in comparison to NSCs. Subsequently, exploratory data analysis 

using the principal component analysis (PCA) based on key significant genes depicted the clear 

separation between both the groups. Further, the Hierarchical clustering confirmed the distinct 

clusters of GSC and NSC samples. Eventually, the biological enrichment analysis of the significant 

genes showed their enrichment in tumorigenesis pathways such as Wnt-signalling, VEGF-

signalling and TGF-β-signalling pathways. Conclusively, our study depicted significant 

differences in the gene expression patterns between NSCs and GSCs. Besides, we also identified 
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novel genes and genes previously unassociated with gliomagenesis that may prove to be valuable 

in establishing diagnostic, prognostic biomarkers and therapeutic targets for GBM. 

 

Keywords: RNA-Seq Analysis, DGE, Machine Learning, Glioblastoma multiforme, Cancer stem 

cells 

Introduction 

Glioblastoma multiforme (GBM) , a grade IV glioma that accounts for over 60% of all primary 

brain tumors, is associated with very poor prognosis and an overall survival period of a mere 15 

months post-surgery, radiotherapy and temozolomide (TMZ) chemotherapy (Stupp et al., 2009). 

It is an aggressive and recurring cancer with a median relapse rate of 7 months (Weller et al., 

2009). Despite several advances in therapies over the past few years, GBM remains one of the 

most devastating and difficult brain cancers to treat owing to its interpatient and intratumoral 

heterogeneity, subsequent resistance to chemotherapy, lack of significant therapeutic biomarkers 

and inaccessibility of the tumors, for therapeutic intervention, based on their locations in the brain 

(Holland, 2000; Weller et al., 2009). 

Glioblastoma is termed multiforme because its phenotypic and genetic heterogeneity imparts 

complexity to this particular cancer. GBM tumors have been classified into mesenchymal, 

classical, proneural/IDH mutant and proneural/RTK mutant variants depending on their molecular 

signatures (Chen et al., 2017). 90% of GBMs occur de novo in elderly patients, while secondary 

GBMs arise from low grade astrocytomas in younger patients. Known genetic hallmarks of 

primary GBM include gene mutation and amplification of epidermal growth factor receptor 

(EGFR), overexpression of mouse double minute 2 (MDM2), deletion of p16 and loss of 

heterozygosity (LOH) of chromosome 10q holding phosphatase and tensin homolog (PTEN) and 

TERT promoter mutation. In contrast, secondary GBM have different genetic signatures such as 

over expression of platelet-derived growth factor A, and platelet-derived growth factor receptor 

alpha (PDGFA/PDGFRa), retinoblastoma (RB), LOH of 19q and mutations of IDH1/2, TP53 and 

ATRX (Hanif et al., 2017). Further, single-cell RNA-Seq studies have revealed that different cell 

types with varying genetic patterns may be present within a tumor, which may be helpful in 

determining the prognosis of the tumor. Cancer stem cells account for one such small population 
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of cells and are predicted to drive tumorigenesis and impart chemoresistance in GBM (Couturier 

et al., 2020).  

Despite several efforts made by researchers to understand the cytogenetic aspects of these tumors, 

the etiology of it still remains largely unknown. Two hypotheses have been postulated that suggest 

its origin. The cancer stem cell theory purports that GBM originates from cancer stem cells (CSCs) 

that are responsible for self-renewal, development, propagation and recurrence of the tumor. The 

other theory states that GBM arises via transformation of normal neural stem cells after 

accumulation of several mutations in common neural stem cell marker genes (Couturier et al., 

2020; Yao et al., 2018). This concept is rather complex since GSCs may share certain genetic 

similarities with NSCs, however, the molecular differences may underpin the malignant growth 

potential of the tumor. Thus, it is important to understand the differences in gene expression 

between normal neural stem cells (NSCs) and Glioblastoma Stem Cells (GSCs) to be able to better 

determine the cellular origin of the tumor. 

In this study, we performed RNA-Seq analysis using NSC and GSC samples to understand the 

differences in their gene expression profiles, understand the origin of GBM, and identify potential 

biomarkers that may allow for selective targeting of CSCs while sparing normal NSCs via 

precision medicine. 

  

Methods 

Acquisition of RNA-Seq Data 

A thorough search of the Gene Expression Omnibus (GEO) Database was performed to obtain the 

ideal dataset for the study. The GSE132172 (associated Sequence Retrieval Archive (SRA) Study: 

SRP200400) dataset was selected (Zhao et al., 2019). This dataset consisted of RNA-Seq data 

retrieved from CB660 normal neural stem cell lines and GliNS2 glioblastoma stem cell lines. Of 

the 188 samples present on the associated SRA Run Selector, 20 samples of NSCs (SRR9200813 

to SRR9200832) and 20 samples of GSCs (SRR9200895 to SRR9200914) were selected and 

downloaded as an SRA Run Table. 

  

RNA-Seq Data Analysis 

Trimmomatic algorithms, mapping on genome and junctions was done via TopHat2, isoform 

construction via cufflinks, Gene transfer format (GTF) processing via cuffmerge, mapping on 
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transcripts via Bowtie2-t and the final gene expression values were obtained using RSEM 

algorithm as RsemExpTable in Fragments Per Kilobase of transcript per Million mapped reads 

(FPKM) units (figure 1). The gene expression data was log transformed and quantile normalized 

for further analysis. 

 
Figure 1. Screenshot of RNA-Seq Pipeline (Tuxedo Protocol). 

  

Downstream Data Analysis 

The 40 samples were clustered as per their gene expression profiles using Principal Component 

Analysis and Hierarchical Clustering (distance: Euclidean, linkage: ward.D2). Differential gene 

expression was performed using the DESeq2 pipeline to derive significantly expressed genes in 

GSC and NSC samples (figure 2). The differential gene expression data was then filtered and 

extracted if the threshold = TRUE, p-adjusted value was <0.05 and log2fold change value for GSCs 

was >3.0 and for NSCs it was <-3.0. Top 25 most highly expressed genes from each type of stem 

cell sample was further filtered and a heat map and dendrogram was generated to depict 

comparison of gene expression profiles in each type of sample. 
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 Figure 2. Screenshot of differential gene expression analysis using DeSeq2  Pipeline.  

 

Gene Enrichment Analysis 

To understand the biological implication of the significant genes obtained from differential gene 

expression analysis, the gene lists were uploaded on the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) v6.8 tool. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) was also used for pathway analysis. Literature review for the top 50 most significant 

differentially expressed genes (which include top 25 upregulated and top 25 down regulated genes 

in GSCs vs. NSCs) was performed via Google Scholar, National Center for Biotechnology 

Information (NCBI) PubMed and GeneCards®, to understand their functions in a normal 

physiological condition and in gliomagenesis.  

 

Results 

Gene expression data in FPKM units for a total of 27,385 genes was obtained in the RSemExp 

table after the RNA-Seq Pipeline (Tuxedo Protocol) was run. Post quantile normalization and log-

scale transformation, PCA plot was generated which revealed separate clustering of GSC and NSC 

samples with a principal component 1 (PC1) of 10.31% and PC2 of 8.9% (supplementary figure 

1a). A single outlier (SRR9200898_PE), which was a glioma stem cell sample, was revealed. Thus, 

another PCA plot was generated without the outlier. A PC1 of 88.03% and a PC2 of 2.13% was 

obtained with this plot (supplementary figure 1b). To further confirm these findings, hierarchical 

clustering was performed that revealed NSC samples (SRR9200813 to SRR9200832) and GSC 

samples (SRR9200895 to  SRR9200897 and SRR9200899 to SRR9200914) clustered separately. 
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The outlier GSC sample (SRR9200898_PE) lay between the two clusters (supplementary figure 

2). 

Further analysis done via differential gene expression revealed 12,437 (45.42% of the total genes) 

differentially expressed genes between NSC and GSC samples. This data was filtered and a total 

of 951 significantly expressed genes (7.64% of all differentially expressed genes) with a threshold 

= TRUE and p-adjusted value ≤ 0.05 was obtained. A volcano plot was generated to depict these 

significantly differentially expressed genes between NSCs and GSCs (figure 3). Further filtering 

was performed to narrow down the most highly differentially expressed genes between NSCs and 

GSCs. A threshold of ≥ +/-3.0 for the log2fold change value was set. Thus, we were left with 358 

significantly differentially expressed genes. Among them,  192 genes were found to be upregulated 

and 156 to be downregulated in GSCs in comparison to  NSCs. Further, we selected top 50 

significantly differentially expressed genes including top 25 upregulated and top 25 downregulated 

genes in GSCs vs. NSCs (Table 1) 

 

 
Figure 3. Volcano plot of differentially expressed genes between GSCs and NSCs 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438487doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438487


 

Table 1: Top 50 differentially expressed genes in GSCs vs NSCs 

Upregulated Genes Downregulated Genes 

ENSEMBL 

Gene ID 

Entrez Gene ID Log2fold 

change 

ENSEMBL 

Gene ID 

Entrez 

Gene ID 

Log2fold 

change 

ENSG00000160

307.8 S100B 

5.542941

4 

ENSG000001

63191.5 S100A11 

-5.437646 

ENSG00000197

956.8 PLP1 

5.084731

68 

ENSG000001

70315.12 UBB 

-5.334275 

ENSG00000189

058.7 S100A6 

3.492410

54 

XLOC_02925

2 unknown 

-5.0073837 

ENSG00000135

919.11 PMP2  

3.382881

44 

ENSG000000

08394.11 MGST1 

-4.9702519 

ENSG00000261

857.5 ITM2A  

4.380766

97 

ENSG000001

32386.9 SERPINF1 

-4.9191335 

ENSG00000229

344.1 GPNMB 

3.674091

69 

ENSG000001

52583.11 SPARCL1 

-4.8928578 

ENSG00000136

235.14 

THY1/ 

CD90 

5.005325

03 

ENSG000001

97614.9 MFAP5 

-4.8696255 

ENSG00000123

560.12 AZGP1  

5.138722

36 

ENSG000002

13145.8 CRIP1 

-4.8111644 

ENSG00000147

588.6 RPS4Y1 

5.035382

5 

ENSG000001

39329.4 LUM 

-4.7388415 
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ENSG00000078

596.9 MATN2 

5.024294

05 

ENSG000001

01335.8 MYL9  

-4.6796897 

ENSG00000154

096.12 GAS7 

4.986803

54 

ENSG000001

09113.16 RAB34 

-4.6787092 

ENSG00000160

862.11 KRBOX1 

4.936816

08 

ENSG000001

98467.12 TPM2 

-4.6243914 

ENSG00000129

824.14 OLIG1 

4.899062

93 

ENSG000001

28610.10 FEZF1 

-4.5842385 

ENSG00000110

693.14 PRR34-AS1 

3.462027

45 

ENSG000001

38829.9 FBN2 

-4.5675219 

ENSG00000164

434.10 SOX10 

3.778498

68 

ENSG000002

25383.5 SFTA1P  

-4.5507508 

ENSG00000154

553.12 Unknown 

4.383849

76 

ENSG000001

31435.11 PDLIM4 

-4.5340762 

ENSG00000164

106.6 TSPAN7 

3.419188

91 

ENSG000001

04723.19 TUSC3 

-4.4994617 

ENSG00000132

561.12 CDH9 

4.844441

81 

ENSG000001

29038.14 LOXL1 

-4.4942203 

ENSG00000123

610.4 MT1F 

4.011633

08 

ENSG000000

67715.12 SYT1 

-4.4821866 

ENSG00000007

237.17 NTRK2 

4.702249

23 

ENSG000001

05971.13 CAV2 

-4.4721796 

ENSG00000255

737.2 FCRLA 

3.499985

67 

ENSG000001

37962.11 

ARHGAP2

9 

-4.4720021 
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ENSG00000240

747.6 SLCO4A1  

4.625379

67 

ENSG000001

27083.7 OMD 

-4.4647095 

ENSG00000184

221.11 PDLIM3  

4.609997

85 

XLOC_01200

3 Proneural 

-4.4462352 

ENSG00000241

990.4 MIA 

4.593370

58 

ENSG000001

46411.5 SLC2A12 

-4.4290885 

ENSG00000136

999.4 

LY96 

4.109256

83 

XLOC_04736

7 

p53-

regulated 

lncRNAs 

-4.4287433 

  

Next, to determine the distinguishable potential of these top 50 significantly differentially 

expressed genes, we generated the PCA plots with only these significant genes with the outlier 

(Figure 4a) and without the outlier (Figure 4b). Subsequently, in the heatmap (Figure 5), we  

visualized the differential expression pattern of these genes among two types of samples, i.e. GSCs 

vs NSCs. 

 

 
Figure 4. Exploratory data analysis using PCA based on the top 50 significantly differentially 

expressed genes between NSCs and GSCs. (a). PCA plot for all GSC and NSC samples, (b) PCA 

plot for GSC and NSC samples after removal of outlier.  
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Figure 5. Heat map representing the expression pattern of the top 50 differentially expressed genes 

expressed genes between NSCs and GSCs. 

 

Finally, we re-performed H-Clustering with the top 50 selected genes (figure 6). The GSC and 

NSC samples clustered separately, with the outlier sample branching in between the two clusters. 
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Figure 6. Dendrogram generated by Hierarchical clustering based on top 50 significantly 

differentially expressed genes depicting the distinct clusters of GSCs and NSCs samples. 
 

Gene Enrichment analysis 

The gene list for NSC containing 156 genes and for GSC containing 192 genes was uploaded on 

DAVID and functional annotation and clustering was performed.  

Top hits with the NSC gene list indicated involvement in diseases such as Alzheimer’s Disease, 

respiratory function tests, Tobacco Use Disorder, body weight, bone mineral density, macular 

degeneration, alcoholism, etc. Top hits for keyword annotations included extracellular matrix, 

secreted, glycoprotein, signal, calcium, disulphide bond, disease mutation, membrane and 

transmembrane. Top hits for sequence features included signal peptide, glycosylation (N-linked), 

Leucine Rich Repeats (LRR 6), EGF-like 6, LRR 5, LRR 1, LRR 2, LRR 7, LRR 4, disulphide 
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bond, topological domain (cytoplasmic). Functional clustering (medium stringency) showed 27 

clusters with 137 DAVID IDs with top three clusters involved in extracellular matrix, glycoprotein 

and LRRs and having enrichment scores of 5.99, 4.95 and 2.05, respectively. 

Similarly, the gene list for GSC containing 192 genes was also uploaded on DAVID and top hits 

for diseases included Schizophrenia, Attention deficit hyperactivity disorder (ADHD), tobacco use 

disorder, depression, body height, body weight, autism, myocardial Infarction. Top hits for 

keyword annotations included disulphide bond, glycoprotein, signal, MHC-II, cell adhesion, cell 

membrane, alternative splicing, polymorphism, transmembrane. Top hits for sequence features 

included glycosylation (N-linked), signal peptide, disulphide bond, topological domain 

(extracellular and cytoplasmic), transmembrane, splice variant, sequence variant. Functional 

clustering (medium stringency) showed 27 clusters with 163 DAVID IDs with top three clusters 

involved in glycoprotein disulphide bonds, melanocyte differentiation metallothionein domain and 

having enrichment scores of 6.17, 2.35 and 2.15, respectively. 

KEGG Pathway analysis depicted genes such as Ankyrin, α2β1, Lumican, Wnt, α5β1, SDC-4 and 

Caveolin from the list that were involved in various tumorigenesis pathways. Other genes such as 

PVRL3, PVRL2, NCAM, L1CAM, IGSF4, CDH3 and NEO1, enriched in the neural system, were 

also depicted. ECM Receptor Interaction genes such as Fibronectin, Collagen, Laminin, Tenascin, 

αV, β8, Thrombospondin (THBS) and Osteopontin (OPN), were observed in the pathway analysis. 

Genes such as FAK, PAK, RasGAP, Ephrin A, Ephrin B, Robo1, Robo3, ERK, Cofilin, GSK3β, 

Plexin B involved in axon guidance pathways, and genes such as PLCβ, PLCγ, RTK, PMCA 

involved in calcium signaling pathways were also enriched in the gene lists (figure 7). 
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Figure 7: Pathway analysis of  significant genes in GSC and NSC samples. 

  

The detailed information regarding the roles and functions of the top 25 highly upregulated and 25 

highly downregulated genes in GSCs and NSCs, within normal pathophysiology and 

gliomagenesis is tabulated in Tables (see Supplementary tables S1 and S2).

 

Discussion  

The origin of GBM from cancer stem cells or via transformation of normal neural stem cells, still 

remains largely unknown. Previous studies addressing this question have shown contrasting 

results, thus making it difficult to establish any one of the theories as the answer (Couturier et al., 

2020; Mukherjee, 2020; Yao et al., 2018; Zhao et al., 2019). In this study we have made an attempt 

to reveal the origin of GBM via RNA-Seq analysis. 

To identify differences in gene expression between normal NSCs and GSCs, RNA-Seq analysis 

was performed on RNA-seq samples obtained from both cell populations. Analysis revealed that 

both cell populations clustered separately on PCA, depicting the vast genetic differences between 

the two populations of stem cells. Further, removal of the outlier while performing PCA increased 
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the variance contributed by principal component (PC1) significantly representing substantial 

variability across samples. The outlier GSC sample, that clustered closer to normal NSCs (also 

shown in the cluster dendrogram), is of utmost importance as it indicates that the outlier could 

have genetic similarities with both NSCs and GSCs. This hints towards the theory that GBM may 

develop via accumulation of mutations in the normal NSCs thus transforming to GSCs. Further 

studies on the same would be able to divulge the series of events that take place during this 

transformation. 

 

Based on differential gene expression analysis using DESeq2,  we observed 192 genes that were 

significantly (adjusted P-value <0.05,  log2 fold change >= +/- 3.0) upregulated and 156 genes that 

were downregulated in GSCs in comparison to NSCs. Furthermore, to get a manageable gene set, 

we selected only the top 50 genes, i.e. top 25 upregulated and top 25 downregulated genes with 

highest fold change values in GSC vs. NSCs samples.  Next, the PCA plot and dendrogram from 

Hierarchical clustering indicated their significance in determining the differences between GSCs 

and NSCs. A heat map generated from these genes showed that most genes upregulated in GSCs 

were downregulated in NSCs and vice versa, highlighting differential expression in both 

populations. 

Gene ontology analysis performed on DAVID using significant gene sets showed no obvious 

involvement of genes, specifically in gliomagenesis, via functional annotation and clustering. 

However, hits were obtained for genes associated with cell-adhesion, migration and invasion, 

indicating that their possible dysregulation may have led to tumorigenesis. Further, pathway 

analysis demonstrated a better understanding of the involvement of the gene sets in pathways 

representing the hallmarks of cancer such as cell growth, survival, proliferation, adhesion, 

migration, invasion, growth suppression, apoptosis, angiogenesis and vascular permeability. For 

instance, we observed the activation of the TGF-β pathway. Previous studies have shown that 

glioma stem cells release TGF-β and activate this notorious signaling pathway, to induce 

epithelial-mesenchymal transition (EMT) and increase the invasiveness of the glioma (Ye et al., 

2012). Activation of the Wnt-signaling pathway was also seen, however, not many studies have 

defined its role in GBM pathogenesis, and thus, it would be interesting to understand its function 

in the etiology of this cancer (Guan et al., 2020). Another important pathway identified in our 

study was the VEGF signaling pathway, a known pathway activated in GSCs, inducing cancer-
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stem cell proliferation and therefore, a potential therapeutic target for GBM (Xu et al., 2013). Other 

pathways associated with normal functioning of neurons were also observed that included the 

calcium signaling, axon guidance and presynaptic-postsynaptic pathways. Previous studies have 

their involvement in the initiation, development and prognosis of GBM (Li et al., 2019; Yang et 

al., 2019). 

This study was able to identify several target genes whose role in gliomagenesis remains largely 

unclear. Studying their functionality in the future may reveal key biomarkers or drug targets that 

could be exploited for GBM.  

 

Conclusion 

Differences in gene expression between glioma stem cells and normal neural stem cells were 

identified using RNA-Seq analysis. Discovery of novel genes and genes with no known association 

in gliomagenesis were important outcomes of our study. Studying the outlier (SRR9200898_PE) 

in further detail would most likely reveal important clues to the etiology of this fatal cancer. 

Limitations of the study 

We selected a small sample size of NSCs and GSCs that were derived from a heterogeneous 

population with unknown demographic features of the patients, and lacked data regarding their 

treatment status. This prevents the generalizability of our results to a larger population. As part of 

a future study, it would be interesting to understand the changes in gene expression in both NSCs 

and GSCs post therapy with current gold standards of treatment for GBM versus new modalities 

such as nanotherapy and precision drugs like bevacizumab (Gilbert et al., 2014; Grauer et al., 2019; 

Stupp et al., 2009b). 
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