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Abstract: Unlike in laboratory settings, natural decisions are often made under uncertain beliefs about task 
demands. To quantify the unexplored dynamics between task-belief and decisions, we trained macaque 
monkeys to make perceptual discriminations under implicitly evolving task rules. By analyzing task- and 
perception-related signals from simultaneously recorded neuronal populations in cortical areas 7a and V1, 10 
we demonstrated that fluctuating task-belief and perceptual decision-making are inextricably linked. 
Stronger task-belief is correlated with better perception, and in turn, response fluctuations in visual neurons 
affect task-belief changes. Our results demonstrate that combining large-scale inter-area recordings with 
rigorously controlled complex, realistic behaviors can bring new understanding of the relationship between 
cognition and behavior in health and disease. 15 

One Sentence Summary: Reciprocal dependence of fluctuations in task-belief and perception explains 
behavior 
 
Main Text: Humans and animals make countless decisions every day that affect their well-being or even 
survival.  In the laboratory, decision-making has typically been studied by observing behaviors and 20 
neuronal activity while subjects perform simple, well-understood sensory-motor integration tasks (1-3). But 
real-life decisions usually need to contend with a more important problem even before making perceptual 
judgements: inferring the relevant task to solve in a certain situation (i.e., task-belief). Task-beliefs allow 
decision-makers to focus on a relevant subset of the huge amount of information in natural environments, 
and beliefs are flexibly adapted belief as the environment evolves. Flexibly adapting task-belief is critical 25 
but difficult: the inability to appropriately respond to changing conditions is a debilitating symptom of 
disorders including autism, dementia, and substance abuse  (4-6). 
 
Typically, task-belief is assumed to be a separate functional module that occurs before, and independent of, 
perceptual decision-making. In this view, the belief module (possibly involving parietal, prefrontal, and 30 
cingulate cortical areas (7-11)) identifies the relevant task and then the perception module (involving 
sensory areas such as visual cortex) performs perceptual judgements on the chosen task (10, 12, 13). 
However, recent studies suggest that even with experiments’ best attempts to keep task-belief constant (with 
fixed stimuli, explicit instructions, and task statistics), internal belief states still have uncontrolled 
fluctuations (14-17), some with effects on visual cortical activity and perceptual performance that is 35 
supposedly confined to the perception module (16-18). These results suggest that beliefs and perception 
interact in complex ways. The biggest barrier to understanding such interactions is estimating task-belief 
during each decision, which is by definition internal and continually changing. 
 

To address this challenge, we devised a novel two-feature discrimination task to assess perception and 40 
belief simultaneously. We trained animals to discriminate either the spatial location or spatial frequency of 
two Gabor patches presented in series. The animals indicated both the subjective belief about which feature 
was task-relevant and the corresponding perceptual judgment by making a saccade to one of four targets 
(Figure 1A, upper left panel). They were rewarded only when both task-belief and perception were correct 
(Figure 1A, right panel). The relevant feature was not cued and switched with a low probability from one 45 
trial to the next (Figure 1A, lower left panel). This design provides rich and easy measurements and 
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manipulations of subjects’ behavior during dynamic belief-based decision-making. Meanwhile, we 
recorded from groups of neurons from which we could decode information about both visual features the 
monkeys discriminated (in visual cortical area V1) and task-belief (in parietal area 7a (9, 19)) (Figure 1B). 
Together, these measurements provide a unique window into belief updating and perceptual decision-
making on every trial.   5 

After training, the animals successfully discriminated the feature change they believed to be relevant, 
and largely ignored the feature believed to be irrelevant (Figure 1C). The animals also effectively updated 
their belief according to the evolving task requirements, switching tasks only a couple of trials after the 
(uncued) task changes occurred (Figure 1D). The number of trials the animals took to notice task changes 
was close to optimal given their perceptual sensitivity (Figure 1E).  10 

 
Fig. 1 Behavioral paradigm and electrophysiological recording.  (A) Schematic of the two-
interval, two-feature discrimination task with stochastic task switching. On each trial, monkeys 
discriminate the difference in either spatial frequency or spatial location between two subsequent 
Gabor stimuli; and are rewarded for correctly reporting the sign of the change in the relevant feature. 15 
The relevant feature is uncued and changes with 2.5% probability on each trial. The monkeys indicate 
their perceptual decision and the feature believed to be relevant by making a saccade to one of four 
choice targets. (B) Belief-based decisions could potentially be solved by independent hierarchical 
modules that compute belief and perception (black boxes). We simultaneously recorded population 
activity from one representative brain region for each module (7a and V1 respectively, blue squares 20 
show approximate implant locations) to test the hypothesis that these modules are non-independent 
(red arrow). (C) Psychometric curves showing the monkeys’ perceptual choice proportion as a 
function of spatial frequency (left panel) and spatial location (right panel) differences. The flat curves 
for the irrelevant feature show that animals successfully ignored irrelevant visual information. (D) 
Distribution of number of trials it took the monkeys to adapt to task changes across experimental 25 
sessions (mean 3.1 trials). (E) Distribution of number of trials the monkey took to adapt to the task 
change relative to an ideal observer model (see Supplementary Methods). Positive values refer to 
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occasions where monkeys were slower than the model; negative values indicate that the monkeys 
were accidentally faster (mean 1.5 trials). 
 
Our behavioral results demonstrate that dynamic task-belief strength affect the accuracy of perceptual 

decision-making. By design, the animals’ perceptual choices are informed by stimulus information within 5 
the trial and should ideally be independent from trial history. However, across experimental sessions with 
same stimulus conditions, the animals had better perceptual performance (i.e., perceptual accuracy of 
whichever task the animal chose to perform) after rewarded trials (which reinforced task-belief) than after 
unrewarded trials (which introduce uncertainty to the monkey’s belief state) (Figure 2A, Figure S1A). 
Correspondingly, information coding in V1 was also better after rewarded than unrewarded trials (Figure 10 
S1B).  

These results suggest that strong beliefs are associated with better information coding in V1. To test 
this hypothesis on a trial-by-trial basis, we leveraged the fact that neuronal populations in parietal area 7a 
encode belief. We decoded this continuous measure of the animals’ belief on each trial (Figure 2B). 
Consistent with the idea that rewards reinforce beliefs, the animals’ task choice was better classifiable after 15 
a rewarded than an unrewarded trial (Figure S2A). Decisions to switch tasks were associated with a dynamic 
change in decoded task-belief away from the old task and toward the new task (Figure 2C).  

 

 
Fig. 2 Behavioral effect and neuronal measure of belief strength.  (A) Perceptual performance is 20 
better following rewarded trials (abscissa) than unrewarded trials (ordinate). Each point represents 
one stimulus condition of an experimental session, and we compute perceptual performance for 
whichever task the monkey chose, regardless of whether that task-belief was correct. The distribution 
lies significantly below the unity line (all p<10-6 for both monkeys and both features), showing lower 
perceptual performances following a non-rewarded trial than following a rewarded trial, with the 25 
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same perceptual difficulty. (B) In a high dimensional neuronal space expanded by the activity of 7a 
units during the delay period, we find the best hyperplane to discriminate the task the animal 
performed on the trial. We define our single-trial neuronal measure of belief strength as the Euclidean 
distance from 7a population activity on each trial to the hyperplane. (C) Belief strength is 
schematized as the distance from a rolling ball to a boundary. for trials leading up to the animals’ 5 
decision to switch tasks, the average belief strength decreased monotonically, changed sign right at 
the point the monkey decided to switch tasks and recovered as the new task-belief was reinforced 
(histograms in bottom panel). Normalized activity of task-selective 7a units tracked the same 
dynamics as decoded belief around task switches (lines in bottom panel). Error bars indicate standard 
errors. 10 

 
Likewise, we also estimated trial-by-trial feature discriminability using V1 population responses in the 

corresponding feature encoding dimensions (Figure 3A). As expected, with the same stimuli (i.e. same 
difficulty), trials with larger relevant feature discriminabilities yield better perceptual performances (Figure 
S3A-B). For each task-belief and stimulus condition, we look for potential correlation between belief 15 
strength measured from area 7a and perceptual discriminability measured in V1 (Figure 3B). Despite the 
fact that the resulting correlation is based on few trials and only a few dozen neurons across two very weakly 
connected areas (20), there is a positive correlation between belief and the encoding of the feature that is 
believed to be relevant, but not when the feature is believed to be irrelevant (Figure 3C-D). Together, our 
results indicate that belief-based decision making is an integrated system rather than a separable two-stage 20 
computation (first the categorical task-belief, then the corresponding perceptual decision). 
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Fig. 3 Belief and perception are linked on a trial-by-trial basis. (A) Using a procedure similar to 
that described in Figure 2B, we define the perceptual discriminability of each stimulus feature change 
on each trial as the Euclidean distance from V1 population activity to the hyperplane that best 
classifies the stimulus change of that feature (e.g., higher vs. lower spatial frequency). (B) Trial-by-5 
trial comparison between belief strength (abscissae, decoded from 7a) and perceptual 
discriminability (ordinates, decoded from V1) for an example stimulus/task condition. If belief 
decisions and perceptual decisions are implemented by separate functional modules of the brain, then 
internal fluctuations of the two systems should have no correlation. (C) The belief- spatial location 
discriminability correlation is positive when spatial location is believed to be relevant (histogram and 10 
magenta cumulative distribution curve, p=4×10-6), but not when it is believed to be irrelevant (cyan 
cumulative distribution curve, p>0.05). The two distributions are significantly different (Wilcoxon 
rank sum test, p=0.014). (D) Similarly, belief- spatial frequency discriminability is significantly 
positive when spatial frequency is believed to be relevant (p=0.0015) but not when it is believed to 
be irrelevant (p>0.05). The two distributions are significantly different (Wilcoxon rank sum test, 15 
p=0.03). 

 
In addition to the trial-by-trial interaction between belief and perception, two pieces of evidence 

demonstrate that perception on the previous trial affects how task-belief is updated for the upcoming trial. 
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First, trial information beyond reward outcome affects how task-belief will be updated. On average, the 
monkeys were more likely to switch tasks after they missed rewards on trials with big changes in the 
stimulus feature believed to be relevant (Figure S5B). This reliance of belief updating on vision is captured 
by our ideal observer model which optimally updates belief to changes in the environment based on 
historical reward, stimulus, and choices (see Supplementary Methods and Figure S4). The ideal observer 5 
model consistently predicts the animals’ behavior better than an alternative strategy in which every 
unrewarded trial affects belief independent of visual and choice experience (Figure S5A). These results 
demonstrate that, consistent with findings from studies with similar task structure (10, 12), confidence in 
historical choices inform belief updating.  

Second, even when trial conditions (stimulus, choice, and reward) were identical, there is a trial-to-trial 10 
relationship between fluctuations in the representation of visual stimuli and belief updating. We captured 
uncontrolled fluctuations in perception by fitting estimates of each feature from V1 (Figure 3A) using 
logistic regression (Figure 4A). We used this population neurometric curve to estimate the monkey’s 
confidence about each perceptual choice, and used this to predict the animals’ task switching decisions 
(Figure 4B). This model predicts the animals’ task switching decisions better than an alternative model that 15 
does not incorporate trial-by-trial variability in V1 (Figure S6). Furthermore, if we shuffle V1 responses 
among trials with identical trial conditions (Figure 4C), the model’s switch prediction performance suffers 
significantly (Figures 4D, E). This difference likely reflects confidence fluctuations in past visual 
discrimination, since for identical trial conditions, the monkeys were more likely to switch tasks after they 
missed rewards on trials with larger relevant feature discriminability estimated from V1 (Figure S3C). 20 
Together, these results demonstrate that trial-to-trial fluctuations in perception affect belief updating on the 
subsequent trial, even though these fluctuations provide no benefit for estimating the relevant feature.   

 

 
Fig. 4 Trial to trial variability in visual cortex affects belief updating. (A) Example neurometric 25 
curve showing the ability of a decoder to discriminate spatial frequency changes from the population 
of recorded V1 neurons using logistic regression on the perceptual discriminability of spatial 
frequency (as in Figure 3A). (B) Based on perceptual confidence on each trial (estimated from V1 
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population activity), a normative model determines whether the subject should switch tasks given 
the trial history (see Supplementary Methods). (C) Based on the V1 projections to the relevant feature 
subspace on each trial, we estimate from the neurometric curve, which represents the probability the 
monkey’s behavioral choice is correct, and we take this value to be the confidence in the perceptual 
choice. In the trial-shuffle analysis, we randomly switch the confidence within trials with the same 5 
conditions (dots with same color).  (D) Model predictions after trial-shuffle, conventions as in (B). 
(E) Trial-to-trial variability in V1 is related to belief. The model’s ability to predict whether the 
monkey would switch tasks is better using the actual than trial-shuffled V1 activity. Each data point 
here represents an experimental session, and its coordinates show the sensitivity index (d’) of switch 
prediction for the model based on original (x-axis) or trial-shuffled V1 activity (y-axis). 10 

 
Our findings demonstrate that there is no such thing as a standalone perceptual decision-making 

process: every aspect of perceptual decision-making is profoundly integrated with the dynamic belief states 
that dominate natural behavior. A foraging animal may frequently switch between evaluating food sources 
and searching for subtle signs of predators based on evolving beliefs about the safety of the environment. 15 
Using a combination of multi-neuron, multi-area physiology, complex but controlled behavior, and 
hypothesis-driven dimensionality reduction, we demonstrated that perception and task-belief are intimately 
intertwined such that weak task-beliefs are associated with poor perception of task-relevant information. 
This suggests that fluctuation in belief strength, instead of reflecting a homogenous process such as arousal, 
may have specific effects on the believed relevant information only. It will be interesting to determine 20 
whether fluctuations in other types of belief (e.g. those reviewed in (21)) interact with decision making in 
different ways. 

The idea that dynamic task-beliefs and decisions are inextricably linked opens up exciting avenues for 
therapies that address deficits in flexible decision-making associated with neuropsychiatric disorders. For 
instance, our results imply that cognitive flexibility is mediated by interactions between neural populations 25 
responsible for perception and belief. As such, therapies that affect communication between brain areas 
(e.g. by affecting neurotransmitters like dopamine (22, 23) have the potential to improve cognitive 
flexibility in health and disease. Indeed, stimulants that affect the dopamine system like methylphenidate 
or amphetamines can change focus and flexibility (23, 24). Going forward, studying the highly integrated 
belief-based decision-making system will open up doors to potential treatments of conditions that affect 30 
cognitive flexibility and even solutions for healthy individuals to become better decision-makers in volatile 
environments.  

 
Materials and Methods 
 35 

Experimental subjects 
The subjects in our study were two adult male rhesus monkeys (Macaca mulatta, monkey F weighed 12 
kilograms, monkey G weighed 9 kilograms), who were both experimentally naïve prior to the current 
experiments. All animal procedures were approved by the Institutional Animal Care and Use Committees 
of the University of Pittsburgh and Carnegie Mellon University. After we implanted each animal with a 40 
titanium head post, they were trained to perform two-interval, two-feature discrimination with stochastic 
rule switching (Figure) (monkey 1 was trained for 11 months, monkey 2 for 9 months). We made sure the 
animals understood the essential requirements of the task based on their behavior (Figure 1), before 
implanting each animal with 6×8 microelectrode arrays (Blackrock Microsystems) in both parietal cortical 
area 7a and visual cortical area V1. Each array was connected to a percutaneous connector that allowed 45 
daily electrophysiological recordings. The distance between adjacent electrodes was 400 μm, and each 
electrode was 1 mm long. We identified areas 7a and V1 using stereotactic coordinates and by visual 
inspection of sulcal landmarks. 
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Behavioral task 
To study perceptual decision making under evolving task-beliefs in dynamic environment, we trained the 
animals to perform a two-interval, two-feature discrimination task with stochastic task switching. A trial 
began when the subjects fixated their gaze on a central dot on the screen and they were required to maintain 5 
fixation as long as the dot remained on the screen, or the trial would be aborted and unrewarded. A Gabor 
stimulus was then displayed for 200 ms. After a random delay (300ms to 500ms), a second Gabor stimulus 
was displayed for 200 ms with a slightly different spatial location (shifted left or right) and a slightly 
different spatial frequency (higher or lower), with independently randomized change amounts in the two 
features. The ranges of change amounts are titrated at the beginning of each session so that the overall 10 
perceptual performances of the spatial location task and spatial location task are both approximately 75%.  
Following a subsequent delay of 150ms, the fixation dot disappeared, and the animals looked at one out of 
four peripheral targets to indicate both the inferred relevant feature and the direction of change in that 
feature. The two cyan targets correspond to the increase and decrease of spatial frequency when it was 
believed to be the relevant feature, while the two magenta targets correspond to the left-shift and right-shift 15 
of spatial location. The monkeys were rewarded only if they correctly reported the direction of change in 
the relevant feature. The visual stimuli throughout a trial contain no information about the behavioral 
relevance of features. The relevant feature switches on a randomly chosen 2.5% of trials. The monkeys 
therefore needed to infer the relevant feature based on their choice and reward history. 
 20 

Electrophysiological recording 
All visual stimuli were displayed on a linearized CRT monitor (1,024 × 768 pixels, 120-Hz refresh rate) 
placed 57 cm from the animal. We monitored eye position using an infrared eye tracker (Eyelink 1000, SR 
Research) and used custom software (written in Matlab using the Psychophysics Toolbox, (25) to present 
stimuli and monitor behavior. We recorded eye position and pupil diameter (1,000 samples per s), neuronal 25 
responses (30,000 samples per s) and the signal from a photodiode to align neuronal responses to stimulus 
presentation times (30,000 samples per s) using hardware from Ripple. 
 
We recorded neuronal activity from Utah arrays during daily experimental sessions for several months in 
each animal (89 sessions from monkey F and 68 sessions from monkey G). We set the threshold for each 30 
channel at three times the standard deviation and used threshold crossings as the activity on that unit. We 
positioned the stimuli to maximize the overlap between potential stimulus locations and the joint receptive 
fields of V1 units, as determined using separate data collected while the monkeys fixated and Gabor stimuli 
were flashed across a range of retinal positions. 
 35 

We included experimental sessions if they contained at least 480 completed trials (where monkeys 
successfully maintained fixation until they indicated their choice). We analyzed the activity of area 7a units 
during the first 300ms after the offset of the first stimulus, when there is no Gabor stimulus on the screen; 
and the activity of area V1 units during stimulus display periods, shifted with 34 ms visual latency. Units 
from area 7a were included if their average activity during the delay period was at least 5 sp/s. Units from 40 
V1 were included in the analyses if their average stimulus response was 1) at least 25% larger than baseline 
activity, measured 100ms before stimulus onset, and 2) larger than 5 sp/s. These procedures resulted in 89 
sessions from Monkey F and 68 sessions from Monkey G; average 53 7a units, 46 V1 units, and 1053 
completed trials per session.  
 45 

Population analyses 
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To obtain a continuous neuronal measure of the animals’ belief state, we analyzed the activity of the 
population of 7a neurons during the delay period in a high dimensional space in which the activity of each 
unit was one dimension. We used linear discriminant analysis to identify the best hyperplane to 
discriminate between 7a population activity on trials where monkeys chose spatial location targets from 
trials when they chose spatial frequency targets. We defined the belief strength on each trial as the 5 
Euclidean distance from the 7a population response to the discriminant hyperplane. Similarly, we 
obtained a continuous neuronal measure of the discriminability of stimulus change using V1 activity. 
 
Normative behavioral model 
We use a normative model to characterize belief updating of an ideal observer, given the trial history and 10 
the perceptual ability of the monkey (10, 12). Based on the monkeys’ psychometric curve in an 
experiment session and the change amount of the chosen feature in each trial, we estimated the trial-by-
trial probability that their perceptual choice was incorrect. For a non-reward trialed, the odds of 
likelihoods that the actual task is different from the monkeys’ subjective belief is given by 

𝑝(𝑑𝑖𝑓𝑓|𝑛𝑟, 𝜃, 𝑐)
𝑝(𝑠𝑎𝑚𝑒|𝑛𝑟, 𝜃, 𝑐)

=
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑑𝑖𝑓𝑓) ∙ 𝑝(𝑑𝑖𝑓𝑓)

𝑝(𝑛𝑟, 𝜃, 𝑐)
∙

𝑝(𝑛𝑟, 𝜃, 𝑐)
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑠𝑎𝑚𝑒) ∙ 𝑝(𝑠𝑎𝑚𝑒)

=
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑑𝑖𝑓𝑓)
𝑝(𝑛𝑟, 𝜃, 𝑐|𝑠𝑎𝑚𝑒)

 15 

 
where 𝜃 and 𝑐 refer to the stimulus change amount and perceptual choice in the feature the monkeys 
believed to be relevant; and 𝑛𝑟 refers to a non-reward trial outcome. We assumed that overall, the 
monkeys experienced an equal number of trials where the feature was the same or different from their 
current belief (i.e., 𝑝(𝑑𝑖𝑓𝑓) = 𝑝(𝑠𝑎𝑚𝑒)). The monkeys were never rewarded on trials when their 20 
subjective task-belief was different from the actual task rule, so 𝑝(𝑛𝑟, 𝜃, 𝑐|𝑑𝑖𝑓𝑓) = 1. Meanwhile when 
subjective task-belief is consistent with the actual rule, the probability of perceptual error can be simply 
derived from the psychometric function associated with that choice: 

𝑝(𝑑𝑖𝑓𝑓|𝑛𝑟, 𝜃, 𝑐)
𝑝(𝑠𝑎𝑚𝑒|𝑛𝑟, 𝜃, 𝑐)

=
1

1 − 𝑝(𝜃|𝑐)
 

where 𝑝(𝜃|𝑐) is the psychometric function associated with the perceptual choice 𝑐 (Figure 1C). In Figure 25 
4, the psychometric function is replaced with the neurometric function (see Population analyses section). 
 
For 𝑛 consecutive non-reward trials, the likelihood ratio grows larger as perceptual evidence for a task 
switch grows as 

1 − ℒ!"#$%

ℒ!"#$%
=6

1
1 − 𝑝(𝜃&|𝑐&)

!

&'(

 30 

where ℒ! is the likelihood that the task has not changed after 𝑛 consecutive non-rewarded trials 
(examples in Figure S4A). Aside from perceptual evidence, the observer presumably also has prior 
knowledge about the volatility of the task environment. After 𝑛 consecutive non-reward trials, the prior 
probability that the task stays the same with the last rewarded trial is  

𝑃𝑟!"#$% = 𝑃𝑟!)("#$% ∙ (1 − ℎ) + (1 − 𝑃𝑟!)("#$%) ∙ ℎ 35 

where ℎ represents the hazard rate of task change at each trial (for an ideal observer, ℎ = 0.025, see 
behavioral task section), with 

𝑃𝑟*"#$% = 1 − ℎ 
Examples of 𝑃𝑟!"#$% under different environment volatility are shown in Figure S4B. Taking both 
perceptual evidence and prior knowledge of environment volatility into account, the model shows that an 40 
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ideal observer should switch tasks if the posterior probability is higher for actual task rule being different 
from the subjective task-belief than when they are the same (Figure S4C), i.e.: 

𝑠𝑤𝑖𝑡𝑐ℎ	𝑜𝑑𝑑𝑠 = loglog((1 − 𝑃𝑟!"#$%) ∙ (1 − ℒ!"#$%)) − loglog(𝑃𝑟!"#$% ∙ ℒ!"#$%).	 
𝑤ℎ𝑒𝑛	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑠𝑤𝑖𝑡𝑐ℎ	𝑡𝑎𝑠𝑘  

 5 
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