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Abstract:  

To accelerate the translation of cancer nanomedicine, we hypothesize that integrated genomic 
screens will improve understanding of the cellular processes governing nanoparticle trafficking. 
We developed a massively parallel high-throughput screening method leveraging barcoded, 
pooled cancer cell lines annotated with multi-omic data to investigate cell association patterns 
across a nanoparticle library spanning a range of formulations with clinical potential. This 
approach identified both the materials properties and cell-intrinsic features mediating nanoparticle-
cell association. Coupling the data with machine learning algorithms, we constructed genomic 
nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We engineered 
cell lines to validate SLC46A3 as a biomarker whose expression inversely predicts liposomal 
nanoparticle uptake. Our work establishes the power of massively parallel pooled cell screens and 
enables the identification and utilization of nanoparticle predictive biomarkers to rationally design 
nanoformulations for specific patient populations. 
 
Main Text:  

Nanoparticle (NP)-based therapeutics have enormous potential for personalized cancer 
therapy as they can encapsulate a range of therapeutic cargos including small molecules, 
biologics and, more recently, nucleic acids.1, 2 Therapy-loaded NPs can be designed to prevent 
undesired degradation of the cargo, increase circulation time, and direct drugs specifically to 
target tumors. There have been notable successes in clinical translation of nanomedicines, 
including liposomal formulations of doxorubicin (Doxil) and irinotecan (Onivyde®).3 These 
formulations extend the half-life of the active agent and have the potential to lower toxicity, 
but do not efficiently accumulate in tumors.4, 5  

Efforts to improve NP accumulation in tumors via active targeting motifs have been met 
with limited success, both in the laboratory and the clinic.1, 6 While progress has been made in 
understanding how specific physical and chemical NP properties affect trafficking and uptake, 
comprehensive evaluation of multiple NP parameters in combination has thus far been elusive. 
Additionally, tissue and cellular heterogeneity make it prohibitively challenging to gain a 
holistic understanding of which NP properties dictate successful trafficking and drug 
delivery.7, 8 Once these NP parameters are considered in combination, the number of unique 
formulations to test increases exponentially, particularly as comparisons across several 
systems need to be drawn. A further barrier is the need to adapt the nanoparticle formulation 
of each encapsulated therapy for a given drug or target, as each formulation has its own unique 
biological fate.8 As therapies continue to increase in molecular complexity, new nanocarrier 
formulations capable of delivering these entities will need to be developed and examined for 
their unique trafficking properties. 

We and others have designed panels of NPs to elucidate the structure-function relationships 
to cellular targeting and uptake.9-14 However, there is a need to equally consider the influence 
of biological heterogeneity on these interactions. In the era of precision medicine, with the 
desire to deliver molecularly targeted and gene-based therapies to specific subcellular 
compartments within cancer cells, it is imperative to holistically probe the structure-function 
relationship of NPs as they relate to cellular interactions.  
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Inspired by recent advancements in cancer genomics,15 we postulated that applying these 
same techniques to the study of cancer nanomedicine would uncover both the cell- and NP-
specific features mediating efficient targeting and delivery. The combination of pooled 
screening with multi-omic annotation has accelerated target discovery and uncovered 
previously unrecognized mechanisms of action in small molecule screens. Specifically, in the 
Profiling Relative Inhibition in Mixtures (PRISM) method, DNA-barcoded mixtures of cells 
have recently been used for multiplexed viability screening. In cell line pools grouped by 
doubling time, 500 barcoded cell lines have been screened against tens of thousands of 
compounds to identify genotype-specific cancer vulnerabilities.16, 17  

To comprehensively capture pan-cancer complexities and enable the statistical power to 
link NP association with cell intrinsic characteristics, we developed a competitive phenotypic 
screen to assess NP-cell associations of a curated NP library across hundreds of cancer cell 
lines simultaneously. By pooling and plating 488 DNA barcoded cancer cell lines in a single 
well, we screened the interactions of a range of NP formulations with varied core compositions, 
surface chemistries, and diameters. We identified that NP core composition has a dominating 
influence on cell-specific interactions of the studied parameters. Coupling our biomarker 
findings with k-means clustering, we constructed genomic interaction networks associated 
with NP engagement, enabling the identification and connection of genes associated with the 
binding, recognition, and subcellular trafficking of distinct NP formulations. Moreover, 
through the use of univariate analyses and random forest algorithms, we identified that the 
gene SLC46A3 holds significant value as a predictive, NP-specific biomarker, with expression 
inversely correlated to liposomal NP uptake. Our work adds a new dimension to the study of 
cancer nanomedicine, demonstrating the power of pooled screening with a diverse NP library 
to advance the field. 

 

nanoPRISM: screening nanoparticle association with pooled cell lines 
To screen hundreds of cancer cell lines simultaneously for NP-cancer cell line association 

patterns, we cultured pooled PRISM cells and incubated them with fluorescent NPs. We then 
implemented a fluorescence-activated cell sorting (FACS) adaptive gating strategy to sort cell 
populations into four bins (quartiles, A-D) based on fluorescence signal as a proxy for the 
extent of NP-cell association (Figure 1A). Experimental parameters were optimized to ensure 
sufficient cell number and barcode representation post-cell sorting (Figure S1) and NPs were 
incubated for 4 and 24 hours. 

For this screen, we designed a modular NP library to capture the effects of NP core 
composition, surface chemistry, and size on cell interactions. This panel of 35 NPs 
encompassed both clinical and experimental formulations. Specifically, anionic liposomes 
were formulated and electrostatically coated with cationic poly-L-arginine (PLR) followed by 
a series of polyanions.18-22 The polyanions were selected for their synthetic (polyacrylic acid, 
PAA), semisynthetic (poly-L-aspartate, PLD; poly-L-glutamate, PLE), or natural (hyaluronate, 
HA; dextran sulfate, DXS; fucoidan, FUC; alginate, ALG; chondroitin sulfate, CS) origin as 
well as the inclusion of both carboxylate and sulfate ions.23-25 These same electrostatic coatings 
were used to modify polymeric NP cores (polylactide-co-glycolide, PLGA) to test the effects 
of core composition on NP-cell interactions. We optimized formulations to obtain a diameter 
of approximately 100 nm for the liposome and PLGA formulations as the similar sizes would 
enable cross-core comparisons. We also included commercially manufactured fluorescent 
carboxylate- and sulfate-modified polystyrene (PS) nanoparticles in a range of diameters from 
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20-200 nm, enabling study of particle size and surface chemistry. Because of the clinical 
importance of polyethylene glycol (PEG)-containing formulations,26 PEGylated versions of 
liposome, PLGA, and PS particles were prepared, including the drug-free versions of two 
commercial formulations, liposomal doxorubicin (Doxil) and liposomal irinotecan 
(Onyvide®). All of the nanoparticles examined exhibited negative or neutral net charge, as the 
focus of this work is on systemic nanoparticle delivery systems. Positively charged 
nanoparticles have been shown to undergo nonspecific charge interactions with cells and 
proteins, leading to toxicity and premature clearance in vivo.27 Dynamic light scattering (DLS) 
was used to characterize the diameter, zeta potential, and polydispersity index (Figure 1B, 
Tables S1-S2) of this NP library.  

To ensure that our methods led to robust and meaningful data we selected an anti-epidermal 
growth factor receptor (EGFR) antibody as an active targeting control. A nonlethal EGFR 
antibody or IgG isotype control was covalently incorporated onto a liposome via a PEG 
tether.28 

After incubation with the NP library and fluorescence-activated cell sorting, cells were 
lysed, and the DNA barcodes were amplified, sequenced, and deconvoluted according to 
previously detailed protocols.16, 29 After quality control analysis of technical (n=2) and biologic 
(n=3) replicates, all 488 cell lines met quality control measures and were carried forward for 
downstream analyses (Figure S2, Supplementary Text).  

A probabilistic model was developed and applied to the data to infer the relative 
distribution of each cell line into the pre-determined bins (A-D) for each NP formulation. The 
probability of a cell from a given cell line falling into a given bin is used to represent those 
distributions, i.e., PA+ PB+ PC+ PD = 1 (Figure 1C-D). The technical details and the model's 
implementation are presented in the Supplementary Text section. Given the concordance of 
the inferred probabilities among the biologic replicates (Figure S3), we collapsed the replicates 
through their arithmetic average. Probabilities were then summarized using a weighting factor 
alpha (a) to calculate a weighted average (WA) for each NP-cell line pair: WA = -aPA-
PB+PC+aPD in which a higher WA implies higher NP-cell association and vice versa (Figure 
1E). We trialed a range of weighting factors (a = 2, 10, 20 and 100) and found that downstream 
results were unchanged with the higher a values (Figure S4), and therefore, a = 2 was used 
for subsequent analyses.  

 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438521


 

5 
 

 
Figure 1.  Assessing NP-cell interactions across hundreds of cancer cell lines simultaneously. 
(A) Schematic of the nanoPRISM assay: NPs are incubated with pooled cancer cells before 
fluorescence-activated cell sorting (FACS) by NP-association and sequencing of DNA barcodes 
for downstream analyses.  (B) Characterization of the diameter and zeta potential of the NP library 
via dynamic light scattering. Data is represented as the mean and standard deviation of three 
technical repeats. (C) Raw data from the screen was obtained in the form of barcode counts, with 
similar numerical distribution of barcodes in each bin, represented as a stacked histogram. (D) 
Accounting for baseline differences in barcode representation yields the probability (P) that each 
cell line will be found in a particular bin. (E) Probabilities are collapsed into a single weighted 
average (WA) for each NP-cell line pair. (F) A similarity matrix collapsing WA values for 488 
cell lines reveals clusters of NP formulations with the same core formulation. (G-H) Principal 
component analysis (PCA) of NP-cell line WA values at 24 h confirms distinct clustering of NP 
formulations based on core composition but cell lines do not form clusters, indicating lineage does 
not significantly influence NP-cancer cell interactions. 

 

Cancer cells distinguish nanoparticles based on core composition 
Pearson-based unsupervised hierarchical clustering of pairwise WAs identified NP core 

material as a strong determinant of cell association, with the three core materials tested 
(liposomal, PLGA and PS) forming distinct clusters (Figure 1F and S5A). This result was 
unexpected as we hypothesized surface chemistry to be a larger predictor of NP-cell 
interactions. Principal component analysis (PCA) similarly identified these core specific trends 
at both the 4 and 24 hour time points (Figures 1G and S5B). Further analysis within each core 
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material did reveal surface chemistry dependent trends, though they were more subtle than 
core-based clustering (Figure S6). 

In contrast, no clusters were apparent when PCA was performed based on cell line, 
indicating that cancer cells of the same lineage did not have similar NP-association trends 
(Figure 1H, Figure S5C). Heterogeneity in NP-cell association in proliferating cells has been 
attributed to various aspects of cell growth and metabolism.30-33 To ensure that differential cell 
proliferation did not confound our results, we performed a parallel growth experiment with the 
same pooled cells and found no correlation between estimated doubling time and WA (Figure 
S7).  

 
Cell-intrinsic features mediate nanoparticle trafficking 

We applied data from the Cancer Cell Line Encyclopedia (CCLE)34, 35 to identify genomic 
features that act as predictive biomarkers for NP-cell association. To do this, we employed 
both univariate analyses and a random forest algorithm to correlate the baseline molecular 
features of each cell line (cell lineage; gene copy number; messenger RNA, microRNA, protein 
or metabolite abundance; function-damaging, hotspot or missense mutations) with NP 
association. 

 
EGFR-targeting compounds identify relevant biomarkers with high confidence 

Using univariate analysis for all CCLE features, we identified EGFR gene expression and 
protein abundance as the two most significantly correlated hits (q = 4x 10-100 and q= 4x10-76, 
respectively) with anti-EGFR antibody, but much less significantly (q = 6 x 10-9 and q = 4 x 
10-10, respectively) associated with the isotype control (Figure 2A, top panels).  

In EGFR-conjugated liposomes, these same hits were also identified more significantly 
(q=6x10-21 and q=2x10-18, respectively) than the IgG control (q = 3 x 10-9 and q = 3 x 10-6, 
respectively) (Figure 2A, bottom panels). The statistical significance of EGFR biomarkers was 
lower for the antibody-conjugated liposome than the free antibody, which may be due to steric 
blockage introduced by covalently linking an antibody to a NP surface that may interfere with 
binding to its target.36 Thus, we demonstrated the ability to quantitatively compare expected 
biomarker targets of both free antibodies and antibody-conjugated NPs using our platform. 
This method of analysis will provide therapeutic insights in the design of antibody-drug 
conjugates, specifically in evaluating the effects of conjugation site or linker chemistry.  
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Figure 2. Correlative genomic analysis identifies expected validation biomarkers as well as 
hundreds of formulation- and time-dependent biomarkers. (A) Univariate analysis reveals 
EGFR gene expression and protein abundance (via reverse phase protein array; RPPA) to be 
strongly and positively correlated with high anti-EGFR association (top left). EGFR-related 
markers are much less significant in the isotype control (top right). The same EGFR-related hits, 
in addition to NP specific markers, are observed for antibody-conjugated liposomes (bottom row). 
(B) Univariate analysis identifies genomic features correlated with NP association. All biomarkers 
meeting a significance threshold of -log(10) q-value >10 are shown as stacked bar graphs separated 
by NP formulation and time point. PEGylated NP formulations are highlighted with a gray 
background.  (C) A heatmap showing all gene- and protein- expression features with positive 
correlation identified by random forest algorithm in columns, and NP formulations in rows. 
Features are colored based on their Pearson correlation and clustered using k-means clustering, 
with clusters 1+2 highlighted as features present across multiple NP formulations.  (D) Visual 
representation of the STRING network generated by inputting the 205 features from clusters 1+2, 
with network statistics. Each node represents a feature, and the edges represent predicted 
functional associations. The most interconnected nodes are labeled in the zoomed inset. 
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Biomarker number and significance are influenced by nanoparticle properties 
We employed univariate analysis to correlate association and CCLE features for each NP 

formulation, thresholding q-values less than 1x10-10 (Figure 2B). Selection of this cutoff was 
guided by the IgG-conjugated antibody analysis, which returned few hits above this threshold. 
For liposomal NPs, we observed that the number of significant biomarkers was higher at 4 h 
than 24 h. We believe this may be indicative of active uptake processes, established to take 
place within the first few hours of NP-cell interactions, whereas at 24 hours, we may be 
capturing features associated with less specific interactions.37, 38 We also observed that 
liposome surface modification influences the number and significance of biomarkers. 
Specifically, liposomes electrostatically coated with polysaccharides (HA, ALG, DXS, FUC, 
CS) had the highest amount of associated biomarkers, which we hypothesize is due to the high 
degree of interactions between sugars and cell surface proteins as well as the potential for 
naturally occurring polysaccharides to interact with a wide range of cell surface elements.24, 39, 

40 In line with this hypothesis, the addition of PEG, a well-established antifouling polymer, 
reduces the number and significance of associated biomarkers almost to zero. In contrast to the 
highly specific hits generated from EGFR-conjugated liposomes (formulated using 25% PEG 
liposomes), this abrupt decrease in significant biomarkers further indicates the ability of our 
platform to identify specific NP binding and recognition elements. In contrast to the liposomal 
formulations, PLGA formulations, regardless of surface modification, resulted in few 
biomarkers at either time point. Lastly, a high number of significant biomarkers was associated 
with both carboxylated and sulfated PS NPs included in our screen, though there was no time 
dependence, in contrast to the liposomal formulation. While this result was initially surprising, 
as the PS formulations are made of synthetic polystyrene polymers, meaningful biological 
interactions with anionic polystyrenes, both in polymer and particle form, have been reported.41 
Specifically, it was described that these systems have the appropriate mix of hydrophobicity 
and anionic charge character to interact favorably with trafficking proteins, including the 
caveolins.  
 
NP biomarkers are connected and create trafficking networks 

We additionally identified predictive biomarkers for the tested NP formulations using a 
random-forest algorithm (methods in Supplementary Text). We narrowed these hits to include 
the categories of gene expression, gene copy number, or protein abundance. Data from the 4 h 
time point was chosen for this analysis based on the EGFR-related hits for liposomes, which 
were more significant at 4 h than at 24 h. As we were interested in applying this approach to 
identify cellular features positively correlated with uptake (e.g., increased expression of 
trafficking proteins), hits negatively correlated with NP association were removed from this 
analysis. Next, we used K-means clustering to visualize biomarkers based on their relative 
importance and presence across formulations (Figure 2C). Clusters 1 and 2 contained many 
hits shared across NP formulations and were especially enriched for liposomal and PS NPs. 
These 205 genes and proteins were input into the STRING database42-44 to generate a protein-
protein interaction (PPI) network that was found to be highly interconnected (PPI enrichment 
p-value <1x10-16) (Figure 2D). Notably, the network is enriched in proteins found in the plasma 
membrane, extracellular region, and extracellular matrix (false discovery rate [FDR] = 8x10-

12, 3x10-9, and 3x10-8, respectively) based on enrichment analysis with gene ontology (GO) 
localization datasets (Figure S8).45-47 The identification of overlapping biomarkers that are 
localized to the cell surface and have established protein-protein interactions led us to 
hypothesize that these proteins are important in early NP trafficking. Enrichment analyses 
using GO molecular functions datasets showed enrichment in numerous binding processes 
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(Data S1, Figure S8), giving further credence to this theory. These results serve as a framework 
for the comprehensive investigation of cellular processes important for NP engagement, which 
may prove useful for fundamental trafficking studies and target identification.   
 
SLC46A3 is a strongly predictive biomarker for liposomal nanoparticle uptake 

 

 
Figure 3. Native expression of the lysosomal transporter SLC46A3 is strongly predictive of 
NP-cell interaction for liposome formulations. (A) Univariate analysis identifies SLC46A3 
expression as strongly yet inversely correlated with liposome association, regardless of liposomal 
surface modification. (B) Using linear regression to evaluate the biomarker relationship across 
core formulations reveals SLC46A3 expression is inversely correlated with NP association in 
liposome-cell line pairs (p < 0.001) but not PLGA- and PS-cell line pairs (p > 0.05); n=488 for 
each plot. (C) Cell lines in the nanoPRISM pool exhibit a range of natural SLC46A3 expression 
levels with a log linear correlation with uptake of liposomes. (D) This correlation is also exhibited 
when assessing liposome-cell associations via flow cytometry in a non-pooled fashion (p = 
0.013).  Cell lines in red were not part of the pooled PRISM screen. Data represented in D is shown 
as the mean and standard deviation of four biological replicates.  
 

Evaluating univariate results across NP formulations, we identified one biomarker with a 
strong, inverse relationship with liposomal NP association: expression of solute carrier family 
46 member 3 (SLC46A3), a lysosomal transporter. SLC46A3 has been implicated in the 
metabolism of antibody-drug conjugates,48-50 but this is, to our knowledge, the first description 
of SLC46A3 as a NP-specific biomarker. Moreover, downregulation of SLC46A3 has been 
reported to play a role in cancer cell malignancy and therapy resistance in several cancers.51, 52 
Given these significant therapeutic implications, we sought to validate the predictive power of 
SLC46A3 expression for liposomal NP association.  

SLC46A3 expression was the most significant hit on univariate analysis and also the top 
ranked random forest feature for each liposomal NP tested at 24 h, regardless of surface 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438521


 

10 
 

modification (Figures 3A and S9A, B). This inverse relationship between SLC46A3 expression 
and NP association was found to be specific to liposomal NPs, and not observed with PLGA 
or PS NPs (Figures 3B and S9A).  

We selected nine cancer cell lines (CAOV3, DAOY, HCC1143, LOXIMVI, MCF7, 
MDAMB231, SJSA-1, SW948, T47D) from the nanoPRISM pool with a range of native 
SLC46A3 expression levels for screening in a non-pooled fashion (Figure 3C). Analogous to 
the pooled screen, individual cell lines were profiled using flow cytometry and NP-associated 
fluorescence was quantified after 24 h incubation (Figures 3D and S10, S11). In line with 
observations from pooled screening, the inverse relationship between liposome association and 
native SLC46A3 expression was maintained, suggesting that SLC46A3 may play a key role in 
trafficking of liposomal NPs.   

We further selected four cell lines (HeLa, HepG2, HCC1395, Jurkat) that were not included 
in the PRISM pools with a range of native SLC46A3 expression levels to profile for liposomal 
NP association. We found that liposomal NP association again inversely correlated with 
SLC46A3 expression levels, recapitulating the SLC46A3-dependent trend observed in PRISM 
cells (Figure 3D).  

 
SLC46A3 expression regulates liposomal nanoparticle uptake 

 
We selected two cancer cell lines from the pooled screen to further functionally probe 

whether SLC46A3 expression level governs NP association: LOXIMVI, with low native 
expression, and T47D, with high native expression (Figure 4A). These cell lines displayed a 
strong phenotype in the pooled screen, with LOXIMVI having high association and T47D 
having low association with liposomal NP formulations (Figure 4B).  
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Figure 4. Modulating SLC46A3 expression in cancer cell lines is sufficient to regulate 
strength of interaction with liposome NP formulations. (A) T47D and LOXIMVI cells have 
high and low SLC46A3 expression, respectively, with respect to SLC46A3 expression levels 
represented in the nanoPRISM cell line pool. (B) LOXIMVI cells have predominantly high 
association with all tested liposomal NP formulations and T47D cells have low association with 
all tested liposomal NP formulations. (C) Using lentivirus to overexpress SLC46A3 in LOXIMVI 
cells and CRISPR/Cas9 to knock out SLC46A3 in T47D cells, we show that modulation results in 
significantly changed liposome association, as determined via flow cytometry (** p < 0.001, 
Kruskal-Wallis test), NP-associated fluorescence is defined as median fluorescence intensity 
normalized to untreated cells. (D) These shifts in NP association were consistently observed across 
all tested liposomes, independent of surface modification. No shifts were observed with PLGA or 
PS formulations. Representative optical microscopy images of engineered T47D cells treated with 
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(E) liposomal and (F) Lipo-PLE NPs for 24 h revealed changed subcellular trafficking in the 
T47D-SLC46A3 KO line with increased intracellular uptake. Wheat germ agglutinin (red) was 
used to stain cell membranes (cyan = NPs, yellow = nuclei). Scale bar = 5 µm. 

 
First, we performed lentiviral vector overexpression of SLC46A3 or luciferase (vector 

control) in LOXIMVI cells (Figure S12). Overexpression of SLC46A3 in LOXIMVI cells 
significantly abrogated interaction with bare liposomes (p = 0.006) using flow cytometry 
profiling (Figure 4C). Next, we employed the CRISPR/Cas9 system with single guide RNA 
directed against SLC46A3 or GFP (vector control) in T47D cells and generated clonal knockout 
cell lines (Figures S13). The T47D-SLC46A3 knockout cell line demonstrated significantly 
increased association with bare liposomes compared to parental or vector control lines (p 
0.0017, Figure 4C). We also confirmed that the presence of serum proteins in cell culture media 
does not abrogate this trend (Figure S14). Taken together, these data indicate modulation of 
SLC46A3 alone in cancer cells is sufficient to predictably govern association and uptake of an 
unmodified liposome.  

To expand on these results, we further tested our engineered cell lines with a subset of our 
NP library, including surface functionalized liposomes as well as PLGA and PS NPs. In line 
with our prior observations, association of all tested liposomal NPs was inverse to SLC46A3 
expression (Figure 4D). Moreover, no significant changes in NP association were observed for 
PLGA and PS NPs, further validating the specificity of SLC46A3 as a liposomal biomarker. 

We utilized optical microscopy to investigate the impact of SLC46A3 on subcellular 
trafficking of liposomal NPs (Figure 4E). In agreement with the flow cytometry results, we 
saw minimal internalization of liposomal NPs in T47D vector control cells. In contrast, T47D-
SLC46A3 knockout cells took up larger amounts of liposomes, which appear to localize in 
vesicles near the cell membrane (Figure 4E, bottom panels).  

As SLC46A3 has been implicated in transmembrane trafficking,48-50 we sought to 
investigate how modulating expression might affect NPs with established cell surface 
localization. To this end, we selected liposomes electrostatically coated with poly-L-glutamate 
(Lipo-PLE), which we have previously established to remain extracellularly associated on a 
number of ovarian cancer cell lines, for further study.9, 53 In agreement with our prior findings, 
we observed that Lipo-PLE NPs remain predominantly extracellularly associated with the 
T47D vector control cells (Figure 4F, upper panels). However, we observed a stark difference 
in Lipo-PLE trafficking in the T47D-SLC46A3 knockout cells, where in addition to some 
extracellular association, a significant portion of particles appear to be internalized in vesicles 
distributed uniformly throughout the cytoplasm (Figure 4F, bottom panels).  

 
Discussion and Conclusions 

This work represents the first high-throughput interrogation of NP-cancer cell interactions 
through the lens of multi-omics. Harnessing the power of pooled screening and high 
throughput sequencing, we developed and validated a platform to identify predictive 
biomarkers for NP interactions with cancer cells. We utilized this platform to screen a 35 
member NP library against a panel of 488 cancer cell lines. This enabled the comprehensive 
study and identification of key parameters mediating NP-cell interactions, highlighting the 
importance of considering both nanomaterials and cellular features in concert.  

Moreover, through the use of univariate analyses and random forest algorithms, we 
identified biomarkers correlated with NP association. The robust and quantitative nature with 
which we detected EGFR hits for antibody-targeted NPs shows the utility of this platform for 
the development and optimization of antibody-targeted therapeutics.  
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By clustering NP-specific biomarkers across formulations, we constructed interaction 
networks, identifying and connecting genes associated with NP binding, recognition, and 
subcellular trafficking. This provides the scientific community with a blueprint for the 
fundamental study of cellular processes mediating NP engagement, with applications for both 
basic and translational research.  

We additionally identified gene expression of SLC46A3 as a strongly predictive biomarker 
of liposomal NP uptake. We first validated these findings in a panel of non-pooled cell lines, 
followed by engineered cell lines with modulated SLC46A3 levels. Importantly, as all current 
FDA approved NPs for anticancer applications are liposomal formulations, there is significant 
potential for this biomarker to be quickly implemented in clinical studies with existing, 
approved formulations. Our in vitro findings present the key first step toward identifying and 
utilizing such NP-specific biomarkers. 

In summary, we present a powerful platform to study NP-cancer cell interactions 
simultaneously through the use of pooled screening, genomics, and machine learning 
algorithms. This provides a new dimension to the study of cancer nanomedicine. Application 
of this platform will serve useful not only for the rational design of nanocarriers, but also for 
the identification of specific phenotypes primed to benefit from targeted drug delivery and 
nanomedicine.  
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