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Abstract 48 
Functional connectivity (FC) studies have predominantly focused on resting state, where 49 

ongoing dynamics are thought to primarily reflect the brain’s intrinsic network architecture, 50 

which is thought to be broadly relevant to brain function because it persists across brain states. 51 

However, it is unknown whether resting state is the optimal state for measuring intrinsic FC. We 52 

propose that latent FC, reflecting patterns of connectivity shared across many brain states, may 53 

better capture intrinsic FC relative to measures derived from resting state alone. We estimated 54 

latent FC in relation to 7 highly distinct task states (24 task conditions) and resting state using 55 

fMRI data from 352 participants from the Human Connectome Project. Latent FC was estimated 56 

independently for each connection by applying leave-one-task-out factor analysis on the state FC 57 

estimates. Compared to resting-state connectivity, we found that latent connectivity improves 58 

generalization to held-out brain states, better explaining patterns of both connectivity and task-59 

evoked brain activity. We also found that latent connectivity improved prediction of behavior, 60 

measured by the general intelligence factor psychometric g. Our results suggest that patterns of 61 

FC shared across many brain states, rather than just resting state, better reflects general, state-62 

independent connectivity. This affirms the notion of “intrinsic” brain network architecture as a 63 

set of connectivity properties persistent across brain states, providing an updated conceptual and 64 

mathematical framework of intrinsic connectivity as a latent factor. 65 

  66 
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Introduction  67 

A major goal in cognitive neuroscience in recent years has been to move away from 68 

characterizing brain activation and connectivity in specific task states towards understanding 69 

“intrinsic” or context-free brain activity. Such activity reflects the more than 95% of metabolic 70 

brain activity that remains unchanged across cognitive demands (Raichle, 2006). This ongoing 71 

brain activity persists across states and is not attributable to external stimuli or task demands. 72 

Efforts to understand intrinsic function have focused primarily on statistical associations between 73 

brain activity time series (functional connectivity; FC) during the resting state (Fox & Raichle, 74 

2007), which has revealed an intrinsic brain functional network architecture that recapitulates 75 

patterns of task-evoked brain activity (Cole, Ito, Bassett, & Schultz, 2016; Smith et al., 2009) and 76 

structural connectivity (Honey et al., 2009). Despite its importance for understanding brain 77 

function, many uncertainties remain on how to best estimate intrinsic FC. While some efforts have 78 

focused on the need to obtain longer resting-state scans (Anderson, Ferguson, Lopez-Larson, & 79 

Yurgelun-Todd, 2011; M. Elliott et al., 2019; Hacker et al., 2013; Laumann et al., 2015) more 80 

recent approaches have highlighted advantages of combining resting-state and task data to analyze 81 

intrinsic activity. 82 

This second set of approaches leverages functional data across different task (and rest) 83 

scans in order to improve the reliability of FC estimates and their predictive utility (M. Elliott et 84 

al., 2019) Because of the relatively high stability of FC networks across task states (Cole, Bassett, 85 

Power, Braver, & Petersen, 2014; Gratton et al., 2018; Krienen, Yeo, & Buckner, 2014), 86 

combining data across task runs aims to distinguish what is common across a larger set of brain 87 

states. What is common therefore reflects the intrinsic patterns of covariance in the brain, while 88 

variation between different brain states is treated as noise in the combined data. However, this 89 
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work largely relies on averaging data from multiple scans together (M. Elliott et al., 2019). While 90 

this approach has been shown to be useful, and has the advantage of simplicity, there are potential 91 

theoretical limitations to such an approach that may limit its generalizability. Given its ubiquity 92 

and close-formed, arithmetic solution, the average is rarely thought of as a formal statistical model. 93 

However, recent work (McNeish & Wolf, 2020) has shown that the average can be thought of as 94 

a restricted case of the more-general factor analytic model. Embedding the average in a 95 

theoretically rich statistical framework is likely to offer advantages for interpretation of results 96 

using this measure as well as insights into the measure itself. 97 

Factor analysis has a long tradition in the behavioral sciences (Spearman, 1904; Thurstone, 98 

1935) and is an invaluable tool in psychometrics and psychological measurement. Its key insight 99 

is that observed measures (e.g., behavioral responses or fMRI scans) are imperfect manifestations 100 

of an unobserved (i.e., latent) variable (Bollen, 2002). In the factor model, observed indicators (yi,t; 101 

i = individual, t = task state) are modeled as dependent on the underlying latent factor (η; Figure 102 

1). Variability in the indicators is partitioned into common variance (transmitted through the factor 103 

loading matrix, 𝚲) and unique variance (ɛt). In this model, latent FC represents an unmeasured, 104 

underlying brain state that is common to all observed brain states (i.e., the indicators: resting state, 105 

motor task, etc.), but we also explicitly model additional variance that is only found in each 106 

individual task state through the error terms. Factor loadings for the individual task states (e.g., 𝜆11 107 

for Rest) in this single-factor model can be interpreted as the proportion of variance explained in 108 

each task state by latent FC (similar to R2 in regression). 109 
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 110 
Figure 1. Factor Model. A set of indicators (e.g., Rest, the Motor task, etc.) are modeled being composed of shared 111 
underlying variance, as represented by the latent factor (i.e., Latent FC), and unique task-state variance (in the 112 
errors). Factor loadings (𝜆) represent the percent variance in each task state that is explained by the underlying Latent 113 
FC. 114 

 115 

As can be seen in Figure 1, the factor analysis model of latent FC is a parameter-rich model 116 

that allows for differentially weighted relationships between the underlying latent connectivity and 117 

measured connectivity in each specific state. What McNeish and Wolf (2020) showed, however, 118 

is that the average can be recovered using this model by setting all factor loadings (𝜆) equal to 1 119 

and the unique variances to 0. This recast of the average as a special case of the factor model not 120 

only has the advantage of making the assumptions of the average clearer, but it enables a formal 121 

test of those assumptions. For instance, by setting all factor loadings equal, the average assumes 122 

that each observed FC state is equally (and positively) related to the underlying latent FC. If we 123 

want to relax that assumption, the factor analytic model can be used to compute unique optimally 124 

weighted values for each factor loading, which suggests that some observed states may be better 125 

(or worse) reflections of underlying latent FC. Indeed, factor loadings may take on negative values, 126 
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which implies that an observed indicator is anti-correlated with the underlying latent FC. However, 127 

if the assumption of equal, positive weighting is indeed an appropriate assumption, freely 128 

estimated factor loadings will converge towards equal values and approximate the average. In 129 

other words, the flexibility of the full factor loading does not preclude the average, but instead 130 

offers a broader range of possibility for deriving a measure of latent FC in heterogeneous data and 131 

can be used to test the validity of the average FC assumption of equal positive factor loadings 132 

across brain states. 133 

Here, we test the reliability of a factor analytic framework for modeling state-general brain 134 

connectivity – “intrinsic” FC that generalizes across a variety of brain states. First, we 135 

hypothesized that latent FC reflects a positive manifold (analogous to the positive correlations 136 

across intelligence tests in general intelligence research; (Kovacs & Conway, 2016)), where all 137 

state-specific connectivity values are positively correlated with each other and so load positively 138 

onto the underlying latent variable. This would confirm that a single common intrinsic functional 139 

network architecture exists across conscious brain states. We further hypothesized that by 140 

combining information across task states, such as in the factor model, a more reliable measure of 141 

“intrinsic” connectivity can be estimated than when using resting state data alone (the current field 142 

standard). This would suggest that resting-state FC is not necessarily the best state for estimating 143 

intrinsic FC, especially if resting state does not load higher on the latent variable than other states. 144 

In testing these hypotheses, we developed an analytic framework for estimating state-general, 145 

latent FC in whole-brain functional data. Using multi-task fMRI data from the Human Connectome 146 

Project (HCP), we compare the ability of latent and resting-state FC to predict task-evoked 147 

activation and task-state FC for held-out brain states, as well as to explain individual differences 148 

in psychometric “g” (a measure of human intelligence derived with a similar factor analytic 149 
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model). Results demonstrate the promise of the latent variable approach in functional 150 

neuroimaging, particularly for the estimation of intrinsic FC that generalizes beyond specific brain 151 

states (e.g., rest). Finally, we demonstrate the relationship between freely estimated latent FC and 152 

the simpler average FC approach and discuss the theoretical advantages of casting both methods 153 

in the latent variable framework for future work.     154 

 155 

Methods 156 

For clarity, portions of the text in this section are from our prior publication using the same 157 

dataset and some identical analysis procedures: Ito et al. (2020).  158 

Participants 159 

Data in the present study were collected as part of the Washington University-Minnesota 160 

Consortium of the Human Connectome Project (HCP) (Van Essen et al., 2013). A subset of data (161 

n = 352) from the HCP 1200 release was used for empirical analyses. Specific details and 162 

procedures of subject recruitment can be found in Van Essen et al. (2020). The subset of 352 163 

participants was selected based on: quality control assessments (i.e., any participants with any 164 

quality control flags were excluded, including 1) focal anatomical anomaly found in T1w and/or 165 

T2w scans, 2) focal segmentation or surface errors, as output from the HCP structural pipeline, 3) 166 

data collected during periods of known problems with the head coil, 4) data in which some of the 167 

FIX-ICA components were manually reclassified; exclusion of high-motion participants 168 

(participants that had any fMRI run in which more than 50% of TRs had greater than 0.25mm 169 

framewise displacement); removal according to family relations (unrelated participants were 170 

selected only, and those with no genotype testing were excluded). A full list of the 352 participants 171 

used in this study will be included as part of the code release. 172 
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All participants were recruited from Washington University in St. Louis and the 173 

surrounding area. We split the 352 subjects into two cohorts of 176 subjects: an exploratory cohort 174 

(99 women) and a validation cohort (84 women). The exploratory cohort had a mean age of 29 175 

years of age (range=22-36 years of age), and the validation cohort had a mean age of 28 years of 176 

age (range=22-36 years of age). All subjects gave signed, informed consent in accordance with the 177 

protocol approved by the Washington University institutional review board.  178 

Scan Acquisition 179 

Whole-brain multiband echo-planar imaging acquisitions were collected on a 32-channel 180 

head coil on a modified 3T Siemens Skyra with TR=720 ms, TE=33.1 ms, flip angle=52o, 181 

Bandwidth=2,290 Hz/Px, in-plane FOV=208x180 mm, 72 slices, 2.0 mm isotropic voxels, with a 182 

multiband acceleration factor of 8. Data for each subject were collected over the span of two days. 183 

On the first day, anatomical scans were collected (including T1-weighted and T2-weighted images 184 

acquired at 0.7 mm isotropic voxels) followed by two resting-state fMRI scans (each lasting 14.4 185 

minutes) and ending with a task fMRI component. The second day consisted of first collecting a 186 

diffusion imaging scan, followed by a second set of two resting-state fMRI scans (each lasting 187 

14.4 minutes), and again ending with a task fMRI session. 188 

Each of the seven tasks was collected over two consecutive fMRI runs. The seven tasks 189 

consisted of an emotion cognition task, a gambling reward task, a language task, a motor task, a 190 

relational reasoning task, a social cognition task, and a working memory task. Briefly, the emotion 191 

cognition task required making valence judgements on negative (fearful and angry) and neutral 192 

faces. The gambling reward task consisted of a card guessing game, where subjects were asked to 193 

guess the number on the card to win or lose money. The language processing task consisted of 194 

interleaving two language conditions, which involved answering questions related to a story 195 
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presented aurally, and a math condition, which involved basic arithmetic questions presented 196 

aurally. Note that we treated the two language task conditions as separate tasks, given the highly 197 

distinct nature of the conditions (other than that they were presented aurally). The motor task 198 

involved asking subjects to either tap their left/right fingers, squeeze their left/right toes, or move 199 

their tongue. The reasoning task involved asking subjects to determine whether two sets of objects 200 

differed from each other in the same dimension (e.g., shape or texture). The social cognition task 201 

was a theory of mind task, where objects (squares, circles, triangles) interacted with each other in 202 

a video clip, and subjects were subsequently asked whether the objects interacted in a social 203 

manner. Lastly, the working memory task was a variant of the N-back task. Further details on the 204 

resting-state fMRI portion can be found in (Smith et al., 2013), and additional details on the task 205 

fMRI components can be found in (Barch et al., 2013) .  206 

Behavior: Data 207 

To assess generalized intelligence (g), we drew 11 measures of cognitive ability from the 208 

HCP dataset, which are derived from the NIH Toolbox for Assessment of Neurological and 209 

Behavioral function (http://www.nihtoolbox.org; (Gershon et al., 2013) and the Penn 210 

computerized neurocognitive battery (Gur et al., 2010). Tasks included: picture sequence memory; 211 

dimensional card sort; flanker attention and inhibitory control; the Penn Progressive Matrices; oral 212 

reading recognition; picture vocabulary; pattern completion processing speed; variable short Penn 213 

line orientation test; Penn word memory test (number correct and median reaction time as separate 214 

variables]) and list sorting. For all measures, the age-unadjusted score was used where applicable. 215 

For complete information regarding all measures, see the descriptions in the Cognition Category 216 

of the HCP Data Dictionary 217 
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(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-218 

+Updated+for+the+1200+Subject+Release). 219 

Behavior: Factor analysis model of psychometric ‘g’ 220 

We then derived a general factor of intelligences using a multiple-indicator latent factor 221 

model. We approach the factor model using a confirmatory factor analysis (CFA) approach with a 222 

unitary factor underlying all individual cognitive tasks. Factor loadings were estimated using the 223 

psych R package (Revelle, 2017). Factor scores were computed using the regression method 224 

(Thurstone, 1935) to obtain manifest variables for prediction. 225 

fMRI: Preprocessing 226 

Minimally preprocessed data for both resting-state and task fMRI were obtained from the 227 

publicly available HCP data. Minimally preprocessed surface data was then parcellated into 360 228 

brain regions using the Glasser atlas (Glasser et al., 2016). We performed additional preprocessing 229 

steps on the parcellated data for resting-state fMRI and task state fMRI to conduct neural 230 

variability and FC analyses. This included removing the first five frames of each run, de-meaning 231 

and de-trending the time series, and performing nuisance regression on the minimally preprocessed 232 

data (Ciric et al., 2017) . Nuisance regression removed motion parameters and physiological noise. 233 

Specifically, six primary motion parameters were removed, along with their derivatives, and the 234 

quadratics of all regressors (24 motion regressors in total). Physiological noise was modeled using 235 

aCompCor on time series extracted from the white matter and ventricles (Behzadi, Restom, Liau, 236 

& Liu, 2007) . For aCompCor, the first 5 principal components from the white matter and 237 

ventricles were extracted separately and included in the nuisance regression. In addition, we 238 

included the derivatives of each of those components, and the quadratics of all physiological noise 239 

regressors (40 physiological noise regressors in total). The nuisance regression model contained a 240 
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total of 64 nuisance parameters. This was a variant of previously benchmarked nuisance regression 241 

models reported in (Ciric et al., 2017) . 242 

We excluded global signal regression (GSR), given that GSR can artificially induce 243 

negative correlations (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Power et al., 2014), 244 

which could bias analyses of whether global correlations decrease during task performance. We 245 

included aCompCor as a preprocessing step here given that aCompCor does not include the 246 

circularity of GSR (regressing out some global gray matter signal of interest) while including some 247 

of the benefits of GSR (some extracted components are highly similar to the global signal) (Power 248 

et al., 2018). This logic is similar to a recently-developed temporal-ICA-based artifact removal 249 

procedure that seeks to remove global artifact without removing global neural signals, which 250 

contains behaviorally relevant information such as vigilance (Glasser et al., 2018; Wong, Olafsson, 251 

Tal, & Liu, 2013). We extended aCompCor to include the derivatives and quadratics of each of 252 

the component time series to further reduce artifacts. Code to perform this regression is publicly 253 

available online using python code (version 2.7.15) (https://github.com/ito-254 

takuya/fmriNuisanceRegression). Following nuisance regression, the time series for each run 255 

(task-state and rest-state) were z-normalized such that variances across runs would be on the same 256 

scale (i.e., unit variance). 257 

 Task data for task FC analyses were additionally preprocessed using a standard general 258 

linear model (GLM) for fMRI analysis. For each task paradigm, we removed the mean evoked 259 

task-related activity for each task condition by fitting the task timing (block design) for each 260 

condition using a finite impulse response (FIR) model (Cole et al., 2019) . (There were 24 task 261 

conditions across seven cognitive tasks.) We used an FIR model instead of a canonical 262 

hemodynamic response function given recent evidence suggesting that the FIR model reduces both 263 
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false positives and false negatives in the identification of FC estimates (Cole et al., 2019). This is 264 

due to the FIR model’s ability to flexibly fit the mean-evoked response across all blocks.  265 

FIR modeled task blocks were modeled separately for task conditions within each of the 266 

seven tasks. In particular, two conditions were fit for the emotion cognition task, where coefficients 267 

were fit to either the face condition or shape condition. For the gambling reward task, one condition 268 

was fit to trials with the punishment condition, and the other condition was fit to trials with the 269 

reward condition. For the language task, one condition was fit for the story condition, and the other 270 

condition was fit to the math condition. For the motor task, six conditions were fit: (1) cue; (2) 271 

right hand trials; (3) left hand trials; (4) right foot trials; (5) left foot trials; (6) tongue trials. For 272 

the relational reasoning task, one condition was fit to trials when the sets of objects were matched, 273 

and the other condition was fit to trials when the objects were not matched. For the social cognition 274 

task, one condition was fit if the objects were interacting socially (theory of mind), and the other 275 

condition was fit to trials where objects were moving randomly. Lastly, for the working memory 276 

task, 8 conditions were fit: (1) 2-back body trials; (2) 2-back face trials; (3) 2-back tool trials; (4) 277 

2-back place trials; (5) 0-back body trials; (6) 0-back face trials; (7) 0-back tool trials; (8) 0-back 278 

place trials. Since all tasks were block designs, each time point for each block was modeled 279 

separately for each task condition (i.e., FIR model), with a lag extending up to 25 TRs after task 280 

block offset. 281 

fMRI: Task activation 282 

We performed a task GLM analysis on fMRI task data to estimate evoked brain activity 283 

during task states. The task timing for each of the 24 task conditions was convolved with the SPM 284 

canonical hemodynamic response function to obtain task-evoked activity estimates (Friston et al., 285 
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1994). FIR modeling was not used when modeling task-evoked activity. Coefficients were 286 

obtained for each parcel in the Glasser et al. (2016) cortical atlas for each of the 24 task conditions.  287 

fMRI: Functional connectivity (FC) estimation 288 

Residual timeseries from the rest and task nuisance regressions were used to estimate 289 

functional connectivity for each task. Connectivity values were estimated using zero-lag Pearson 290 

product-moment correlations. Timeseries were concatenated across separate runs of the same task 291 

to yield a single connectivity value per edge for a given task or resting state condition. For each 292 

task scan, we utilized TRs that corresponded to “on-task” timepoints. For instance, we extracted 293 

TRs from the working memory scan during N-back task blocks, excluding TRs from the inter-294 

block fixation periods. For the number of TRs included in the connectivity estimates for each 295 

condition and scan state, see Table S1. 296 

fMRI: Factor analysis model of latent FC 297 

Factor analysis for obtaining latent FC was conducted with the same approach used to 298 

obtain factor scores for generalized intelligence. FC estimates from each separate fMRI task were 299 

used as indicators on a unitary factor model and factor scores were obtained using the regression 300 

method in the psych R package. A separate model was computed for each edge in the connectivity 301 

adjacency matrix. We took several approaches to test the predictive utility of latent FC for 302 

activation and behavior (detailed below). 303 

The first set of analyses tested two alternative measurement approaches for latent FC. The 304 

first was to utilize all available data from each functional scan to estimate factor scores for each 305 

edge. However, because of the differential amount of scan time for different functional runs (e.g., 306 

~58 minutes of resting-state versus ~10 minutes of working memory scans), we might expect 307 

indicators (i.e., scan types) with more data would dominate the measurement model in the factor 308 
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analysis. To control for this potential confound, we ran additional analyses where indicators were 309 

constrained to have equivalent numbers of TRs used to estimate individual scan functional edges 310 

between task and rest, and between different task states. The reasoning task had the fewest “on-311 

task” TRs (264) and therefore served as the limiting factor for task scans data. As such, 264 TRs 312 

of each task (for 2112 TRs of task) and a corresponding 2112 TRs of rest were used in these 313 

analyses. All of these analyses were performed modeling all available scan types in the same factor 314 

model.  315 

For activity flow mapping (ActFlow) analyses (Cole et al., 2016; Ito et al., 2020), where 316 

activations in held-out regions were predicted using estimated activity flowing over estimated 317 

connections, latent FC was estimated independently for each connection by applying leave-one-318 

state-out factor analysis (LOSO-FA) on the state FC estimates to prevent circularity in the 319 

predictive model. For instance, when predicting activation in the emotion task, FC estimates were 320 

obtained without including the emotion task as an indicator in the factor model.  321 

 322 

Results 323 

Factor analysis model of latent connectivity 324 

We ran independent factor analysis models for each connection, estimating the factor 325 

loadings of the latent variable (i.e., latent FC) onto each state. Latent FC captures the shared 326 

variance in FC across all states (see Figure 2). Factor analyses were run using all available data 327 

(i.e., the full time series and all states). 328 

 329 
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 330 
Figure 2. Factor analysis model of latent FC. Visualization of the latent connectivity matrix and state-specific 331 
functional connectivity matrices (group average across subjects). Color along the axes of each matrix corresponds to 332 
the network membership of each ROI. For each arrow, the average loadings (λavg) for each state are shown for 333 
analyses controlling for number of TRs (first) and when not controlling for TRs (in parentheses). The averaging 334 
loadings for the task states were largely stable across analyses, but the average loading for resting-state increased 335 
substantially (from 0.34 to 0.54) when not controlling for the number of TRs. The amount of resting-state data per 336 
participant went from 4800 TRs (58 minutes) to 2112 TRs (25 minutes) when matching the total amount of “on-task” 337 
time. The network mapping is shown in the cutout (left). Elements in the state-specific matrices represent correlations 338 
(r) between regional time series and elements in the latent FC matrix represent factor scores computed from the model 339 
for each connection. 340 
 341 

Consistent with our hypothesis that there is a “positive manifold” demonstrating a common 342 

latent FC architecture across states, almost all factor loadings were positive (greater than 99%) 343 

across all connections and all states (see Table 1). Furthermore, 70.7% of all factor loadings were 344 

reasonably large in magnitude (factor loading ≥ 0.4) and 97.4% of connections had two or more 345 

states with factor loadings ≥ 0.4 in the full latent FC model. The emotion task had the fewest large 346 

factor loadings (47.3%) and the resting state had the most (92.6%) (see Table 1 for full details).  347 

To control for differences between states in the amount of data used to obtain state-specific 348 

FC estimates, factor analyses were re-run while matching the number of time points from rest and 349 
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task data (2112 TRs from rest and 264 TRs for each of the 8 tasks). With this approach, resting 350 

state had the fewest number of relatively high magnitude factor loadings of all states – only 31.6% 351 

of resting state connections had factor loadings ≥ 0.4. Thus, resting state had the highest factor 352 

loadings onto latent FC when a large amount of data was used to estimate resting-state FC, but the 353 

lowest factor loadings when less data was used. Controlling for the number of time points between 354 

task and rest led to less pronounced changes in the factor loadings of the other states (see Figure 355 

2). Note that this drop occurs even though rest continues to have substantially more TRs (8x) than 356 

any given task state in these analyses. 357 

 
All Data Controlling for # Timepoints 

State % Loadings ≥ 0 % Loadings ≥ 0.4 % Loadings ≥ 0 % Loadings ≥ 0.4 

Rest 99.9% 92.6% 99.0% 31.6% 

Emotion 99.3% 47.3% 98.7% 46.3% 

Gambling 99.6% 65.0% 99.1% 62.2% 

Motor 99.8% 68.0% 99.4% 54.8% 

Reasoning 99.5% 62.1% 99.1% 62.3% 

Social 99.8% 66.2% 99.3% 58.4% 

Working Memory 99.7% 67.0% 99.2% 64.9% 

Math 99.9% 82.4% 99.6% 82.4% 

Language 99.9% 86.0% 99.7% 86.3% 
Table 1: Factor Loadings. Almost all factor loadings were positive regardless of whether all resting state data were 358 
used (left) or we controlled for the number of time points between task and rest (right). Only resting state showed a 359 
substantial shift in the percent of factor loadings ≥ 0.4 when controlling for the number of timepoints. The amount of 360 
resting-state data per participant went from 4800 TRs (58 minutes) to 2112 TRs (25 minutes) when matching the total 361 
amount of “on-task” time. 362 
 363 

Latent FC improves generalization to connectivity of held-out states 364 

We next sought to test our second hypothesis: A more reliable and generalizable measure 365 

of “intrinsic” connectivity can be estimated by combining information across task states, such as 366 
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in the factor model, than by using resting state data alone (the current field standard). To test 367 

whether the measures of intrinsic FC persist across brain states, we quantified the 368 

generalizability of rest FC and latent FC to held-out brain states. To calculate the similarity of 369 

FC patterns (i.e., across 64,620 network connections), we computed the Pearon’s correlation of 370 

rest FC or latent FC with state FC for each individual subject, applying Bonferroni correction to 371 

correct for multiple comparisons. For latent FC, similarity was always computed for the state that 372 

was held-out while running the factor analysis model. Compared to rest FC, we found that latent 373 

FC exhibited significantly greater similarity with a variety of independent brain states (see 374 

Figure 3A). Similarity of each state with latent FC was comparable across states, exhibiting the 375 

greatest similarity to the WM task (r = 0.71) and the least similarity to the social task (r = 0.66) 376 

and resting state (r = 0.65). Rest FC exhibited the greatest similarity to resting state (r = 0.73), 377 

providing a measure of test-retest similarity of rest FC. For the task states, rest FC had the 378 

greatest similarity to the motor task (r = 0.61) and the least similarity to the relational task (r = 379 

0.56). 380 

When using the full timeseries (i.e., not controlling for the amount of data used to obtain the FC 381 

estimates across states), we still found greater similarity of latent FC relative to rest FC with the 382 

task states. However, latent FC exhibited the greatest similarity to the resting state (r = 0.80) and 383 

the least similarity to the social task (r = 0.67; see Figure 3B). Alongside greater similarity 384 

estimates with all states, this suggests that states may converge towards latent FC as we sample 385 

substantially more data for any given state (e.g., for resting-state FC, 26 minutes of data per 386 

participant were included in the data-restricted analysis vs. 58 minutes of data in the unrestricted 387 

analysis). All findings were replicated in the validation dataset (Figure S1). 388 

 389 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438534doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 390 

Figure 3. Generalizability of FC patterns. Pearson’s correlation was used to quantify the similarity of latent FC 391 
(blue) and rest FC (red) to held-out state FC. Error bars show the standard error of the mean. Asterisks indicate 392 
significant differences in similarity of latent FC and rest FC to held-out state FC. A) Results when controlling for the 393 
number of time points in the resting state data. This included 25 minutes of resting-state fMRI data, matching the total 394 
amount of “on-task” time across all tasks. B) Results when not controlling for the number of time points (including 395 
58 minutes of resting-state data); the resting state prediction is therefore a perfect reproduction (no error bars or 396 
comparison). These results are consistent with resting-state FC overfitting to resting state, reducing its 397 
generalizability relative to latent FC. 398 
 399 
Latent FC improves prediction of task activation patterns 400 

We next sought to further test our hypothesis that latent FC is highly generalizable (relative 401 

to resting-state FC), this time by testing for generalization beyond FC to patterns of task-evoked 402 

activation. We began by using GLMs to estimate the pattern of task-evoked activation for each of 403 

24 task conditions. We then used activity flow mapping (Figure. 4A) to predict the pattern of task-404 

evoked activation based on a simple neural network model parameterized using either resting-state 405 

FC or latent FC. We used Pearson’s correlation to compute the similarity of predicted-to-actual 406 

task activations of two activity flow models with different connectivity estimates based on either 407 

latent FC or rest FC. As a global measure of performance, we first correlated the predicted 408 

activation patterns from the activity flow model using rest and latent FC with the observed 409 

activations. Predicted activation patterns from activity flow models with connectivity based on 410 

latent FC (r = 0.66) outperformed predictions based on resting state FC (r = 0.56) in reproducing 411 

the observed beta activation patterns. We then compared the results of the two models at the region 412 
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(i.e., prediction for a given region across conditions) and condition (i.e., prediction for a given 413 

condition across regions) level. 414 

 We first estimated predicted beta activations for each region (across conditions) using the 415 

activity flow models. This reflects the changes in activation within each region that are dependent 416 

on the task condition. For each region, we compared the beta activation predictions of the two 417 

activity flow models. For each network, we computed the percent of regions with significantly 418 

improved predictions for one of the two models. When using the activity flow model based on 419 

latent FC, the predictions were significantly improved for 68% of brain regions (246 out of 360 420 

total), accounting for 33% of VIS1, 69% of VIS2, 64% of SMN, 73% of CON, 70% of DAN, 62% 421 

of LAN, 62% of FPN, 100% of AUD, 78% of DMN, 14% of PMM, 0% of VMM, and 33% of 422 

ORA. Activity flow based on rest FC significantly improved predictions in 1% of brain regions (4 423 

out of 360 total), accounting for 7% of VIS2 and no other networks (Figure 4B). 424 

When considering prediction accuracy for each task condition, we found that latent FC 425 

significantly improved the across-region predicted activations for all task conditions – except the 426 

left-hand condition of the motor task – when comparing the relative activations across the topology 427 

of the brain within a condition (Figure 4C). Overlap of predicted-to-actual task activations for the 428 

activity flow models were variable by task condition. The activity flow model based on latent FC 429 

exhibited the greatest similarity to the 2-back body condition of the WM task (r = 0.76) and the 430 

least similarity to the math condition of the language task (r = 0.45). The activity flow model based 431 

on rest FC exhibited the greatest similarity to the matching condition of the relational task (r = 432 

0.67) and the least similarity to the math condition of the language task (r = 0.4). All findings were 433 

replicated in the validation dataset (Figure S2). 434 

 435 
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 436 
Figure 4. Comparison of activity flow models based on latent FC versus rest FC. A) Conceptual model of the activity 437 
flow mapping algorithm (Cole et al., 2016) which models the activity of a held-out region (j) as the sum of activity in 438 
other brain regions (i) weighted by their shared functional connectivity (ij). B) Task activation prediction accuracies 439 
by region. Regions with prediction accuracies that were significantly greater using the activity flow model based on 440 
latent FC shown in cool colors. Regions with prediction accuracies that were significantly greater using the activity 441 
flow model based on rest FC shown in warm colors. The vast majority of regions showing a significant difference 442 
showed prediction advantages for latent FC. C) Task activation prediction accuracies by condition. Pearson’s 443 
correlation was used to quantify the similarity of predicted-to-actual task activations using activity flow models with 444 
connectivity based on either rest FC (red) or latent FC (blue). Error bars show the standard error of the mean 445 
correlation. Asterisks indicate significant differences in similarity of beta activations from models based on latent FC 446 
versus rest FC. 447 

 448 

Latent FC improves prediction of general intelligence 449 

Our hypothesis that latent FC generalizes better than resting-state FC also predicts that 450 

latent FC should be more related to general cognition and behavior, even behavior independent of 451 
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the particular tasks used for estimating the task-state FC going into the latent FC estimates. We 452 

tested whether latent FC improves prediction of general intelligence using psychometric g to 453 

capture many different behavioral and cognitive measures (Dubois, Galdi, Paul, & Adolphs, 2018; 454 

Gottfredson, 1997). We estimated general intelligence (psychometric g) using a factor analysis 455 

model on behavioral data from a range of cognitive tasks, then tested whether latent FC and/or rest 456 

FC measures could predict general intelligence. We combined the exploration and validation 457 

samples to increase the number of participants to 352 for this analysis, given the need for additional 458 

participants (relative to the other analyses in this study) to achieve reasonable statistical power for 459 

individual difference correlations (Yarkoni, 2009). We employed multiple linear regression to 460 

predict general intelligence from FC, implementing a leave-one-subject-out cross-validation 461 

approach to avoid analysis circularity (Dubois et al., 2018).  462 

We found that predicted general intelligence was significantly correlated with actual 463 

general intelligence for models using both rest FC (r = 0.33, p = 3.19e-10) and latent FC (r = 0.45, 464 

p = 1.28e-18) (Figure 5A). Consistent with our hypothesis, the model using latent FC significantly 465 

improved prediction of general intelligence compared to the model using rest FC (Δr  = 0.12, t = 466 

2.33, p = 0.01, see Eid et al., 2011 for correlation comparison method). The magnitude of this 467 

effect was large, as the percent linear variance explained by latent FC (r2 = 0.200) was almost two 468 

times the percent linear variance explained by rest FC (r2 = 0.107). In comparison with the overall 469 

sample results, the correlation and difference in R2  was substantially larger for the exploratory 470 

sample (Figure 5B) while the validation set showed a more-similar difference in R2 despite lower 471 

correlations between predicted and actual psychometric g scores for both latent and rest FC data 472 

(Figure 5C). A meta-analysis of the exploratory and validation samples suggested that the pooled 473 

correlation difference effect was significant (Δzpooled = 0.19, p < 0.001) 474 
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 475 

 476 

Figure 5. Relationship between actual and predicted general intelligence. Results of multiple linear regression 477 
models from rest FC and latent FC in the A) overall, B) exploratory, and C) validation sample. The significance of 478 
the difference in correlation (Δr) is indicated below each plot. A meta-analysis of the exploratory and validation 479 
samples showed a significant difference in the correlations between actual and predicted g scores when comparing 480 
rest to latent FC (Δz = 0.19, p < 0.001). 481 
 482 

Comparing latent and average FC 483 

While the factor model uses the covariance among the different states to compute optimal 484 

weights, a simpler approach to finding consensus among states involves taking a simple average 485 
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across states. This approach assumes the weights/loadings between measured states are equal. 486 

Given that the computed weights in our results with latent FC were relatively uniform across states, 487 

we determined that this assumption was reasonable in this case. This supports the use of average 488 

FC, however we directly compared latent FC to average FC to assess whether there were any 489 

advantages to either method. To compare the factor model with a simple average, we computed 490 

the mean value of each edge across states to construct an average connectivity matrix. For all 491 

analyses, we controlled for the amount of data between rest and task. Results indicated that 492 

combining across states, regardless of the approach, shows substantial improvements over using 493 

even the full resting state data. Indeed, the average FC approach appears to out-perform the latent 494 

FC approach (albeit only slightly) in generalizing to held-out connectivity states (Figure 6A). In 495 

the activity flow mapping results, however, latent FC consistently outperforms average FC in 496 

predicting regional activity patterns, showing better predictions in 348 out of 360 regions (97%), 497 

whereas average FC showed no improved predictions (Figure 6B). Similarly, latent FC 498 

outperformed average FC in condition-wise activity flow predictions in 22 out of 24 conditions 499 

(Figure 6C). Together these results suggest that the average FC approach (sometimes termed 500 

“general functional connectivity”) is a reasonable alternative to the more complex latent FC 501 

approach, so long as the optimal weights across states are close to equal (an assumption not made 502 

by latent FC). This difference between the methods would likely become more meaningful in cases 503 

wherein a particular brain state is highly distinct from all others (e.g., deep sleep vs. conscious 504 

states) or when one or more states is much noisier than the others (which would be weighted lower 505 

by latent FC but not average FC). 506 

 507 
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508 
Figure 6. Comparison of A) Generalizing connectivity and B) Activity flow models by region and C) condition, 509 
based on latent FC and average FC versus Rest. A) Both average (green) and latent (blue) FC outperformed rest 510 
FC on generalizing to all task states except resting state. Average FC performed similarly or slightly better than 511 
latent FC on all held-out states (asterisks denote significant differences, the higher position represents the test of 512 
rest vs latent FC). B) In contrast, latent FC outperformed average FC in predicting task activation in 97% of 513 
regions, whereas average FC outperformed in 0% regions. C) Across all conditions, latent FC was a better 514 
predictor than average FC of held-out activations (lower asterisks indicate significant difference between adjacent 515 
bars; higher asterisks indicate significant difference between latent and rest FC). All results control for the number 516 
of time points in the resting state data. 517 
 518 

Discussion 519 

 Defining a map of task-independent, intrinsic functional connections in the brain is a major 520 

aim of basic research in cognitive neuroscience. Intrinsic FC persists across task states, making it 521 

a more reliable and generalizable measure of the underlying functional dynamics that shape 522 
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cognition and behavior. As such, measures of intrinsic FC are better candidates to serve as stable 523 

biomarkers of important individual differences in behavioral outcomes (M. Elliott et al., 2019). 524 

We utilized a factor analytic approach, a well-developed technique from measurement 525 

psychometrics (Bollen, 2002), to define intrinsic FC as a latent variable derived from the common 526 

variances in FC across task states. We compared the factor model against the standard approach 527 

applied in the field, FC derived from resting state. The factor model not only shows enhanced 528 

measurement and predictive properties beyond measures of intrinsic FC derived from resting state, 529 

it also offers a unique theoretical perspective on the relationship between intrinsic and task-specific 530 

brain states. In a latent variable model, individual task states are viewed as observable sample 531 

realizations of the underlying intrinsic connectivity, and task-specific deviations from this baseline 532 

are modeled as unique errors arising from a combination of noise and state-specific properties. The 533 

factor modeling approach allows researchers to not only gain traction in defining intrinsic FC 534 

common among brain states, but also to separate and explore properties that are specific to 535 

individuals and states. 536 

Factor Analytic Model of Functional Connectivity 537 

 We began by building factor analysis models of latent FC using two approaches. In the 538 

first, we modeled latent FC using all available data. In this model, resting state functional 539 

connections had the highest number of significant loadings of any condition. However, when 540 

controlling for the number of time-points (by reducing the number of resting state timepoints to 541 

match the tasks with shorter durations), resting state connections had the lowest percentage of 542 

significant factor loadings. This property of the factor model highlights one of its strengths; higher 543 

precision measurements show higher fidelity to the underlying common latent factor than lower-544 

precision measures. Here, the precision appears to be driven primarily by the amount of data. 545 
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However, in the absence of stringent data quality control, the factor model can also down-weight 546 

poor-quality data (e.g., high motion, artifacts) relative to higher-quality data when variability 547 

associated with noise does not replicate across task states.  548 

Conversely, tasks that more closely represent underlying intrinsic FC will show stronger 549 

factor loadings, similar to how the Raven’s Progressive Matrices task loads highly onto the 550 

generalized intelligence factor (Dubois et al., 2018). Given its widespread use as a marker of 551 

intrinsic FC, we might have expected that resting state would load highly onto the latent FC factor 552 

regardless of how much data went into its estimation. However, when controlling for the amount 553 

of data used to estimate FC, the resting state loadings were lower than all other examined states, 554 

even though there were still many more TRs of resting state than any one task state. Additionally, 555 

when using the full amount of data to estimate rest FC, the factor loadings for resting state was 556 

similar to the story and math tasks, each of which were estimated with much less data (Figure 2; 557 

values in parentheses). These results suggest that resting state is not an especially good proxy for 558 

intrinsic FC, which aligns with its relatively poor performance compared with latent FC in 559 

predicting the patterns of connectivity and evoked brain activity observed for other states. 560 

Latent FC as a Reliable Measure of Intrinsic Connectivity 561 

 As mentioned previously, a marker of intrinsic connectivity is its persistence across task 562 

states (i.e., generalizability), as well as its ability to accurately recapitulate observed realizations 563 

of evoked brain activity and connectivity (M. Elliott et al., 2019; M. L. Elliott et al., 2020; Kragel, 564 

Han, Kraynak, Gianaros, & Wager, 2020; Parkes, Satterthwaite, & Bassett, 2020). Our results 565 

highlight the advantages of latent versus rest FC to reliably predict independent connectivity and 566 

regional activations. When comparing patterns of connectivity, we showed that latent FC showed 567 

higher correlation with held-out, task-specific connectivity states compared with rest FC, with the 568 
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sole exception of resting state connectivity where rest FC outperformed. This pattern of results 569 

suggests that resting state FC is less generalizable as a measure of intrinsic connectivity and instead 570 

there are resting state-specific factors which shape the dynamics of rest FC that are not present in 571 

other states.  572 

One potential explanation for this might be that tasks as a group reliably differ from rest FC’s more 573 

intrinsic profile, and the reduction in generalizability reflects deviations from a default state. Under 574 

this explanation, the latent FC advantage could simply reflect that there are more task indicators 575 

in the measurement model than rest (although note that even when controlling for number of 576 

timepoints, the amount of rest data is equal to all the tasks combined) and we would predict that 577 

latent FC would be a poorer representation of rest FC patterns of connectivity. However, results 578 

did not show a substantial drop in the correlation of latent and rest FC compared to the correlations 579 

of latent FC with the various task FC patterns (blue bars, Figure 3). Indeed, it is rest FC that shows 580 

a drop in performance in its correlations with resting state versus task connectivity, suggesting that 581 

latent FC does a better job of representing common, stable variability in FC profiles across both 582 

rest and task states. Importantly, latent FC does so even though the task or rest condition being 583 

correlated is left out of the factor model for that specific comparison to avoid circularity. As such, 584 

the factor score analytically has different indicators across all comparisons, and nevertheless still 585 

outperforms rest FC. Moreover, obtaining a better sample of the resting state by using the full time 586 

series resulted in the resting state having the highest factor loadings and a strongest correlation 587 

with latent FC, which suggests that over time the resting state converges to latent FC. 588 

 589 
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The advantages of latent FC are not, however, restricted to the connectivity space; the latent 590 

measure of intrinsic FC also outperforms rest FC in predicting state-specific activation patterns. 591 

Not only did latent FC support higher prediction accuracy by the activity flow model of task 592 

activation globally (rlatent = 0.66 vs. rrest = 0.56), it showed condition-specific advantages in 23 out 593 

of 24 specific task conditions (Figure 4B). Rest FC, in comparison, displayed higher prediction 594 

accuracy in none of the task conditions (in the left-hand motor condition, latent and rest FC 595 

performed comparably; Figure 4C). When we examined predictions of region-specific patterns of 596 

activation, results showed that latent FC had improved prediction over rest FC for 68% of all brain 597 

regions across a variety of distributed networks. In contrast, rest FC showed improved prediction 598 

for only 1.1% of regions, all of which were restricted to the VIS2 network (and constituted only 599 

7% of that network). These improvements, as before, were not due to circularity in the analyses, 600 

as task predictions using latent FC were done using the leave-one-task-out approach in the factor 601 

model. 602 

Improving External Validity with Latent FC 603 

While latent FC has demonstrable advantages for prediction within the brain, its utility as 604 

a method of estimating brain-based biomarkers relies on its predictive validity for outcomes of 605 

interest. Here, we showed that connectivity values from latent FC showed superior prediction of a 606 

metric of generalized intelligence (psychometric g) than did rest FC connections. Although both 607 

rest FC and latent FC values significantly predicted individual differences in generalized 608 

intelligence, latent FC doubled the percent of explained variance in the outcome over rest FC (20% 609 

versus 10%). In measurement science, this is a hallmark advantage of the latent variable approach 610 

used in factor analysis. Methods which fail to account for measurement error tend to show reduced 611 

relationships between variables, whereas modeling state-specific error terms dis-attenuates those 612 
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relationships (Schmidt & Hunter, 1996). Indeed, generalized intelligence is generally modeled 613 

with a factor analytic approach for precisely this reason. We demonstrate that the framework for 614 

improving measurement properties in behavioral measures applies equally to measures derived 615 

from functional neuroimaging data. As such, factor analytic models are ideal for aiding the search 616 

for biomarkers across a wide domain of individual difference outcomes. 617 

State Aggregation Improves Predictive Performance 618 

 The performance of average FC suggests that aggregating information across states has 619 

advantages over longer scan sessions of resting state, regardless of the approach used. 620 

Interestingly, average FC performance is not uniform in relation to the latent FC, performing as-621 

good or slightly better than latent FC in correlating with state-specific connectivity, but 622 

underperforming latent FC in predicting held out activity in almost all regions. A few 623 

circumstances may predict when we would expect to see more or less pronounced differences 624 

between average and latent FC. First, data quality: We expect more pronounced differences for 625 

lower quality data and less pronounced differences for higher quality data. The HCP data used 626 

here is of extremely high quality, which reduces variability in noise between scans. This is 627 

reflected in the average factor loadings which are relatively close in value across states (Figure 2). 628 

Of course, as the loadings converge in value, the more similar average and latent FC will become 629 

(here the connectivity values are correlated; r = .98). Second, the method of factor analysis used: 630 

Here, we opted to fit a single-factor model for each connection independently due to the large 631 

number of operations (e.g., separate models for each connection). However, a single factor in 632 

isolation may not be the best fit for brain data (van Kesteren & Kievit, 2020) and the method here 633 

might represent a sort of floor performance for latent FC relative to approaches which adopt a 634 

dependent model that tries to optimize the fit for each factor model.  635 
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Finally, there appear to be differences depending on the type of dependent variable in 636 

question. For example, while the factor and average models converge in their correlation with 637 

connectivity for held-out states, we found that activity flow models that incorporated latent FC 638 

performed better. Average and factor models produced similar patterns of relative connectivity 639 

(i.e., highly correlated patterns of FC), however the distribution of connectivity values differ. 640 

Latent FC estimates exhibited a sparser distribution of connectivity by zero-ing out low and/or 641 

unstable connections, which may have improved the activity flow models by reducing the 642 

contributions of disconnected brain regions (see Figure S4). 643 

 Despite the relatively small differences in performance between average and latent FC, 644 

there are theoretical reasons to prefer a latent variable perspective for FC estimation. The first, as 645 

mentioned before, is that while the average FC must assume equal loadings, latent FC makes this 646 

a testable hypothesis. If loadings converge towards equal values, then average and latent FC will 647 

converge (as they nearly did here). This suggests that averaging will likely perform well under 648 

conditions similar to the HCP data (high quality, young adult data). However, as the data diverges 649 

from this baseline, latent FC should have advantages by weighting data according to how closely 650 

it reflects intrinsic functional states and contributes to the common variance across measures. If 651 

differences among measures increase (i.e., measures reflect intrinsic FC better or worse), we would 652 

hypothesize that average and latent FC would diverge in their performance. However, apart from 653 

these practical considerations, a latent variable model of FC is a good theoretical model for how 654 

state-specific functional connections emerge from underlying, intrinsic neural connectivity. 655 

Intrinsic connectivity is an unobserved state (Bollen, 2002) that gives rise to state specific 656 

phenotypes based on combinations of common (i.e., the latent factor) and state-specific (i.e., the 657 

error) variance.  658 
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Conclusions 659 

 In summary, we utilized a factor analytic approach to derive intrinsic FC from multiple 660 

task and resting state data. Our derived measure, termed latent FC, showed improved 661 

generalizability and reliability compared to a standard measure of resting-state FC. Not only did 662 

latent FC do a better job of reflecting state-specific FC patterns across tasks, it also 663 

overwhelmingly improved predictions of regional activations when utilized in activity flow 664 

models. Finally, connectivity derived from latent FC doubled the predictive utility of an external 665 

measure of generalized intelligence (g) compared with connectivity from rest FC, highlighting its 666 

suitability for use in clinical and other individual difference research, where reliable biomarkers 667 

are needed. These results present compelling support for the use of factor analytic models in 668 

cognitive neuroscience, demonstrating the value of established tools from psychometrics for 669 

enhancing measurement quality in neuroscience. 670 

 671 
  672 
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