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Abstract 46 

Functional connectivity (FC) studies have predominantly focused on resting state, where ongoing 47 

dynamics are thought to reflect the brain’s intrinsic network architecture, which is thought to be 48 

broadly relevant because it persists across brain states (i.e., is state-general). However, it is 49 

unknown whether resting state is the optimal state for measuring intrinsic FC. We propose that 50 

latent FC, reflecting shared connectivity patterns across many brain states, better captures state-51 

general intrinsic FC relative to measures derived from resting state alone. We estimated latent 52 

FC independently for each connection using leave-one-task-out factor analysis in 7 highly 53 

distinct task states (24 conditions) and resting state using fMRI data from the Human 54 

Connectome Project. Compared to resting-state connectivity, latent FC improves generalization 55 

to held-out brain states, better explaining patterns of connectivity and task-evoked activation. We 56 

also found that latent connectivity improved prediction of behavior outside the scanner, indexed 57 

by the general intelligence factor (g). Our results suggest that FC patterns shared across many 58 

brain states, rather than just resting state, better reflects state-general connectivity. This affirms 59 

the notion of “intrinsic” brain network architecture as a set of connectivity properties persistent 60 

across brain states, providing an updated conceptual and mathematical framework of intrinsic 61 

connectivity as a latent factor.  62 
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Introduction  63 

A major goal in cognitive neuroscience in recent years has been to move away from 64 

characterizing brain activation and connectivity in specific task states towards understanding 65 

“intrinsic” or context-free brain activity. Such activity reflects the more than 95% of metabolic 66 

brain activity that remains unchanged across cognitive demands (Raichle, 2006). This ongoing 67 

brain activity persists across states and is not attributable to external stimuli or task demands. 68 

Efforts to understand intrinsic function have focused primarily on statistical associations between 69 

brain activity time series (functional connectivity; FC) during the resting state (Fox & Raichle, 70 

2007) (but see (Finn et al., 2015; Greene, Gao, Scheinost, & Constable, 2018) for task-based 71 

investigations), which has revealed an intrinsic brain functional network architecture that 72 

recapitulates patterns of task-evoked brain activity (Cole, Ito, Bassett, & Schultz, 2016; Smith et 73 

al., 2009) and structural connectivity (Honey et al., 2009). As the name implies however, resting 74 

state is just one state that the brain can occupy, and a truly “intrinsic” connectivity network should 75 

persist across the many different states a brain might assume. In other words, a “state-general” 76 

intrinsic network. Despite its importance for understanding brain function, many uncertainties 77 

remain on how to best estimate intrinsic FC. While some efforts have focused on the need to obtain 78 

longer resting-state scans (Anderson, Ferguson, Lopez-Larson, & Yurgelun-Todd, 2011; Elliott et 79 

al., 2019; Hacker et al., 2013; Laumann et al., 2015) more recent approaches have highlighted 80 

advantages of combining resting-state and task data to analyze intrinsic activity. 81 

This second set of approaches leverages functional data across different task (and rest) 82 

scans in order to improve the reliability of FC estimates and their predictive utility (Elliott et al., 83 

2019) Because of the relatively high stability of FC networks across task states (Cole, Bassett, 84 
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Power, Braver, & Petersen, 2014; Gratton et al., 2018; Krienen, Yeo, & Buckner, 2014), 85 

combining data across task runs aims to distinguish what is common across a larger set of brain 86 

states. What is common therefore reflects the intrinsic patterns of covariance in the brain, while 87 

variation between different brain states is treated as noise in the combined data. However, this 88 

work largely relies on averaging data from multiple scans together (Elliott et al., 2019). While this 89 

approach has been shown to be useful, and has the advantage of simplicity, there are potential 90 

theoretical limitations to such an approach that may limit its generalizability. Given its ubiquity 91 

and close-formed, arithmetic solution, the average is rarely thought of as a formal statistical model. 92 

However, recent work (McNeish & Wolf, 2020) has shown that the average can be thought of as 93 

a restricted case of the more-general factor analytic model. Embedding the average in a 94 

theoretically rich statistical framework is likely to offer advantages for interpretation of results 95 

using this measure as well as insights into the measure itself. 96 

Factor analysis has a long tradition in the behavioral sciences (Spearman, 1904; Thurstone, 97 

1935) and is an invaluable tool in psychometrics and psychological measurement. Its key insight 98 

is that observed measures (e.g., behavioral responses or fMRI scans) are imperfect manifestations 99 

of an unobserved (i.e., latent) variable (Bollen, 2002). In the factor model, observed indicators (yi,t; 100 

i = individual, t = task state) are modeled as dependent on the underlying latent factor (η; Figure 101 

1). Variability in the indicators is partitioned into common variance (transmitted through the factor 102 

loading matrix, 𝚲) and unique variance (ɛt). In this model, latent FC represents an unmeasured, 103 

underlying brain state that is common to all observed brain states (i.e., the indicators: resting state, 104 

motor task, etc.), but we also explicitly model additional variance that is only found in each 105 

individual task state through the error terms. Factor loadings for the individual task states (e.g., 𝜆11 106 
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for Rest) in this single-factor model can be interpreted as the proportion of variance explained in 107 

each task state by latent FC (similar to R2 in regression). 108 

 109 
Figure 1. Factor Model. A set of indicators (e.g., Rest, the Motor task, etc.) are modeled being composed of shared 110 
underlying variance, as represented by the latent factor (i.e., Latent FC), and unique task-state variance (in the 111 
errors). Factor loadings (𝜆) represent the percent variance in each task state that is explained by the underlying Latent 112 
FC. 113 

 114 

As can be seen in Figure 1, the factor analysis model of latent FC is a parameter-rich model 115 

that allows for differentially weighted relationships between the underlying latent connectivity and 116 

measured connectivity in each specific state. What McNeish and Wolf (2020) showed, however, 117 

is that the average can be recovered using this model by setting all factor loadings (𝜆) equal to 1 118 

and the unique variances to 0. This recast of the average as a special case of the factor model not 119 

only has the advantage of making the assumptions of the average clearer, but it enables a formal 120 

test of those assumptions. For instance, by setting all factor loadings equal, the average assumes 121 

that each observed FC state is equally (and positively) related to the underlying latent FC. If we 122 

want to relax that assumption, the factor analytic model can be used to compute unique optimally 123 
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weighted values for each factor loading, which suggests that some observed states may be better 124 

(or worse) reflections of underlying latent FC. Indeed, factor loadings may take on negative values, 125 

which implies that an observed indicator is anti-correlated with the underlying latent FC. However, 126 

if the assumption of equal, positive weighting is indeed an appropriate assumption, freely 127 

estimated factor loadings will converge towards equal values and approximate the average. In 128 

other words, the flexibility of the full factor loading does not preclude the average, but instead 129 

offers a broader range of possibility for deriving a measure of latent FC in heterogeneous data and 130 

can be used to test the validity of the average FC assumption of equal positive factor loadings 131 

across brain states. 132 

Here, we test the reliability of a factor analytic framework for modeling state-general brain 133 

connectivity – “intrinsic” FC that generalizes across a variety of brain states. First, we 134 

hypothesized that latent FC reflects a positive manifold (analogous to the positive correlations 135 

across intelligence tests in general intelligence research; (Kovacs & Conway, 2016)), where all 136 

state-specific connectivity values are positively correlated with each other and so load positively 137 

onto the underlying latent variable. This would confirm that a single common intrinsic functional 138 

network architecture exists across conscious brain states. Importantly, this differs from the idea 139 

that states are correlated (Finn et al., 2015; Gratton et al., 2018) as between-subject variance is 140 

decomposed at each individual connection rather than correlating across connections. We further 141 

hypothesized that by combining information across task states, such as in the factor model, a more 142 

reliable measure of “intrinsic” connectivity can be estimated than when using resting state data 143 

alone (the current field standard). This would suggest that resting-state FC is not necessarily the 144 

best state for estimating intrinsic FC, especially if resting state does not load higher on the latent 145 

variable than other states. In testing these hypotheses, we developed an analytic framework for 146 
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estimating state-general, latent FC in whole-brain functional data. Using multi-task fMRI data 147 

from the Human Connectome Project (HCP), we compare the ability of latent and resting-state FC 148 

to predict task-evoked activation and task-state FC for held-out brain states, as well as to explain 149 

individual differences in psychometric “g” (a measure of human intelligence derived with a similar 150 

factor analytic model). Results demonstrate the promise of the latent variable approach in 151 

functional neuroimaging, particularly for the estimation of intrinsic FC that generalizes beyond 152 

specific brain states (e.g., rest). Finally, we demonstrate the relationship between freely estimated 153 

latent FC and the simpler average FC approach and discuss the theoretical advantages of casting 154 

both methods in the latent variable framework for future work.     155 

Results 156 

Factor analysis model of latent connectivity 157 

We ran independent factor analysis models for each connection, estimating the factor 158 

loadings of the latent variable (i.e., latent FC) onto each state. Latent FC captures the shared 159 

variance in FC across all states (see Figure 2). Factor analyses were run using all available data 160 

(i.e., the full time series and all states). All analyses were performed in the exploratory sample 161 

independently and then replicated in the validation sample (both N = 176; see the Participants 162 

section for additional information). Importantly, all factor analytic models were fit for each sample 163 

separately to avoid issues of circularity when comparing results across samples. 164 

 165 
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 166 
Figure 2. Factor analysis model of latent FC. Visualization of the latent connectivity matrix and state-specific 167 
functional connectivity matrices (group average across subjects). Color along the axes of each matrix corresponds to 168 
the network membership of each ROI. For each arrow, the average loadings (λavg) for each state are shown for 169 
analyses controlling for number of TRs (first) and when not controlling for TRs (in parentheses). The averaging 170 
loadings for the task states were largely stable across analyses, but the average loading for resting-state increased 171 
substantially (from 0.34 to 0.54) when not controlling for the number of TRs. The amount of resting-state data per 172 
participant went from 4800 TRs (58 minutes) to 2112 TRs (25 minutes) when matching the total amount of “on-task” 173 
time. The network mapping is shown in the cutout (left). Elements in the state-specific matrices represent correlations 174 
(r) between regional time series and elements in the latent FC matrix represent factor scores computed from the model 175 
for each connection. 176 
 177 

Consistent with our hypothesis that there is a “positive manifold” demonstrating a common 178 

latent FC architecture across states, almost all factor loadings were positive (greater than 99%) 179 

across all connections and all states (see Table 1). Furthermore, 70.7% of all factor loadings were 180 

reasonably large in magnitude (factor loading ≥ 0.4) and 97.4% of connections had two or more 181 

states with factor loadings ≥ 0.4 in the full latent FC model. The emotion task had the fewest large 182 

factor loadings (47.3%) and the resting state had the most (92.6%) (see Table 1 for full details).  183 

To control for differences between states in the amount of data used to obtain state-specific 184 

FC estimates, factor analyses were re-run while matching the number of time points from rest and 185 
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task data (2112 TRs from rest and 264 TRs for each of the 8 tasks). With this approach, resting 186 

state had the fewest number of relatively high magnitude factor loadings of all states – only 31.6% 187 

of resting state connections had factor loadings ≥ 0.4. Thus, resting state had the highest factor 188 

loadings onto latent FC when a large amount of data was used to estimate resting-state FC, but the 189 

lowest factor loadings when less data was used. Controlling for the number of time points between 190 

task and rest led to less pronounced changes in the factor loadings of the other states (see Figure 191 

2), likely because there was no relationship between the number of TRs for a given task state and 192 

its average factor loading in the full TR analysis (see Figure S1). Note that this drop occurs even 193 

though rest continues to have substantially more TRs (8x) than any given task state in these 194 

analyses. 195 

 
All Data Controlling for # Timepoints 

State % Loadings ≥ 0 % Loadings ≥ 0.4 % Loadings ≥ 0 % Loadings ≥ 0.4 

Rest 99.9% 92.6% 99.0% 31.6% 

Emotion 99.3% 47.3% 98.7% 46.3% 

Gambling 99.6% 65.0% 99.1% 62.2% 

Motor 99.8% 68.0% 99.4% 54.8% 

Reasoning 99.5% 62.1% 99.1% 62.3% 

Social 99.8% 66.2% 99.3% 58.4% 

Working Memory 99.7% 67.0% 99.2% 64.9% 

Math 99.9% 82.4% 99.6% 82.4% 

Language 99.9% 86.0% 99.7% 86.3% 

Table 1: Factor Loadings. Almost all factor loadings were positive regardless of whether all resting state data were 196 
used (left) or we controlled for the number of time points between task and rest (right). Only resting state showed a 197 
substantial shift in the percent of factor loadings ≥ 0.4 when controlling for the number of timepoints. The amount of 198 
resting-state data per participant went from 4800 TRs (58 minutes) to 2112 TRs (25 minutes) when matching the total 199 
amount of “on-task” time. 200 
 201 

Latent FC improves generalization to connectivity of held-out states 202 
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We next sought to test our second hypothesis: A more reliable and generalizable measure 203 

of “intrinsic” connectivity can be estimated by combining information across task states, such as 204 

in the factor model, than by using resting state data alone (the current field standard). To test 205 

whether the measures of intrinsic FC persist across brain states, we quantified the 206 

generalizability of rest FC and latent FC to held-out brain states. To calculate the similarity of 207 

FC patterns (i.e., across 64,620 network connections), we computed the Pearson’s correlation of 208 

rest FC or latent FC with state FC for each individual subject, applying Bonferroni correction to 209 

correct for multiple comparisons. For latent FC, similarity was always computed for the state that 210 

was held-out while running the factor analysis model. Compared to rest FC, we found that latent 211 

FC exhibited significantly greater similarity with a variety of independent brain states (see 212 

Figure 3A). Similarity of each state with latent FC was comparable across states, exhibiting the 213 

greatest similarity to the WM task (r = 0.71) and the least similarity to the social task (r = 0.66) 214 

and resting state (r = 0.65). Rest FC exhibited the greatest similarity to the full resting state data 215 

(r = 0.73), providing a measure of test-retest similarity of rest FC (i.e., how well the restricted 216 

TR data represents the correlation matrix computed on the complete resting state data). For the 217 

task states, rest FC had the greatest similarity to the motor task (r = 0.61) and the least similarity 218 

to the relational task (r = 0.56). 219 

When using the full timeseries (i.e., not controlling for the amount of data used to obtain 220 

the FC estimates across states), we still found greater similarity of latent FC relative to rest FC 221 

with the task states. However, latent FC exhibited the greatest similarity to the resting state (r = 222 

0.80) and the least similarity to the social task (r = 0.67; see Figure 3B). Alongside greater 223 

similarity estimates with all states, this suggests that states may converge towards latent FC as 224 

we sample substantially more data for any given state (e.g., for resting-state FC, 26 minutes of 225 
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data per participant were included in the data-restricted analysis vs. 58 minutes of data in the 226 

unrestricted analysis). All findings were replicated in the validation dataset (Figure S2). 227 

 228 

 229 

Figure 3. Generalizability of FC patterns. Pearson’s correlation was used to quantify the similarity of latent FC 230 
(blue) and rest FC (red) to held-out state FC. Error bars show the standard error of the mean. Asterisks indicate 231 
significant differences in similarity of latent FC and rest FC to held-out state FC. A) Results when controlling for the 232 
number of time points in the resting state data. This included 25 minutes of resting-state fMRI data, matching the total 233 
amount of “on-task” time across all tasks. B) Results when not controlling for the number of time points (including 234 
58 minutes of resting-state data); the resting state prediction is therefore a perfect reproduction (no error bars or 235 
comparison). These results are consistent with resting-state FC overfitting to resting state, reducing its 236 
generalizability relative to latent FC. 237 
 238 

Latent FC improves prediction of task activation patterns 239 

We next sought to further test our hypothesis that latent FC is highly generalizable (relative 240 

to resting-state FC), this time by testing for generalization beyond FC to patterns of task-evoked 241 

activation. We began by using GLMs to estimate the pattern of task-evoked activation for each of 242 

24 task conditions. We then used activity flow mapping (Figure 4A) to predict the pattern of task-243 

evoked activation based on a simple neural network model parameterized using either resting-state 244 

FC or latent FC. We used Pearson’s correlation to compute the similarity of predicted-to-actual 245 

task activations of two activity flow models with different connectivity estimates based on either 246 

latent FC or rest FC. As a global measure of performance, we first correlated the predicted 247 

activation patterns from the activity flow model using rest and latent FC with the observed 248 
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activations. Predicted activation patterns from activity flow models with connectivity based on 249 

latent FC (r = 0.66) outperformed predictions based on resting state FC (r = 0.56) in reproducing 250 

the observed beta activation patterns (Figure 4D). We then compared the results of the two models 251 

at the region (i.e., prediction for a given region across conditions) and condition (i.e., prediction 252 

for a given condition across regions) level. 253 

 We first estimated predicted beta activations for each region (across conditions) using the 254 

activity flow models. This reflects the changes in activation within each region that are dependent 255 

on the task condition. For each region, we compared the beta activation predictions of the two 256 

activity flow models. For each network, we computed the percent of regions with significantly 257 

improved predictions for one of the two models. When using the activity flow model based on 258 

latent FC, the predictions were significantly improved (based on a corrected t-test of z-transformed 259 

correlation coefficients) for 68% of brain regions (246 out of 360 total), accounting for 33% of 260 

VIS1, 69% of VIS2, 64% of SMN, 73% of CON, 70% of DAN, 62% of LAN, 62% of FPN, 100% 261 

of AUD, 78% of DMN, 14% of PMM, 0% of VMM, and 33% of ORA. Activity flow based on 262 

rest FC significantly improved predictions in 1% of brain regions (4 out of 360 total), accounting 263 

for 7% of VIS2 and no other networks (Figure 4B). 264 

When considering prediction accuracy for each task condition, we found that latent FC 265 

significantly improved the across-region predicted activations for all task conditions – except the 266 

left-hand condition of the motor task – when comparing the relative activations across the topology 267 

of the brain within a condition (Figure 4C). Overlap of predicted-to-actual task activations for the 268 

activity flow models were variable by task condition. The activity flow model based on latent FC 269 

exhibited the greatest similarity to the 2-back body condition of the WM task (r = 0.76) and the 270 

least similarity to the math condition of the language task (r = 0.45). The activity flow model based 271 
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on rest FC exhibited the greatest similarity to the matching condition of the relational task (r = 272 

0.67) and the least similarity to the math condition of the language task (r = 0.4). All findings were 273 

replicated in the validation dataset (Figure S3). 274 

 275 
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 276 
Figure 4. Comparison of activity flow models based on latent FC versus rest FC. A) Conceptual model of the activity 277 
flow mapping algorithm (Cole et al., 2016) which models the activity of a held-out region (j) as the sum of activity in 278 
other brain regions (i) weighted by their shared functional connectivity (ij). B) Task activation prediction accuracies 279 
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by region. Regions with prediction accuracies that were significantly greater using the activity flow model based on 280 
latent FC shown in cool colors. Regions with prediction accuracies that were significantly greater using the activity 281 
flow model based on rest FC shown in warm colors. The vast majority of regions showing a significant difference 282 
showed prediction advantages for latent FC. C) Task activation prediction accuracies by condition. Pearson’s 283 
correlation was used to quantify the similarity of predicted-to-actual task activations using activity flow models with 284 
connectivity based on either rest FC (red) or latent FC (blue). Error bars show the standard error of the mean 285 
correlation. Asterisks indicate significant differences in similarity of beta activations from models based on latent FC 286 
versus rest FC. 287 

 288 

Latent FC improves prediction of general intelligence 289 

Our hypothesis that latent FC generalizes better than resting-state FC also predicts that 290 

latent FC should be more related to general cognition and behavior, even behavior independent of 291 

the particular tasks used for estimating the task-state FC going into the latent FC estimates. We 292 

tested whether latent FC improves prediction of general intelligence using psychometric g to 293 

capture many different behavioral and cognitive measures (Dubois, Galdi, Paul, & Adolphs, 2018; 294 

Gottfredson, 1997). We estimated general intelligence (psychometric g) using a factor analysis 295 

model on behavioral data from a range of cognitive tasks, then tested whether latent FC and/or rest 296 

FC measures could predict general intelligence. We combined the exploration and validation 297 

samples to increase the number of participants to 352 for this analysis, given the need for additional 298 

participants (relative to the other analyses in this study) to achieve reasonable statistical power for 299 

individual difference correlations (Yarkoni, 2009). We then employed a multiple linear regression 300 

with ridge regularization approach to predict general intelligence from FC. However, one potential 301 

confounding issue with simply pooling the full sample data is that the estimated factor scores for 302 

latent FC and psychometric-g would be influenced by the data of to-be-predicted individuals, 303 

introducing circularity into these analyses. To avoid this, we implemented a between-sample cross-304 

validation approach. Here, we estimated factor models for latent FC and psychometric-g scores in 305 

each subsample separately (i.e., exploratory and validation), and predictions for the exploratory 306 

subjects were generated from the validation sample regression model and vice versa.  307 
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We found that predicted general intelligence was significantly correlated with actual 308 

general intelligence for models using both rest FC (r = 0.26, p = 5.46e-07) and latent FC (r = 0.35, 309 

p = 1.37e-11) (Figure 5A). Consistent with our hypothesis, the model using latent FC significantly 310 

improved prediction of general intelligence compared to the model using rest FC (Δr  = 0.09, t = 311 

1.77, p = 0.04, see Eid et al., 2011 for correlation comparison method). The magnitude of this 312 

effect was large, as the percent linear variance explained by latent FC (R2 = 0.123) was 313 

approximately two times the percent linear variance explained by rest FC (R2 = 0.067). In 314 

comparison with the overall sample results, the correlation and difference in R2 was larger for the 315 

exploratory sample (Figure 5B) while the validation set showed a more-similar difference in R2 316 

despite lower correlations between predicted and actual psychometric g scores for both latent and 317 

rest FC data (Figure 5C). A meta-analysis (Field, 2001) of the exploratory and validation samples 318 

suggested that the pooled correlation difference effect was significant (Δzpooled = 0.09, p = 0.016) 319 

 320 
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 321 

Figure 5. Relationship between actual and predicted general intelligence. Results of ridge regression models from 322 
rest FC and latent FC in the A) overall, B) exploratory, and C) validation sample. The significance of the difference 323 
in correlation (Δr) is indicated below each plot. A meta-analysis of the exploratory and validation samples showed a 324 
significant difference in the correlations between actual and predicted g scores when comparing rest to latent FC (Δz 325 
= 0.09, p = 0.016). 326 
 327 

Comparing latent and average FC 328 

While the factor model uses the covariance among the different states to compute optimal 329 

weights, a simpler approach to finding consensus among states involves taking a simple average 330 

across states. This approach assumes the weights/loadings between measured states are equal. 331 
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Given that the computed weights in our results with latent FC were relatively uniform across states, 332 

we determined that this assumption was reasonable in this case. This supports the use of average 333 

FC, however we directly compared latent FC to average FC to assess whether there were any 334 

advantages to either method. To compare the factor model with a simple average, we computed 335 

the mean value of each edge across states to construct an average connectivity matrix. For all 336 

analyses, we controlled for the amount of data between rest and task. Results indicated that 337 

combining across states, regardless of the approach, shows substantial improvements over using 338 

even the full resting state data. Indeed, the average FC approach appears to out-perform the latent 339 

FC approach (albeit only slightly) in generalizing to held-out connectivity states (Figure 6A). In 340 

the activity flow mapping results, however, latent FC consistently outperforms average FC in 341 

predicting regional activity patterns, showing better predictions in 348 out of 360 regions (97%), 342 

whereas average FC showed no improved predictions (Figure 6B). Similarly, latent FC 343 

outperformed average FC in condition-wise activity flow predictions in 22 out of 24 conditions 344 

(Figure 6C). Together these results suggest that the average FC approach (sometimes termed 345 

“general functional connectivity”) is a reasonable alternative to the more complex latent FC 346 

approach, so long as the optimal weights across states are close to equal (an assumption not made 347 

by latent FC). This difference between the methods would likely become more meaningful in cases 348 

wherein a particular brain state is highly distinct from all others (e.g., deep sleep vs. conscious 349 

states) or when one or more states is much noisier than the others (which would be weighted lower 350 

by latent FC but not average FC). 351 

 352 
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353 
Figure 6. Comparison of A) Generalizing connectivity and B) Activity flow models by region and C) condition, 354 
based on latent FC and average FC versus Rest. A) Both average (green) and latent (blue) FC outperformed rest 355 
FC on generalizing to all task states except resting state. Average FC performed similarly or slightly better than 356 
latent FC on all held-out states (asterisks denote significant differences, the higher position represents the test of 357 
rest vs latent FC). B) In contrast, latent FC outperformed average FC in predicting task activation in 97% of 358 
regions, whereas average FC outperformed in 0% regions. C) Across all conditions, latent FC was a better 359 
predictor than average FC of held-out activations (lower asterisks indicate significant difference between adjacent 360 
bars; higher asterisks indicate significant difference between latent and rest FC). All results control for the number 361 
of time points in the resting state data. For the validation sample results, see Figure S4. 362 
 363 

Discussion 364 

 Defining a map of task-independent, intrinsic functional connections in the brain is a major 365 

aim of basic research in cognitive neuroscience. Intrinsic FC persists across task states, making it 366 

a more reliable and generalizable measure of the underlying functional dynamics that shape 367 
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cognition and behavior. As such, measures of intrinsic FC are better candidates to serve as stable 368 

biomarkers of important individual differences in behavioral outcomes (Elliott et al., 2019). We 369 

utilized a factor analytic approach, a well-developed technique from measurement psychometrics 370 

(Bollen, 2002), to define intrinsic FC as a latent variable derived from the common variances in 371 

FC across task states. We compared the factor model against the standard approach applied in the 372 

field, FC derived from resting state. The factor model not only shows enhanced measurement and 373 

predictive properties beyond measures of intrinsic FC derived from resting state, it also offers a 374 

unique theoretical perspective on the relationship between intrinsic and task-specific brain states. 375 

In a latent variable model, individual task states are viewed as observable sample realizations of 376 

the underlying intrinsic connectivity, and task-specific deviations from this baseline are modeled 377 

as unique errors arising from a combination of noise and state-specific properties. The factor 378 

modeling approach allows researchers to not only gain traction in defining intrinsic FC common 379 

among brain states, but also to separate and explore properties that are specific to individuals and 380 

states. 381 

Factor Analytic Model of Functional Connectivity 382 

 We began by building factor analysis models of latent FC using two approaches. In the 383 

first, we modeled latent FC using all available data. In this model, resting state functional 384 

connections had the highest number of significant loadings of any condition. However, when 385 

controlling for the number of time-points (by reducing the number of resting state timepoints to 386 

match the tasks with shorter durations), resting state connections had the lowest percentage of 387 

significant factor loadings. This property of the factor model highlights one of its strengths; higher 388 

precision measurements show higher fidelity to the underlying common latent factor than lower-389 

precision measures. Here, the precision appears to be driven primarily by the amount of data. 390 
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However, in the absence of stringent data quality control, the factor model can also down-weight 391 

poor-quality data (e.g., high motion, artifacts) relative to higher-quality data when variability 392 

associated with noise does not replicate across task states.  393 

Conversely, tasks that more closely represent underlying intrinsic FC will show stronger 394 

factor loadings, similar to how the Raven’s Progressive Matrices task loads highly onto the 395 

generalized intelligence factor (Dubois et al., 2018). Given its widespread use as a marker of 396 

intrinsic FC, we might have expected that resting state would load highly onto the latent FC factor 397 

regardless of how much data went into its estimation. However, when controlling for the amount 398 

of data used to estimate FC, the resting state loadings were lower than all other examined states, 399 

even though there were still many more TRs of resting state than any one task state. Additionally, 400 

when using the full amount of data to estimate rest FC, the factor loadings for resting state was 401 

similar to the story and math tasks, each of which were estimated with much less data (Figure 2; 402 

values in parentheses). These results suggest that resting state is not an especially good proxy for 403 

intrinsic FC, which aligns with its relatively poor performance compared with latent FC in 404 

predicting the patterns of connectivity and evoked brain activity observed for other states. 405 

Latent FC as a Reliable Measure of Intrinsic Connectivity 406 

 As mentioned previously, a marker of intrinsic connectivity is its persistence across task 407 

states (i.e., generalizability), as well as its ability to accurately recapitulate observed realizations 408 

of evoked brain activity and connectivity (Elliott et al., 2019, 2020; Kragel, Han, Kraynak, 409 

Gianaros, & Wager, 2020; Parkes, Satterthwaite, & Bassett, 2020). Our results highlight the 410 

advantages of latent versus rest FC to reliably predict independent connectivity and regional 411 

activations. When comparing patterns of connectivity, we showed that latent FC showed higher 412 

correlation with held-out, task-specific connectivity states compared with rest FC, with the sole 413 
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exception of resting state connectivity where rest FC outperformed. This pattern of results suggests 414 

that resting state FC is less generalizable as a measure of intrinsic connectivity and instead there 415 

are resting state-specific factors which shape the dynamics of rest FC that are not present in other 416 

states.  417 

One potential explanation for this might be that tasks as a group reliably differ from rest FC’s more 418 

intrinsic profile, and the reduction in generalizability reflects deviations from a default state. Under 419 

this explanation, the latent FC advantage could simply reflect that there are more task indicators 420 

in the measurement model than rest (although note that even when controlling for number of 421 

timepoints, the amount of rest data is equal to all the tasks combined) and we would predict that 422 

latent FC would be a poorer representation of rest FC patterns of connectivity. However, results 423 

did not show a substantial drop in the correlation of latent and rest FC compared to the correlations 424 

of latent FC with the various task FC patterns (blue bars, Figure 3). Indeed, it is when we used rest 425 

FC as the predictor that we observed reductions in its correlation with task connectivity, compared 426 

with resting state (red bars, Figure 3). This suggests that latent FC does a better job of representing 427 

common, stable variability in FC profiles across both resting and task states. Importantly, latent 428 

FC does so even though the task or rest condition being correlated is left out of the factor model 429 

for that specific comparison to avoid circularity. As such, the factor score analytically has different 430 

indicators across all comparisons, and nevertheless still outperforms rest FC. Moreover, obtaining 431 

a better sample of the resting state by using the full time series resulted in the resting state having 432 

the highest factor loadings and a strongest correlation with latent FC, which suggests that over 433 

time the resting state converges to latent FC. 434 

 435 
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The advantages of latent FC are not, however, restricted to the connectivity space; the latent 436 

measure of intrinsic FC also outperforms rest FC in predicting state-specific activation patterns. 437 

Not only did latent FC support higher prediction accuracy by the activity flow model of task 438 

activation globally (rlatent = 0.66 vs. rrest = 0.56), it showed condition-specific advantages in 23 out 439 

of 24 specific task conditions (Figure 4B). Rest FC, in comparison, displayed higher prediction 440 

accuracy in none of the task conditions (in the left-hand motor condition, latent and rest FC 441 

performed comparably; Figure 4C). When we examined predictions of region-specific patterns of 442 

activation, results showed that latent FC had improved prediction over rest FC for 68% of all brain 443 

regions across a variety of distributed networks. In contrast, rest FC showed improved prediction 444 

for only 1.1% of regions, all of which were restricted to the VIS2 network (and constituted only 445 

7% of that network). These improvements, as before, were not due to circularity in the analyses, 446 

as task predictions using latent FC were done using the leave-one-task-out approach in the factor 447 

model. 448 

Improving External Validity with Latent FC 449 

While latent FC has demonstrable advantages for prediction within the brain, its utility as 450 

a method of estimating brain-based biomarkers relies on its predictive validity for outcomes of 451 

interest. Here, we showed that connectivity values from latent FC showed superior prediction of a 452 

metric of generalized intelligence (psychometric g) than did rest FC connections. Although both 453 

rest FC and latent FC values significantly predicted individual differences in generalized 454 

intelligence, latent FC nearly doubled the percent of explained variance in the outcome over rest 455 

FC (~12% versus ~7%). In measurement science, this is a hallmark advantage of the latent variable 456 

approach used in factor analysis. Methods which fail to account for measurement error tend to 457 

show reduced relationships between variables, whereas modeling state-specific error terms dis-458 
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attenuates those relationships (Schmidt & Hunter, 1996). Indeed, generalized intelligence is 459 

generally modeled with a factor analytic approach for precisely this reason. We demonstrate that 460 

the framework for improving measurement properties in behavioral measures applies equally to 461 

measures derived from functional neuroimaging data. As such, factor analytic models are ideal for 462 

aiding the search for biomarkers across a wide domain of individual difference outcomes. 463 

Furthermore, more reliable estimates of FC may aid modeling efforts that use intermediate network 464 

metrics (e.g., modularity, hub diversity) to predict participant behavior (e.g., (Bertolero, Yeo, 465 

Bassett, & D’Esposito, 2018)), offer an exciting range of possible uses for latent FC in future work. 466 

State Aggregation Improves Predictive Performance 467 

 The performance of average FC suggests that aggregating information across states has 468 

advantages over longer scan sessions of resting state, regardless of the approach used. 469 

Interestingly, average FC performance is not uniform in relation to the latent FC, performing as-470 

good or slightly better than latent FC in correlating with state-specific connectivity, but 471 

underperforming latent FC in predicting held out activity in almost all regions. A few 472 

circumstances may predict when we would expect to see more or less pronounced differences 473 

between average and latent FC. First, data quality: We expect more pronounced differences for 474 

lower quality data and less pronounced differences for higher quality data. The HCP data used 475 

here is of extremely high quality, which reduces variability in noise between scans. This is 476 

reflected in the average factor loadings which are relatively close in value across states (Figure 2). 477 

Of course, as the loadings converge in value, the more similar average and latent FC will become 478 

(here the connectivity values are correlated; r = .98). Second, the method of factor analysis used: 479 

Here, we opted to fit a single-factor model for each connection independently due to the large 480 

number of operations (e.g., separate models for each connection). However, a single factor in 481 
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isolation may not be the best fit for brain data (van Kesteren & Kievit, 2020) and the method here 482 

might represent a sort of floor performance for latent FC relative to approaches which adopt a 483 

dependent model that tries to optimize the fit for each factor model.  484 

Finally, there appear to be differences depending on the type of dependent variable in 485 

question. For example, while the factor and average models converge in their correlation with 486 

connectivity for held-out states, we found that activity flow models that incorporated latent FC 487 

performed better. Average and factor models produced similar patterns of relative connectivity 488 

(i.e., highly correlated patterns of FC), however the distribution of connectivity values differ. 489 

Latent FC estimates exhibited a sparser distribution of connectivity by zero-ing out low and/or 490 

unstable connections, which may have improved the activity flow models by reducing the 491 

contributions of disconnected brain regions (see Figure S5). 492 

 Despite the relatively small differences in performance between average and latent FC, 493 

there are theoretical reasons to prefer a latent variable perspective for FC estimation. The first, as 494 

mentioned before, is that while the average FC must assume equal loadings, latent FC makes this 495 

a testable hypothesis. If loadings converge towards equal values, then average and latent FC will 496 

converge (as they nearly did here). This suggests that averaging will likely perform well under 497 

conditions similar to the HCP data (high quality, young adult data). However, as the data diverges 498 

from this baseline, latent FC should have advantages by weighting data according to how closely 499 

it reflects intrinsic functional states and contributes to the common variance across measures. If 500 

differences among measures increase (i.e., measures reflect intrinsic FC better or worse), we would 501 

hypothesize that average and latent FC would diverge in their performance. We can see this in a 502 

small reproducible example (see Supplemental Code Demonstrations), where more variable 503 

loadings impact the ability of sums scores, but not factor scores, to predict a hypothetical outcome 504 
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variable. However, apart from these practical considerations, a latent variable model of FC is a 505 

good theoretical model for how state-specific functional connections emerge from underlying, 506 

intrinsic neural connectivity. Intrinsic connectivity is an unobserved state (Bollen, 2002) that gives 507 

rise to state specific phenotypes based on combinations of common (i.e., the latent factor) and 508 

state-specific (i.e., the error) variance.  509 

Conclusions 510 

 In summary, we utilized a factor analytic approach to derive intrinsic FC from multiple 511 

task and resting state data. Our derived measure, termed latent FC, showed improved 512 

generalizability and reliability compared to a standard measure of resting-state FC. Not only did 513 

latent FC do a better job of reflecting state-specific FC patterns across tasks, it also 514 

overwhelmingly improved predictions of regional activations when utilized in activity flow 515 

models. Finally, connectivity derived from latent FC doubled the predictive utility of an external 516 

measure of generalized intelligence (g) compared with connectivity from rest FC, highlighting its 517 

suitability for use in clinical and other individual difference research, where reliable biomarkers 518 

are needed. These results present compelling support for the use of factor analytic models in 519 

cognitive neuroscience, demonstrating the value of established tools from psychometrics for 520 

enhancing measurement quality in neuroscience. 521 

 522 

Materials and Methods 523 

For clarity, portions of the text in this section are from our prior publication using the same 524 

dataset and some identical analysis procedures: Ito et al. (2020).  525 

Participants 526 
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Data in the present study were collected as part of the Washington University-Minnesota 527 

Consortium of the Human Connectome Project (HCP) (Van Essen et al., 2013). A subset of data (528 

n = 352) from the HCP 1200 release was used for empirical analyses. Specific details and 529 

procedures of subject recruitment can be found in Van Essen et al. (2020). The subset of 352 530 

participants was selected based on: quality control assessments (i.e., any participants with any 531 

quality control flags were excluded, including 1) focal anatomical anomaly found in T1w and/or 532 

T2w scans, 2) focal segmentation or surface errors, as output from the HCP structural pipeline, 3) 533 

data collected during periods of known problems with the head coil, 4) data in which some of the 534 

FIX-ICA components were manually reclassified; exclusion of high-motion participants 535 

(participants that had any fMRI run in which more than 50% of TRs had greater than 0.25mm 536 

framewise displacement); removal according to family relations (unrelated participants were 537 

selected only, and those with no genotype testing were excluded). A full list of the 352 participants 538 

used in this study will be included as part of the code release. 539 

All participants were recruited from Washington University in St. Louis and the 540 

surrounding area. We split the 352 subjects into two cohorts of 176 subjects: an exploratory cohort 541 

(99 women) and a validation cohort (84 women). The exploratory cohort had a mean age of 29 542 

years of age (range=22-36 years of age), and the validation cohort had a mean age of 28 years of 543 

age (range=22-36 years of age). All subjects gave signed, informed consent in accordance with the 544 

protocol approved by the Washington University institutional review board.  545 

Scan Acquisition 546 

Whole-brain multiband echo-planar imaging acquisitions were collected on a 32-channel 547 

head coil on a modified 3T Siemens Skyra with TR=720 ms, TE=33.1 ms, flip angle=52o, 548 

Bandwidth=2,290 Hz/Px, in-plane FOV=208x180 mm, 72 slices, 2.0 mm isotropic voxels, with a 549 
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multiband acceleration factor of 8. Data for each subject were collected over the span of two days. 550 

On the first day, anatomical scans were collected (including T1-weighted and T2-weighted images 551 

acquired at 0.7 mm isotropic voxels) followed by two resting-state fMRI scans (each lasting 14.4 552 

minutes) and ending with a task fMRI component. The second day consisted of first collecting a 553 

diffusion imaging scan, followed by a second set of two resting-state fMRI scans (each lasting 554 

14.4 minutes), and again ending with a task fMRI session. 555 

Each of the seven tasks was collected over two consecutive fMRI runs. The seven tasks 556 

consisted of an emotion cognition task, a gambling reward task, a language task, a motor task, a 557 

relational reasoning task, a social cognition task, and a working memory task. Briefly, the emotion 558 

cognition task required making valence judgements on negative (fearful and angry) and neutral 559 

faces. The gambling reward task consisted of a card guessing game, where subjects were asked to 560 

guess the number on the card to win or lose money. The language processing task consisted of 561 

interleaving two language conditions, which involved answering questions related to a story 562 

presented aurally, and a math condition, which involved basic arithmetic questions presented 563 

aurally. Note that we treated the two language task conditions as separate tasks, given the highly 564 

distinct nature of the conditions (other than that they were presented aurally). The motor task 565 

involved asking subjects to either tap their left/right fingers, squeeze their left/right toes, or move 566 

their tongue. The reasoning task involved asking subjects to determine whether two sets of objects 567 

differed from each other in the same dimension (e.g., shape or texture). The social cognition task 568 

was a theory of mind task, where objects (squares, circles, triangles) interacted with each other in 569 

a video clip, and subjects were subsequently asked whether the objects interacted in a social 570 

manner. Lastly, the working memory task was a variant of the N-back task. Further details on the 571 
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resting-state fMRI portion can be found in (Smith et al., 2013), and additional details on the task 572 

fMRI components can be found in (Barch et al., 2013) .  573 

Behavior: Data 574 

To assess generalized intelligence (g), we drew 11 measures of cognitive ability from the 575 

HCP dataset, which are derived from the NIH Toolbox for Assessment of Neurological and 576 

Behavioral function (http://www.nihtoolbox.org; (Gershon et al., 2013) and the Penn 577 

computerized neurocognitive battery (Gur et al., 2010). Tasks included: picture sequence memory; 578 

dimensional card sort; flanker attention and inhibitory control; the Penn Progressive Matrices; oral 579 

reading recognition; picture vocabulary; pattern completion processing speed; variable short Penn 580 

line orientation test; Penn word memory test (number correct and median reaction time as separate 581 

variables]) and list sorting. For all measures, the age-unadjusted score was used where applicable. 582 

For complete information regarding all measures, see the descriptions in the Cognition Category 583 

of the HCP Data Dictionary 584 

(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-585 

+Updated+for+the+1200+Subject+Release). 586 

Behavior: Factor analysis model of psychometric ‘g’ 587 

We then derived a general factor of intelligences using a multiple-indicator latent factor 588 

model. We approach the factor model using a confirmatory factor analysis (CFA) approach with a 589 

unitary factor underlying all individual cognitive tasks. Factor loadings were estimated using the 590 

psych R package (Revelle, 2017). Factor scores were computed using the regression method 591 

(Thurstone, 1935) to obtain manifest variables for prediction. 592 

fMRI: Preprocessing 593 
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Minimally preprocessed data for both resting-state and task fMRI were obtained from the 594 

publicly available HCP data. Minimally preprocessed surface data was then parcellated into 360 595 

brain regions using the Glasser atlas (Glasser et al., 2016). We performed additional preprocessing 596 

steps on the parcellated data for resting-state fMRI and task state fMRI to conduct neural 597 

variability and FC analyses. This included removing the first five frames of each run, de-meaning 598 

and de-trending the time series, and performing nuisance regression on the minimally preprocessed 599 

data (Ciric et al., 2017) . Nuisance regression removed motion parameters and physiological noise. 600 

Specifically, six primary motion parameters were removed, along with their derivatives, and the 601 

quadratics of all regressors (24 motion regressors in total). Physiological noise was modeled using 602 

aCompCor on time series extracted from the white matter and ventricles (Behzadi, Restom, Liau, 603 

& Liu, 2007) . For aCompCor, the first 5 principal components from the white matter and 604 

ventricles were extracted separately and included in the nuisance regression. In addition, we 605 

included the derivatives of each of those components, and the quadratics of all physiological noise 606 

regressors (40 physiological noise regressors in total). The nuisance regression model contained a 607 

total of 64 nuisance parameters. This was a variant of previously benchmarked nuisance regression 608 

models reported in (Ciric et al., 2017) . 609 

We excluded global signal regression (GSR), given that GSR can artificially induce 610 

negative correlations (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Power et al., 2014), 611 

which could bias analyses of whether global correlations decrease during task performance. We 612 

included aCompCor as a preprocessing step here given that aCompCor does not include the 613 

circularity of GSR (regressing out some global gray matter signal of interest) while including some 614 

of the benefits of GSR (some extracted components are highly similar to the global signal) (Power 615 

et al., 2018). This logic is similar to a recently-developed temporal-ICA-based artifact removal 616 
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procedure that seeks to remove global artifact without removing global neural signals, which 617 

contains behaviorally relevant information such as vigilance (Glasser et al., 2018; Wong, Olafsson, 618 

Tal, & Liu, 2013). We extended aCompCor to include the derivatives and quadratics of each of 619 

the component time series to further reduce artifacts. Code to perform this regression is publicly 620 

available online using python code (version 2.7.15) (https://github.com/ito-621 

takuya/fmriNuisanceRegression). Following nuisance regression, the time series for each run 622 

(task-state and rest-state) were z-normalized such that variances across runs would be on the same 623 

scale (i.e., unit variance). 624 

 Task data for task FC analyses were additionally preprocessed using a standard general 625 

linear model (GLM) for fMRI analysis. For each task paradigm, we removed the mean evoked 626 

task-related activity for each task condition by fitting the task timing (block design) for each 627 

condition using a finite impulse response (FIR) model (Cole et al., 2019) . (There were 24 task 628 

conditions across seven cognitive tasks.) We used an FIR model instead of a canonical 629 

hemodynamic response function given recent evidence suggesting that the FIR model reduces both 630 

false positives and false negatives in the identification of FC estimates (Cole et al., 2019). This is 631 

due to the FIR model’s ability to flexibly fit the mean-evoked response across all blocks.  632 

FIR modeled task blocks were modeled separately for task conditions within each of the 633 

seven tasks. In particular, two conditions were fit for the emotion cognition task, where coefficients 634 

were fit to either the face condition or shape condition. For the gambling reward task, one condition 635 

was fit to trials with the punishment condition, and the other condition was fit to trials with the 636 

reward condition. For the language task, one condition was fit for the story condition, and the other 637 

condition was fit to the math condition. For the motor task, six conditions were fit: (1) cue; (2) 638 

right hand trials; (3) left hand trials; (4) right foot trials; (5) left foot trials; (6) tongue trials. For 639 
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the relational reasoning task, one condition was fit to trials when the sets of objects were matched, 640 

and the other condition was fit to trials when the objects were not matched. For the social cognition 641 

task, one condition was fit if the objects were interacting socially (theory of mind), and the other 642 

condition was fit to trials where objects were moving randomly. Lastly, for the working memory 643 

task, 8 conditions were fit: (1) 2-back body trials; (2) 2-back face trials; (3) 2-back tool trials; (4) 644 

2-back place trials; (5) 0-back body trials; (6) 0-back face trials; (7) 0-back tool trials; (8) 0-back 645 

place trials. Since all tasks were block designs, each time point for each block was modeled 646 

separately for each task condition (i.e., FIR model), with a lag extending up to 25 TRs after task 647 

block offset. 648 

fMRI: Task activation 649 

We performed a standard task GLM analysis on fMRI task data to estimate evoked brain 650 

activity during task states. The task timing for each of the 24 task conditions was convolved with 651 

the SPM canonical hemodynamic response function to obtain task-evoked activity estimates 652 

(Friston et al., 1994). Coefficients were obtained for each parcel in the Glasser et al. (2016) cortical 653 

atlas for each of the 24 task conditions.  654 

fMRI: Functional connectivity (FC) estimation 655 

Residual timeseries from the rest and task nuisance regressions were used to estimate 656 

functional connectivity for each task. Connectivity values were estimated using zero-lag Pearson 657 

product-moment correlations. Timeseries were concatenated across separate runs of the same task 658 

to yield a single connectivity value per edge for a given task or resting state condition. For each 659 

task scan, we utilized TRs that corresponded to “on-task” timepoints. For instance, we extracted 660 

TRs from the working memory scan during N-back task blocks, excluding TRs from the inter-661 
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block fixation periods. For the number of TRs included in the connectivity estimates for each 662 

condition and scan state, see Table S1. 663 

fMRI: Factor analysis model of latent FC 664 

Factor analysis for obtaining latent FC was conducted with the same approach used to 665 

obtain factor scores for generalized intelligence. FC estimates from each separate fMRI task were 666 

used as indicators on a unitary factor model and factor scores were obtained using the regression 667 

method in the psych R package. A separate model was computed for each edge in the connectivity 668 

adjacency matrix. We took several approaches to test the predictive utility of latent FC for 669 

activation and behavior (detailed below). 670 

The first set of analyses tested two alternative measurement approaches for latent FC. The 671 

first was to utilize all available data from each functional scan to estimate factor scores for each 672 

edge. However, because of the differential amount of scan time for different functional runs (e.g., 673 

~58 minutes of resting-state versus ~10 minutes of working memory scans), we might expect 674 

indicators (i.e., scan types) with more data would dominate the measurement model in the factor 675 

analysis. To control for this potential confound, we ran additional analyses where indicators were 676 

constrained to have equivalent numbers of TRs used to estimate individual scan functional edges 677 

between task and rest, and between different task states. The reasoning task had the fewest “on-678 

task” TRs (264) and therefore served as the limiting factor for task scans data. As such, 264 TRs 679 

of each task (for 2112 TRs of task) and a corresponding 2112 TRs of rest were used in these 680 

analyses. All of these analyses were performed modeling all available scan types in the same factor 681 

model.  682 

For activity flow mapping (ActFlow) analyses (Cole et al., 2016; Ito et al., 2020), where 683 

activations in held-out regions were predicted using estimated activity flowing over estimated 684 
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connections, latent FC was estimated independently for each connection by applying leave-one-685 

state-out factor analysis (LOSO-FA) on the state FC estimates to prevent circularity in the 686 

predictive model. For instance, when predicting activation in the emotion task, FC estimates were 687 

obtained without including the emotion task as an indicator in the factor model. In all ActFlow 688 

analyses, we estimated predictions per subject and then pooled results (i.e., an estimate-then-689 

average approach). 690 

Meta-Analysis Across Samples 691 

To appropriately combine effects of the g-prediction analysis across the validation and 692 

exploratory sample, we computed  r-to-z-score transformations of the individual coefficients and 693 

then combined them into a weighted z score using the standard formula (Field, 2001) where 𝑧 is 694 

the z-score and the weight (𝑤) corresponds to the sample size. 695 

𝑧̅𝑟 =
∑ 𝑤𝑖𝑧𝑟𝑖
𝑘
𝑖

∑ 𝑤𝑖
𝑘
𝑖

 696 

 697 

The significance of this meta-analytic parameter was determined using a chi-square test (Field, 698 

2001). 699 

 700 
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