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Abstract:  Reliable partitioning of micrometeorologically measured evapotranspiration (ET)

into evaporation (E) and transpiration (T) would greatly enhance our understanding of the

water cycle and its response to climate change. While some methods on ET partitioning have

been developed, their  underlying assumptions  make them difficult to apply more generally,

especially  in sites with large contributions  of E.  Here,  we report  a novel ET partitioning

method  using  Artificial  Neural  Networks  (ANN)  in  combination  with  a  range  of

environmental input variables to predict daytime E from nighttime ET measurements. The

study uses eddy covariance data from four restored wetlands in the Sacramento-San Joaquin

Delta, California, USA, as well as leaf-level T data for validation. The four wetlands vary in

structure from some with large areas  of open water  and little  vegetation to very densely

vegetated  wetlands,  representing  a  range  of  ET  conditions.  The  ANNs  were  built  with

increasing complexity by adding the input variable that resulted in the next highest average

value of model testing R2 across all sites. The order of variable inclusion (and importance)

was: vapor pressure deficit (VPD) >  gap-filled sensible heat flux (H_gf) >  air temperature

(Tair) > friction velocity (u∗) > other variables. Overall, 36 ANNs were analyzed. The model

using VPD, H_gf, Tair, and  u∗ (F11), showed an average testing R2 value across all sites of

0.853.  In comparison with the  model  that  included all  10 variables  (F36),  F11 generally

performed better during validation with independent data. In comparison to other methods

described in the literature,  the ANN method generated more consistent  T/ET partitioning

results especially for more complex sites with large E contributions. Our method improves

the  understanding  of  T/ET  partitioning.  While  it  may  be  particularly  suited  to  flooded

ecosystems, it can also improve T/ET partitioning in other systems, increasing our knowledge

of the global water cycle.

Key-words: artificial  neural  networks;  eddy covariance;  machine  learning;  latent  energy;

terrestrial water cycle; wetlands; vapor pressure deficit.
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1 Introduction:1

Evapotranspiration2 (ET) is the combined water loss from terrestrial ecosystems via

transpiration  (T), i.e.,  water lost  by plants during the process of carbon assimilation,  and

evaporation  (E), i.e.,  water lost  via direct  evaporation  of soil  and surface water.  Through

these processes, ET adds on the order of 65 to 75 thousand km3 of water to the atmosphere

every year (Oki  & Kanae, 2006; Trenberth, Fasullo, & Kiehl, 2009; Jung et al., 2018) and

constitutes an important component of the terrestrial water cycle. Despite its importance to

the global  water  cycle,  ET  is  currently  poorly constrained in  global  land surface  models

(LSM), and it is unclear whether  ET  will increase or decrease with climate change which

creates large uncertainties in climate predictions (Brutsaert  & Parlange, 1998; Zeng et al.,

2018).  This  is  partly  because  E  and  T  have  different  drivers  and  mechanisms.  Thus,

improving our understanding of the relative contribution of E and T to ET will improve our

ability to predict how the water cycle will evolve with climate change (Stoy et al., 2019). 

Assessments of E and T fluxes at an ecosystem scale (i.e., 100 m to km) have been

attempted using a variety of methods (Stoy et al.,  2019). While some methods attempt to

determine  E  and  T  components  by  direct  measurements  (e.g.,  measurement  of  soil

evaporation,  sap-flux  measurements  for  transpiration),  these  are  often  time  and  labor

intensive and present significant challenges upscaling results to ecosystem level (Wilson et

al., 2001). Micrometeorological methods, such as eddy covariance (EC), are well-established

methods  that  assess  biosphere-atmosphere  fluxes  of  trace  gases  at  the  ecosystem  scale

(Baldocchi  et  al.,  1988).  With  EC  (see Fluxnet.org,  2021)  continuous  measurements  of

1  Abbreviations: ANN = Artificial Neural Networks; EC = Eddy Covariance; E = evaporation; ET = 
evapotranspiration; GCC = vegetation greenness index; GEP = Gross Ecosystem Productivity; T = transpiration; 
WT = water table; WUE = Water Use Efficiency; VPD = vapor pressure deficit;

2 NB: There is some discussion in the community around the correct use of the terms 

evapotranspiration vs evaporation (Miralles et al, 2020). We have opted to follow the common use of the term

evapotranspiration throughout this manuscript to describe the total biosphere-atmosphere water flux, 

including transpiration as well as direct evaporation from soil and surface waters. 
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ecosystem trace gas fluxes such as water vapor can be made on time scales from individual

half  hours  to  years  (Baldocchi,  2003).  However,  it  can  generally  only  provide  direct

measurements of the net biosphere-atmosphere flux above the plant canopy. In the case of

water vapor fluxes, this includes the net flux of  E and T combined. The ability to partition

micrometeorologically measured ET fluxes into E and T components would greatly improve

our understanding of the pathways by which ecosystems use water, including how E and T

components change on different timescales and with changing climatic conditions, as well as

the impact of site-specific characteristics like vegetation cover heterogeneity (Eichelmann et

al., 2018).

While  there  are  several  well  tested  and  established  methods  to  partition  net

ecosystem  CO2 fluxes  into  its  components  of  gross  primary  production  and  ecosystem

respiration (Baldocchi, 2003; Reichstein et al., 2005; Desai et al., 2008), less work has been

done on partitioning ET fluxes (Stoy et al., 2019). Stoy et al. (2019) provide a review of the

most common methods for determining E and T fluxes at ecosystem level. Most methods

proposed  for  partitioning  micrometeorologically  measured  ET  fluxes  use  the  intrinsic

relationship  between  CO2 uptake  and  transpirational  water  loss,  linked  through  stomatal

exchange at the plant level, to estimate ecosystem T (e.g., Scanlon and Sahu, 2008; Zhou et

al.,  2016;  Scott  and  Biederman,  2017;  Nelson  et  al.,  2018;  Li  et  al.,  2019).  Scott  and

Biederman (2017) proposed a method to partition long-term ET measurements into E and T.

Their method provides multi-year averages of partitioning on a weekly to yearly timescale.

However, it requires datasets of multiple year lengths with high interannual consistency in

seasonal ecosystem ET behavior.  Furthermore, it is unclear if this method provides reliable

results  in  systems  that  have  a  large  contribution  of  E  or  large  interannual  variation  in

ecosystem water exchange behavior. 

Similarly, the partitioning method proposed by Scanlon and Sahu (2008), Scanlon

and Kustas (2010), and Skaggs et al. (2018), uses the correlation between the high frequency
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fluctuation  of  water  vapor  and  CO2 concentrations  to  determine  the  stomatal  and  non-

stomatal mediated components of the net water and CO2 fluxes. However, this method relies

on the knowledge of water use efficiency (WUE), which is the ratio of carbon uptake through

photosynthesis to water loss through T, at the plant or leaf-level. Since information on WUE

is not always readily available at the temporal scale required for this method, and because

WUE  can  change  over  time  with  successional  age  and  environmental  factors  like  CO2

fertilization,  it  restricts  the  wider  use  of  this  method.  Another  method  based  on  the

relationship between CO2  uptake and T proposed by Zhou et al. (2016) to partition ET data

from EC measurements works with the underlying assumption that there will be periods for

which E is zero and T/ET approaches one. Similarly, the method proposed by Nelson et al.

(2018) assumes that the ecosystem will be dominated by T for some time periods. While such

methods are an advancement on T/ET partitioning, there is space for other new approaches

particularly if they do not need specialized data or costly equipment to increase the wider use

and applicability of such techniques.

Ecosystems with large contributions of  E, where total  ET is not always dominated

by T and which have complex interrelationships between ecosystem productivity,  E, and T,

might violate some or all of the underlying assumptions necessary for partitioning methods

based on the relationship between CO2 uptake and water loss to work (Stoy et al., 2019). This

is the case for wetlands,  where the contribution of  E-T is altered significantly by structural

factors such as  areas of open water, as well as environmental factors, for instance,  diurnal

fluctuations in air or water temperature and water table (Drexler et al., 2004; Goulden et al.,

2007; Eichelmann et al., 2018). In addition, the before-mentioned methods only work when

the ecosystem CO2 flux is known in conjunction with ET. Although this is often the case for

EC measurements, there are other micrometeorological methods that provide measurements

of ET without measuring CO2 fluxes. Consequently, a partitioning method that does not rely
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on knowledge of CO2 flux and assumptions of carbon-water flux correlations would greatly

enhance our ability to partition T/ET in a diversity of settings.

Methods applied to partition CO2  fluxes usually use relationships of environmental

drivers with the individual flux components determined from time periods where only one

flux component is present and extrapolate these to the other periods (Reichstein et al., 2005;

Desai  et  al.,  2008).  Many  methods  (e.g.,  Barr  et  al.,  2004;  Reichstein  et  al.,  2005)  use

relationships between temperature and ecosystem respiration based on nighttime fluxes, when

CO2 uptake is zero, and extrapolate these to calculate daytime ecosystem respiration. The

gross CO2 uptake component is then determined as the difference between the net flux and

the estimated daytime ecosystem respiration. While this method works well for carbon flux

partitioning,  where  the  primary  driver  of  ecosystem  respiration  is  considered  to  be

temperature, it can face limitations in the case of water fluxes where nighttime fluxes are

often very small and the drivers of E and T are complex. However, it has been shown that

nighttime  T  from plants  is  usually  very  small  in  many  ecosystems  (Caird  et  al.,  2006;

Dawson et al., 2007). Thus, for non-water limited systems with large contributions of E, such

as wetlands, we can approximate nighttime water fluxes as exclusively E. 

A newer approach used to partition net ecosystem carbon fluxes into the individual

components  of gross primary production and ecosystem respiration uses Artificial  Neural

Networks (ANN) (Papale & Valentini, 2003; Desai et al., 2008; Tramontana et al., 2020).

Although the use of ANNs could also be directed at T/ET partitioning, the application of this

technique  has  not  been  done  yet  and  needs  further  exploration.  Since  machine  learning

methods can resolve complex,  nonlinear  relationships  between environmental  drivers  and

flux variables (Tramontana et al., 2020), ANNs are a promising approach to partition T/ET in

ecosystems where existing ET partitioning methods face limitations, such as wetlands and

river deltas. 
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The Sacramento-San Joaquin River Delta (hereafter,  the Delta) plays an essential

role in the water supply of the state of California, USA. The Delta supplies the majority of

freshwater to large metropolises in Southern California and provides water for irrigation of

crops in the Central Valley (Deverel & Rojstaczer, 1996). Historically, the Delta’s peat soils

were flooded with large areas of freshwater marsh, but the majority of the Delta land area is

now actively drained and cultivated for agriculture. More recently, however, there has been a

growing interest in restoring freshwater wetlands to prevent further soil subsidence. In one of

the approaches used, the restored wetlands in the Delta are flooded with a water table that is

above ground level at all times (Hemes et al., 2019). The four restored wetlands in the Delta

selected for this study represent a range of conditions with some sites dominated by open

water areas and others covered in dense vegetation throughout (Eichelmann et  al.,  2018),

representing varying amounts of T/ET ratios expected at the different sites.

While restoring freshwater wetlands in the Delta can have many benefits, including

those related to wildlife habitat, climate, recreation, and levee stability, it can also lead to

increased  water  loss  through  ET  depending  on  the  vegetation  cover  characteristics

(Eichelmann et al., 2018). Moreover, given that changes in local and regional ET can affect

cloud formation and precipitation distribution (Gerken et al., 2018), this may have a knock-on

effect on the water cycle and on the climate feedback of wetlands (Hemes et al., 2018). In

locations that experience spatial and temporal water shortages, such as California, increasing

our knowledge of the local water cycle and understanding how  ET  is affected by external

drivers is extremely important. 

Here, we show that we can partition  ET  measurements above flooded wetlands in

the  Delta  by  predicting  daytime  E  from  nighttime  ET  measurements  using  ANNs  in

combination  with  environmental  driver  variables  such  as  vapor  pressure  deficit  (VPD),

temperature, atmospheric turbulence, canopy greenness index, and others. The meso-network

of diverse wetland EC sites used in this study is ideal to test this new ET partitioning method
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as  it  provides  a continuum of  T/ET conditions  across complex canopy architectures.  We

present the most promising models and discuss the application of ANN to partition T/ET

measurements. While there is an emphasis on wetlands, we show evidence that our method

may be applied to other ecosystems as well, increasing the knowledge of the water cycle and

shedding light on plant-water productivity relationships at an ecosystem level. 

2 Methods

2.1 Site Description

We  conducted  EC measurements  at  four  wetland  sites  in  the  Sacramento-San

Joaquin river delta in Northern California: West Pond (38° 6.44′N, 121° 38.81′W, Ameriflux

ID: US-TW1), East  End (38° 6.17′N, 121° 38.48′W, Ameriflux ID: US-TW4),  Mayberry

Farms (38° 2.99′N, 121° 45.90′W, Ameriflux ID: US-MYB), and Sherman Island (38° 2.21′N

121° 45.28′W, Ameriflux ID: US-Sne). All sites are part of the Ameriflux network and the

EC data  from these sites  are  available  for download through the Ameriflux data  sharing

platform  (https://ameriflux.lbl.gov/).  The  sites  have  been  described  in  detail  in  other

publications (Detto et al.,  2010; Hatala et al., 2012; Knox et al., 2015; Eichelmann et al.,

2018;  Hemes  et  al.,  2018,  2019)  and  their  main  characteristics  will  only  be  briefly

summarized  here.  All  four wetlands  are  artificially  constructed  wetlands managed by the

Department of Water Resources to reverse soil subsidence in the area. The water table is

actively managed to be above ground level throughout the flooded portions of the wetlands at

all sites. 

The West Pond wetland is the oldest of the four wetlands, originally constructed in

1998. It is the most homogeneous of the study sites, with a fairly even, but slightly sloping,

ground surface  and dense  vegetation  covering  the  whole  wetland  (97% vegetation  cover

8

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.06.438244doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438244
http://creativecommons.org/licenses/by-nc-nd/4.0/


within EC footprint in 2018, Valach et al., 2021). The water table varies slightly throughout

the wetland due to the sloping ground level but is generally between 20 and 40 cm above

ground  level.  The  Mayberry  Farms  wetland  was  constructed  in  2010 and  has  a  very

heterogeneous footprint. With a heterogeneous bathymetry this wetland features small islands

of vegetation and deeper channels and pools of open water (64% vegetation cover within EC

footprint in 2018, Valach et al., 2021). The water depth varies from 2 m above ground level

to  2 cm above ground level  in the flooded portions,  with some dry  areas.  The East  End

wetland was constructed in 2013 and also features some areas of open water channels and

pools. The vegetation at East End has filled in more evenly since its establishment and it has

a greater vegetation cover than Mayberry Farms (96% vegetation cover within EC footprint

in 2018, Valach et al., 2021). The Sherman Island wetland is the newest wetland constructed

in 2016. Similarly to Mayberry Farms, it features a very heterogeneous bathymetry and the

footprint is dominated by large portions of open water. Vegetation has only taken hold in

very few and small patches within the footprint of the  EC measurements (45% vegetation

cover within EC footprint in 2018, Valach et al., 2021). While the individual make-up and

proportions vary slightly between sites, the dominant vegetation species at all sites are tules

(Schoenoplectus acutus) and cattails (Typha spp.) (O’Connell et al., 2015).

2.2 Eddy Covariance Data

We measured continuous fluxes of H2O, CO2 and sensible heat using the EC method

at  all  sites  (Baldocchi  et  al.,  1988).  A detailed  description  of  the  instrument  set-up  and

calculation procedures can be found in previously published papers (Detto et al., 2010; Hatala

et al., 2012; Knox et al., 2015; Eichelmann et al., 2018; Hemes et al., 2018, 2019) and will

only  be  summarized  here.  At  each  site,  the  EC instrumentation  consisted  of  a  sonic

anemometer (WindMaster 1590 or WindMaster Pro 1352, Gill Instruments Ltd, Lymington,
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Hampshire, England) and an open path trace gas analyzer for H2O and CO2 concentrations

(LI-7500 or LI-7500A, LI-COR Inc., Lincoln, NE, USA). The instruments were mounted at a

fixed height at least 1 m above the maximum height of the canopy. 

High frequency (20 Hz) measurements of sonic temperature, three-dimensional wind

speed, and trace gas concentrations were recorded on USB drives in the field through the

analyzer  interface  (LI-7550,  LI-COR Inc.,  Lincoln,  NE,  USA).  The  data  were  collected

approximately every two weeks, with routine maintenance and servicing of the instruments

taking place at the same time. The LI-7500 trace gas analyzers were calibrated approximately

every three to six months in the laboratory. The performance of the EC set-up was also cross

checked periodically  at  individual  sites  by  the  Ameriflux  mobile  EC reference  system

(Schmidt et al., 2012). 

All  data  processing  and  filtering  was  performed  offline.  Thirty-minute  average

fluxes were calculated using custom software written in-house (MATLAB, MathWorks Inc.,

R2015b,  version  8.6.0)  after  basic  de-spiking  of  high  frequency  data  and  filtering  for

instrument  malfunctioning  (Detto  et  al.,  2010;  Hatala  et  al.,  2012;  Knox  et  al.,  2015;

Eichelmann et al., 2018). A rotation into the mean wind was performed for each 30-minute

averaging interval and the Webb-Pearman-Leuning correction for air density fluctuations for

open path sensors was applied to the calculated  fluxes  (Webb et  al.,  1980).  Fluxes were

filtered for low friction velocity (u∗), as well as based on stability and turbulence conditions

(Foken  &  Wichura, 1996). Low friction velocity thresholds are based on the point where

nighttime CO2 fluxes become independent of u∗ and are defined individually at each site. The

thresholds can vary seasonally and usually range from 0.12 m s-1 to 0.2 m s-1. Because of the

narrow shape  of  the  wetland,  the  West  Pond wetland  fluxes  were  also  filtered  by  wind

direction to ensure flux footprints originated from the ecosystem of interest. 

Energy budget closure is often used as a quality indicator for EC data (Wilson et al.,

2002). At the flooded wetland sites covered in this study the energy budget closure of daily
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totals  was  between  73% and  81%,  which  is  slightly  lower  than  typically  found  in  dry

ecosystems. H2O fluxes from the West Pond, Mayberry Farms, and East End wetland sites

used in this study have been published and discussed in detail by Eichelmann et al. (2018),

including a discussion of data quality, energy budget closure, and the difficulties estimating

energy storage components in the flooded wetlands. Because of the importance of storage

terms in the context of these sites, energy fluxes measured by the EC method have not been

adjusted  for  incomplete  energy  budget  closure  (Eichelmann  et  al.,  2018). In  this  study,

positive fluxes indicate a gain to the atmosphere and negative fluxes indicate a loss from the

atmosphere. All analyzes and data processing described in this study were performed using

MATLAB (MathWorks Inc., R2018a, version 9.4.0). 

2.3 Auxiliary Data

Meteorological and environmental data were also measured continuously in addition

to  EC data at all sites. The following auxiliary measurements were available at all wetland

sites: Air temperature (Tair); water temperature at 3 to 6 different water depths (Twater, depths

vary between site  due to differences in water tables); soil temperature at 6 different depths

(Tsoil);  relative  humidity  (RH);  atmospheric  pressure;  incoming  and  outgoing  shortwave

radiation; incoming and outgoing longwave radiation; net radiation; incoming and outgoing

photosynthetically  active  radiation;  water  table  depth;  water  conductivity;  and vegetation

greenness index from camera data (GCC). Moreover, the West Pond and East End wetland

sites were equipped with a rain gauge to measure precipitation and the East End wetland site

was equipped to measure ground heat flux (G). 

Data were recorded as half hour averages (or totals in the case of precipitation) with

individual sampling frequency varying between 1 and 15 minutes depending on the sensor.

Specifically  of  interest  for  this  study are measurements  of  vapor  pressure deficit  (VPD),
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water table depth (WT), air temperature (Tair), vegetation greenness index (green chromatic

coordinate;  GCC),  and  net  radiation  (Rnet).  VPD  was  calculated  from  relative  humidity

measurements in combination with air temperature data, both measured with aspirated and

wind-shielded humidity and temperature probes (HMP-60, Vaisala Inc., Helsinki, Finland).

Net radiation was measured using either a net radiometer (NR-LITE Radiometer, Hukseflux,

Delft, the Netherlands; at Mayberry Farms) or a four-component net radiometer (NR01 Net

Radiometer,  Hukseflux,  Delft,  the  Netherlands;  at  West  Pond,  East  End,  and  Sherman

Island).

2.4 Artificial Neural Network Partitioning Routine

Artificial  Neural Networks have been applied for gap-filling and partitioning  EC

fluxes in the past (Papale & Valentini, 2003; Oikawa et al., 2017; Tramontana et al., 2020).

Specifically,  for  CO2 fluxes,  ANNs  have  shown  to  perform well  when  used  to  gap-fill

missing data (Moffat et al., 2007) and partitioning net CO2 fluxes into the component fluxes

of  gross  primary  production  (GPP)  and  ecosystem respiration  (Reco)  (Desai  et  al.,  2008;

Oikawa et al., 2017; Tramontana et al., 2020). Following a similar approach to partitioning

CO2 data, we assumed that nighttime ET data is dominated by E at these flooded sites: 

ET = T + E  (1)

Tnight ≅ 0 (2)

ETnight = E (3)

We conducted several leaf-level chamber measurements using a LI-6400 Portable

Photosynthesis System (LI-COR Inc., Lincoln, NE, USA) throughout the growing season of
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2017  to  confirm that  nighttime  and  dark  T  flux  is  indeed  negligible  at  these  sites.  The

available nighttime E data is used in combination with environmental input variables to train

the ANN routine to  predict  daytime  E.  Daytime  T  was then calculated  as  the difference

between total ET and E:

Tday = ETmeasured – Epredicted (4)

Before  ET partitioning  was  performed  all  flux  data  were  gap-filled  using  ANN routines

described in previous studies (Knox et al., 2015, 2016; Oikawa et al., 2017, Eichelmann et

al., 2018).

2.4.1 Artificial Neural Network Routine Set-up

To partition  ET  data using ANNs in this study, we followed a similar set-up and

architecture  as  described  for  gap-filling  and  partitioning  CO2 data  in  previous  studies

(Baldocchi  &  Sturtevant,  2015; Knox et al.,  2015, 2016; Oikawa et al., 2017). The entire

available (multi-year) explanatory dataset was split into 20 data clusters using the k-means

clustering algorithm. The data used for training,  testing,  and validation of the ANNs was

proportionally  sampled  from these  clusters  with  one  third  of  the  available  data  used  for

training, testing, and validation each. This procedure avoids a sampling bias towards periods

when  more  data  are  available,  such  as  a  specific  time  of  the  year  or  time  of  the  day.

Proportional data sampling from the k-means clusters into training, testing, and validation

data was repeated 20 times. For each of the 20 re-sampled training, testing, and validation

datasets several ANN architectures were tested starting with one hidden layer and the same

number of nodes as the number of explanatory input variables (ninputvar). Each architecture was

initialized 10 times with random starting weights and the initialization with the lowest mean

sampling error was used. The complexity of the ANN architecture was increased first by
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increasing the number of nodes to 1.5 times ninputvar and then by increasing the number of

hidden layers until a further increase in complexity results in less than 5% reduction of the

mean standard error. For our datasets, this commonly resulted in the use of an architecture

with two hidden layers, the first one with ninputvar nodes, the second one with 0.5*ninputvar nodes,

although for some sites and input variable combinations architectures with only one hidden

layer  produced  better  results.  The ‘validation’  step  within  the  ANN procedure  described

above  is  performed  on nighttime  data  only  and is  therefore  distinctly  different  from the

validation with flooding and leaf level data described below. Throughout the remainder of the

manuscript when we use the term ‘validation’ we refer to the independent flooding and leaf

level data validation. The ANN internal validation routine based on nighttime data is referred

to as ‘testing’.

2.4.2 Selection of Explanatory Variables

A  number  of  different  explanatory  environmental  input  variables  were  tested

individually  and in  combination.  Based on the general  understanding of  the drivers  of  E

fluxes  in  terrestrial  and  aquatic  ecosystems  we  tested  the  following  input  parameters:

Meteorological  and  environmental  variables:  VPD,  Rnet,  GCC,  WT,  Tair; Flux  variables:

friction velocity (u∗), gap-filled sensible heat flux (H_gf), gap-filled CO2 flux (wc_gf), and

ecosystem respiration (er_Reichstein) partitioned using the temperature dependency method

proposed by Reichstein  et  al.  (2005).  In  addition,  we used a  running decimal  timestamp

(datetime) as input variable in all our ANN runs. VPD, u∗, and Tair describe the atmospheric

demand driving E. Rnet and H_gf are connected to ET (or latent energy) through the energy

balance equation. GCC, wc_gf, and er_Reichstein are directly or indirectly related to plant

physiological responses that can impact ET components. Finally, WT is related to the water

budget  of  the  ecosystem.  Given  the  strong  correlation  of  water  temperature  (Twater)  with
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nighttime ET documented at these sites in a previous study (Eichelmann et al.,  2018) we

would also expect Twater to perform well as an environmental input variable. Unfortunately,

we were unable to include Twater as an input variable in this  study since we did not have

consistent Twater measurements across time for any of the four sites.

We ran the ANN routine for each of these parameters individually and recorded the

R2 value and slope of the linear regression of the  nighttime EC data initially set aside for

testing within the ANN routine versus the predictions. This R2 value is called ‘testing R2’

throughout  this  manuscript  and  is  based  only  on  nighttime  data.  Starting  with  the  input

parameter with the highest testing R2, we ran the ANN routine with increasing numbers of

input variables, each time adding on the variable with the next highest testing R2 value. We

continued this  process until  a further increase in input variables  resulted in less than 1%

increase in the testing R2 value. We averaged the testing R2 values across the four sites and

used this value to estimate increases in the performance of the ANNs. While this average

testing R2 does not have any statistical relevance, it gave us a good indicator on how well the

models performed across all sites studied.

2.5 Validation of Results

One of the main issues facing validation of ET partitioning methods is often the lack

of  independent  E  or  T  data  to  validate  against  (Stoy  et  al.,  2019).  Taking  independent

measurements  of  ecosystem  E  or  T  is  challenging  and  one  of  the  main  reasons  why

partitioning approaches for EC measurements of ET are much sought after. Since we do not

have independent measurements of ecosystem level E or T available at our sites, we reverted

to  validating  our  partitioning  data  by  a  conditional  sampling  approach,  selecting  EC

measurement  data  from  certain  time  periods  when  E  and  T  can  be  known  or  closely

approximated to compare with the ANN predicted E or T. One of these time periods is the
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initial time right after flooding of the wetland (referred to as flooding data), when vegetation

had not yet established within the footprint of our instruments. During this time, it can be

assumed that the entire H2O flux coming off the surface is from E, with negligible T. 

     Since we trained our ANN routines only on nighttime data, we were able to use

the daytime data during the initial flooding period as an independent validation dataset for E.

Apart from the initial flooding period, T can also be assumed to be small to negligible during

the  senescent  winter  months.  However,  since  the  plants  are  not  harvested  or  otherwise

removed and the climate in this  region is fairly mild,  some do stay green throughout the

winter  and may continue to  be photosynthetically  active.  Additionally,  vegetation  on dry

areas such as levees usually starts to green up during the winter months in this region. Both of

these would be contributing to a  small  T  flux from the ecosystem. Moreover,  ET  fluxes

during  the  winter  period  are  generally  lower  and  subject  to  larger  errors  due  to  more

challenging turbulence conditions during this time. Such conditions result in large relative

error in flux measurements during this period limiting the insights gained from the validation

during the senescent winter period. Nonetheless, we included validation of E predicted from

our ANN method against E measured during winter times to further test the performance of

our method.

In addition to the validation during periods when T was zero, we also conducted a

number of leaf-level T measurements in the summer of 2017 at the East End wetland using a

LI-6400  portable  photosynthesis  system  (LI-COR Inc.,  Lincoln,  NE,  USA)  with  a  clear

conifer  chamber  (part  number  6400-05)  encasing  sections  of  the  leafs  or  culms.  Six

individual leaf-level measurement points (three for each of the dominant plant species) taken

during the same half hour period were pooled to allow comparison with the half hourly EC

data. These measurements provided us with an estimate of T per unit of sunlit leaf area and

may potentially be converted to the ecosystem scale if the ecosystem leaf area index and the

leaf angle distribution are known. Efforts have been made to estimate the leaf area index in a
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number of the wetlands in the study region, however, due to the high heterogeneity and litter

accumulation  in  these  systems  there  is  a  high  level  of  uncertainty  associated  with  the

measured  leaf  area  indexes  (Dronova  &  Taddeo,  2016).  Additionally,  the  leaf  angle

distribution is unknown in these systems and can only be approximated, which is an intrinsic

limitation of this technique. 

Taking all these uncertainties into account, ecosystem  T  scaled up from leaf-level

measurements is associated with very large error intervals and cannot serve as a reasonable

constraint on the absolute values of our ANN partitioned T fluxes. However, since the scaling

factors to convert leaf-level values to ecosystem level are constant multipliers, we should still

be seeing a linear relationship between the leaf-level flux and the partitioned ecosystem level

T  if  our  partitioning  algorithm  predicts  the  correct  T behavior  across  a  range  of

environmental conditions. While we may not be able to compare the absolute T values, we

can compare the response cycle of ANN predicted T with the field measurements to validate

that we are predicting the right behavior. 

2.6 Comparison with Other T/ET Partitioning Approaches

Direct comparisons with the Scott and Biederman’s (2017) method were carried out

in order to evaluate the performance of our own models against their approach. For that, we

used the model (F11, see Results below) that achieved the best R2 value against the validation

with  leaf-level/flooding  data.  While  Scott  and  Biederman  (2017)  forced  all  monthly

regressions between ET and gross ecosystem productivity (GEP) to the same slope, we used

different slopes for each regression. This was done to ensure the best fitting since our datasets

did not show the same uniform behavior  across months.  Indirect  comparisons with other

methodologies mentioned above were also discussed.
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3 Results

3.1 Artificial Neural Network Architecture Performances

Alongside the basic timestamp (datetime),  VPD and Tair were the meteorological

variables that best explained our data when only looking at the nighttime testing data, with

average  testing  R2 values  across  all  sites  of  0.648 and 0.565,  respectively  (Table  1  and

Supplementary Table 1). The flux related variables that showed the highest average testing R2

values and added most information to the models were H_gf (testing R2 of 0.620) and  u∗
(testing R2 of 0.531). To increase the ANNs complexity we, therefore, followed the variables

order of VPD > H_gf > Tair > u∗, adding each of them into the models sequentially. VPD was

the variable that contributed the most to increase the testing R2 values of the ANNs, with an

average increase of 24% across all sites and a maximum of 36% for West Pond, when models

F21 and F26 were compared (Table 1). The incorporation of H_gf was responsible for an

average increase of 10% in testing R2, when comparing the ANNs F26 and F33 (Table 1). Tair

only increased the ANNs testing R2 by 1% (i.e.,  when comparing models  F33 and F34),

however, when we added u∗, the average testing R2 value increased across all sites by 9%,

when comparing models F34 and F11 (Table 1). Thus, building the ANN F11 using datetime,

VPD, H_gf, Tair, and  u∗, the average testing R2 value across all sites reached 0.853, with a

minimum of 0.728 (West Pond) and a maximum of 0.910 (Sherman Island;  Supplementary

Table 1).

Of all the 36 ANNs tested, the highest average testing R2 (0.891) was reached when

all the explanatory variables (i.e., datetime, H_gf, u∗, wc_gf, er_Reichstein, VPD, Tair, GCC,

Rnet  and  WT)  were  put  into  the  model  F36 (Table  1  and  Supplementary  Table  1).

Consequently, on average, all the other variables analyzed (i.e., wc_gf, er_Reichstein, GCC,

Rnet and WT) accounted for less than 4% of the testing R2 value across all the four sites
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(when comparing models F36 and F11; Table 1). The top five ANNs (F36 > F14 > F20 > F35

> F11) that performed better than 0.85 all have datetime, VPD, H_gf, Tair, and u∗  as their

explanatory variables and all the 11 ANNs that scored an average testing R2 higher than 0.80

have both VPD and u∗  in their models (Table 1 and Supplementary Table 1). Fifteen ANNs

showed an average testing R2 higher than 0.70 and the lowest average testing R2 among these

(0.730)  was  presented  by  the  ANN  F2,  constructed  using  only  datetime,  Tair,  and  u∗
(Supplementary Table 1). Unsurprisingly, the lowest average testing R2 (0.410) of all the 36

ANNs analyzed was given by the ANN built using  datetime alone (F21).  The slope values

(Table  1  and  Supplementary  Table  2)  of  the  different  ANNs  followed  quite  closely  the

pattern described for the increase in testing R2 values. 

3.2 Validation of Artificial Neural Networks 

3.2.1 Flooding Validation

To evaluate  the performance of our ANN partitioning method,  we compared the

model  predicted  E with  EC measurement  data  from conditionally  sampled  post-flooding

periods, during which we assume T to be negligible (Table 2). The ANN F11 showed the

highest validation R2 values for East End (0.81), Mayberry Farms (0.69), and Sherman Island

(0.82). These values surpassed those from the model F36 (most complex),  which reached

0.51, 0.56, and 0.53, for East End, Mayberry Farms, and Sherman Island, respectively. Figure

1 shows the validation comparison between F11 and F36 for the three sites. 

 

3.3.2 Winter Time Validation
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Judging by the observed R2 values, the validation using daytime data from senescent

periods during the winter time (December to February, Table 3) performed quite poorly in

comparison to the validation performed with data during the initial flooding periods (Table

2).  Nevertheless,  the  winter  period  validation  overall  did  confirm  the  same  trends  and

observations as the flooding validation. At Mayberry Farms and Sherman Island ANN F11

again had the highest R2 values (0.56 and 0.70, respectively). However, at East End and West

Pond the model F36, which included all input variables, performed best with R2 values of

0.45 and 0.36, respectively. Figure 2 shows the validation comparison between F11 and F36

for the four sites using winter data.

3.3.2 Validation on Diurnal Measurements of Leaf-Level Data for East End

To  evaluate  the  performance  of  our  method  further,  we  compared  the  model

predicted T with independent leaf-level data collected during a field campaign in summer

2017 at the East End wetland. The leaf-level data showed high variability across individual

measurements (Fig. 3). F11 again showed a high R2 (0.986, Table 4). Other models (F15,

F33) also performed quite well in the leaf-level validation, in contrast to their performance

for the validation during flooding or senescent periods. The most complex ANN (F36) had a

lower R2 value (0.92) for the leaf-level validation. In general, adding too many variables did

not lead to enhancement of validation values, but it is to be noted that all models showed a

high level of agreement with the leaf-level data (Table 4). Figure 3 shows both F11 and F36

validations against leaf-level data. 

3.3 Artificial Neural Networks Performance Across the Wetland Sites
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To look for model consistency across diverse canopy architecture and successional

stages, we compared ANN testing R2 values between the four sites. Among the four sites,

East End and Sherman Island were the only sites that had ANNs with testing R 2 values larger

than 0.90 for the EC testing data set aside during the ANN routine (Supplementary Table 1).

At Sherman Island, East End, and Mayberry Farms 22, 20, and 19 ANN models reached

testing R2 values above 0.70, respectively, whereas at West Pond only 11 models reached

testing R2 values above 0.7 (Supplementary Table 1). In comparison with the other three

studied  sites,  West  Pond showed testing  R2 values  in  the  order  of  9-18% smaller  when

analyzing the top five ANNs with average testing R2 larger than 0.85 (Supplementary Table

1). Considering all 36 ANNs, differences in testing R2 between the same ANN for different

sites reached a maximum of 46%, when comparing model F6 at West Pond with Sherman

Island (Supplementary Table 1).

3.4 Comparisons with Other Partitioning Approaches

To compare our ANN method with existing T/ET partitioning methods, we applied

the Scott and Biederman (2017) long-term flux data partitioning method at all four sites. As

expected, the Scott and Biederman (2017) method worked better for datasets with > 6 years

(Fig. 4; Mayberry Farms, West Pond, and East End). Sherman Island, the shortest dataset

with four years of data collection, performed poorly, showing negative correlations of ET vs

GEP for the months of June to September (Fig. 4 d). Average monthly T fluxes from the

Scott and Biederman (2017) method for Mayberry Farms and Sherman Island (Fig. 5a and d)

both showed increases in T at the end of the growing season (i.e., October) out of line with

the observed GEP patterns. Conversely, West Pond and East End (Fig. 5b and c) showed a T

pattern parallel to GEP with the growing season. 
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While the T values from our ANN approach showed a similar  behavior as GEP

during the growing season, as would be expected, the T values from the Scott and Biederman

(2017) method did deviate somewhat from the GEP pattern for all sites (Fig. 5). The best

ANN (F11) also produced more reasonable T numbers for Sherman Island compared to the

Scott and Bierderman (2017) method. In addition, the E values retrieved in our analysis for

all sites were also more stable and did not fluctuate as much across months compared to the E

values from the Scott and Biederman (2017) method (Fig. 5). While the Scott and Biederman

(2017) method is not intended to produce reliable results for T/ET partitioning during winter

months when GEP is small, it did show very good agreement of produced E and T values

when compared to our ANN based values from October to February for all sites.

3.5 Resulting Evaporation and Transpiration Estimates

 

Figure  6  shows  the  annual  (2013-2019)  ANN  based  T/ET  partitioning

intercomparison for all sites using ANN F11. Only years with a full year of data are used.

While ET stayed fairly consistent between 850-1250 mm for all sites and years (Fig. 6a),

GEP showed more fluctuations between the different sites, as well as interannually within

each site (Fig. 6b). Looking at the predicted partitioning of E and T (Fig. 6c, d), Sherman

Island  showed  the  highest  values  of  E  (approximately  1100  mm)  for  the  three  years  of

measurements available at this site, while West Pond had the lowest E values across all years

and sites (200 to 300 mm). Although values at East End were always higher compared to

Mayberry Farms for all years with measurements from both sites, decreasing pattern can be

observed for E at both sites, ranging from high values of 831 mm at Mayberry Farms in 2013

and 1119 mm at East End in 2014 down to low values of 449 mm at Mayberry and 630 mm

at East End in 2019. Transpiration showed opposite trends compared to E, with West Pond

having the highest values (between 700-800 mm in most years), followed by Mayberry Farms
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with T values between 300-500 mm. The T pattern predicted at Mayberry Farms follows a

similar pattern as the GEP measurements, most notably is the significant reduction in GEP in

2016  which  was  caused  by  saltwater  intrusion  at  the  site  (Eichelmann  et  al.,  2018,

Chamberlain et al., 2020). This was mirrored in a reduction of T values in 2016, however, E

was not affected. Sherman Island and East End showed T values below 300 mm for all years,

considerably lower than the other two sites. In the first full year of measurements (2014), T at

East End was even predicted as negative (-24 mm), similar to the negative T predictions

observed at East End during the winter validation (Fig. 2). However, this value falls within

the uncertainty range of 91 mm for annual ET measurements at this site in 2014 (Eichelmann

et al., 2018). East End and Sherman Island both had a very high open water surface area,

especially in the first years after flooding, so it would be expected that E is more dominant.

Sherman  Island  specifically  had  extremely  sparse  vegetation  cover  throughout  the  EC

measurement footprint for the first two years of measurements, also evident in the very low

values  of  GEP.  For  both  of  these  sites,  East  End  and  Sherman  Island,  we  can  see  that

gradually  E  declines  and  T  increases  as  the  vegetation  fills  in  from  year  to  year.

Consequently, when comparing the T/ET values across sites (Fig. 6e), West Pond had the

highest value of T/ET (70%-75% on T), followed by Mayberry Farms (30%-50%), East End

(0-30%), and Sherman Island (<15%). This highlights that only West Pond can be described

as a T dominated site with T/ET values in the range between 0.5 and 0.8 reported for other

terrestrial  ecosystems (Schlesinger & Jasechko, 2014). The other three sites are clearly E

dominated  and  have  T/ET  values  considerably  lower  than  those  expected  for  terrestrial

ecosystems.

4 Discussion

4.1 Artificial Neural Network Architecture Performances
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The ANN F36, which was built using all studied variables, presented the highest

average testing R2 value (0.891) for the nighttime-based testing dataset among all 36 ANNs

analyzed. Nevertheless, there was not much improvement in testing R2 in the models (i.e.,

maximum of 3-4% on average) after the ANN F11. This indicates that not all variables are

necessary  to  provide good results  in  the  partitioning  of  ET into  E  and  T,  and  that  less

complex models can result in good predictions. For instance, using only datetime + H_gf +

VPD (F33) or datetime + u∗ + Tair (F2) the average testing R2 value across all sites was > 0.70,

indicating a good correlation.  In addition, when using  datetime + VPD alone the average

testing R2 value for three sites (i.e., East End, Mayberry Farms and Sherman Island) was >

0.70.

In our  study,  the  order  of  variable  inclusion  to  increase  model  complexity  was:

datetime > VPD > H_gf > Tair >  u∗. VPD was the variable that contributed the most  in the

improvement of the ANNs, with an average of 24% increase in testing R2 values across all

sites. VPD is routinely measured at most EC sites (e.g., Fluxnet.org, 2021) and its effect on

ecosystem water cycling by limiting surface conductance and reducing transpiration under

high VPD is well documented (Buckley, 2005, Novick et al., 2016). The fact that the top 14

ANNs (i.e., with the highest testing R2 value) were constructed using VPD as one of the input

parameters highlights the importance of VPD as a predictor of ecosystem water exchange. In

addition,  all the 11 ANNs that scored an average testing R2 > 0.80 have u∗  in their models,

indicating  that  information  on  atmospheric  turbulence  is  important  to  incorporate  in  ET

partitioning prediction if available.  It may not be surprising that at these flooded sites E is

mainly  explained  by  atmospheric  conditions  such  as  VPD,  Tair,  and  turbulence  (u∗)
underlining their importance in the ANN partitioning routine. At sites with different surface

and vegetation characteristics, such as dryland sites, it would be important to investigate the
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importance  of  other  variables  such as  soil  moisture,  soil  temperature,  or  leaf  wetness.  It

would  be  expected  that  these,  together  with  other  energy  balance  components  such  as

radiation, would play a larger role in explaining E at water limited sites. 

4.2 Artificial Neural Network Validation Against Post-Flooding Periods and Leaf-Level 

Data

The validation of our models against  data collected right after  flooding (for East

End,  Mayberry Farms, and Sherman Island)  and with leaf-level  data  (for East  End only)

indicated that models with less input variables (F11) performed better in comparison to the

model that incorporated all 10 studied variables (F36). It might be that overfitting occurred

when incorporating input variables that deal directly and/or indirectly with the same property/

factor (i.e., carbon assimilation). In this case, F36 includes er_Reichstein, wc_gf and GCC

which are all  related  to  carbon uptake  by vegetation.  Thus,  even with a smaller  average

testing R2 value, models with fewer input variables (e.g., F11) still performed better than F36

during validation with ground-truth leaf-level and flooding data. Specifically, the ANN F11,

which showed the best performance for all three of the sites with flooding data validation

(East End, Mayberry Farms, and Sherman Island) included datetime + H_gf + VPD + T air +

u∗. The validation based on data collected right after flooding also emphasized the importance

of validating the ANN partitioning routine against data collected during daytime periods.

Some  of  the  tested  input  variables  showed  strong  differences  in  daytime  and  nighttime

behavior (e.g., Rnet). Using these variables as inputs can lead to incorrect predictions for the

nighttime-based  ANN  routine  as  seen  in  the  poor  performance  of  F15  for  the  flooding

validation at East End and Mayberry Farms, despite a high testing R2 of 0.75 (Supplementary

Table 1).
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The flooding validation also highlights site-specific differences in the input variables

that  provided good predictions.  While  the best performance was achieved with the same

model (F11) across all three validation sites, the behavior of the other tested models varied

across sites. We recommend that the selection of input parameters for ANN partitioning of

ET  should  be  based  on  the  unique  site  characteristics  rather  than  a  standardized  set  of

variables  since  vegetation  heterogeneity  and other  site  level  characteristics  can  influence

ecosystem ET levels (Eichelmann et al., 2018). 

This is also evident in the validation using data from the winter/senescent period,

where F11 performed best at Mayberry Farms and Sherman Island, whereas F36 performed

best  at  East  End and West Pond. The overall  performance of our ANNs in predicting E

during  the  winter/senescent  periods  was  also  considerably  lower  in  comparison  to  the

flooding and leaf-level data validation. This is partially due to the smaller fluxes observed

overall during this period, leading to larger relative errors. In addition, the assumption that all

measured ET during the winter months represents solely E is likely incorrect. Especially at

the  sites  with  high  vegetation  cover  (Mayberry  and West  Pond) it  is  likely  that  a  small

amount of T occurs during this time which would be included in the measured ET signal,

leading to an apparent under-prediction of E for the ANN. For East End and Sherman Island,

however,  we  can  see  that  the  ANNs  are  actually  over-predicting  E  (Fig.  2),  leading  to

consistent, albeit relatively small, negative T prediction in the winter months, specifically at

East  End  (Fig.  4).  It  is  unclear  what  is  causing  the  discrepancy  between  measured  and

modeled E at East End and Sherman Island during the winter months. However, the fact that

inclusion of variables linked to vegetation growth (GCC, wc_gf, er_Reichstein) reduced the

over-prediction  at  both sites  (e.g.,  F36 or  F15)  could indicate  that  E dynamics  linked to

phenology and vegetation cover are not adequately reproduced in models without these input

variables at East End and Sherman Island.
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Unfortunately,  a limitation  in our study is  that  we were not able  to  validate  our

results across all sites/sampling times due to a lack of leaf-level data collected from all sites,

which is very time and labor intensive. In addition, no data were available from the initial

flooding period at the West Pond wetland. Nonetheless, we are aware that validation of T/ET

partitioning is  quite  scarce in the literature and that the data validated against our ANNs

prove that good results can be achieved using the protocol tested here. 

4.3 Artificial Neural Network Performance Across the Wetland Sites

Concerning the performance of all the 36 ANNs across the four wetlands analyzed

in this study, West Pond showed smaller testing R2 values in comparison to the three other

sites. Between-site differences reached up to 46% for the same model. The main reason for

this divergence was likely the differing amounts of open water surfaces and density of the

vegetation between these sites. West Pond, with little to no open water, is likely to see less E

compared to the other wetlands (Eichelmann et al., 2018). In addition, West Pond also has the

lowest water temperature and a very dense vegetation canopy decoupling the water surface

from the atmosphere and leading to further reductions in E, especially at night (Drexler et al.,

2004; Goulden et al., 2007; Eichelmann et al., 2018). Because our method predicts E based

on nighttime data and calculates T based on the difference between total  ET and E, if E

values are small the relative accuracy of the prediction will decrease, which is reflected in the

testing R2 values. However, because the E values are small, the absolute error of the predicted

E and T would be proportionately small, hence the total T and E values can still be reliable.

Unfortunately, we did not have a set of ground-truth validation data available for the West

Pond site to investigate  the true performance of the ANN ET partitioning.  However,  our

comparison with the Scott and Biederman (2017) partitioned data and expected relationships

based on the observed carbon fluxes and vegetation dynamics give us high confidence in the
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performance of the ANN partitioning routine at the West Pond wetland site. This shows that

the ANN partitioning method can also be successfully applied in situations where nighttime E

fluxes are small, indicating that it could be applicable to a large variety of ecosystems.

4.4 Comparisons with Other Partitioning Approaches

In comparison to other established methods in the literature our own approach using

ANNs to determine the T/ET partitioning achieved very good results with fewer limitations,

which  makes  it  easier  to  apply  in  other  contexts/ecosystems.  For  instance,  Scott  and

Biederman’s (2017) method only works when there are enough years of data. The shortest

dataset Scott and Biederman (2017)  analyzed spanned eight years, which is a considerably

long time period and reduces  its  applicability  to  shorter  studies.  Also,  in  the  absence of

climate consistency among sampling sites or if the research takes place in areas where fluxes

are  not  limited  by  water  availability  (e.g.,  wetlands),  their  model  fails  to partition  T/ET

correctly, limiting it to relatively dry ecosystems. This was evident from direct comparisons

with our own method, particularly for Sherman  Island which has the shortest dataset (i.e.,

four years) and the highest area of open water, with the largest relative contribution of E (Fig.

4, 5).

Considering  the  partitioning  methods  proposed  by  Scanlon  and  Sahu  (2008),

Scanlon and Kustas (2010), and Skaggs et al. (2018), a priori knowledge on WUE and carbon

uptake  is  required  to  apply  their  method.  Consequently,  the  paucity  of  previous

data/information or lack of equipment impede the application of this method to a broader

audience. We tried to run the Scanlon and Kustas (2010) and Skaggs et al. (2018) partitioning

methods  for  our  wetland  sites  but  were  not  able  to  retrieve  reliable  and  meaningful

partitioning results for any of the sites discussed in this study. We did not test the method

proposed by Zhou et al. (2016)  in this study, since we believe that some of the  underlying
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assumptions are easily violated at the wetland sites investigated here. Most importantly, the

Zhou et al. (2016) method is based on the assumption that some periods within the time series

represent conditions without E and the water flux is entirely based on T (i.e., T = ET). This is

most certainly not the case at flooded sites where we can reasonably expect that there will

always  be  E,  albeit  in  varying  amounts.  Additionally,  the  potential  underlying  WUE is

assumed to be constant, which could be violated when multiple vegetation types or species

are present, as is the case with our sites.  Finally, virtually all the other methods discussed

here lacked validation against ground-truth data in the original studies. We included several

verification types for the ANN method in this  paper,  which gives us confidence that our

approach using ANNs produces reliable and meaningful estimates for E and T in wetland

ecosystems. The fact that our method does not rely on presumed relationships between water

and carbon fluxes and was shown to work across a range of ecosystem properties from T to E

dominated systems, provides an advantage against other methods that are limited to certain

ecosystems or need specialized input data/equipment.

5 Summary

A  novel  T/ET partitioning  method  using  Artificial  Neural  Networks  (ANN)  to

predict  daytime  E  from  nighttime  ET  measurements  in  a  combination  with  a  range  of

environmental variables was presented and compared to previous methods from the literature.

In comparison to other approaches, the ANN method achieved better results, particularly with

shorter-term data (i.e., <5 years) and was successfully applied to flooded ecosystems. The

order of variable inclusion (and importance) for the ANN construction was: vapor pressure

deficit (VPD) > gap-filled sensible heat flux (H_gf) > air temperature (Tair) > friction velocity

(u∗) > other variables. The best performing ANN, model F11, used datetime, VPD, H_gf, Tair,

and  u∗  inputs  with  an  average  testing  R2 value  across  all  sites  of  0.85.  This  model  also

29

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.06.438244doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438244
http://creativecommons.org/licenses/by-nc-nd/4.0/


performed the best when validated against ground-truth leaf-level data and periods where

sites were completely flooded with no T from vegetation. Our method sheds light on T/ET

partitioning  methods  and  applications.  While  here  it  has  only  been  tested  for  flooded

ecosystems, we present strong indicators that it could also perform well in other ecosystems,

contributing to the understanding of the global water cycle.
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Table  1: Average  testing  R2 and  slope  values  for  12  ANN architecture  models  used  to

partition  evapotranspiration  measurements,  demonstrating  an increase  in  complexity  from

models F21 (most basic) to F36 (most complex). 

Model Name Model Structure Average
testing R2

Average Slope

F21 datetime 0.410 0.393

F26 datetime + VPD 0.648 0.626

F17 datetime + VPD + Tair 0.672 0.636

F31 datetime + VPD + Tair + GCC 0.686 0.657

F32 datetime + VPD + Tair + GCC + Rnet 0.689 0.665

F15 datetime + VPD + Tair + GCC + Rnet + WT 0.694 0.663

F33 datetime + H_gf + VPD 0.753 0.726

F34 datetime + H_gf + VPD + Tair 0.762 0.734

F11 datetime + H_gf + VPD + Tair + u∗ 0.853 0.831

F35
datetime + H_gf + VPD + Tair + u∗+

er_Reichstein 0.863 0.851

F14
datetime + H_gf + u∗+ VPD + Tair + GCC +

Rnet + WT 0.877 0.868

F36
datetime + H_gf + u∗+ wc_gf + er_Reichstein +

VPD + Tair + GCC + Rnet + WT 0.891 0.880
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Table 2: Validation R2 and slope values of seven ANNs used to partition evapotranspiration

measurements and validated with data collected right after flooding for East End, Mayberry

Farms, and Sherman Island wetland sites. Models are ordered by the increase in complexity,

from model  F21 (most  basic)  to  F36 (most  complex).  Refer  to  Tables  1 and 3 for  each

model’s input variables. Validation R2 values higher than 0.7 are highlighted in bold.

Model Name
East End Mayberry Farms Sherman Island

R2 Slope R2 Slope R2 Slope
F21 0.29 0.28 0.06 0.09 0.34 0.25
F26 0.48 0.52 0.26 0.37 0.61 0.50
F17 0.50 0.46 0.31 0.41 0.63 0.56
F15 0.24 0.15 0.16 0.13 0.37 0.28
F33 0.61 0.66 0.48 0.81 0.62 0.71
F11 0.81 0.86 0.69 0.95 0.82 1.00
F36 0.51 0.45 0.56 0.48 0.53 0.43
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Table 3: Validation R2 and slope values of seven ANNs used to partition evapotranspiration

measurements and validated with winter time data (December to February) for each of the

four wetlands studied (East End, Mayberry Farms, Sherman Island, and West Pond). Models

are listed according to the increase in complexity, from model F21 (most basic) to F36 (most

complex). Refer to Tables 1 and 4 for each model’s input variables.  Validation R2 values

higher than 0.7 are highlighted in bold.

Model
Name

East End Mayberry Farms Sherman Island West Pond
R2 Slope R2 Slope R2 Slope R2 Slope

F21 0.06 0.02 0.06 0.06 0.15 0.11 0.08 0.30
F26 0.17 0.25 0.26 0.38 0.45 0.48 0.03 0.08
F17 0.21 0.24 0.35 0.47 0.47 0.49 0.05 0.06
F15 0.33 0.41 0.14 0.12 0.43 0.29 0.17 0.11
F33 0.21 0.71 0.22 0.48 0.19 0.42 0.01 0.01
F11 0.33 1.15 0.56 0.71 0.70 1.27 0.11 0.11
F36 0.45 0.95 0.43 0.59 0.69 0.87 0.36 0.17
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Table  4: R2 and  slope  values  for  linear  regression  of  ecosystem level  transpiration  data

predicted by seven ANNs versus leaf-level transpiration data collected in 2017 for East End.

Models are ordered by the increase in complexity from model F21 (most basic) to F36 (most

complex).

Model Name Model Structure R2 value Slope value

F21 datetime 0.979 0.95

F26 datetime + VPD 0.984 0.79

F17 datetime + VPD + TA 0.984 0.75

F15 datetime + VPD + TA + GCC + Rnet + WT 0.987 0.81

F33 datetime + H_gf + VPD 0.99 0.93

F11 datetime + H_gf + VPD + TA + u∗ 0.986 0.76

F36
datetime + H_gf + u∗+ wc_gf + er_Reichstein +

VPD + TA + GCC + Rnet + WT 0.922 0.70
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Figure  1: Comparison  between  the  eddy  covariance  measured  daytime  evaporation  flux

(H2Omeasured) and daytime evaporation predicted by ANNs (H2Omodeled) using model F11 (top

panels,  a-c) and F36 (bottom panels,  d-f) based on data collected right after  flooding for

Mayberry Farms (a, d), East End (b, e), and Sherman Island (c, f). Note: the black lines are

1:1 relationships for reference, red lines show linear regressions with standard deviation, and

blue dots represent the data.
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Figure  2: Comparison  between  the  eddy  covariance  measured  daytime  evaporation  flux

(H2Omeasured) and daytime evaporation predicted by ANNs (H2Omodeled) using model F11 (top

panels, a-d) and F36 (bottom panels, e-h) based on data collected during senescent periods in

winter (December to February) at Mayberry Farms (a, e), East End (b, f), Sherman Island (c,

g), and West Pond (d, h). Note: the black lines are 1:1 relationships for reference, red lines

show linear regressions with standard deviation, and blue dots represent the data. 
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Figure 3: Ecosystem level transpiration data (H2Omodeled) predicted by ANNs F11 (a) and F36

(b)  validated  against  leaf-level  transpiration  data  (H2Omeasured)  collected  during  the  field

campaigns in 2017 for the two dominant species in the wetland: Tule (yellow triangles) and

Cattail  (blue  squares).  The  overall  linear  regression  line  (solid  red  line)  and  standard

deviation (dashed red line) is based on average leaf-level transpiration across both species

(red  asterisks).  Error  bars  represent  the  standard  deviation  from  the  mean  for  each

measurement interval and species for the leaf-level data. Leaf-level data were pooled for 30

min intervals to match the eddy covariance averaging period. The solid black lines show 1:1

relationships for reference.
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Figure 4: Monthly regressions of evapotranspiration (ET) vs Gross Ecosystem Productivity

(GEP) data for four wetland sites Mayberry Farms (a), East End (b), West Pond (c), and

Sherman Island (d) for T/ET partitioning using the Scott and Biederman (2017) method for

long-term flux data. Each regression line represents data for the same month across multiple

years. The method is considered unreliable for winter months when GEP is small (November

through March, shown in dashed lines and cross symbols). Negative regression lines for most

months  at  Sherman  Island  (d)  indicate  that  the  methodology  does  not  work  at  this  site,

potentially due to the shorter time period of this dataset (4 years) or because of the large

contribution of evaporation at this site (see main text for detailed discussion).
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Figure 5: Average monthly evaporation (E) (top panels, a-d) and transpiration (T) (bottom

panels, e-h) fluxes across four wetland sites: Mayberry Farms (a, e), East End (b, f), West

Pond  (c,  g),  and  Sherman  Island  (d,  h)  comparing  the  ANN  T/ET  partitioning  method

described in this paper (red lines and square symbols) and the Scott and Biederman (2017)

method (blue lines and triangle symbols) on long-term flux data. Error bars are based on the

standard error of the fit intercept and slope for the Scott and Biederman (2017) method and

on the interquartile range of the 20 individual ANN runs for the ANN method. Comparisons

were done using ANN F11 for all sites. Gross Ecosystem Productivity (GEP, yellow lines and

asterisks) for each site is shown for comparison in the bottom panels with a separate y-axis on

the right.
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Figure 6: Annual intercomparison of (a) total evapotranspiration (ET), (b) gross ecosystem

productivity  (GEP),  (c)  evaporation  (E),  (d)  transpiration  (T),  and  (e)  transpiration  over

evapotranspiration  ratio  (T/ET)  between four  wetland sites  (Mayberry Farms, 2013-2019,

blue triangles; West Pond, 2013-2019, red squares; East End, 2014-2019, yellow asterisks;

and Sherman Island,  2016-2019,  purple  circles).  E  and T values  are  based  on the  ANN

partitioning routine (F11) described in this study. 
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