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Abstract

Same-different visual reasoning is a basic skill central to ab-
stract combinatorial thought. This fact has lead neural net-
works researchers to test same-different classification on deep
convolutional neural networks (DCNNs), which has resulted in
a controversy regarding whether this skill is within the capacity
of these models. However, most tests of same-different clas-
sification rely on testing on images that come from the same
pixel-level distribution as the testing images, yielding the re-
sults inconclusive. In this study we tested relational same-
different reasoning DCNNs. In a series of simulations we show
that DCNNs are capable of visual same-different classification,
but only when the test images are similar to the training images
at the pixel-level. In contrast, even when there are only subtle
differences between the testing and training images, the per-
formance of DCNNs drops to chance levels. This is true even
when DCNNs’ training regime is augmented with images from
new versions of the same-different task or through multi-task
learning on the test images.
Keywords: same-different relations; relational reasoning;
deep neural network

Introduction
Relational reasoning is core to human intelligence (Penn,
Holyoak, & Povinelli, 2008), and has proven to be a chal-
lenge for an earlier generation of connectionist models (e.g.,
O’Reilly & Busby, 2002; Rogers & McClelland, 2004;
St. John, 1992) and more recent deep networks as well (Ricci,
Cadène, & Serre, 2021; Vankov & Bowers, 2020; Puebla,
Martin, & Doumas, 2021). Perhaps the simplest form of rela-
tion reasoning is the same-different task that simply requires
the reasoner to determine whether two inputs are the same
or different by some criterion. In the domain of vision, the
simplest version of this is to classify images as visually iden-
tical or not. This skill is essential to abstract combinatorial
thought and seems to be much more developed humans and
chimpanzees than in other species (Gentner, Shao, Simms, &
Hespos, 2021).

Recently there has been mixed evidence regarding whether
standard DCNNs can support same-different matching of im-
ages. Fleuret et al. (2011) developed a Synthetic Visual Rea-
soning Test (SVRT) that included a set of 23 classification
problems involving images of randomly generated shapes (for
example images see Fig. 1 “Original” column). They re-
ported that standard machine learning techniques at the time
did poorly on same-different tasks. Similarly, Stabinger,
Rodrı́guez-Sánchez, and Piater (2016) showed that state-of-
the-art DCNNs (at the time) LeNet and GoogLeNet per-

formed poorly on the same SVRT same-different tasks, and
more recently, Kim et al. (2018) showed that vanilla DCNNs
were poor at SVRT same-different tasks, and using a different
dataset, showed that Santoro et al. (2017) relational network
(RN) also failed to support same-different judgments.

Interestingly, Kim, Ricci, and Serre (2018) did find that a
“Siamese network” that encoded the two images in two sepa-
rate channels in order to simulate the effects of attentional se-
lection and perceptual grouping learned to classify images as
“same” or “different” easily, leading the authors to conclude
that object individuation is a key step in solving the same-
different task. At the same time, they also argue that a full
solution to the same-different problem requires a network to
encode dynamic representations of relations rather than stat-
ically storing visual-relation templates in synaptic weights.
That is, in their view, symbolic processes need to be imple-
mented to fully solve the same-different task.

On the other hand, there are recent reports that the current
state-of-the-art DCNNs can solve the same-different task. If
this is indeed the case, it would be a striking example of
standard networks solving a fundamental relational reasoning
task without implementing any symbolic machinery. Funke et
al. (2020) noted that Kim et al. (2018) only tested relatively
small CNNs (up to 6 layers), and when they replicated the
same-different experiments on the SVRT using a ResNet-50
(He, Zhang, Ren, & Sun, 2016) model (a network of 50 lay-
ers) the models were able to perform the task successfully.
Funke et al. (2020) noted that the success does not necessar-
ily imply DCNNs can solve all visual reasoning tasks, but
they do highlight that standard feedforward processing DC-
NNs can solve the same-different task and that Kim et al.’s
claim regarding the need for extra mechanisms for this task is
unwarranted.

Similarly, Messina, Amato, Carrara, Gennaro, and Falchi
(2021) have shown that a range of recent DCNNs, specifi-
cally ResNets, DenseNets, and CorNet-S, can solve the same-
different SVRT tasks, whereas they confirm that this is diffi-
cult for older AlexNet and VGG networks. The authors con-
clude: “We think that the development of the abstract and
relational abilities of neural networks is an important leap to-
wards achieving some interesting new tasks...”.

However, there is a fundamental problem with using suc-
cess on the same-different SVRT task as evidence that CNNs
can support relational reasoning. A key feature of relational
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Figure 1: Positive and negative examples from SVRT problem #1 and our new nine versions of this problem.

reasoning is that it is reasoning based on relations rather than
any low-level visual details of the inputs. In the domain of
visual same-different judgements, reasoning should extend to
novel images. The SVRT task does test models on novel pairs
of images, but the test images are generated in the same way
(i.e., the train and test datasets come from the same pixel-level
distribution), and accordingly, it does not test the hypothesis
that models have acquired the capacity to support relational
reasoning on the same-different task.

Simulations
In the simulations below we test abstract same-different rea-
soning in DCNNs based on the ResNet-50 architecture. The
basic tenet of our simulations is that a model that has learned
the abstract same and different relations should be able to rec-
ognize examples of these relations beyond its training set.

Our training and test data are based on problem #1 of the
SVRT (see Fig. 1 column “Original”). In problem #1 images
of two randomly generated shapes are classified as “same” if
they are the same up to translation and “different” otherwise.
Furthermore, we created nine new datasets that followed the
same abstract rule as problem #1. However, each new dataset
was generated through a distinct stochastic generative pro-
cess (i.e., a different pixel-level distribution). In the irregular
dataset each shape was a (randomly generated) irregular poly-
gon. In the regular dataset each shape was a regular poly-
gon. In the open dataset each shape was an irregular poly-
gon where the first and last vertices were not connected. The
wider line dataset was the same as the irregular dataset except
that the line width was set to two pixels instead of one. The
scrambled dataset was the same as the regular dataset except
that in the “different” examples one the of the objects (scram-
bled) was generated by dividing the other object into sections
and displacing them randomly around the center. The random
color dataset was the same as the irregular dataset except that
for each image the line color was chosen randomly. The filled
dataset was the same as the irregular dataset except that the
shapes were filled with black. In the lines dataset each object
corresponded to two unconnected vertical lines; in the “same”
examples the distances between the lines of each object were
exactly the same, whereas in the “different” examples these
distances were different. Finally, in the arrows dataset the ob-
jects were arrows consisting of one or two triangular head(s)
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Figure 2: Model set-up.

and a line; the head(s) and the line were connected; in the
“same” examples the arrows were the same and in the “dif-
ferent” examples the orientation of each head was inverted.
Note that among these nine different stimulus sets there are
differences in the level of low-level similarity with the origi-
nal SVRT data. In particular, the irregular, regular, and, to a
lesser extent, the open datasets are more similar to the origi-
nal data than the rest of the datasets.

Simulation 1
In Simulation 1 we trained 10 ResNet-50-based models on
the same-different task. The models’ architecture (see Fig. 2)
consisted of a ResNet-50 network pre-trained on ImageNet
(Deng et al., 2009), followed by a global average pooling op-
eration and a hidden layer of 1024 ReLU units. In Simulation
1 the output layer consisted of a single sigmoid unit. When
the activation of this unit was above 0.5 the model’s answer
was taken to be “same”, otherwise was taken to be “differ-
ent”.

The models were fine-tuned with the Adam optimizer
(Kingma & Ba, 2014). In a first stage, the pre-trained ResNet-
50 network was frozen while the rest of the network was
trained with a learning rate of 0.0003. In a second stage, the
complete model was trained with a learning rate of 0.0001.
The training data consisted of the original data of the SVRT
problem #1. In the first stage the model was trained on 14000
images for 10 epochs with a batch size of 128. In the second
stage the model was trained on 28000 images for 10 epochs
with the same batch size.
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Figure 3: Average accuracy by condition and category on 10
runs of Simulation 1. Error bars are 95% confidence intervals.

In Simulation 1 we performed the most basic and stringent
test of abstract relational reasoning. The models were trained
on problem #1, using the original dataset, and then presented
with 5600 images from each of the 10 stimulus sets. That
is, our testing conditions consisted on new images from the
original training set (replicating Funke et al., 2020), and novel
images from the other nine stimulus sets that were not seen
during training. As noted above, a model that has learn the ab-
stract same and different relations should generalize learning
on the same-different task independently from the pixel-level
similarity to original SVRT data.

Results and Discussion As can be seen in Fig. 3, the mod-
els achieved almost perfect performance in the test set of the
original SVRT data. Furthermore, the models showed above
chance performance for the “same” and “different” categories
in the irregular, regular and open conditions. As can be ap-
preciated in Fig. 1, these conditions were the most featurally
similar to the training data. On the other hand, the model
showed a clear tendency to classify the images from the wider
line, scrambled, random color, lines, and arrows conditions
largely as “same”, even when they were, in fact, examples
of the “different” category. Two especially notably cases are
the wider line and random color conditions, since both were
based on the same irregular polygons used in the irregular
conditions, which showed the best generalization from the
original data. Overall, these results show that the degree of
generalization on the same-different task depends heavily on
the pixel-level similarity between the training data and the
test data. This pattern of results is inconsistent with the mod-
els learning the abstract same and different relations.

Simulation 2
A potential criticism to Simulation 1 is that the training data
(line drawings of random shapes) wasn’t rich enough for the
models to form a more complex representation of the “same”
and “different” relations. Note, however, that Messina et al.
(2021) do interpret their results with the same training data as
our Simulation 1 as supporting abstract same-different rea-
soning in DCNNs. Nevertheless, we agree that the represen-
tations of the human visual system are based on rich stim-
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Figure 4: Average accuracy by condition and category on 10
runs of Simulation 2. Error bars are 95% confidence intervals.

uli and therefore is important to test what happens when the
models have access to a richer training set. Therefore, in
Simulations 2-4 we tested whether augmenting the training
regime of the ResNet-50-based models would improve gen-
eralization on the same-different task to unseen stimuli. In
Simulation 2, we did this by training the models on nine stim-
ulus conditions consisting of images from the original SVRT
data and all the new datasets except one. For each condition
we trained 10 models with the same settings as in Simulation
1. We tested the models in the one stimulus set they were not
trained on. For example, the models in the irregular stimulus
condition were trained on the original data and all the new
datasets except the irregular, in which they were tested on.

Results and Discussion As can be seen in Fig. 4, the mod-
els performed well above chance in the irregular, regular and
open conditions. This was expected as the models in Simu-
lation 1 were already performing above chance by training
only on the original data. Furthermore, the models in the
wider line condition also performed well above chance (pre-
sumably in part because of the similarity between the wider
line and filled versions). The scrambled and filled condi-
tions also showed and improvement in comparison to Sim-
ulation 1, although that improvement consisted on moving
towards chance levels in the response on the “different” cate-
gory. In contrast, the random color, lines, and arrows condi-
tions showed the same level of performance as in Simulation
1, as they were the most featurally unique among the differ-
ent datasets. Overall, these results are similar to the ones of
Simulation 1 in the sense that the networks’ degree of gen-
eralization on the same-different task depends primarily on
the low-level similarity between the training data and the test
data instead of the relational structure of the problem.

Simulation 3
In Simulation 2 we augmented the models’ experience of the
different conditions by training on the same-different task di-
rectly. A potential problem with this strategy is that it does
not give the models any experience with the specific condition
they are tested on. In contrast, in Simulation 3 we augmented
the models’ experience on all the datasets through multi-
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Figure 5: Average accuracy by condition, category, and task
on 10 runs of Simulation 3. Error bars are 95% confidence
intervals.

task learning. In deep learning research multi-task learning
has long been used as technique to improve generalization
(Ruder, 2017). In this simulation the models were trained on
two tasks. The first was the same-different task as in the pre-
vious simulations. The second was a stimulus classification
(e.g., classifying an image as coming from the “original”, “ir-
regular”, “regular”, etc. condition). To do this we added a
second output layer with softmax 10 units (see Fig. 2). Note
that the processing path of this architecture only diverges at
the last output layers. This kind of hard parameter sharing is
known to reduce overfitting (Baxter, 1997), so if our previous
results are just a matter of overfitting to the training data1,
adding a second task should aid to generalize learning of the
same-different task.

We trained 10 models with images from the “same” and
“different” categories from all conditions. However, we only
allowed the models to learn to classify images from the orig-
inal SVRT data as “same” or “different”, whereas the models
learned to classify all presented images into their correspond-
ing problem versions. To accomplish this, during training we
used the following composed loss function:

Ltotal = ∑
i∈batch

wsd
i ·CE(ysd

i , ŷsd
i )+wvc

i ·CE(yvc
i , ŷvc

i ) (1)

were CE(y, ŷ) is the cross-entropy loss between the label
y and the prediction ŷ, and wsd and wvc are the weights for

1Note, however, that the test data of the SVRT problem #1 con-
sists of a different set of images from the training data.

the same-different loss and the version-classification loss, re-
spectively. During training, wvc was set to 1 for all images.
In contrast, when the model received images from the orig-
inal SVRT data we set wsd to 1, otherwise it was set to 0.
During testing, we presented the models with images of each
problem version and recorded the models’ same-different and
version-classification accuracies. All other training and test-
ing parameters were the same as in Simulation 1 except that
we trained the models for 12 epochs rather than 10.
Results and Discussion As can be seen in Fig. 5, the mod-
els achieved almost perfect performance in the stimulus clas-
sification task. This is in sharp contrast with the the same-
different task, where the models performed very well on the
test data from the original condition, but defaulted to classify
every image from the other conditions as “same” even when
they were from the “different” category. These results show
that, even when the models know what condition each im-
age is from, they can’t generalize their learning on the same-
different task to new images from this very same conditions.
Furthermore, by comparing these results with those of Simu-
lation 1 in Fig. 3, it is clear that adding the condition classifi-
cation task hindered performance on the same-different task
instead of improving it. More generally, the networks seem
to be treating both task as completely independent, instead of
using what they know about one task to improve performance
on the other.

Simulation 4

In Simulation 4 we combined the approaches taken in Simu-
lations 2 and 3 in order to provide the models with the maxi-
mum amount of information to generalize the same-different
task to the unseen conditions. As in Simulation 3, we trained
the models in both the same-different and the stimulus classi-
fication task. Furthermore, as in Simulation 2, for the same-
different task we trained on all the stimulus conditions except
one. For each of these 9 conditions we trained 10 models
and tested them on the stimulus set that was not trained on.
We trained the models with loss (1), this time setting wsd to
1 for all datasets except the one tested on. All other training
parameters were the same as in Simulation 3.
Results and Discussion As can be seen in Fig. 6, the mod-
els achieved almost perfect performance in stimulus classifi-
cation, just as in Simulation 3. The models’ performance in
the same-different task was somewhat better than in Simu-
lation 3, with the irregular, regular and open conditions per-
forming well above chance. Note, however, that the overall
generalization of the same-different task was lower than in
Simulation 2. In particular, the performance for the wider
line, scrambles and filled conditions was appreciably lower.
This supports our conclusion in Simulation 3 that adding the
stimulus classification task hindered same-different general-
ization instead of helping it. More generally, these results
show clearly that providing the models with the maximum
possible amount of information, under our simulation set-
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Figure 6: Average accuracy by condition, category, and task
on 10 runs of Simulation 4. Error bars are 95% confidence
intervals.

tings, did not allow them to generalize beyond what is to be
expected through pixel-level similarity with the training data.

General Discussion
In four simulations we tested whether DCCNs were able to
learn the abstract same and different relations that would sup-
port relational reasoning in the same-different task. Across
simulations we found that, instead of forming an abstract rep-
resentation of this task, DCCNs were unable to generalize to
new test images that shared the same underlying relations as
the training data but were not similar at the pixel level. This
was the case even when we augmented DCCNs’ experience
with new stimulus sets that instantiated the same-different
task with several kinds of objects (Simulations 2 and 4), and
when we used multi-task learning to give them experience
with the very same conditions that they were tested on (Sim-
ulations 3 and 4).

These results shed new light into the discussion of whether
is necessary to invoke extra, symbolic mechanism to solve
the same-different task. If by “solving” the same-different
task one means to be able to learn a mapping from images
to “same” and “different” labels that generalizes to new im-
ages from the same pixel-level distribution (as Funke et al.,
2020, assume and is implemented in the SVRT test) it is per-
fectly reasonable to say that DCNNs are able to solve this
task. This, by itself, is an interesting problem from a machine
learning point of view, because early machine learning mod-
els could not solve this kind of task. However, if by “solving”
the same-different task one means to learn a representation

of the same and different relations that support generaliza-
tion beyond pixel-level similarity (as in humans and chim-
panzees), our results suggest that DCCNs are just not up to
the task.

In future work, we plan to extend the present analyses to re-
lation networks (Santoro et al., 2017). Relation networks are
an interesting test case because they are feed-forward neural
networks that are specifically designed to perform relational
reasoning. However, the way they have been benchmarked so
far does not allow to test directly whether their performance
is based on visual-relation templates or on more abstract rep-
resentations. The current results suggest that dynamic rep-
resentations of relations and objects might be necessary to
achieve true visual relational reasoning.
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