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Abstract

Same-different visual reasoning is a basic skill central to ab-
stract combinatorial thought. This fact has lead neural net-
works researchers to test same-different classification on deep
convolutional neural networks (DCNNs), which has resulted in
a controversy regarding whether this skill is within the capacity
of these models. However, most tests of same-different clas-
sification rely on testing on images that come from the same
pixel-level distribution as the testing images, yielding the re-
sults inconclusive. In this study we tested relational same-
different reasoning DCNNs. In a series of simulations we show
that DCNNs are capable of visual same-different classification,
but only when the test images are similar to the training images
at the pixel-level. In contrast, even when there are only subtle
differences between the testing and training images, the per-
formance of DCNNs could drop to chance levels. This is true
even when DCNNs’ training regime included a wide distribu-
tion of images or when they were trained in a multi-task setup
in which training included an additional relational task with
test images from the same pixel-level distribution.
Keywords: same-different relations; relational reasoning;
deep neural network

Introduction
Relational reasoning is core to human intelligence (Penn,
Holyoak, & Povinelli, 2008), and has proven to be a chal-
lenge for an earlier generation of connectionist models (e.g.,
O’Reilly & Busby, 2002; Rogers & McClelland, 2004;
St. John, 1992) and more recent deep networks as well (Ricci,
Cadène, & Serre, 2021; Vankov & Bowers, 2020; Puebla,
Martin, & Doumas, 2021). Perhaps the simplest form of rela-
tion reasoning is the same-different task that simply requires
the reasoner to determine whether two inputs are the same
or different by some criterion. In the domain of vision, the
simplest version of this is to classify images as visually iden-
tical or not. This skill is essential to abstract combinatorial
thought and seems to be much more developed humans and
chimpanzees than in other species (Gentner, Shao, Simms, &
Hespos, 2021).

Recently there has been mixed evidence regarding whether
standard deep convolutional neural networks (DCNNs) can
support same-different matching of images. Fleuret et al.
(2011) developed a Synthetic Visual Reasoning Test (SVRT)
that included a set of 23 classification problems involving
images of randomly generated shapes (for example images
see Fig. 1 “Original” column). They reported that standard
machine learning techniques at the time did poorly on same-
different tasks. Similarly, Stabinger, Rodrı́guez-Sánchez, and

Piater (2016) showed that state-of-the-art DCNNs (at the
time) LeNet and GoogLeNet performed poorly on the same
SVRT same-different tasks, and more recently, Kim et al.
(2018) showed that vanilla DCNNs were poor at SVRT same-
different tasks, and using a different dataset, showed that
Santoro et al. (2017) relational network (RN) also failed to
support same-different judgments.

Interestingly, Kim, Ricci, and Serre (2018) did find that a
“Siamese network” that encoded the two images in two sepa-
rate channels in order to simulate the effects of attentional se-
lection and perceptual grouping learned to classify images as
“same” or “different” easily, leading the authors to conclude
that object individuation is a key step in solving the same-
different task. At the same time, they also argue that a full
solution to the same-different problem requires a network to
encode dynamic representations of relations rather than stat-
ically storing visual-relation templates in synaptic weights.
That is, in their view, symbolic processes need to be imple-
mented to fully solve the same-different task.

On the other hand, there are recent reports that the current
state-of-the-art DCNNs can solve the same-different task. If
this is indeed the case, it would be a striking example of
standard networks solving a fundamental relational reasoning
task without implementing any symbolic machinery. Funke et
al. (2021) noted that Kim et al. (2018) only tested relatively
small CNNs (up to 6 layers), and when they replicated the
same-different experiments on the SVRT using a ResNet-50
(He, Zhang, Ren, & Sun, 2016) model (a network of 50 lay-
ers) the models were able to perform the task successfully.
Funke et al. (2021) noted that the success does not necessar-
ily imply DCNNs can solve all visual reasoning tasks, but
they do highlight that standard feedforward processing DC-
NNs can solve the same-different task and that Kim et al.’s
claim regarding the need for extra mechanisms for this task is
unwarranted.

Similarly, Messina, Amato, Carrara, Gennaro, and Falchi
(2021) have shown that a range of recent DCNNs, specifi-
cally ResNets, DenseNets, and CorNet-S, can solve the same-
different SVRT tasks, whereas they confirm that this is diffi-
cult for older AlexNet and VGG networks. The authors con-
clude: “We think that the development of the abstract and
relational abilities of neural networks is an important leap to-
wards achieving some interesting new tasks...”.

However, there is a fundamental problem with using suc-
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Figure 1: Positive and negative examples from SVRT problem #1 and our new nine versions of this problem.

cess on the same-different SVRT task as evidence that CNNs
can support relational reasoning. A key feature of relational
reasoning is that it is reasoning based on relations rather than
any low-level visual details of the inputs. In the domain of
visual same-different judgements, reasoning should extend to
novel images. The SVRT task does test models on novel pairs
of images, but the test images are generated in the same way
(i.e., the train and test datasets come from the same pixel-level
distribution), and accordingly, it does not test the hypothesis
that models have acquired the capacity to support relational
reasoning on the same-different task.

Simulations
In the simulations below we test abstract same-different rea-
soning in DCNNs based on the ResNet-50 architecture. The
basic tenet of our simulations is that a model that has learned
the abstract same and different relations should be able to rec-
ognize examples of these relations beyond its training set.

Our training and test data are based on problem #1 of the
SVRT (see Fig. 1 column “Original”). In problem #1 images
of two randomly generated shapes are classified as “same” if
they are the same up to translation and “different” otherwise.
Furthermore, we created nine new datasets that followed the
same abstract rule as problem #1. However, each new dataset
was generated through a distinct stochastic generative pro-
cess (i.e., a different pixel-level distribution). In the irregular
dataset each shape was a (randomly generated) irregular poly-
gon. In the regular dataset each shape was a regular poly-
gon. In the open dataset each shape was an irregular poly-
gon where the first and last vertices were not connected. The
wider line dataset was the same as the irregular dataset except
that the line width was set to two pixels instead of one. The
scrambled dataset was the same as the regular dataset except
that in the “different” examples one the of the objects (scram-
bled) was generated by dividing the other object into sections
and displacing them randomly around the center. The random
color dataset was the same as the irregular dataset except that
for each image the line color was chosen randomly. The filled
dataset was the same as the irregular dataset except that the
shapes were filled with black. In the lines dataset each object
corresponded to two unconnected vertical lines; in the “same”
examples the distances between the lines of each object were
exactly the same, whereas in the “different” examples these
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Figure 2: Model set-up.

distances were different. Finally, in the arrows dataset the ob-
jects were arrows consisting of one or two triangular head(s)
and a line; the head(s) and the line were connected; in the
“same” examples the arrows were the same and in the “dif-
ferent” examples the orientation of each head was inverted.
Note that among these nine different stimulus sets there are
differences in the level of low-level similarity with the origi-
nal SVRT data. In particular, the irregular, regular, and, to a
lesser extent, the open datasets are more similar to the origi-
nal data than the rest of the datasets.

Simulation 1
In Simulation 1 we created four models based on ResNet-50.
All models consisted on a ResNet-50 convolutional front end
followed by a hidden layer with 1024 units with ReLU ac-
tivation (see Fig. 2). In Simulation 1 there was one output
layer that consisted of a single sigmoid unit which predicted
whether the input image belonged to the category “same”. We
pre-trained the models’ convolutional front end in either Ima-
geNet (Deng et al., 2009) or TU-Berlin (Eitz, Hays, & Alexa,
2012), a dataset of human-generated sketches. Furthermore,
we varied how we treated the output of the convolutional front
end before passing it to the hidden layer. We either applied a
global average pooling (GAP) operation to it, as Funke et al.
(2021) did, or flatten it, as Messina et al. (2021) did1.

1We also made models that had the pre-trained convolutional
front end frozen and only the classifier was trainable. Those mod-
els achieved similar results to the ones presented on Simulation 1.
However, they were not well-suited for the data augmentation and
multi-task learning techniques used on Simulations 2-4, so we don’t
consider them further.
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Figure 3: Average AUC by condition and model on 10 runs of Simulation 1. Error bars are 95% confidence intervals.

We trained each model 10 times with the Adam optimizer
(Kingma & Ba, 2014). Training proceeded in two stages. In
the first stage, the pre-trained ResNet-50 network was frozen
while the rest of the network was trained with a learning
rate of 0.0003. In the second stage, the complete model was
trained with a learning rate of 0.0001. The training data con-
sisted of the original data of the SVRT problem #1. In the first
stage the model was trained on 28000 images for 5 epochs
with a batches of 64 samples. In the second stage the model
was trained on the same images for 10 epochs and with the
same batch size.

In Simulation 1 we performed the most basic and stringent
test of abstract relational reasoning. The models were trained
on problem #1, using the original dataset, and then presented
with 5600 images from each of the 10 stimulus sets. That is,
our testing conditions consisted on new images from the orig-
inal training set (replicating Funke et al., 2021), and novel
images from the other nine test datasets that were not seen
during training. As noted above, a model that has learn the
abstract same and different relations should generalize learn-
ing on the same-different task independently from the pixel-
level similarity to original SVRT data.

Because we are testing binary classification models on
datasets that come from different distributions than the train-
ing data, it is possible that each test dataset has a different op-
timal classification threshold. To account for this, we used the
area under an ROC curve (AUC), which is an aggregate mea-
sure of performance across all possible classification thresh-
olds. AUC values range from 0 to 1, where 0.5 corresponds
to chance-level prediction. As customary, an AUC ≤ 0.6 was
considered fail, an 0.6 < AUC ≤ 0.7 was considered poor, an
0.7 < AUC ≤ 0.8 was considered fair, an 0.8 < AUC ≤ 0.9
was considered good, and AUC > 0.9 was considered excel-
lent.

Results and Discussion As can be seen in Fig. 3, all mod-
els achieved excellent performance in the original test dataset.
Furthermore, the models pre-trained on ImageNet performed
better than the models pre-trained on TU-Berlin and the mod-
els with GAP performed better than the models that flattened
the last convolutional layer’s output. Overall, the ImageNet &
GAP model was the best performing model in the original test
dataset as well as across the nine new test datasets. Accord-
ingly, the following analysis (as well as Simulations 2-4) will
concentrate on it. The ImageNet & GAP model showed good
or excellent performance in the irregular, regular and open
conditions. As can be appreciated in Fig. 1, these conditions
were the most featurally similar to the training data. On the
other hand, the ImageNet & GAP model performed poorly or
worse on the random color, lines, and arrows conditions with
fair performance on the wider line and scrambled conditions.
In general, these results show that the degree of generalization
on the same-different task depends heavily on the pixel-level
similarity between the training data and the test data. This
pattern of results is inconsistent with the models learning the
abstract same and different relations.

Simulation 2
A potential criticism to Simulation 1 is that the training data
(line drawings of random shapes) wasn’t rich enough for the
models to form a more complex representation of the “same”
and “different” relations. Note, however, that Messina et al.
(2021) do interpret their results following the same training
conditions as supporting abstract same-different reasoning in
DCNNs, while Funke et al. (2021) argues that they results
suggest that purely feed-forward mechanisms are sufficient to
perform abstract same-different visual reasoning. Neverthe-
less, we agree that it is important to test what happens when
the models have access to a richer training set. Therefore, in
Simulations 2-4 we tested whether augmenting the training
regime of the ResNet-50-based models would improve gen-
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Figure 4: Average AUC by condition on 10 runs of Simula-
tion 2. Error bars are 95% confidence intervals.

eralization on the same-different task to unseen stimuli. In
Simulation 2, we did this by training the models on nine stim-
ulus conditions consisting of images from the original SVRT
data and all the new datasets except one. For each condition
we trained 10 models with the same settings as in Simulation
1 except that the models were trained for 13 epochs instead
of 10. We tested the models on the one stimulus set they
were not trained on. For example, the models in the irregu-
lar stimulus condition were trained on the original data and
all the new datasets except the irregular condition, on which
they were tested.

Results and Discussion As can be seen in Fig. 4, the Ima-
geNet & GAP model showed good or excellent performance
in the irregular, regular, open, wider line, scrambled and filled
conditions. Presumably, the improvement on the wider line
and filled conditions is due to their pair-wise similarity. In
contrast, the random color, lines, and arrows conditions were
less affected by the additional training, since they were the
most featurally unique among the different datasets. These
results show clearly that augmenting the training regime of
the model with data from several conditions increases the
model’s ability to generalize to an untrained condition. How-
ever, this benefit seems more related to the pixel-level simi-
larity of the augmented data with the testing data than to the
shared relational structure of the problem among conditions.
If the model was learning the same/different relation, then the
benefits of our data augmentation manipulation would have
spread evenly across conditions.

Simulation 3
In Simulation 2 we augmented the models’ experience of the
different conditions by training on the same-different task di-
rectly. A potential problem with this strategy is that it does
not give the models any experience with the specific condition
they are tested on. In contrast, in Simulation 3 we augmented
the models’ experience on all the datasets through multi-
task learning. In deep learning research multi-task learning
has long been used as technique to improve generalization
(Ruder, 2017). In this simulation the models were trained on

two tasks. The first was the same-different task as in the pre-
vious simulations. The second was a relative position task.
This consisted in classifying whether the lower object in the
image was to the right of the upper object (category 1) or to
the left (category 0). To do this we added a second output
layer with a single sigmoid unit (see Fig. 2). Note that the
processing path of this architecture only diverges at the out-
put layer. This kind of hard parameter sharing is known to
reduce overfitting (Baxter, 1997), so if our previous results
are just a matter of overfitting to the training data2, adding
a second task should aid to generalize learning of the same-
different task.

We trained 10 models with images from the “same” and
“different” categories from all conditions. However, we only
allowed the models to learn to classify images from the orig-
inal SVRT data as “same” or “different”, whereas the mod-
els learned to classify all presented images into their corre-
sponding relative position category. To accomplish this, dur-
ing training we used the following composed loss function:

Ltotal = ∑
i∈batch

wsd
i ·CE(ysd

i , ŷsd
i )+wrp

i ·CE(yrp
i , ŷrp

i ) (1)

where CE(y, ŷ) is the cross-entropy loss between the label
y and the prediction ŷ, and wsd and wrp are the weights for the
same-different loss and the relative position loss, respectively.
During training, wrp was set to 1 for all images. In contrast,
when the model received images from the original SVRT data
we set wsd to 1, otherwise it was set to 0. During testing, we
presented the models with images of each problem version
and recorded the models’ same-different and relative position
AUC. All other training and testing parameters were the same
as in Simulation 1 except that we trained the models for 13
epochs rather than 10.

Results and Discussion As can be seen in Fig. 5, the Im-
ageNet & GAP model achieved perfect performance in the
relative position task. In the same-different task, on the other
hand, the results were more varied. The majority of the con-
ditions showed a good or excellent performance except for
the filled, lines and arrows conditions. Notably, the lines and
arrows conditions did not seem to be affected by training on
the secondary relative position task (compare Fig. 5 with Fig.
3). Overall, these results show that training in a “source” task
(relative position) can improve generalization on a “target”
task (same-different) for out of distribution samples as long
as those samples come from a distribution of images trained
on the source task. Is important to note that this technique
involves to effectively show all the pixel-level distributions
of unfamiliar images to the model. Furthermore, our results
show that multitask training does not affect all conditions
equally. Notably, this technique was less effective for the

2Note, however, that the test data of the SVRT problem #1 con-
sists of a different set of images from the training data, so overfitting
would have resulted in a low AUC in the original condition, which
is the opposite to what we found in Simulation 1.
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Figure 5: Average AUC by condition and task on 10 runs of
Simulation 3. Error bars are 95% confidence intervals.

more featurally unique conditions, suggesting that the simi-
larity between the train data and the test data plays an impor-
tant role in multitask-learning too.

Simulation 4

In Simulation 4 we combined the approaches taken in Simu-
lations 2 and 3 in order to provide the models with the maxi-
mum amount of information to generalize the same-different
task to the unseen conditions. As in Simulation 3, we trained
the models in both the same-different and the relative position
tasks. Furthermore, as in Simulation 2, for the same-different
task we trained on all the stimulus conditions except one. For
each of these 9 conditions we trained 10 models and tested
them on the stimulus set that was not trained on. We trained
the models with loss (1), this time setting wsd to 1 for all
datasets except the one tested on. All other training parame-
ters were the same as in Simulation 3.

Results and Discussion As can be seen in Fig. 6, for the
relative position task the ImageNet & GAP model achieved
perfect performance in all conditions, just as in Simulation
3. The models’ performance in the same-different task was
better than in Simulation 3, with the models achieving ex-
cellent performance in all conditions except lines and arrows.
The cumulative effect of the extra training and secondary task
manipulations suggest that our interpretation of the effect of
training on a secondary task is indeed akin to a form of data
augmentation. Note that these forms of data augmentation
improve performance by increasing the similarity of the train-
ing data to the test data. This conclusion is supported by the
results obtained in the lines and arrows conditions, the most
featurally unique conditions in our simulations. The fact that
after applying both, extra training on the same-different task
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Figure 6: Average AUC by condition and task on 10 runs of
Simulation 4. Error bars are 95% confidence intervals.

on all other conditions and training on all conditions in the
relative position task barely affects the models’ performance
on these conditions shows that the performance benefits of
these manipulations come from the pixel-level similarity of
the (heavily augmented) data with the test data. This is not
consistent with the models grasping the abstract relational
concepts “same” and “different”.

General Discussion
In four simulations we tested whether DCCNs were able to
learn the abstract same and different relations that would sup-
port relational reasoning in the same-different task. Across
simulations we found that, instead of forming an abstract rep-
resentation of this task, DCCNs were unable to generalize to
new test images that shared the same underlying relations as
the training data but were not similar at the pixel level. This
was the case even when we augmented DCCNs’ experience
with new stimulus sets that instantiated the same-different
task with several kinds of objects (Simulations 2 and 4), and
when we used multi-task learning to give them experience
with the very same stimulus conditions that they were tested
on (Simulations 3 and 4).

Across simulations we found that, instead of forming an
abstract representation of this task, DCCNs generalized pri-
marily based on the pixel-level similarity of the training data
with the test data. In contrast, DCCNs did not generalize
well to new test images that shared the same underlying re-
lations as the training data but were not similar at the pixel
level. This was the case even when we augmented DCCNs’
experience with new stimulus sets that instantiated the same-
different task with several kinds of objects (Simulations 2 and
4), and when we used multi-task learning to give them expe-
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rience with the very same conditions that they were tested on
(Simulations 3 and 4).

These results shed new light into the discussion of whether
is necessary to invoke extra, symbolic mechanism to solve
the same-different task. If by “solving” the same-different
task one means generalizing from one set of images to an-
other set of images that share the same pixel-level distribu-
tion (as Funke et al., 2021, assume and is implemented in the
SVRT test) it is perfectly reasonable to say that DCNNs are
able to solve this task. This, by itself, is an interesting prob-
lem from a machine learning point of view, because early
machine learning models could not solve this kind of task.
However, if by “solving” the same-different task one means
to learn a representation of the same and different relations
that support generalization beyond pixel-level similarity (as
in humans and chimpanzees), our results suggest that DCCNs
are just not up to the task.

In future work, we plan to extend the present analyses to re-
lation networks (Santoro et al., 2017). Relation networks are
an interesting test case because they are feed-forward neural
networks that are specifically designed to perform relational
reasoning. However, the way they have been benchmarked so
far does not allow to test directly whether their performance
is based on low-level similarity between the training and test
data or on more abstract representations. The current results
suggest that dynamic representations of relations and objects
might be necessary to achieve true visual relational reasoning.
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