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Abstract 17 

Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, 18 

affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their 19 

modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a 20 

quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons 21 

and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for 22 

insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of 23 

peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central 24 

nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found 25 

that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that 26 

CCAP neurons modulate the faster oscillation of motoneurons. To explore this idea further, we used a 27 

probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of 28 

motoneurons, both in a simple model and in a conductance-base model capable of simulating many of the 29 

observed neural dynamics features. Finally, we developed an algorithm to quantify the motor behavior observed 30 

in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex 31 

vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded 32 

from the ex vivo preparations during fictive ecdysis behavior; the analysis of movement patterns also allowed us 33 

to identify a new post-ecdysis phase. 34 

Author Summary 35 

Repetitive movements such as walking, swimming, and flying are controlled by networks of neurons known as 36 

central patter generators. In many cases, the exact pattern of activity is modulated by neuropeptides, which are 37 

small signaling molecules that, unlike neurotransmitters, are broadly released within regions of the nervous 38 

system. Because of this mode of action, it can be difficult to discern the relationship between the temporal pattern 39 

of firing of peptidergic neurons and the timing of the resulting motor behavior. Here, we developed methods to 40 

analyze the patterns of activity of such weakly coupled systems as applied to ecdysis, the stereotyped sequence 41 

of behaviors used by insects to shed the remains of their old exoskeleton at the end of every molt. Key actors in 42 
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this process are motoneurons (MN) and a set of neurons expressing the neuropeptide, Crustacean Cardioactive 43 

Peptide (CCAP). Combining real-time calcium imaging, frequency analysis, computational simulations, and image 44 

processing, we determined the relationships between the activity of CCAP neurons and the resulting motor output 45 

during pupal ecdysis in the fruit fly, Drosophila melanogaster. We found that several temporal features of the 46 

activity of CCAP neurons are highly coupled to the patter of activity motoneuronal pattern, suggesting an active 47 

role of CCAP neurons during ecdysis. We also developed quantitative approaches that allowed us to identify a 48 

new ecdysis sub-phase. 49 

 50 

Introduction 51 

Oscillatory neural circuits are important for many brain processes including memory formation [1,2], sensory 52 

representation [3–6], and rhythmic pattern generation [7,8]. Rhythmic movements are controlled by neuronal 53 

networks that time the firing of motoneuron discharges, which then cause a sequence of organized movements. 54 

In order to generate organized behaviors, it is necessary to coordinate dynamically the interaction of local and 55 

sparse brain circuits [9,10]. How these dynamic properties are tuned can profoundly influence the functional 56 

connectivity that defines the structure of neural circuits orchestrating behaviors. In this context, neuromodulators 57 

such as neuropeptides have been shown to play a major role in regulating and coordinating network functions in a 58 

number of processes including feeding, sleep, courtship, stress, learning and memory, amongst others [11–16]. 59 

Centrally coordinated innate behaviors have provided a useful model to study the molecules, neurons, and 60 

networks that organize sequential and rhythmic behaviors. One innate behavior that has been used for these 61 

studies is insect ecdysis, which is a stereotyped sequence of three motor programs (pre-ecdysis, ecdysis itself, 62 

and post-ecdysis) that is required to shed the remains of the old cuticle (exoskeleton) at the end of each molt [17–63 

19]. Multiple neuropeptidergic circuits have been implicated in the regulation of the ecdysis but their precise roles 64 

are still poorly understood. Ecdysis begins with the release into the circulatory system (hemolymph) of the 65 

Ecdysis Triggering Hormone (ETH), which is synthesized and released from peripheral endocrine Inka cells [20]. 66 

Once ETH reaches the Central Nervous System (CNS) it sequentially activates several neuropeptidergics targets, 67 

where the network expressing the Crustacean Cardioactive Peptide (CCAP) has been suggested to be a critical 68 
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node for the generation of the ecdysial motor pattern [21–27]. However, the mechanisms by which the pattern of 69 

activity of the CCAP network is then translated into a motor output are not fully understood. 70 

Recent advances in imaging technology enable the recording of neuronal activity in large regions of the brain 71 

including hundreds of neurons, thereby providing new ways to study circuit dynamics and behavior. Nevertheless, 72 

it remains challenging to extract quantitative information from such large data sets. It is thus necessary to develop 73 

suitable algorithms to determine the time windows in which specific motor activity occurs, and to identify the 74 

neurons that show activity related to the initiation and termination of a motor pattern. Previous approaches have 75 

used different methods to quantitatively classify neuronal activity patterns, which include principal components 76 

analysis (PCA), independent components analysis (ICA), singular-value decomposition (SVD), and k-means 77 

clustering,  [28–30]. These methods have been widely used but they are often restricted to specific datasets. 78 

Therefore, the generation of more general methods would be of great utility to the field.  79 

Here, we report on the implementation of new computational approaches to decode the signal dynamics driving 80 

ecdysis in the fruitfly, Drosophila melanogaster. We used mathematical methods and models to simultaneously 81 

analyze calcium imaging of CCAP neurons and motoneuron activity during the behavior. Although the pattern and 82 

the timing of activity of these two populations of neurons differed significantly, we were able to show that the 83 

activity of CCAP neurons is functionally tightly coupled to that of the motoneurons during the ecdysis and post-84 

ecdysis phases, in a cross-frequency manner. This allowed us to fit a probabilistic logistic model to the 85 

experimental data in order to predict the times when motoneurons had a high chance of oscillating. We also 86 

generated a conductance-based model that simulates many of the experimentally features observed. Finally, we 87 

developed an algorithm that extracts the major traits of ecdysis behaviors, allowing us to quantify the movements 88 

that occur during the behavior of the intact animal and contrast them with the ex vivo recorded motoneural 89 

activity. This algorithm also allowed us to identify a new sub-phase within the post-ecdysis period. In summary, 90 

we describe a series of methods to quantify and correlate patterns of neuronal activity with differing temporal 91 

characteristics that occur during the expression of a stereotyped behavior. Using these methods, we show that 92 

the CCAP network tightly regulates motoneuronal activity through the execution of the entire ecdysis and post-93 

ecdysis routines. 94 

 95 
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RESULTS 96 

INDIVIDUAL DYNAMICS OF CCAP-EXPRESSING NEURONS AND MOTONEURONS 97 

The pattern of neural activity that corresponds to ecdysis behavior can be elicited in ex vivo preparations of D. 98 

melanogaster CNS by exposure to ETH. We followed this approach using CNSs from animals just prior to pupal 99 

ecdysis, which expressed the genetically-encoded calcium sensor GCaMP3.2 (as a proxy for neural activity), 100 

either in CCAP neurons or in both CCAP neurons and motoneurons (Fig 1a, b, c). As has previously been 101 

reported [22,25], increases in GCaMP signal typically began 20 minutes after stimulation with ETH, around the 102 

time of ecdysis phase is induced in intact pupae. During this phase, CCAP neurons and motoneurons display 103 

higher levels of activity, which then falls after entering the post-ecdysis phase. 104 

Fig 1: CCAP neuron and motoneuron activity  105 

(a) Single-plane calcium imaging of GCaMP3.2-expressing CCAP neurons.   (b) Projection of 5 images from 106 

different planes, of GCaMP3.2-expressing CCAP neurons and motoneurons.   (c) Time series of signal from 107 

calcium sensor of AN1-AN4 α CCAP neurons and motoneurons recorded from a single CNS; time zero 108 

corresponds to moment of ETH-stimulation. The letter indicates the side (left [L] and right [R]), while the number 109 

indicates the abdominal segment of the neurons.   (d) Mean time of onset of α CCAP neuron and motoneuron 110 

activity, for each of 9 separate experiments, showing temporally close values between populations. “MN” and 111 

“CCAP” indicate motoneurons and α CCAP neurons, respectively. **: p-value < 0.01, ***: p-value < 0.001. 112 

 113 

CCAP neurons can be divided into α and β neurons depending on their location and their activity pattern [25]. 114 

Here, we mostly focused on the α type, because β neurons appeared to display a low pass-filtered version of the 115 

α activity. Regarding motoneurons, we divided them into left and right regions, as there were no major differences 116 

in the activity between sides. Grouping them also increased the signal-to-noise ratio (SNR), making the task of 117 

comparing different experiments easier. 118 

In the intact animal, the onset of left-right alternating motoneuronal activity corresponds to the beginning of the 119 

ecdysial phase proper of the ecdysis motor sequence [22,25]. As a first approach to characterize the dynamics of 120 

CCAP neuron and motoneuron activity, we computed the onset of their activity in preparations in which both 121 
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classes of neurons expressed the GCaMP3.2 calcium sensor. The mean onset time after ETH challenge was 122 

1176 ± 37.9 s for the α CCAP neurons and 1149 ± 61.5 s for the motoneurons (Fig 1d) (n = 9). 123 

The mean onset of activity in α CCAP neurons and motoneurons tended to be temporally correlated. Indeed, for 124 

all experiments except one, the onset of activity in α CCAP neurons and in motoneurons was significantly close in 125 

time (p-values < 0.01; one-tailed Mann-Whitney U test). In contrast, when comparing the onset time of α CCAP 126 

and motoneurons from different experiments, we found that they were more temporally separated. In addition, the 127 

onset of motoneuron activity usually lagged behind that for CCAP neurons, suggesting that some level of α CCAP 128 

activity is required to initiate the motoneuronal oscillatory activity. 129 

Next, we computed the period of the oscillations of both populations of neurons using the continuous wavelet 130 

transform (CWT). This method was preferred over the Fourier transform, as CWT can localize the frequency 131 

components in time. The average scaleograms of all α CCAP neurons (n = 111) (Fig 2a) and motoneuron time 132 

series (n = 18) (Fig 2b) showed that the main oscillatory period was around 50 to 200 s for α CCAP neurons, and 133 

around 25 to 50 s for motoneurons.  134 

 135 

Fig 2: Oscillation period of CCAP neurons and motoneurons 136 

(a, b) Average scaleogram for all α CCAP neuron (a) and motoneuron time series (b).   (c) Mean oscillation 137 

periods of CCAP neurons and motoneurons for all 9 experiments. For CCAPs, only the data for neurons that 138 

passed the selection criteria are shown (see text). In some experiments none were accepted, and the bar is 139 

missing. By contrast, in all experiments motoneurons of the left and right regions showed a dominant oscillation 140 

period. 141 

 142 

Nevertheless, not all α CCAP neurons showed a clear single dominant frequency component. Applying a criterion 143 

for the existence of predominant peaks in the frequency spectrum (minimum amplitude at each side of the interval 144 

that goes from half to twice the period of the maximum amplitude, to be less than 80% of the maximum) we found 145 

that only 47% of the α CCAP neurons passed the selection criterion, illustrating the irregularity of the oscillatory 146 

activity in these neurons. Neurons that passed this criterion were used to compute the mean period of each 147 
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experiment (166 ± 23.3 s; n = 13 experiments); the remaining neurons were eliminated from further frequency 148 

analysis. 149 

By contrast to CCAP neurons, motoneurons displayed a more regular pattern of activity with a clearer main 150 

oscillatory component, and no motoneuron time-series was discarded. The main oscillatory period of 151 

motoneurons was 33.4 ± 4.1 s (n = 9). The difference in the principal oscillatory period between the left and right 152 

sides was also small, suggesting that the activity of motoneurons on both sides is not independent. We plotted the 153 

periods of both CCAP and motoneurons and their means (Fig 2c), and in all experiments found that the period of 154 

motoneuron activity was much shorter than that of CCAP neurons. 155 

 156 

COORDINATION WITHIN CCAP EXPRESSING NEURONS  157 

To investigate the coordination between CCAP neurons, we measured the linear relationship between their time 158 

series using Pearson's correlation. We grouped the correlation pairs into functionally equivalent pairs based on 159 

what is known about their anatomy, as well as their synaptic and peptidergic connectivity [31,32]. Thus, the 160 

correlation pairs were grouped into: contralateral neurons (on the same segment but opposite sides), ipsilateral 161 

neurons (on the same side but in different segments), and “other” neuron pairs (on opposite sides and on a 162 

different segments) (see Fig 3a). We computed the group p-values using the one-tailed Mann-Whitney U test to 163 

compare correlations of each experiment to null cross-experiment correlations. In all cases we obtained p-values 164 

< 0.001 making group correlations shown in Fig 3b-f highly significant. 165 

 166 

Fig 3: CCAP neuron coordination 167 

(a) Pearson’s correlations pairs are divided into 3 groups: contralateral neurons (“C”), ipsilateral neurons (“I”), and 168 

“others” (“O”). As an example, the graph shows pairs that include the left AN2 neuron.   (b-j) Correlation 169 

coefficients between the time series of CCAP neurons, shown as violin plots with their minimum, maximum and 170 

mean values.   (b) α CCAP neuron correlations in the time domain.   (c) β CCAP neuron correlations in the time 171 

domain.   (d) α-β CCAP neuron correlations in the time domain.   (e) Correlations of α CCAP neuron amplitude of 172 

oscillations in the time-frequency domain.   (f) Correlation of α CCAP neuron amplitude and phase in the time-173 
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frequency domain.   (g-j) Correlation between ipsilateral pairs with different segmental separation, “I1”, “I2” and 174 

“I3” groups are contiguous, separated by 1 and separated by 2 segments, respectively. The plots use the same 175 

notation as the plots in (b-f). *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001. 176 

 177 

Correlations between contralateral CCAP neurons were higher than between ipsilateral neurons, for αα and αβ 178 

pairs (Fig 3b,c,d). The correlations between contralateral neurons were also higher than between “other” neurons 179 

for αα, ββ and αβ pairs. To test if the distance (in segments) between neurons affected the strength of the 180 

coupling, we divided the pairs into 3 ipsilateral groups based on their segment separation. The I1, I2 and I3 181 

groups contain ipsilateral pairs of neurons within the same segment, or pairs separated by 1 or by 2 segments, 182 

respectively. We performed the same analyses on these groups (Fig 3g-j), and found that correlation for both αα 183 

and αβ neuron pairs dropped as the segmental distance between them increased (Fig 3i,j). In contrast, 184 

coordination between ββ neuron pairs was not affected by segmental distance (Fig 3h). 185 

Finally, we studied the correlation of the αα pairs in the time-frequency domain, using the 50 to 200 s period band 186 

of the CWT. This also allowed us to study the correlation of the oscillation’s amplitude with and without the phase 187 

component. We found that contralateral neurons had a higher correlation of amplitudes (absolute value of the 188 

CWT) compared to the other pairs (Fig 3e). When taking into account the phase component (the real part of the 189 

CWT) the correlation coefficients displayed an important drop, showing that the phase of the oscillations was 190 

poorly coordinated (Fig 3f). The interpretation of these results is that CCAP neurons tend to be active at the same 191 

time but do not oscillate with the same phase. 192 

These results show that all abdominal segments 1-4 (AN1-AN4) CCAP neurons tend to have synchronized 193 

activity, but that their coupling strength varies depending on the neuronal pair considered. Contralateral αα and αβ 194 

pairs from the same segment appear to show higher coupling, whereas ββ pairs show similar contralateral and 195 

ipsilateral coupling strength. Finally, the correlated activity does not involve a synchronized oscillation, i.e. CCAP 196 

neurons oscillate at the same time but not in a concerted fashion. 197 

 198 
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COORDINATION BETWEEN MOTONEURONS 199 

Left and right motoneuronal regions express coordinated but opposite activity. In order to quantify this 200 

coordination and determine how it evolves over time, we calculated the Pearson’s correlation between left and 201 

right motoneuron regions on a sliding window of 100 s (thus the window is longer than the oscillation period, but 202 

shorter than the duration of oscillation bursts). The correlations tended to be negative during the oscillating 203 

periods and positive during the non-oscillating periods (Fig 4a), consistent with the observed synchronous but 204 

phase-opposite behavior. 205 

 206 

Fig 4: Motoneuronal coordination 207 

(a) Correlation coefficients between left and right motoneuron time series, calculated over a sliding window of 100 208 

s. Time series for left (“MN L”) and right (“MN R”) motoneuronal regions are shown in orange and purple, 209 

respectively, and the Pearson’s correlation coefficient (“r”) of the sliding window is shown in black. Gray horizontal 210 

lines indicate correlations of −1, 0 and +1.   (b) Example of the method used to compute the mean phase 211 

difference of an experimental recording. Blue and green points represent the phase difference at every instant of 212 

the experiment; their amplitude is scaled to the mean amplitude of the oscillations of the left and right region. The 213 

red point represents the mean vector, whose phase represents the mean phase difference of the experiment.   (c) 214 

Mean phase difference for 9 experiments (blue) and mean for all experiments (red). 215 

 216 

We then used the CWT to compute the instantaneous amplitude and phase of the motoneurons’ primary 217 

oscillatory period for the entire recording. We generated vectors with angles equal to the phase difference and 218 

lengths equal to the mean amplitude of their CWT, computing the phase difference of the regions by averaging all 219 

the vectors of the experiment (Fig 4b).  220 

Using this procedure, we found a large amount of variability in the phase difference within each experiment, and 221 

an important spread of the experimental mean phase difference (Fig 4c), with a global mean of 182.1 ± 14.6°.  222 

The fact that the motoneurons oscillate in antiphase is compatible with the existence of a central pattern 223 

generator (CPG) downstream of the CCAP neurons [27]. The variability in the phase difference could be an 224 
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indicator that the CPG imaged in the calcium imaging preparations has difficulty synchronizing left and right 225 

motoneurons in the absence of sensory feedback, analogous to what has been shown previously for Drosophila 226 

larval crawling behavior [33]. 227 

 228 

FUNCTIONAL CONNECTIVITY BETWEEN CCAP NEURONS AND MOTONEURONS 229 

We noticed that α CCAP neurons appear to modulate the amplitude of the motoneuronal activity, with high levels 230 

of α CCAP neuron fluorescence tending to match periods of motoneuronal oscillation. Based on this observation, 231 

we converted the motoneuronal signal so that it could be correlated quantitatively to that of CCAP neurons. For 232 

this we used a single motoneuronal signal made by subtracting the time series of one region from the other. This 233 

procedure reduced the common noise and increased the SNR and oscillation amplitude, without much loss of 234 

information as the two-time series are mostly redundant. 235 

We computed the absolute value of the CWT of the motoneuronal signal at its previously computed primary 236 

oscillatory period, thus extracting the instantaneous amplitude (Error! Reference source not found.a). The 237 

amplitude signal from the motoneuronal oscillation was then correlated using Pearson’s correlation to each α 238 

CCAP neuron time series. The significance of the within-experiment correlations, as compared to null cross-239 

experiment correlations, was tested using a one-tailed Mann-Whitney U test. For all experiments except one, the 240 

correlations were significant (Fig 5b). The single experiment that did not display significant correlations showed 241 

post-ecdysis motoneuronal oscillations that did not match temporally the increases in α CCAP neuron activity. 242 

 243 

Fig 5: Correlation between α CCAP neuron and motoneuron activity 244 

(a) Orange and purple lines show the activity of the left (“MN L”) and right (“MN R”) motoneuron regions, 245 

respectively, and the black line (“Activity”) shows the amplitude of the motoneuron signal. (b) Correlation 246 

coefficients between α CCAP neurons and the amplitude of the motoneuronal time series, shown as points and 247 

the means as bars.   (c) Analogous to (b), but with the pre-ecdysis phase removed. *: p-value < 0.05, **: p-value < 248 

0.01, ***: p-value < 0.001. 249 

 250 
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As the time of onset of activity varied across experiments, it could be argued that the high significance of the 251 

correlation between α CCAP neurons and motoneurons is caused by the matching of onset times. To test this 252 

hypothesis, we removed the initial non-oscillatory block for each experiment and repeated the analysis using the 253 

modified time series (Error! Reference source not found.c). For all experiments except two, the results were 254 

significant, suggesting that α CCAP neurons regulate the motoneuronal activity during the entire recording period. 255 

These results suggest that the CPG responsible for ecdysis requires a constant input from the α CCAP neurons to 256 

maintain its ongoing oscillatory activity, consistent with previous findings [21,27]. Also, the correlated activity 257 

allows us to talk of functional connectivity [34] that occurs between CCAP and motoneurons, regardless of 258 

whether there is a structural connectivity (synapses) between them. 259 

 260 

FITTING THE CCAP-MOTONEURON INTERACTION WITH A LOGISTIC MODEL 261 

After finding that CCAP neurons are functionally coupled to the motoneurons, we built a model to test how well 262 

the activity of the α CCAP neurons could predict the motoneuronal oscillatory state.  263 

The model takes the activity of α CCAP neurons as input and generates the motoneuronal oscillatory activity as 264 

output. As the amplitude of the motoneuron oscillations does not appear to be regulated by α CCAP neurons, we 265 

employed a binary signal obtained by thresholding the oscillation amplitude (see Methods) to describe the 266 

oscillatory and non-oscillatory motoneuronal activity. The motoneuron oscillation generator (CPG) integrates the 267 

signals from AN1-AN4 α CCAP neurons and produces a probabilistic oscillatory response. 268 

The system was modeled as a logistic regression: 269 

𝑝(𝑡) =
1

1 + exp(−𝛽 − ∑ 𝑤𝑖𝑓𝑖(𝑡)8
𝑖=1 )

 270 

Where 𝑝(𝑡) represents the probability that motoneurons will oscillate at time t; fi(t) the i-th α CCAP neuron time 271 

series; wi, the weight of the i-th α CCAP neuron; and β the offset. The model’s coefficients were estimated using 272 

maximum likelihood estimation (MLE) with the constraint that all weights must be positive.  273 
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As shown in Error! Reference source not found.a,b, the maximum likelihood solution has weights set to zero, 274 

i.e., not all the CCAP neuron time series of every experiment are needed to predict the motoneuronal oscillations. 275 

The minimum number of α CCAP neurons required to reach the maximum likelihood was 2, the maximum was 6 276 

and the average was around 4. These results should not be interpreted to mean that some α CCAP neurons do 277 

not have any effect on the motoneuronal oscillatory activity; rather, we expect the redundancy of their activity to 278 

make the likelihood of the model to be maximized with only some of them. The weights were highly variable, also 279 

an indicator of the degeneracy in the system, as α CCAP neurons with diverse activity dynamics nonetheless 280 

generate similar motoneuronal activity. 281 

 282 

Fig 6: Fit of the logistic model to the experimental data 283 

(a, b) Time series of α CCAP neurons (red, blue), motoneurons (orange, purple), binarized oscillatory activity of 284 

motoneurons (black), and probability of oscillation predicted by the model (green). CCAP activity traces are 285 

shown in red with their corresponding weight value if it is positive (“CCAP (Wi > 0)”), or in blue with no value if it is 286 

zero (“CCAP (Wi = 0)”). All weight values were computed through multi-weight model fitting.   (a) Example of a 287 

good match between the model p(t) and the oscillatory state of the motoneurons.   (b) Example of a poor match 288 

during the post-ecdysis phase, as a result of the lack of α CCAP activity. 289 

 290 

Error! Reference source not found.a shows that during the oscillatory activity of motoneurons, 𝑝(𝑡) increased 291 

accordingly; one exception can be observed in Error! Reference source not found.b, where the 𝑝(𝑡) barely 292 

increased during rare post-ecdysis oscillatory events, due to the lack of significant increases in the activity of the α 293 

CCAP neurons during this period events (this is the same experiment that showed poor correlation between 294 

CCAP and motoneuron activity). 295 

We also fitted a single weight model (same value for all wi), based on the assumption that all α CCAP neurons 296 

affected motoneuronal activity in the same way. To select the best model by taking into account the tradeoff 297 

between the goodness of fit and the complexity of the model we used the Akaike Information Criterion (AIC) [35]. 298 

For all 9 experiments the multi-weight model performed noticeably better (i.e., its values were lower) than did the 299 
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single-weight model. This suggests that not all CCAP neurons have the same impact on the motoneuronal time 300 

series; the origin of this could be experimental, biological, or a combination of the two. 301 

 302 

 303 

 Experiments 

 1 2 3 4 5 6 7 8 9 

Single-

weight 

908 1803 1092 1519 3714 2976 2312 1489 3108 

Multi-weight 711 1598 888 891 2481 2464 2019 1227 2675 

 304 

Table 1. Akaike information criterion. AIC values of single- and multi-weight model fittings of every experiment. 305 

 306 

REPRODUCING MOTONEURON CALCIUM ACTIVITY USING A CONDUCTANCE-BASED MODEL 307 

A logistic model is an abstract model that can fit a probability function to a binary motoneuron oscillation time 308 

series; however, it is not capable of modeling calcium dynamics. To test if we could reproduce the observed 309 

calcium dynamics, we used a model developed by Jalil et al., 2010, consisting of two endogenously bursting 310 

neurons with fast non-delayed inhibitory connections that synchronize in antiphase. The activity of the neurons 311 

depends on the voltage-dependent potassium and sodium currents and on reciprocally inhibitory synapses 312 

between them. To couple the oscillatory activity of the model to the CCAP neurons, we added a depolarizing 313 

current that depends on the activity of the α CCAP neurons. The model was further adapted to generate 314 

fluorescence spikes during the phase of motoneuronal oscillation, matching the oscillation timing, the calcium 315 

interspike interval (ISI), the spike phase difference, and the time constant of each experiment (see methods). 316 

In our model, 8 α CCAP neurons are coupled to 2 motoneurons (Error! Reference source not found.a) and 317 

each α CCAP neuron releases a peptidergic signal that depolarizes the motoneurons and causes them to 318 

oscillate. α CCAP neurons release the signal according to the recorded fluorescence time series factored by a 319 
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weight (already computed in the logistic model). Outputs from the peptidergic neurons are then multiplied by 320 

weights, summed, and transformed with a logistic function to generate the gating variable 𝑝(𝑡). In this way, α 321 

CCAP neurons modulate the oscillatory behavior of the motoneurons through 𝑝(𝑡).  322 

 323 

Fig 7: Simulation of fluorescence spikes. 324 

(a) Model circuit structure, showing the 8 α CCAP neurons that release the peptidergic signal (black circles) and 325 

activate the oscillatory behavior of the reciprocally inhibiting motoneurons.   (b) Simulated fluorescence (top) and 326 

voltage (bottom) time series of left (“Sim L”) and right (“Sim R”) motoneurons.   (c) Magnification of a small 327 

temporal segment of (b).   (d, e) Simulation of two different experiments. The gray grid marks probabilities of 0, 328 

0.5 and 1. “MN L”, “MN R”, “Sim L” and “Sim R” indicate experimental left, experimental right, simulated left, and 329 

simulated right motoneurons, respectively. 𝑝(𝑡) indicates the probability of oscillation. 330 

 331 

We fitted the model during multiple passes of manual parameter adjustments and simulation sessions. The 332 

resulting parameter values were identical for all experiments except for τf and τK, which were used to fit the 333 

exponential decay and oscillation period, respectively.  334 

An example of the bursting behavior of the model is shown Error! Reference source not found.b, where 335 

motoneuron fluorescence and voltage are plotted next to each other for comparison and shows that the simulated 336 

fluorescence increases during the bursting phase and decreases during the non-bursting phase. When the model 337 

is run using experimental CCAP time series as its inputs, it can reproduce fairly well the motoneuron oscillatory 338 

behavior (Fig 7d,e). The timing of the simulation oscillations approximately matches that of the experiments, even 339 

during the periods of lower spiking frequency. This is especially interesting considering that 𝑝(𝑡) was fitted to a 340 

binarized (as opposed to a graded) motoneuronal activity signal. Another noteworthy result is that, as more time 341 

passes after an oscillation, the neurons are more likely to begin oscillating again. This effect is the result of the 342 

slow dynamics of the potassium current, which slowly stops inhibiting action potentials (APs); this can be seen in 343 

the last oscillation period in Fig 7d.  344 
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The simulation spike frequency and its exponential decay matched that of the experiments, as they were fitted 345 

through the τNa and 𝜏f parameters. The noise caused by equation (7) adds amplitude and phase variability, 346 

resembling the one observed in the experiments. 347 

Fig 8 compares simulated and experimental motoneuron time series for 3 different experiments in the time and 348 

time-frequency domains. To reduce the noise of the model scaleogram, each simulation was repeated 10 times 349 

and their scaleograms averaged. In all experiments the simulations showed a good time-frequency match to the 350 

experimental data. 351 

 352 

Fig 8: Simulations of the Logistic model linked to a conductance-based bursting model 353 

(a) Experimental and a simulation time series of 3 experiments. “MN L”, “MN R”, “Sim L” and “Sim R” indicate the 354 

left and right experimental, and left and right simulated motoneuron activity respectively.   (b) Corresponding 355 

scaleograms, except that the scaleogram simulations are the average of 10 simulations. Each row shows the 356 

experimental (bottom) and the simulated (top) motoneuron activity, respectively. 357 

 358 

Even though very little is known about the structure of the circuit, our model replicated many of the features of the 359 

activity pattern observed in the experimental recordings, showing that the activity of CCAP neurons is tightly 360 

linked to that of motoneurons.  361 

CORRESPONDENCE BETWEEN CALCIUM ACTIVITY AND MOTOR BEHAVIOR 362 

Finally, we wanted to quantify how much the neural activity of the ex vivo CNS during fictive ecdysis accurately 363 

reflected the in vivo ecdysis motor behavior. To do this, we analyzed the pupal ecdysis motor behavior of intact 364 

animals removed from their puparium. The analytic process is divided into three phases: computation of the 365 

position of midline of the pupa, generation of the time-space diagram, and quantification.  366 

To compute the midline of the pupa, a sequence of image processing operations was applied to every frame of 367 

the video.  (See Fig 9Fig 9 and further details in Methods). The result is a time series indicating the position of the 368 

midline of the pupa with respect to the lateral axis, at each position along the antero-posterior axis.  369 
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 370 

Fig 9: Midline computation 371 

Sequence of image processing steps used to compute the midline of the pupa for every frame of the video. An 372 

RGB video frame is extracted (a) and converted to a grayscale image (b), then thresholded (c) and its holes filled 373 

(d). Blob borders are softened by applying a gaussian filter (e) and thresholded again (f). Small blobs are 374 

discarded (g) and the left (green) and right (red) borders are computed (h). The mean of the two borders 375 

represents the midline (white line). 376 

 377 

The varying position of the midline was used to generate a time-space diagram, where time is mapped in the 378 

horizontal axis and the antero-posterior axis is mapped along the vertical axis. The color code indicates the 379 

position of the midline along the lateral axis. The diagram shows a distinctive pattern for each major motor pattern 380 

(Fig 10a). Peristaltic motor activity begins in the anterior and propagates to the posterior region of the animal, 381 

generating descending line patterns (from top-left to bottom right). The swinging motor pattern is characterized by 382 

a large variation of the midline position in the anteroposterior mid-section and a lengthening and shortening of the 383 

diagram across the anteroposterior axis. The lengthening occurs when the pupa is straight and the shortening 384 

when it bends to the side. Finally, the stretch-compression activity generates variation of the diagram across the 385 

anteroposterior axis like the swinging pattern, but with minimal variation of the midline position in the mid-section. 386 

 387 

Fig 10: Behavioral analysis 388 

(a) Time-space diagram patterns generated by three different motor routines. The “AP axis” represents the 389 

anteroposterior axis, which is oriented so that the top of the diagram corresponds to the anterior side of the pupa. 390 

The color indicates the position of the midline in the left-right axis along the anteroposterior axis, with the top and 391 

bottom of the diagrams corresponding to the anterior and posterior sections of the midline, respectively. Darker 392 

colors indicate that the midline section is closer to the left side, whereas lighter colors indicate that it is closer to 393 

the right side.   (b) Filtered time-space diagrams of 6 pupal recordings aligned to the time when the ecdysis phase 394 

began. White spaces in the top diagram correspond to times when the pupa moved outside the microscope 395 

viewing field.   (c) Time series of the mid-section of (b) (“LR axis” represent the left-right axis). 396 
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 397 

We processed using this procedure 6 videos of pupal ecdysis behavior and generated the corresponding time-398 

space diagrams (Fig 10b) and time series of the mid-sections (Fig 10c). Since pupae were not stimulated with 399 

exogenous ETH at the beginning of the video (as was the case for calcium recordings), we aligned the diagrams 400 

and time series to the beginning of the ecdysis phase. 401 

All 6 time-space diagrams showed a similar pattern with very small differences in their timing and period. 402 

Quantifications were done manually by measuring time in the time-space diagram and time series plots (Error! 403 

Reference source not found.). To measure the period, we measured the duration of the largest time span of full 404 

cycles and divided it by the number of cycles. A swinging cycle was defined as a bending to one side followed by 405 

a bending to the opposite side. During post-ecdysis, a cycle included the bending to both sides followed by the 406 

stretch-compression motor pattern. 407 

 408 

Fig 11: Behavioral metrics 409 

Metrics and comparison of the motoneuronal activity (n = 9) and pupal behavior (n = 6).   (a) Period of the 410 

characteristic motor patterns of each of the ecdysial phases.   (b) Duration of the ecdysis and of the fast post-411 

ecdysis phase. 412 

 413 

Finally, we compared the metrics obtained from the behavior of the intact pupal preparations to those of the 414 

motoneuron activity in the ex vivo CNS preparations (Error! Reference source not found.). The pre-ecdysis 415 

peristaltic contractions period of the pupa averaged 59.4 ± 8.7 s. We were able to visually detect the motoneuron 416 

peristaltic activity in the motoneuronal recordings, but because of the low SNR and time resolution, its 417 

quantification was not reliable.  418 

The ecdysis swinging contraction period was significantly shorter in the motoneuronal recordings than in the pupal 419 

recordings (25.1 ± 2.4 s versus 45.7 ± 3.2 s, respectively; p-value < 0.002, two-tailed Mann-Whitney U test). The 420 

mean duration of the ecdysis phase, on the other hand, was not significantly different (346.7 ± 37.8 s versus 421 

363.2 ± 31.2 s, respectively). 422 
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The mean post-ecdysis cycle period was 128.8 ± 37 s in the motoneuronal recordings. In intact animals, in 423 

contrast, we noticed that the post-ecdysis phase could be divided into two subphases: a fast one followed by a 424 

slow one. Both subphases included alternations between periods of swinging and periods of stretch-compression 425 

contractions, but in the slower phase the stretch-compressions tended to be of longer duration. The mean period 426 

was 76.4 ± 2.4 s for the fast and 187.3 ± 9.6 s for the slow subphases, respectively. We compared the mean of 427 

the three groups and found significant differences only between the slow and fast post-ecdysial phases (p-value < 428 

0.004, two-tailed Mann-Whitney U test). The mean duration of the fast post-ecdysis phase was 724.1 ± 22.1 s. 429 

The slow post-ecdysis phase duration could not be measured as it persisted past the end of the recording time. 430 

In summary, we found that most of the activity recorded during pupal ecdysis behavior in intact animals had a 431 

fictive counterpart, but the ex vivo motoneuronal recordings showed different timing and greater irregularity. This 432 

indicates that the neural circuit controlling ecdysis behaves differently when tested in isolation, suggesting that 433 

sensory feedback could play an important role in regulating the timing of the ecdysis sequence. 434 

Discussion 435 

Ecdysis behavior consists of 3 separate motor programs (pre-ecdysis, ecdysis and post-ecdysis) that are 436 

expressed in a specific temporal order. A successful ecdysis is the result of the interplay between peptidergic 437 

neurons and motoneurons, each with quite different temporal patterns of activation. Here, we have combined 438 

calcium imaging recordings, computational tools, and behavioral analyses to gain better insights into the 439 

functional relationships between these two neuronal populations.  440 

Our results suggest that CCAP neurons trigger motoneuronal activity and also sustain it throughout the ecdysis 441 

and post-ecdysis subroutines. Moreover, our analyses reveal a cross-frequency interaction between these two 442 

neuronal populations, as the slow variations in CCAP activity is correlated with the faster oscillations of 443 

motoneurons. This raises the question: What is the advantage of having CCAP neurons continuously modulating 444 

motoneuronal outputs? One possible answer is that it provides a continuous control over the desired behavior, 445 

allowing feedback mechanisms or environmental conditions to modify it. Our analyses show that the activity 446 

patterns of CCAP neurons correlate with different motor outputs: high CCAP activity generates swinging 447 

contractions over the ecdysis phase, whereas the alternation between high and low amplitude CCAP responses 448 
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signals the transition from swinging contractions to stretch-compression movement, which are distinctive of post-449 

ecdysis. Thus, specific CCAP activity patterns could be triggering the release of neuropeptides and potentially 450 

neurotransmitters in an activity-dependent way to modulate diverse motor outputs. It has been reported that co-451 

transmitters have distinct activity thresholds for their release, providing opportunities for circuit flexibility. For 452 

example, a low, tonic firing frequency may result in the release of neurotransmitters, whereas rhythmic bursting 453 

pattern may cause the release of both neurotransmitters and neuropeptides [37]. Consequently, a firing rate-454 

dependent response would generate the modulation of diverse post-synaptic outputs [38–40]. To confirm that the 455 

CCAP activity pattern is modulating the release of neuropeptides or neurotransmitters in an activity-dependent 456 

way throughout ecdysis, an in vivo characterization of neuropeptide-neurotransmitter release associated to 457 

specific activity patterns and behavioral phases would have to be undertaken. 458 

We showed that the activity of CCAP neurons can be aligned with motoneuron oscillatory activity using both an 459 

abstract logistic model and a conductance-based model. Using these models, CCAP activity could accurately 460 

predict motoneuronal oscillatory activity (error rate <10%). In addition, the models showed that in general only 4 461 

CCAP neurons or fewer (of a total of 8), were required to predict the start of an oscillatory episode. A possible 462 

explanation for this result is related to redundancy within the CCAP ensemble. In Drosophila, the CCAP AN1-AN4 463 

network consists of 16 neurons that have been largely characterized from a molecular to a functional point of view 464 

[22,23,25,27]. The functional redundancy predicted by our model can have two interpretations. On one hand, it is 465 

possible that only one half of the CCAP AN1-AN4 cells may be necessary and sufficient to trigger ecdysis and 466 

post-ecdysis phases, with the rest of the network adding robustness and flexibility to the control of motoneuronal 467 

oscillations. Alternatively, all CCAP AN1-AN4 neurons may be necessary for the oscillatory command to reach the 468 

entire motoneuronal population. In this case, the statistical redundancy emerges just because of their coordination 469 

and synchronization. These two scenarios could be distinguished experimentally, through the selective 470 

inactivation of one or more CCAP neurons using recently developed holographic optogenetic tools [41–43]. 471 

With the addition of a simple conductance-based bursting CPG model [36,44], we were able to replicate the 472 

motoneuronal oscillatory activity. In the absence of any electrophysiological information about the neurons that 473 

generate this rhythm and the ion channels involved, we chose a simple generic neuronal oscillator. However, the 474 

well-known degeneracy and diversity found in oscillation-generating circuits [45–47] implies that many different 475 
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neuronal models could produce the same output. It also implies that it is virtually impossible to make a better 476 

prediction without further electrophysiological evidence, and moreover, that the details of mechanisms found in 477 

different species can diverge significantly. Our analysis methods provide a framework to interpret new 478 

experimental manipulations that can be made to the mechanisms downstream the CCAP command signal. 479 

The 3 different motor programs of ecdysis can be observed in puparium-free preparations. Until now, these 480 

components have been qualitatively characterized only on the bases of obvious motor changes [22,25]. Our 481 

computational method allowed us to quantitatively characterize the ecdysis and post-ecdysis behavioral programs 482 

and to contrast them with the associated motoneuronal activity. These analyses showed that most of the activity 483 

observed during pupal behavior had its fictive counterpart in the ex-vivo preparation. However, the patterns of 484 

motoneuronal activity were more variable compared to the behavior observed in the intact animal. This mismatch 485 

could be caused by sensory feedback, which has been shown to be critical for the proper organization of motor 486 

programs in many animals [33,48,49]. Sensory information may impact CCAP network activity itself or, 487 

alternatively, that of downstream CCAP targets. One possible source for this sensory (proprioceptive) feedback 488 

are somatosensory neurons located along the body wall of the pupa. In this regard, computational modeling of the 489 

neural circuits involved in the production of peristaltic waves during larvae crawling, have showed that adding 490 

sensory feedback to a CPG network model affects both speed and intersegmental phase relationships [50]. 491 

Moreover, recent experimental work supports the idea that proprioceptive feedback plays a key role on the proper 492 

coordination of muscle contraction and on the speed of wave propagation [51]. Additional work must be done in 493 

order to identify the potential proprioceptive pathway that modulates the ecdysis motor sequence.  494 

Finally, our algorithm also detected that post-ecdysis phase can be divided into fast and slow contraction 495 

frequencies. This newly detected motor program seems to be absent from our Ca+2 imaging recordings, 496 

suggesting that additional network layers between CCAP and motoneurons may potentially be involved, whose 497 

activity pattern has not yet been detected or characterized. Using our computational tools, future experimental 498 

research will be able to quantitatively relate this second post-ecdysis phase to the activity of other neural 499 

populations or gene expression networks. 500 

 501 
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METHODS 502 

Fly lines 503 

Drosophila melanogaster cultures were raised on standard agar/cornmeal/yeast media and housed at 22-25°C. 504 

The following GAL4 drivers were used: Ccap-GAL4 (driver for CCAP neurons; [52]) and C164-GAL4 (driver for 505 

motoneurons; [53]). We obtained the genetically encoded calcium sensitive, GCaMP3.2, from Julie Simpson 506 

(Janelia Farm, USA). GCaMP3.2 was expressed in CCAP neurons and motoneurons simultaneously by 507 

combining the Ccap-GAL4 and C164-GAL4 drivers using standard techniques. 508 

 509 

Imaging of calcium dynamics 510 

Calcium (Ca2+) recordings were carried out essentially as described in Mena et al. [25]. Briefly, animals containing 511 

a bubble in the mid-region of the puparium (4 hours before pupal ecdysis) were selected. The central nervous 512 

system (CNS) was dissected in cold PBS, immobilized in 1.5% low melting temperature agarose solution (Sigma 513 

type VII-A; Sigma-Aldrich Chemical Co., MO) and covered with Schneider’s Insect Medium (Sigma-Aldrich 514 

Chemical Co., MO). Recordings were performed using an Olympus DSU Spinning Disc microscope (Olympus 515 

Corporation, Shinjuku-ku, Tokyo, Japan) under a 20 X W NA 0.50 immersion lens. GFP signal was acquired using 516 

an ORCA IR2 Hamamatsu camera (Hamamatsu Photonics, Higashi-ku, Hamamatsu City, Japan) using the CellR 517 

Olympus Imaging Software (Olympus Soft Imaging Solutions, Munich, Germany). Fictive ecdysis was triggered by 518 

adding 600 nM of ETH1 (Bachem Co., USA). We recorded multiplane fluorescence using a sampling rate of 1 519 

picture every 2-3 second for at least 60 min. Depending on the preparation, the number of images per z-stack 520 

was 3-5 focal planes (covering 100-200 m in depth), which allowed the entire motoneuronal and CCAP network 521 

to be imaged. 522 
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 523 

Video pre-processing 524 

Video sequences were first processed using ImageJ [54]. Calcium time series were first detrended in order to 525 

compensate for slow variations of fluorescence during the recording caused by tissue drifting, then normalized in 526 

order to make the time series more uniform in terms of the minima and maxima of fluorescence. Detrending was 527 

performed by finding the minimum values during the first and the last 250 s of the time series, generating a line 528 

that crossed those points, and subtracting the corresponding value from each frame. The normalization linearly 529 

mapped the time series so that the minimum and maximum values were 0 and 1, respectively. 530 

 531 

𝑚 =
𝑓(𝑡1) − 𝑓(𝑡0)

𝑡1 − 𝑡0

 534 

 532 

𝑔(𝑡) = 𝑓(𝑡) − 𝑚𝑡 535 

 533 

ℎ(𝑡) =
𝑔(𝑡) − 𝑓min

𝑓max − 𝑓min

 536 

Where 𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡) are the unprocessed, the detrended, and the preprocessed signals, respectively. 𝑡0, 𝑡1 are 537 

the time of the minimum value within the first and last 250 s of the signal, respectively, and 𝑚 the slope of the 538 

detrending line. 𝑓min and 𝑓max are the minimum and maximum value of the detrended signal, respectively. 539 

We focused most of our analyses on the GCaMP activity of individual CCAP neurons of the α class [25], whereas 540 

for the motoneurons we analyzed the total GCaMP activity on the left and right sides of the abdominal CNS, due 541 

to their large number. In preparations in which both CCAP and motoneurons expressed GCaMP, the 2 sets of 542 

neurons were readily distinguishable by their position and size. 543 

Activity onset 544 

The computation of activity onset was performed using a smoothened version of the time series, obtained by 545 

convolving the original time series with a rectangular window function of 10 s duration and area of 1. Onset was 546 
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defined as the first instant for which the convolved time series exceeded 1/2 of the maximum amplitude of the 547 

original time series. The first 100 s of the time series were discarded because some neurons displayed a high 548 

level of fluorescence at the beginning of the recordings.  549 

Time frequency analyses 550 

Time-frequency analyses were performed using the continuous wavelet transform (CWT) [55] with the complex 551 

Morlet wavelet (σ = 3). The CWT is defined by: 552 

𝑊(𝑡, 𝑠) =
1

𝑠
∫ 𝑓(𝑢)ψ (

𝑢 − 𝑡

𝑠
) 𝑑𝑢

∞

−∞

 553 

 554 

Where 𝑠 is the scale parameter, 𝑡 the position parameter, 𝑓() the signal function, ψ() the wavelet function and the 555 

overline represents the complex conjugate.   556 

The complex Morlet is defined as: 557 

Ψσ(𝑡) = (1 + exp(−σ2) − 2 exp (−
3

4
σ2))

−
1

2

π−
1

4 exp (−
1

2
𝑡2) (exp(𝑖σ𝑡) − exp (−

1

2
σ2)) 558 

Which has a central frequency ~σ or central period ~1/σ. 559 

The scaleogram, analog to the spectrogram, is defined as the square of the amplitude of the CWT: 560 

𝑋(𝑡, 𝑠) = 𝑊(𝑡, 𝑠)𝑊(𝑡, 𝑠) 561 

The scale is related to the period (𝑇) in the following relationship: 562 

𝑇 = ~𝑠/σ 563 

Conductance based model 564 

We adapted a CPG model developed by Jalil et al. (2010) by adding the 𝐼𝑖,𝐶𝐶𝐴𝑃 and 𝐼𝑖,X terms, which represent 565 

currents generated by input from CCAP neurons and stochasticity, respectively; and by adding an equation that 566 

models the calcium fluorescence induced by neuronal activity. 567 
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𝑑𝑉𝑖

𝑑𝑡
(𝑡) = −

𝐼𝑖,Na + 𝐼𝑖,K + 𝐼𝑖,L + 𝐼𝑖,Syn + 𝐼𝑖,CCAP(𝑡) + 𝐼𝑖,X

𝐶
 (1) 

𝐼𝑖,Na = 𝑔Na(𝑉𝑖 − 𝐸Na)𝑛𝑖
3ℎ𝑖  (2) 

𝐼𝑖,K = 𝑔K(𝑉𝑖 − 𝐸K)𝑚𝑖
2 (3) 

𝐼𝑖,L = 𝑔L(𝑉𝑖 − 𝐸L) (4) 

𝐼𝑖,Syn = 𝑔Syn(𝑉𝑖 − 𝐸Syn)𝑠 (−1000(𝑉𝑗 + 0.0225)) ,  𝑖 ≠ 𝑗 (5) 

𝐼𝑖,CCAP(𝑡) = 𝑔CCAP(𝑉𝑖 − 𝐸CCAP)𝑝(𝑡) (6) 

𝑑𝐼𝑖,X = −
𝐼𝑖,X

𝜏X

+ 𝜎X𝑊𝑖,𝑡  (7) 

𝑛𝑖 = 𝑠(−150(𝑉𝑖 + 0.0305)) (8) 

𝑑ℎ𝑖

𝑑𝑡
=

𝑠(500(𝑉𝑖 + 0.0333)) − ℎ𝑖

𝜏Na

 (9) 

𝑑𝑚𝑖

𝑑𝑡
=

𝑠(−83(𝑉𝑖 + 𝑉Shift)) − 𝑚𝑖

𝜏K

 (10) 

𝑑𝑓𝑖

𝑑𝑡
=

𝑠(−100(𝑉𝑖 + 0.04)) − 𝑓𝑖

𝜏f

 (11) 

𝑠(𝑥) =
1

1 + 𝑒𝑥𝑝(𝑥)
 (12) 

 568 

In this model, 𝑉 is the membrane voltage, C, the membrane capacitance, and t, the time. I, g, E, τ , represent, 569 

respectively, the current, the maximum conductance, the reversal potential, and the time constant. The subscripts 570 

i, j refer to neuron index, Na, K, L, Syn, CCAP, X refer to sodium, potassium, leakage, synapse, CCAP, and noise 571 

(which is an Ornstein-Uhlenbeck process), respectively. 𝑝(𝑡) is the motoneuronal oscillation probability. Wt 572 

represents a Wiener process and σx its volatility. n, h, m are the sodium activating, sodium inactivating, and 573 

potassium activating gating variables, respectively; f represents the calcium imaging fluorescent intensity. VShift is 574 

a potassium activation curve shifting parameter. 575 

Equation 6 was added to generate a depolarizing current during the predicted oscillatory phase. 𝑝(𝑡), the 576 

oscillating probability at time t from the logistic model, approaches 0 when the oscillation probability is low and 1 577 
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when it is high. In the conductance model, 𝑝(𝑡) acts as a gating variable, gCCAP is the maximum conductance 578 

parameter and ECCAP is the reversal potential. A high 𝑝(𝑡) value generates depolarizing currents that help the 579 

system reach the voltage threshold to fire action potentials (APs) in a bursting and alternating pattern between the 580 

neurons of the circuit. By contrast, a low 𝑝(𝑡) value tends to keep the system in a non-oscillatory state. 581 

Equation 7 adds stochasticity to the model, which has the effect of mimicking the probabilistic influence of the α 582 

CCAP neurons on the motoneuronal oscillatory activity. It also adds phase noise during the oscillatory activity, 583 

similar to the one observed in the experimental recordings (Fig 4). 584 

Equation 11 generates fluorescence (calcium) spikes, which respond with a time constant 𝜏f. The equation 585 

produces increases in the values of fluorescence during the bursting phase and decreases during the non-586 

bursting phase. 587 

Simulations were done using the following parameters: 𝐶=0.5 nF; 𝜏Na=0.055 s; 𝑔Na=200 nS; 𝑔K= 45 nS; 𝑔L=10 588 

nS; 𝑔Syn=0.5 nS; 𝑔CCAP=1 nS; 𝐸Na=0.045 V; 𝐸K=-0.07 V; 𝐸L= -0.046 V; 𝐸Syn=-0.0625 V; 𝐸CCAP=0 V; 𝑉Shift=0.022 V; 589 

𝜏X=0.001 s; 𝜎X=0.03 nA.  590 

The values for  𝜏K and 𝜏f  varied as they were adjusted to each individual experiment. Their values are given in 591 

Table 2 592 

Parameter 

Experiment 

1 2 3 4 5 6 7 8 9 

𝜏K  (s) 55.2 63.9 125.6 67.7 136.5 71.5 71.5 69.0 88.1 

𝜏f   (s) 3.2 4.1 11.2 10.0 11.2 4.8 8.6 3.7 4.4 

 593 

Table 2. Values of K and f used for the fit of each experiments. 594 

 595 

The oscillation period of the calcium spikes is affected by many parameters, but 𝜏K affects it linearly and does not 596 

affect the duty cycle and phase difference, making it much easier to adjust manually. The exponential decay on 597 

the other hand can only be fitted through 𝜏f and does not affect the model dynamics. 598 
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Time constants 599 

The time constant for the fluorescence signal was computed by fitting an exponential decay function to the data, 600 

defined by:  601 

𝑓(𝑡) = 𝑎 exp (
−𝑡

τ
) + 𝑏 602 

Where 𝑎, 𝑏 and τ are constants, 𝑎 represents the amplitude of the decay, 𝑏 the basal fluorescence, and τ the time 603 

constant. The time constant of a segment was defined to be the τ of the fitted 15 s template, which was adjusted 604 

through the least squares method. 605 

The average time constant (𝜏f) of the exponential decay of motoneuron calcium spikes was computed using only 606 

high quality (high SNR) segments of the recordings.  607 

The time constant of the potassium gating variable (K) was adjusted manually to make the periodicity of 608 

oscillations of the model match the previously measured periodicity of motoneuronal oscillation. 609 

Puparium-free behavioral recordings and processing 610 

Behavioral recordings were carried out as described in [25] Mena et al., 2016. Briefly, the pupa was surgically 611 

removed from the puparium at the very start of pre-ecdysis and placed in a recording chamber with halocarbon oil 612 

(Sigma-Aldrich Chemical Co., MO). The animals were filmed under transmitted light using a Leica DMLB 613 

microscope (20 X magnification) for at least 60 min. 614 

Color RGB frames were extracted from the video sequence in real number format, with 0 and 1 representing the 615 

minimum and maximum intensity, respectively (Fig 9a). The images were converted to grayscale by averaging the 616 

intensity of the three-color component channels (Fig 9b). Pixels of the images were thresholded by setting them to 617 

0 if the grayscale values were lower than 0.1 or to 1.0 otherwise (Fig 9c). Holes, or black regions inside white 618 

regions were then filled (Fig 9d). Although the value of the threshold was chosen arbitrarily, we found that the 619 

resulting thresholded image was not very sensitive to its exact value. To extract the main behavioral features, 620 

high spatial frequency details were removed in a two-step process. The images were first convolved with a 621 

gaussian function with σ = 3 pixels (Fig 9e) and then thresholded at a threshold of 0.5, to avoid expanding 622 

(dilating) or reducing (eroding) the borders of the pupa (Fig 9f). Regions with less than 10000 white pixels, roughly 623 
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20% of the area of the pupa (see Fig 9g) were discarded. The left- and rightmost pixels of the pupa along the 624 

anteroposterior axis were then computed. The average between the left- and rightmost pixels along the axis were 625 

considered to represent the midline of the pupa (Fig 9h). 626 

 627 
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