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32 Abstract:

33 Markov models of ion channel dynamics have evolved as experimental advances have improved our 

34 understanding of channel function. Past studies have examined various topologies for Markov models of 

35 channel dynamics. We present a systematic method for identification of all possible Markov model topologies 

36 using experimental data for two types of native voltage-gated ion channel currents: mouse atrial sodium and 

37 human left ventricular fast transient outward potassium currents. In addition to optional biophysically inspired 

38 restrictions on the number of connections from a state and elimination of long-range connections, this study 

39 further suggests successful models have more than minimum number of connections for set number of states. 

40 When working with topologies with more than the minimum number of connections, the topologies with three 

41 and four connections to the open state tend to serve well as Markov models of ion channel dynamics. 

42 Significance Statement

43 Here, we present a computational routine to thoroughly search for Markov model topologies for 

44 simulating whole-cell currents given an experimental dataset. We test this method on two distinct types of 

45 voltage-gated ion channels that function in the generation of cardiac action potentials. Particularly successful 

46 models have more than one connection between an open state and the rest of the model, and large models 

47 may benefit from having even more connections between the open state and the rest of the other states.

48 Introduction

49 Discrete state Markov, or state-dependent, models have been used extensively to probe the role of ion 

50 channel dynamics in generating the excitability of neurons(1), cardiac myocytes(2), and pancreatic beta 

51 cells(3,4). Markov models recapitulate channel dynamics by discretizing behavior into a series of states, with 

52 transitions between states governed by rate constants that often vary as a function of membrane potential(5). 

53 These Markov models are then inserted into cellular models to simulate action potential waveforms and 

54 frequency-dependent properties(3,6–8).  For many types of ion channels, Markov model topologies describing 

55 their kinetic and voltage-dependent properties have evolved to reflect refined knowledge of channel behavior 

56 and functioning from decades of experimentation. For example, experiments have revealed multiple activation 

57 gates and inactivation states that span many time domains in some types of voltage-gated ion channels. 

58 States have been continuously added to existing Markov models at the single-channel and macroscopic 
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59 current levels to improve their ability to account for this additional complexity (9–13). For the voltage-gated 

60 cardiac Na+ channel, for example, current Markov models reflect multiple stages of channel activation, 

61 deactivation, and inactivation from both closed and open states (14,15). 

62 There is a rich history of progress in modeling macroscopic and single channel currents taking 

63 advantage of various topologies, or structures, of Markov models that reflect our understanding of channel 

64 dynamics (1,13,16–22). There have been also numerous studies on parameter identifiability and equivalence 

65 (18,23–28). In both cases, however, have explored a limited collection of topologies either for understanding 

66 the details of channel gating or recapitulating general channel dynamics. In 2009, Menon and colleagues 

67 surpassed previous efforts by exploring many model topologies through a genetic algorithm that theoretically 

68 optimizes model structure in addition to the rate parameters. Making random perturbations to optimize model 

69 structure, however, is challenging from an optimization point of view because the addition or removal of a state 

70 causes a large jump in the parameter landscape.  By enumerating the unique channel Markov model topology 

71 search space, however, optimization may focus on rate parameterization of these unique structures that 

72 thoroughly cover the search space. Enumeration also allows for absolute ranking of structures in order of 

73 increasing complexity, so that through examining the performance of multiple topologies, one may estimate the 

74 complexity needed to recapitulate that specific dataset. 

75 Systematically identifying various model structures is especially helpful given the range of goals in 

76 channel kinetic modelling(29). A model, for example, may need to reflect new structural information, new 

77 functional role(s) of channel interacting proteins (30–32) or, as in the CiPA initiative(33), massive amounts of 

78 electrophysiological data to simulate proarrhythmic effects of drugs. These types of studies may require a 

79 model that recapitulates molecular level detail precisely, i.e., for gating studies. Other types of studies, 

80 however, may only need a model that captures the principal dynamics of the channels, for example, in 

81 simulations of action potentials. By enumerating all possible model structures, we can suggest multiple 

82 structural candidates at different levels of complexity for validation of various types of data and complexities of 

83 datasets.  
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84 While human intuition laid a solid foundation for early ion channel models (34), there is a great need for 

85 a systematic, efficient method to identify possible Markov topologies given a specific experimental dataset. We 

86 present a systematic investigation into Markov model topologies examined incrementally in increasing 

87 complexity with two voltage-clamp datasets derived from analyses of cardiac fast transient outward (Ito,f) 

88 potassium currents and rapidly activating and inactivating sodium (INa) currents. Multiple topologies invite 

89 opportunities to understand how discretized states and rate constants come together to form a successful 

90 model of channel dynamics. This strategy also provides the opportunity to summarize topological features that 

91 work well for creating channel models. 

92 Results

93 Our initial aim was to count how many different topologies are possible for a Markov model with a given 

94 number of states.  To accomplish this goal, we assumed a Markov model topology with one state designated 

95 as open for simulating current with the rest not strictly labeled as in Menon et al. (16). In terms of graph theory, 

96 this open state is called the root. By starting with the root (open state), we could then iteratively evaluate the 

97 connectivity of the other states (35,36).   A challenge arose here, however, because topologies may appear to 

98 be unique by their numbering, even though the state labels are permutations.  Thus, our counting algorithm 

99 needed to assess whether models were oriented uniquely, as opposed to simply being labeled differently. 

100 Using the 3-state topology space as an example, 36 permutations of single rooted topologies are possible 

101 (Figure 1A).  Figure 1B then depicts the three topologies that are unique with respect to the root for clarity. A 

102 unique graph guarantees that the root, is oriented distinctly with respect to the other states.  To generate this 

103 unique space for topologies with greater than three states, topologies of various sizes were tested for 

104 isomorphism (37) and only the unique topologies were retained (38). Parsing from single rooted topology 

105 permutations (36) to uniquely oriented state topologies (3) is depicted in Figure 1C along with the results of a 

106 similar analysis for topologies up to 10 states. 

107 As can be seen in the table, this parsing dramatically reduced the model search space by orders of 

108 magnitude as the number of states increased, providing an upper bound on the topology search problem. 

109 However, the number of unique topologies was still quite large (on the order of millions for 9 and 10 states), 
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110 and many topologies cannot plausibly be studied given current constraints on computational resources. Thus, 

111 we sought to reduce the number of topologies evaluated further by focusing on those that might be the most 

112 useful for modeling native ion channel behavior.  We do note, however, that future efforts to explore the 

113 excluded models further might be feasible and appropriate as computational resources continue to increase. 

114 To further reduce the number of topologies, the degree of a state, defined as the number of edges 

115 (connections) possible to other states given residency in a certain state, must be limited.  We placed a 

116 moderate restriction of a maximum of a degree of four on a state (preventing one state from accessing many 

117 others) (Figure S1A).  A state with a high degree implies that a given conformation of the channel has direct 

118 access to many different adjacent conformations, each with an associated rate.  These rates would be 

119 increasingly difficult to identify experimentally as the number of connections increases.  

120 Large cycles also introduce additional challenges as the topologies start to represent long-range 

121 connections. In other words, states that are far apart in the ion channel excitatory cycle such as “deep” (or 

122 especially stable) inactivated or closed states may be connected directly. Experiments suggest, however, that 

123 a sequence of distinct channel energetic conformations likely take place between these stable states (39,40). 

124 By retaining these long-range connections or cycles, the topology implies the distinct pathways may be 

125 bypassed. Like the maximum state connections, we set a moderate restriction of four on the maximum cycle 

126 length to create the focused model search space (Figure S1B).  Together with elimination of isomorphic 

127 topologies, focusing the search on topologies that meet both biophysical restrictions (Figure S1C) yielded a 

128 reasonable number of models to evaluate given currently available computational resources, reducing the 

129 original space for a 10-state model from 1014 to a more reasonable 105.

130 Our principal aim was to evaluate these unique topologies as Markov models of channel dynamics. The 

131 unique models with varying number of states (Figure 1) were sorted according to increasing numbers of free 

132 rate constants (proportional to the sum of the number of states and edges (connections) as a measure of 

133 model complexity (16).  We utilized two canonical ion channel datasets to possible model structures needed to 

134 recapitulate channel dynamics: the rapidly activating and inactivating, voltage-gated cardiac sodium current 

135 (INa) and the fast transient, voltage-gated outward potassium current (Ito,f). In mammalian cardiac myocytes, INa 
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136 is responsible for the upstroke of the action potential (41) while Ito,f contributes to early repolarization and, 

137 notably, is responsible for generating the early “notch” of the action potential that is prominent in epicardial left 

138 ventricular myocytes in many large mammals, including humans (42). 

139 To evaluate the suitability of a particular topology to serve as a Markov model, we needed to find 

140 optimal rate parameters to capture the trends in the voltage-clamp data. Rate parameters were optimized 

141 using simulated annealing with adaptive temperature control (43) (equations 2-5). To minimize the dependence 

142 of optimal rate parameters of a unique graph on initial optimization conditions, multiple starts of simulated 

143 annealing were performed with initial rate parameters scaled according to a quasi-random Sobol sequence 

144 (44)(equation 9) to thoroughly explore the parameter space. We aimed to find rate parameters that captured 

145 the trends in the voltage-clamp data while also avoiding overfitting. Overfitting of a model means the model 

146 fails to represent the general trends in the  data by focusing on fitting all experimental data perfectly (45). In 

147 other words, we wanted to maximize the chance the Markov models would successfully predict channel 

148 dynamics not necessarily included in our canonical datasets (maximize generalizability). Further, we also 

149 wanted to quantify how likely it was that overfitting was occurring during the optimization process and when, so 

150 that the process could be terminated. Our rate parameter optimization routine included a measure to halt 

151 optimization if likely overfitting occurs using methods borrowed from training neural networks (46).  

152 Experimental data were split into training and validation sets. The trajectory of the reduction in training cost 

153 was tracked (progress) periodically throughout the optimization along with the current validation set cost with 

154 respect to the minimum seen (generalization loss). Figure S2A shows representative training and validation 

155 cost trajectories during a model optimization. The training cost slowly, but steadily, decreases throughout the 

156 optimization while the validation cost varies erratically. If the validation cost first decreased but then 

157 consistently monotonically increased after some point in the optimization, there would be a clear stopping point 

158 to prevent overfitting. However, the spiking in the validation cost trajectory makes it difficult to identify a clear 

159 stopping point. To quantify where overfitting is likely occurring and, therefore, where to terminate the 

160 optimization, measurements of progress and generalization loss were computed at regular epochs (Figure 

161 S2B). These measures give insight into how much better the model is recapitulating the training experiential 

162 data at the expense of recapitulating the validation set with the best fidelity. As described previously (46), there 
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163 are many strategies using this ratio to decide to halt the optimization. For this study, we used the condition that 

164 three consecutive increases in the overfitting ratio results in early termination. The trajectories of the progress 

165 and generalization loss measures demonstrate that this ratio allows enough flexibility for the validation cost to 

166 fluctuate throughout the optimization until a validation cost minimum is reached with termination shortly 

167 thereafter. 

168 We also considered minimizing model solution stiffness while optimizing rate parameters for a given 

169 unique topology. Systems of differential equations are considered “stiff” when the derivatives of the function 

170 are large near the solution, requiring very small time steps to be taken for solution stability (47). Implicit 

171 differential equation solvers can be utilized to solve stiff systems more efficiently, although these are more 

172 computationally demanding than explicit solvers and often require specification of the Jacobian. The long-term 

173 goal here is to be able to incorporate the optimized channel Markov models into cellular and tissue models of 

174 membrane excitability. When scaling up to the cell or tissue level, a given ion channel model may be solved 

175 thousands and thousands of times. Thus, it is crucial that computational solving time is considered when 

176 creating the individual ion channel models. To quantify the stiffness of each model solution, the condition 

177 numbers of the transition matrices were estimated at various membrane voltages (48,49) (equation 7). 

178 Estimated reciprocal condition numbers larger than a threshold were averaged and proportionally contributed 

179 to the model cost as the stiffness penalty (equation 8). 

180 We first present data from multiple optimizations runs with the overfitting and stiffness penalties for the 

181 human ventricular Ito,f dataset. Figure 2A displays the frequencies of optimization iterations completed as a 

182 function of increasing free rate constants while optimizing with overfitting and stiffness penalties. Iterations 

183 completed from multiple optimizations with differing starting conditions of each model are displayed. The 

184 relative weights of the black dots represent the frequency of maximum optimizations completed. As the number 

185 of free rate constants increases, most optimization runs reach the maximum number of allowed iterations 

186 (large black clusters). However, the intensity of the trailing black dots, which represent the number of 

187 optimization iterations completed before being terminated early, increases as well.  This result supports the 

188 notion that overfitting becomes more problematic as the model complexity increases (24). Figure 2B depicts 

189 the associated normalized costs for the model populations after the optimization iterations specified in Figure 
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190 2A. The great spread in normalized costs illustrates the importance of running optimizations multiple times 

191 when estimating the absolute minimum cost of models with varying complexities. Of note, extremely high 

192 normalized costs result from especially poor optimization starting conditions.

193 Focusing just on the absolute minimum costs seen across the model populations reveals that the 

194 minimum cost trends downward as complexity increases: models with six and seven free rate constants 

195 produce minimum costs on the order of 10 times less than models with four free rate constants. Tracking this 

196 absolute minimum cost as the number of free rate constants increases reveals a point of diminishing returns. 

197 The absolute minimum cost decreases appreciably when comparing model populations with four, five, and six 

198 free rate constants. However, there is hardly any change when comparing models with six and seven free rate 

199 constants.  Figure S3 displays the various stiffness penalties as a function of model complexity. The smallest 

200 stiffness penalty seen across all optimization starts levels out for model topologies with six and seven free rate 

201 constants, as does normalized cost. This point of diminishing returns in absolute minimum cost and stiffness 

202 penalties at six free rate constants suggests that this complexity may be optimal to model the canonical 

203 dynamics of Ito,f in this specific dataset. Models with six to seven free rate constants have the potential to 

204 prioritize good fidelity fits to voltage protocols while minimizing overfitting potential.  Figure S4 displays the 

205 topology of an example model for the Ito,f dataset with six free rate constants along the fits to the voltage 

206 protocols. 

207  Our next aim was to categorize all Ito,f model topologies studied as acceptable or unacceptable, based 

208 on the minimum cost seen across all optimization starts. A model with a minimum cost no greater than 300% of 

209 the absolute minimum was deemed “acceptable.” These topologies are displayed in Figure 2C and highlighted 

210 in green. Models that consistently produced poor voltage protocol fits are displayed in Figure 2D and 

211 highlighted in red. These unacceptable models have four to five free rate constants and consistently produce 

212 higher normalized cost values, as illustrated in Figure 2B.  Representative model fits from the acceptable and 

213 unacceptable model categories to the voltage-clamp protocols are displayed in Figures 2E-G and colored 

214 accordingly. Unacceptable models tended to produce fits with slow recovery from inactivation (Figure 2F) with 

215 little impact on the other protocols (Figures 2E,G). Figure S5 tracks state occupancy as function of time during 

216 the recovery from inactivation protocol. Acceptable models have enough complexity to recapitulate the slow 
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217 timescale at steady state and the faster timescale during recovery at -70 mV. Unacceptable models show slow 

218 recovery from inactivation because the rates cannot be sufficiently fast during recovery while also fitting steady 

219 state conditions. 

220 We also included the modeled Ito,f into a human ventricular myocyte action potential model (50) under a 

221 S1-S2 pulse protocol that simulates repetitive excitation (see Methods) to validate our categorization of 

222 acceptable and unacceptable models based on cost. An S2 stimulus given at around 200 ms into the S1 action 

223 potential revealed that unacceptable models can lead to a longer action potential duration (Figure 2H). 

224 Analyzing the corresponding currents revealed that, at 200 ms into the S1 action potential, the magnitude of Ito,f 

225 generated was much lower in the unacceptable model compared to the representative acceptable modeled Ito,f. 

226 (Figure 2I). This result is in accordance with the lagging fraction of recovered channels for the unacceptable 

227 models at 200 ms as depicted in Figure 2F. As the magnitude of Ito,f influences the notch and plateau 

228 potentials, which will secondarily impact calcium entry and excitation-contraction coupling (51), the deficiencies 

229 in the simple models could result in inaccurate cellular and tissue level predictions. Analyzing the modeled 

230 currents under this S1-S2 protocol to stimulate the impact of changing heart rate reveals the precise window of 

231 time over which the inactivation and incomplete recover from inactivation of Ito,f channels could manifest itself 

232 at the cellular level. The overly simplistic models, with complexities below 6-7 free rate constants, fail to 

233 capture the full dynamics of Ito,f when simulating rate-dependent effects on action potential waveforms.. 

234 We then repeated this analysis on an available (mouse atrial myocyte) INa dataset to find possible 

235 models for a channel with more complex dynamics so that we could explore more complex topologies. The 

236 cardiac sodium current is more complex than Ito,f because of the fact that channel activation and inactivation 

237 are both very fast (41).  As before with Ito,f, we aimed to sort the studied model topologies in order of increasing 

238 complexity into the acceptable and unacceptable model categories, as defined before, based on cost (Figures 

239 S6-S7). While examining the model fits to the individual voltage protocols helped classify acceptable and 

240 unacceptable topologies for the Ito dataset, acceptable and unacceptable INa models did not display a severe 

241 protocol fitting deficiency, meaning one of the protocol fits was consistently poor (Figures S7E-G). 

242 Unsurprisingly, when validating the simulated acceptable and unacceptable INa currents in the action potential 

243 (52), there were no appreciable differences in morphology (Figure S7H).  
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244 Because the INa acceptable and unacceptable models could not be distinguished by the representative 

245 individual protocol fits, we then repeated our INa analysis on a previously published INa dataset, generated in 

246 HEK-293 cells, that includes slow and intermediate components of recovery from inactivation (53–55). We 

247 predicted that a more complicated recovery from inactivation protocol would require greater model complexity 

248 to fit all voltage protocols, so that topologies with few free rate constants would fail to reproduce all kinetics. 

249 Figures 3A and 3B show representative acceptable and unacceptable model topologies after rate parameter 

250 optimization confirming this hypothesis. The models needed at least eight free rate constants to fit this complex 

251 dataset (Figure 3A), while sparsely connected topologies and those with fewer than eight free rate constants 

252 (Figure 3B) failed to reproduce all protocols with good fidelity. Representative unacceptable and acceptable 

253 model fits to individual voltage protocols are shown in Figures 3C-F. Figure 3E depicts the more complex 

254 protocol of recovery from use dependent block (RUDB). The repetitive voltage steps generating RUDB (see 

255 Methods for protocol) allows for the slower and intermediate components of recovery from inactivation of an INa 

256 model to be parameterized. Unacceptable models show slow recovery from fast inactivation (Figure 3D), poor 

257 model fidelity to the intermediate and slow timescales of recovery from inactivation under RUDB (Figure 3E), 

258 and poor voltage-dependent inactivation kinetics (Figure 3F). This result means that it is quite difficult to 

259 parameterize simpler models to capture accurately various types of recovery from inactivation along with other 

260 voltage protocols. We then repeated the action potential validation analysis on the HEK INa dataset 

261 categorization of acceptable and unacceptable models based on cost. Incorporation of modeled currents into 

262 the action potential (52) shows that unacceptable INa HEK models tend to produce action potentials that fail to 

263 repolarize, while representative acceptable models successfully repolarize (Figure 3G). Plotting the simulated 

264 INa reveals that representative unacceptable models have abnormal gating into the action potential (late 

265 component) that hinders action potential repolarization (Figure 3H). 

266 Up until this point, we reported the minimum cost seen across all optimization starts when describing a 

267 model as acceptable or unacceptable. In Figure 4, we report the end performance of each optimization start 

268 (20 displayed) for each topology in addition to all low-cost model solutions in the reported optimization history. 

269 This presentation reflects the diversity in rate parameter parameterizations (i.e. model solutions) during and 

270 after multiple optimizations.  For example, for a given topology there may be vastly different sets of parameters 
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271 that produce a model with an acceptable cost.  Figure 4A summarizes the performance of all studied Ito,f model 

272 topologies to serve as Markov models when sorted by number of states and connections. Acceptable and 

273 unacceptable labels correspond to the action potential validation performance as depicted in Figure 2H. 

274 However, 23 out of 167 low cost model solutions on topologies depicted in Figure 2C, failed to recapitulate the 

275 increased Ito,f evident using the S1-S2 protocol. We labeled those topologies as “tentative” to reflect the fact 

276 that, despite good fits to the voltage-clamp protocols, these two models failed to perform like the other 

277 acceptable models in the action potential simulations. In Figure 4A, four-state models with four edges were the 

278 most likely to produce acceptable models, but notably a linear four-state model with three edges was the 

279 minimum cost model for the Ito,f dataset (Figure S4). Figure 4B displays that topologies with lower root degree 

280 (fewer open state connections) tend to be more successful as Markov models. This observation makes sense 

281 given that topologies with lower root degrees with few states result in a “spoke” layout (see asterisked models 

282 in Figures 2D and 3B). These “spoke” topologies with a central open state require careful rate 

283 parameterization to prevent “bursting” of the channel over time at various membrane potentials. This translates 

284 into a more difficult optimization problem, and so our optimizer struggles to find a satisfactory solution given 

285 our finite optimization limits. 

286 By analogy, Figures 4C and 4D summarize the performance of all model topologies studied across all 

287 optimization starts and history when training on the HEK INa dataset. For clarity, only the acceptable and 

288 tentative models are displayed in Figures 4C and 4D while Figure S9 includes unacceptable models as well. 

289 As before, acceptable, and tentative labels correspond to the performance of each topology during action 

290 potential validation in Figure 3H. Out of the total of 169 acceptable model solutions based on cost, 68 are 

291 labeled “tentative” to reflect their differing behaviors, compared with the other acceptable models, in the action 

292 potential simulations.  When sorting based on number of states and edges, topologies with more than the 

293 minimum number of edges tend to serve as successful Markov models (Figure 4C). In other words, sparsely 

294 connected topologies do not have the complexity to recapitulate channel dynamics.  When sorting based on 

295 total topology connections versus root degree in Figure 4D, as the number of edges in a topology increases, 

296 higher root degrees aides in creating a successful Markov model. Once a topology has seven connections, for 

297 example, the topology likely has six states, so open state connections may still be incorporated in a cycle 
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298 (sample topologies asterisked in Figure 3A). This arrangement allows the topology to recapitulate more 

299 complex dynamics. Thus, many open state connections are not automatically detrimental for topologies with 

300 more complexity.

301  Taken together, sparsely connected topologies tend not to serve as successful Markov models. When 

302 topologies have five states or less, more open state connections result in harder to parameterize “spoke” 

303 topologies. However, when topologies become complex enough (many connections or states), this is not an 

304 inherent detriment to the topology. A root then may have many connections to the rest of the model and still be 

305 incorporated in a cycle, for example, so the topology has inherently more capacity to represent more 

306 complexity. This thinking suggests potential filters to further parse the model space beyond degree and cycle 

307 length restrictions. For topologies with three, four, or five, states (2-3) open state connections should be 

308 emphasized while larger models will benefit from a variety of open state connections. Given limited 

309 computational resources, topologies with more than the minimum number of connections should be prioritized.  

310 For example, in the seven-state model space, there are 1483 topologies after applying restrictions on state 

311 connections and cycle length. (Figure 1E). If topologies with minimal connections (6-7) were excluded, another 

312 166 topologies could be further parsed.  

313 Discussion and Future Directions

314 We present a robust, systematic method to identify all possible model topologies for simulating current, 

315 given an experimental dataset of canonical ion channel dynamics. The routine moves through various 

316 topologies in a stepwise fashion as a function of the number of free rate constants. By examining the 

317 diminishing returns in model cost, one may visualize the complexity of various topologies to best balance 

318 between model solution fidelity, overfitting (24),  and stiffness for the specific experimental dataset. Depending 

319 on the goals of the kinetic modeling study undertaken, the user may still wish to utilize a topology with more or 

320 less complexity identified in this routine. In these cases, we provide an organized framework for users to 

321 validate topologies for their specific goals.  We demonstrate the robustness of this methodology by modeling 

322 two voltage-gated currents: fast transient outward (Ito,f) potassium currents and rapidly activating and 

323 inactivating sodium (INa) currents.
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324 Using the formulation of the single tracked open state as in Menon et al. (16), we were able to 

325 enumerate the model topology search space. This exhaustive enumeration ensures complete coverage of the 

326 model search space, rather than relying on random perturbations or limited collections of various model 

327 topologies during optimization. As illustrated in Figure 1, this enumeration is crucial when working with 

328 topologies with six states and greater because of permutations. Enumeration also allows for topologies to be 

329 evaluated systematically in terms of model complexity, which is critical for identifying the amount of complexity 

330 available in possible structures for an experimental dataset. Through restrictions on state connections and 

331 elimination of long-range connections, we were able to further parse this model search space given decades of 

332 biophysical experimental insight. This study further suggests an additional filter that eliminates topologies that 

333 are sparsely connected. It may also prove fruitful to emphasize topologies with lower root degrees (fewer open 

334 state connections) when working a few states but higher root degrees (many open state connections) (up to 

335 four) in topologies with seven states and higher.

336 Optimizing models with greater number of parameters does not easily lead to a “perfect” model with a 

337 normalized cost of zero. With more computationally expensive starts and larger maximum simulation iterations 

338 without overfitting prevention, we may expect to see the cost function decrease to zero given infinite 

339 optimization time. However, given constraints on time and computing resources, we present the best costs at 

340 least 100,000 iterations beyond a change of 20% or less in cost (unless terminated early for overfitting). We 

341 see a point of diminishing returns in the normalized cost function and suggest optimal complexity, based on the 

342 dataset. 

343 Grouping acceptable and unacceptable models of each dataset allows us to begin to answer the 

344 question of what makes a suitable topology for Markov models of ion channel dynamics. The Ito,f dataset 

345 showed that three-state models are not complex enough to recapitulate dynamics, but four-state topologies 

346 without cycles can successfully do so. The example minimal four-state linear model for Ito illustrated in Figure 

347 S4A and S5C does not contain a cycle between open, hypothetically closed and inactivated states commonly 

348 used to model voltage-gated ion channels (14,15). Ion channel Markov models need not always conform to 

349 human intuition of the underlying structural mechanisms to reproduce a dataset with good fidelity. A modeler 

350 has great power in determining how much complexity is needed for the computational problem at hand (56). 
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351 More complex models, for example, may be appropriate in studies focused on exploring channel gating 

352 precisely. In studies that require attention to fast computations at the tissue level, a simpler, less stiff model, 

353 may be the most appropriate.

354 The example models of the simpler INa and the more complex INa datasets are more consistent with 

355 mechanistic intuition derived from consideration of experimental data. The example topology for INa in Figure 

356 S8A contains a cycle, which is consistent with prior cyclic models of ion channel excitability with connections 

357 between activated, inactivated, and closed states. Acceptable models depicted in Figure S6C and Figure 3A 

358 contain at least one cycle. Unacceptable INa models tend to be sparsely connected, thus not able to include 

359 cycles (aside from the three-state cyclic model), which leads to insufficient complexity to model fast channel 

360 dynamics. Performing analyses of the state probabilities during voltage protocols after using our procedure 

361 allows one to gain insight into the mechanisms of the model and discover surprising topologies that 

362 successfully recapitulate the protocols.

363 Validating the cost thresholds of acceptable and unacceptable current models when these are 

364 incorporated (with multiple other ionic conductances) into action potential models allows one to begin 

365 connecting how fits to voltage-clamp data will result in electrophysiological differences at the cellular level. In 

366 most cases, the action potential morphology may be predicted based on the cost of the model. In the case of 

367 Ito,f, the kinetics of recovery of the channels from inactivation alters the early and late phases of the action 

368 potential consistent with marked frequency-dependent effects. The poor protocol fits in the HEK INa dataset, 

369 however, commonly resulted in severe action potential repolarization abnormalities. This result might have 

370 been expected, given that INa is solely responsible for the upstroke of the action potential in atrial and 

371 ventricular cells, while Ito is one of many currents responsible for repolarization. 

372 However, we also found that 23 low cost Ito,f models solutions (out of 167 acceptable model solutions 

373 based on cost) and 68 HEK INa  models (out of 169 acceptable model solutions based on cost), did not perform 

374 as well as the other acceptable, low cost models when incorporated into the action potential model. This 

375 discrepancy is not unknown in the ion channel modeling field. Ion channel modelers have traditionally specified 

376 one model topology to represent a complex dataset.  If the optimized rate parameters for the topology failed to 
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377 produce an action potential, the modeler would blame the topology and adjust the states and connections 

378 accordingly. This study reports on the performance of all possible model topologies, however, so this 

379 discrepancy becomes more apparent. Because optimized rate parameters can lead to satisfactory training data 

380 fits, yet behave differently in the action potential, it highlights whether a training dataset contains enough 

381 information to reliably constrain all model rate parameters consistently. This problem of parameter identifiability 

382 has been thoroughly discussed and quantified in ion channel and cellular models of excitability (18,23–28). 

383 Validating model performance in action potential simulations serves as an additional test to detect early signs 

384 of parameter unidentifiability and overfitting. Repeating the analysis with different protocols may further reveal 

385 which parameters are most critical for successful action potential generation, depending on the simulation to 

386 be performed and those most likely to suffer from parameter unidentifiability. These insights may suggest 

387 refined voltage protocols for these channels as previously done with hERG (57) to more efficiently train model 

388 parameters with more certainty. 

389 These acceptable model solution totals for both datasets included model solutions based on the costs 

390 found at the end of each optimization and at intermediate recorded timepoints. For Ito,f, there were 144 

391 acceptable model solutions for the 11 distinct topologies studied.  In the HEK INa dataset, 167 distinct 

392 topologies were studied, but only 169 acceptable model solutions were found across all optimizations. Thus, 

393 our optimization method found a relative abundance of acceptable solutions for the Ito,f dataset compared to the 

394 HEK INa dataset. This difference is likely attributable to the more complex nature of the HEK INa dataset with the 

395 faster kinetics the RUDB protocol, for example, which would require precise parameterization. When tracking 

396 the cost over time in the optimization for both datasets, the Ito,f optimization proceeded smoothly with a variety 

397 of acceptable solutions while the HEK INa  optimization trajectory was substantially more jagged. 

398 There are limitations to the approach presented, and these may be addressed by future work. We 

399 randomly set aside 20% of experimental data for validation. We certainly anticipate more sophisticated 

400 validation sets will be used in future studies. Additional validation data will prove useful, along with an analysis 

401 of the best data to serve as validation, in future iterations of this systematic method to minimize overfitting in 

402 models of higher complexity beyond those studied here. As depicted in Figures 2A and S6A, tracking three 

403 consecutive increases in the ratio of the generalization loss and progress successfully truncated optimizations, 
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404 but future studies that explore other validation quantification cutoffs as the optimization problem evolves (24) 

405 would be valuable.  We use the nonlinear optimization technique of simulated annealing with adaptive 

406 temperature control in this study, but more recent algorithms, such as particle swarms (17), may prove to be 

407 faster or more accurate. We anticipate other additions to the simulated annealing core routine could be helpful, 

408 such as adaptive simulated annealing (58) or differential evolution (59) in future studies. 

409 This work provides a framework to identify multiple topology models for canonical ion channel kinetics. 

410 By providing open-source code of the computational routine, others may apply this routine to their biophysical 

411 systems. These populations of possible model topologies may suggest further experiments for validation of 

412 their behavior and may even elucidate more refined voltage-protocols for training the models. They will also 

413 allow for connections of the mechanistic underpinnings of the channel through analysis of their topology, rate 

414 constants, and state probabilities during voltage protocols. This intuition will prove invaluable when building 

415 models based on these topologies in future studies that recapitulate structural and drug interaction data.

416

417 Methods

418 Generation of nonisomorphic rooted unlabeled, connected topologies 

419 Nonisomorphic (unique) topologies were generated using nauty (http://users.cecs.anu.edu.au/~bdm/nauty/) a C-

420 based graph isomorphism testing routine. All connected, unlabeled topologies were generated with the 

421 specified number of states and with up to the maximum number of edges. (N(N-1))/2. The states in the 

422 topologies were then colored in two shades (root and nonrooted) and then imported into a routine to test for 

423 isomorphism through canonical labeling(37).  These topologies were then imported and parsed in Python using 

424 the NetworkX package based on maximum degree and cycle length. After recording the degrees of all nodes in 

425 the graph, topologies were retained if all nodes did not exceed the maximum node degree restriction. 

426 Maximum cycle length was used to parse based on long-range connections in graph (see Results for an 

427 explanation for long-range connections). The routine ‘cycle_basis’ was used to identify the cycles in the graph 

428 and only topologies with cycles not exceeding the limit were retained. 
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429 Electrophysiological Recordings 

430 Voltage-clamp recordings for the simpler INa dataset were obtained from mouse left atrial myocytes at room 

431 (20-22°C) temperature. Experiments were performed using an Axopatch 1D (Molecular Devices) or a Dagan 

432 3900A (Dagan Corp) patch clamp amplifier interfaced to a Dell microcomputer with a Digidata1332 

433 analog/digital interface and the pCLAMP10 software package (Molecular Devices). For recording whole-cell 

434 Na+ currents, pipettes contained (in mM): 5 NaCl, 90 CsCH3O3S, 20 CsCl, 1 CaCl2, 10 EGTA, 10 HEPES, 4 

435 MgATP, 0.4 Tris-GTP at pH 7.2, 300-310 mOsm. The bath solution contained (in mM): 20 NaCl, 110 TEACl, 

436 10 CsCl,  1 MgCl2, 1 CaCl2,  10 HEPES, and 10 glucose, pH 7.4, 300-310 mOsm. See reference (60) for the 

437 experimental methods used to acquire the Ito dataset and references (53,54) for those used to acquire the INa 

438 HEK dataset.

439 Evaluation of Unbiased Topologies to Recapitulate Canonical Ion Channel Dynamics

440 A biophysically focused model topology was trained on Ito human left ventricular myocytes, INa voltage-clamp 

441 protocols in atrial mouse myocytes and INa voltage-clamp protocols in HEK cells. Model rate constants were 

442 guaranteed to satisfy microscopic reversibility as outlined in Menon et al.(16) with a vector-valued voltage 

443 function as in Teed et al.(20): 

444

445

446 where rij is the rate from state j to state i, v is voltage in (mV), args1 and args2 are optimized parameters as part 

447 of the vector valued voltage function (20), Values of a and b for each rate constant are listed in the SI for Ito 

448 and INa  HEK dataset example models. As mentioned in Menon et al.(16), the rate constants are exponential 

449 functions of steady state occupancies and rates (one-ion symmetrical barrier pore model) (61).

450 Parameters are optimized using an improved simulated annealing routine. The improved simulated annealing 

451 routine included multiple noninteracting chains to effectively “parallelize” and thereby speed the optimization 

452 process (62) and an adaptive temperature control scheme (43). This temperature scheme begins at the lowest 

453 threshold temperature and is slowly incremented proportionally to the number of worse solutions encountered. 

rij = exp (𝑎 + (𝑏 ∗ 𝑡𝑎𝑛ℎ (𝑣 + 𝑎𝑟𝑔𝑠1

𝑎𝑟𝑔𝑠2 )))  #(1)
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454 When a “new” best solution is found, the temperature returns to lowest threshold. This scheme prevents the 

455 optimization from getting “stuck” in local optima:

456  𝑡𝑖 = (𝑡𝑚𝑖𝑛 +  𝜆( ln(1 + 𝑟𝑖)) )                                                                             (2)

457

458 where ti is the current temperature is iteration i, tmin is the minimum starting temperature, λ is the temperature 

459 control parameter and ri is determined by the change in the best cost, ΔC, at iteration i:

460 𝑟𝑖 = 𝑟𝑖―1 + 1     𝛥𝐶 > 0 #(3)

461 𝑟𝑖 = 𝑟𝑖―1    𝛥𝐶 = 0 #(4)

462 𝑟𝑖 = 0        𝛥𝐶 < 0 #(5)

463  The cost function of the optimization was proportional to the sum of squared differences between each 

464 experiment and data value normalized by the experimental value plus a stiffness penalty:

465 𝑐𝑜𝑠𝑡 =  (𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 ― 𝑑𝑎𝑡𝑎
𝑑𝑎𝑡𝑎 )2

+ 𝑆𝑃 #(6)

466

467  A model stiffness penalty proportional to each optimized model’s reciprocal condition number (1-norm) of the 

468 transition matrix, A, at varying voltages {1…N} was added to each model’s cost: 

469 𝑟𝑐𝑜𝑛𝑑 =  (‖𝐴(𝑉𝑖)‖1‖𝐴(𝑉𝑖)―1‖1)―1
 #(7)

470            

471 𝑆𝑃 ~ 
𝑁

𝑖=1
𝑟𝑐𝑜𝑛𝑑𝑖          𝑖𝑓  𝑟𝑐𝑜𝑛𝑑𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                                   (8) 

472 This penalty preferentially selects models that do not require extremely small, computationally expensive, time 

473 steps when incorporated into cellular and tissue level excitability simulations. To lessen the risk of the optimal 

474 rate parameters depending on the initial starting conditions, the optimization included multiple starts (at least 
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475 20) with a quasi-random (Sobol) representation of the parameter space (44). Quasi-random sequences 

476 increase coverage of the parameter space in each dimension (i.e. each free parameter is a dimension). Each 

477 sequential quasi-random sequence of dimension D is mapped to the specified ranges for the ith  parameter 

478 value: 

479 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖 = (𝑝𝑎𝑟𝑎𝑚𝑎𝑡𝑒𝑟𝑖,𝑚𝑎𝑥 ― 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖,𝑚𝑖𝑛 ∗ 𝑆𝑜𝑏𝑜𝑙𝑛𝑢𝑚[𝑖]) + 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖,𝑚𝑖𝑛  #(9)

480        

481 Each start ran for at least 100,000 iterations beyond no change in 20% of cost unless terminated early for 

482 overfitting prevention. Because we expected time to convergence would depend on model complexity, the 

483 maximum optimization iterations allowed were periodically increased for convergence. To prevent overfitting in 

484 the simulated annealing optimizations, the cost function only applied to model values outside each of each 

485 data point’s SEM. Quantitative metrics were also introduced to determine when to appropriately halt the 

486 optimization (46). The measure of generalized loss was calculated periodically throughout the optimization to 

487 quantify how the current validation error (given the current best solution) compares to best seen so far. Another 

488 measure of progress quantifies how fast the cost function has been decreasing the last k iterations. Three 

489 sequential increases in ratio of the generalization loss progress results in early termination to prevent 

490 overfitting. 

491 Training set of voltage-clamp protocols:

492 Steady state activation: INa HEK dataset: Steady-state probabilities were found at -100 mV. For voltages 

493 ranging between -45 mV to 20 mV, peak current was recorded after a step depolarization for 25 and 

494 normalized to maximum. Ito: Steady-state probabilities were found at -70 mV. For voltages between -60 and 60 

495 mV in increments of 10 mV, the peak current was recorded after a step depolarization for 50 ms and 

496 normalized to the maximum. 

497 Steady state inactivation: INa HEK dataset: Steady-state probabilities were found at -100 mV. A conditioning 

498 pulse at voltages between -110 mV to 40 mV in 10 mV increments was applied for 500 ms. The peak current 

499 was then recorded after a test pulse at -10 mV for 25 ms and normalized to the maximum. Ito: Steady-state 
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500 probabilities were found at -70 mV. Each preliminary voltage step in increments of 10 mV between -120 and 40 

501 mV was held for 200 ms. The peak current was then recorded after a test pulse at 40 mV for 50 ms and 

502 normalized to the maximum.

503 Recovery from inactivation: INa HEK: Steady-state probabilities were found at -100 mV. A depolarizing pulse at 

504 -10 mV for 500 ms was applied, followed by a hyperpolarizing pulse at -100 mV ranging between 0.5-210 ms. 

505 Peak current current was then recorded and normalized after a pulse at -10 mV for 25 ms. Ito: Steady-state 

506 probabilities were found at -70 mV. A depolarizing pulse at 40 mV for 500 ms was applied, followed by a 

507 hyperpolarizing pulse of -70 mV of variable time intervals (2-6000 ms). Peak current was then recorded and 

508 normalized after a pulse at 40 mV for 100 ms.

509 Recovery from Use Dependent Block (INa HEK only): Steady-state probabilities were found at -100 mV. A pulse 

510 train of a depolarization at -10 mV for 25 ms at 25 Hz was repeated for 100 pulses. A hyperpolarizing pulse at -

511 100 mV for variable recovery intervals was applied for between 0.5-9000 ms. A test pulse followed at -10 mV 

512 for 25 ms and peak current was normalized to the maximum.

513 Normalized Current Traces: (Ito only): Steady-state probabilities were found at -70 mV. Following a step 

514 depolarization to 20 and 60 mV for 10 ms, the normalized current was recorded at intervals of 0.2 ms.

515 Deactivation Time Constants (INa only): Steady-state probabilities were found at -120 mV. Following recording 

516 the peak current after a depolarizing pulse at -20 mV for 5.0 ms, a hyperpolarizing voltage between -110 mV to 

517 -60 mV was applied for 5.0 ms and the time to 50% decay of peak current was recorded.

518 Inactivation Time Constant (INa HEK only): Steady-state probabilities were found at -100 mV. For voltages 

519 between -20 to 20 mV in 5 mV increments, the time to 50% decay of peak current was recorded. 

520 Maximum Open Probability INa HEK and INa: To constrain open probabilities, maximum open probabilities of 

521 0.27, 0.31, 0.29 at -10, 0, 10 mV, respectively (calculated from ten Tusscher 2006(52) solved in MATLAB with 

522 ode15s) were enforced. Ito: To best match the original Ito simulated current, maximum open probabilities of 0.3 

523 and  0.45 at 25 and 50 mV, respectively were enforced (calculated from (50), solved in MATLAB with ode15s) 

524 Validation set of voltage-clamp protocols:
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525 Twenty percent of experimental data was randomly chosen to serve as the validation set as is common when  

526 avoiding overfitting (63). From each curve, 80% of the data points were randomly selected and used to 

527 optimize the rate parameters. The remaining 20% of points were used to evaluate how well the model 

528 recapitulated the general trend in experimental data.

529 Action Potential Model Validation

530 Optimized models replaced respective currents in Tomek et al. (50) and ten Tusscher et al. (52) human 

531 ventricular action models. To simulate arrhythmogenic repetitive excitation for Ito,f models, an action potential 

532 was elicited by an S1 stimulus followed by an S2 stimulus at various DI intervals following S1.  

533 Computing Resources

534 All simulation code was written in C++ and containerized using Docker to run on the Amazon Web Services 

535 Batch compute cluster. Model parsing code in Python and all code is available on GitHub 

536 [https://github.com/mangoldk/AdvIonChannelMMOptimizer]. A sample K+ conductance voltage optimization 

537 program is also available. 
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677  

678

679

680 Figure 1. Reduction in model search space by enumerating unique topologies as a function of the states. A) 
681 All 36 rooted graph permutations of three states with highlighted permutations (yellow). Blue states are non-
682 open while the open state(root) is colored green. Topologies highlighted orange and no highlighting represent 
683 the six possible rooted topologies with three states. Unhighlighted topologies are unique rooted topologies of 
684 size three.  (B) while the orange shading represents the isomorphic topologies.  A reduction from 36 rooted 
685 graph permutations to three unique topologies is depicted in C. C) Results of a similar graphical enumeration 
686 analysis for rooted topologies with 4+ states. D) Biophysically inspired restriction of the maximum degree in a 
687 graph to 4. Applying this restriction to the unique topologies results in a reduction in a model search space as 
688 enumerated in the table.  After further restricting the maximum cycle length in a graph to size 4 after the 
689 degree restrictions, final graph counts are displayed in the table (E) as function of the number of states. E) 
690 Enumeration summary table of rooted graph permutations, rooted topologies, unique rooted topologies, and 
691 biophysical restrictions as a function of the number of states. 
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696  

697

698 Figure 2.  Identification of possible structures for the Ito dataset. A) Optimization iterations completed as a 
699 function of free rate constants. Weighting of dots represent the frequency of models completing a specified 
700 anumner of iterations. Most models complete the generous maximum iteration limit (40,000,000) with 4 and 5 
701 free rate parameters while few models complete less iterations due to early stopping from the overfitting 
702 criterion. Models with 6 and 7 free rate parameters may run for longer (maximum 80,000,000 iterations 
703 displayed) while a greater fraction of models are terminated early due to overfitting criterion. Data points 
704 include the multiple starting conditions for each model to reduce the dependence of the minimum solution on 
705 initial conditions B) Distribution of normalized costs for each model with multiple starts after completing 
706 optimization iterations as depicted in A. Especially bad Sobol starting conditions are asterisked. The absolute 
707 minimum costs are outlined in the dashed grey box. The point of diminishing returns is at 6 and 7 free rate 
708 constants. C) Topologies producing acceptable fits and D) unacceptable fits for Ito. Acceptable fits include 
709 models with four states and sufficient connections to separate the activation and inactivation domains. E) -G) 
710 Representative models fits for steady state activation, inactivation, recovery from inactivation and current 
711 traces for models in the acceptable and unacceptable model categories. Unacceptable models generally have 
712 very slow recovery from inactivation. H) Simulated action potentials with representative acceptable and 
713 unacceptable Ito currents under a S1-S2 protocol.  I)  Corresponding simulated Ito currents under the S1-S2 
714 protocol in A. Acceptable currents (green) and unacceptable currents (red) most differ in magnitude at around 
715 200 ms into the S1 action potential with much less unacceptable Ito current. This corresponds with the slow 
716 recovery from inactivation depicted in F) where at  ~200 ms the acceptable models have fully recovered while 
717 unacceptable models are only half recovered.
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721

722 Figure 3. Identification of possible model structures for the INa HEK dataset A) Representative acceptable 
723 model topologies of the more complex HEK INa dataset. Topologies have at least 8 free rate constants. B) 
724 Representative unacceptable model topologies. Topologies have fewer than 8 free rate constants or are 
725 sparsely connected. C) Representative acceptable and unacceptable model fits to steady state activation and 
726 inactivation D) Representative fits to fast recovery from inactivation E) Representative fits to recovery from use 
727 dependent block which includes timescales of fast, intermediate, and slow recovery from inactivation. F) 
728 Representative model fits to the time constant of 50% inactivation of the peak sodium current G) Simulated 
729 action potentials with representative acceptable and unacceptable INa modeled currents. Unacceptable models 
730 have varying degrees of late INa current) H) Corresponding representative acceptable and unacceptable INa 
731 currents during the action potentials in G with a magnified inset highlighting the late INa current.
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733

734

735 Figure 4. Summary of Markov model performance for all topologies studied A) and B) Performance summary 
736 of all Ito topologies studied. Unacceptable and acceptable labels are as previously defined. Tentative yellow 
737 topologies produced acceptable voltage protocol fits but did not perform as other acceptable models in the 
738 action potential validation. In A) more states help topologies find tentative and acceptable solutions. B) 
739 Topologies with lower root degrees (open state connections) tend to create acceptable models   C and D) 
740 Performance summary of all INa topologies studied. Unacceptable and acceptable labels are as previously 
741 defined. Tentative yellow topologies produced acceptable voltage protocol fits but did not perform like other 
742 acceptable models in the action potential validation (different degrees of repolarization failure). C) Topologies 
743 with more than the minimum number of edges tend to yield more tentative or acceptable Markov models. D) As 
744 edges increase, topologies most benefit from higher root degrees (more open state connections) to serve as 
745 successful Markov models. Panels C and D do not show unacceptable models for clarity.
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