1 Effects of imidacloprid and thiamethoxam at LC₃₀ and LC₅₀ on the life table of soybean aphid

- 2 Aphis glycines (Hemiptera: Aphididae)
- 3 **Running title**: Effects of imidacloprid and thiamethoxam on *Aphis glycines*
- 4
- 5 Aonan Zhang¹, Lin Zhu¹, Zhenghao Shi¹, Kuijun Zhao¹, Tianying Liu¹, Lanlan Han^{1*}
- 6
- 7 1 College of Agriculture, Northeast Agricultural University, 59 Wood Street, Harbin, Heilongjiang
- 8 150030, PR China.
- 9
- 10 *Corresponding author
- 11 E-mail: hanll_neau@aliyun.com (HL)
- 12
- 13 Financial support: This work was supported by the Heilongjiang Science Foundation Project (grant
- 14 number C2018011), Special Fund for Construction of Modern Agricultural Industry Technology
- 15 System (grant number CARS-04), and Research and Development of Technology and Products on
- 16 Nature Enemy Insects Prevent and Control (No: 2017YFD0201000).

Abstract

17	The soybean aphid, <i>Aphis glycines</i> Matsumura (Hemiptera: Aphididae), is a main pests of soybean that
18	poses a serious threat to its production. Studies were conducted to understand effects of the different
19	concentrations of the insecticides (imidacloprid and thiamethoxam) on the life table of A. glycines to
20	provide vital information for its effective management. We found that the mean generation time, adult
21	and total pre-oviposition periods in A. glycines specimens exposed to LC ₅₀ imidacloprid and
22	thiamethoxam were significantly longer than those in the control group. However, when exposed to LC_{30}
23	imidacloprid and thiamethoxam, the adult pre-ovipositional period was significantly shorter than that in
24	the control group. The mean fecundity per female adult, net reproductive rate, intrinsic rate of increase,
25	and finite rate of increase were significantly decreased in individuals exposed to LC_{30} and LC_{50}
26	concentrations of imidacloprid and thiamethoxam, respectively ($P < 0.05$). Both insecticides produce
27	stress effects on A. glycines, and specimens treated with LC ₅₀ concentrations of the two insecticides
28	exhibited a significant decrease in their growth rates than those treated with LC ₃₀ concentrations. This
29	study provides data that can be used as a reference to predict the effect of imidacloprid and thiamethoxam
30	on the population dynamics in the field, and agricultural producers could attach importance to prevent
31	stimulation the reproduction made by low-lethal concentrations during actually applying pesticides.
32	Keywords: imidacloprid, thiamethoxam, soybean aphid, life table, reproduction, population

Introduction

33	The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), was first detected in North
34	America in 2000 and had rapidly spread to north-central and northeastern United States and southeastern
35	Canada. Although the damage from A. glycines to soybeans is rarely devastating in Asia, it is considered
36	a primary pest in North America (Ragsdale, Voegtlin, & O'neil, 2004; Wang, Kritzman, Hershman, &
37	Ghabrial, 2006; Ragsdale, Landis, Brodeur, Brodeur, & Desneux, 2011; Hopper et al., 2017).
38	Foliar insecticides have been commonly used to effectively control A. glycines (Lee, 2000). By the late
39	1990s, neonicotinoid insecticides had been introduced worldwide due to their high efficiency, low
40	toxicity, and wide application range (Srigiriraju, Semtner, & Bloomquist, 2010; Basit, Saeed, Saleem,
41	Denholm, & Shah, 2013). The sales of neonicotinoids accounted for more than 25 % of the global
42	insecticide sales in 2014 (Bass, Denholm, Williamson, & Nauen, 2015). Imidacloprid is a
43	first-generation neonicotinoid (Matsuda, Buckingham, Kleier, Rauh, Grauso, & Sattelle, 2001), and
44	thiamethoxam is a second-generation neonicotinoid and has higher activity, better safety, and longer
45	duration of efficacy (Shi, Wang, Liu, Qi, & Yu, 2017).
46	The insecticidal effect of a particular insecticide is closely related to its type, application method, and
47	application frequency (Xie et al., 2010). The drift and degradation of neonicotinoids themselves in the
48	fields would make the doses of some aphids exposed to lower then those normally recommended for
49	control. The lower doses permit survival of heterozygotes for resistance thereby fixing a resistant gene
50	in a population more rapidly (Nauen & Denholm, 2005). The risk of the rapid development of resistant
51	populations, secondary pest outbreaks, and rapid deterioration of the ecological environment was greatly

52 increased (Isman, 2006; Khan, Abbas, Shad, & Afzal, 2014; Hanson et al., 2017; Zhao et al., 2018;

53	Somar.	Zamani,	& 1	Alizadeh,	2019).	

54	A monitoring study performed in 2008 and 2011 reported an increased adaptation of the cotton aphid
55	Aphis gossypii Glover to neonicotinoids in the south-central United States (Gore et al., 2013). In
56	addition, cotton aphids from six different locations in Korea also exhibited adaptation to common
57	neonicotinoids (Koo, An, Park, Kim, & Kim, 2014). Imidacloprid was the first commercial
58	neonicotinoid used to control rice planthoppers in the early 1990s; however, after 10 years of its
59	large-scale use in Asia, the sensitivity of rice planthoppers to imidacloprid decreased (Matsumura et al.,
60	2013; Tao et al., 2019). Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) showed a similar response to
61	conventional neonicotinoids (Luo, Jones, Devine, Zhang, Denholm, Denholm, & Gorman, 2010; Nauen
62	et al., 2014).
63	To solve the recent problem of the rapid increase in pest adaptation to neonicotinoids, it is of great
64	significance to carry out population dynamic analysis and to formulate an accurate application scheme
65	(Feliciangeli & Rabinovich, 1985; Stark & Wennergren, 1995; Gabre, Adham, & Chi, 2005; Bass et al.,
66	2011; Abbas, Shad, & Shah, 2015; Jan, Abbas, Shad, & Saleem, 2015). In this study, based on the life
67	table of A. glycines, we evaluated the effects of imidacloprid and thiamethoxam on the reproductive
68	development and population dynamics of A. glycines to provide a reference for the accurate use of these
69	insecticides for controlling A. glycines populations.

Materials and methods

Laboratory aphid population and chemical agents

70	The laboratory strain of A. glycines used in this study was originally collected from a soybean field in
71	Harbin, Heilongjiang Province, China. This strain had been cultured in the laboratory for several years
72	and never been exposed to any insecticides. Dongnong 52 soybean plants were used to maintain the
73	strain of A. glycines at Northeast Agricultural University, China. Soybean plants were grown in pots (15
74	cm diameter \times 17 cm depth), with six plants in each pot kept at 25 ± 1 °C, a relative humidity of
75	65–70%, and a photoperiod of 14:10 (L:D) h. The laboratory aphid colony was maintained in the same
76	environmental conditions as the chamber used for plant germination. Twelve pots with soybean plants
77	were placed in a large tray (70 \times 60 cm; L \times W). Twice a week, one third of the old aphid-infested
78	soybean plants (i.e., the four oldest pots with an aphid infestation) were removed and replaced with new
79	aphid-free ones. Aphids were transferred by placing infested leaves on uninfested plants. This prevented
80	the accumulation of excessive honeydew and sooty mold and ensured the provision of a homogeneous
81	soybean plant for the aphids to feed on (Menger et al., 2020).
82	Water dispersible granules of insecticides (70% imidacloprid and 50% thiamethoxam) were purchased
83	from North China Pharmaceutical Group Corporation, Hebei, China and Shaanxi Thompson
84	Biotechnology Co., Ltd., Shaanxi, China respectively. Calcium nitrate, potassium nitrate, potassium
85	dihydrogen phosphate, magnesium sulfate, disodium ethylenediaminetetraacetic acid (disodium EDTA),
86	and streptomycin sulfate were all purchased from Shanghai Alighting Biochemical Technology Co.,

87 Ltd., Shanghai, China.

Preparation of culture medium

88	Non-toxic, transparent plastic Petri dishes (6 cm diameter \times 1.5 cm height) were used to perform the
89	bioassay on newly hatched nymphs of A. glycines and the life table study. The components of the plant
90	nutrient solution concentrate used to prepare the medium were as follows: calcium nitrate (4.1 g),
91	potassium nitrate (2.5 g), potassium dihydrogen phosphate (0.7 g), magnesium sulfate (0.6 g), 1.54%
92	disodium EDTA aqueous solution (5.0 mL), one million units of streptomycin sulfate (0.05 g), and
93	distilled water (5.0 L). The diluent was obtained by mixing the plant nutrient solution concentrate with
94	distilled water at a ratio of 1:3. Agar was prepared by mixing 1% w/w agar powder with diluent and was
95	boiled while constantly mixing. After cooling for approximately 10 minutes, the warm agar was poured
96	into the Petri dishes to a depth of at least 3-4 mm. At least 10 mm distance was allowed between the top
97	of the agar and the rim of the Petri dishes. The metal tube was used to cut leaf discs from clean, untreated
98	leaves. The leaf discs were 2 mm lesser in diameter than the Petri dishes and were attached to the agar
99	medium with the top-side facing down. A metal tube was sharpened and cleaned regularly to ensure the
100	clean cutting of the leaf discs. A. glycines on leaf discs fed on the bottom surface. Each Petri dish was
101	then placed upside down to keep A. glycines in a natural feeding state. The incision was kept neat to
102	avoid excessive crushing of the tissue at the edge of the leaves when they were cut. This prevented the
103	leaves from rapidly developing mildew.

Dose response bioassay

104 The dose response bioassays were conducted with newly hatched *A. glycines* nymphs using a leaf dip

105 method recommended by the Insecticide Resistance Action Committee (IRAC;

106	http://www.irac-online.org/resources/methods.asp). Insecticidal stock solutions were prepared in 1%
107	acetone and further diluted to different concentrations using distilled water containing 0.05 $\%$ (v/v)
108	Triton X-100 before using in dose response bioassay. According to the preliminary bioassays, seven
109	concentrations of imidacloprid (19.95 mg a.i./L, 13.70 mg a.i./L, 9.10 mg a.i./L, 6.10 mg a.i./L, 3.47 mg
110	a.i./L, 2.35 mg a.i./L, 1.88 mg a.i./L) and thiamethoxam (29.95 mg a.i./L, 24.98 mg a.i./L, 14.97 mg
111	a.i./L, 10.05 mg a.i./L, 4.94 mg a.i./L, 3.64 mg a.i./L, 1.98 mg a.i./L) were prepared respectively. Fresh
112	soybean leaf discs were immersed in solutions of seven concentrations; each leaf disc was immersed in a
113	specific concentration for 10 s, removed from the solution, and placed on paper towels (abaxial surface
114	facing up) to air dry. The control leaf disc was immersed in a solution of distilled water containing 0.05
115	%(v/v) Triton X-100 and 1 % acetone. The air-dried leaf discs were attached to the agar medium with the
116	top-side facing down and newly hatched nymphs were placed on them. Treatment details (insecticide,
117	concentration, and date) were recorded for each Petri dish. A small drop of distilled water was placed on
118	the surface of the agar prior to laying the leaf on the surface to help the leaf stick to the agar surface. Sixty
119	newly hatched nymphs were used for dose response bioassays at each concentration; three replicates
120	were used per concentration and each replicate had 20 newly hatched nymphs. Mortality was determined
121	after 24 h of exposure. The newly hatched nymphs were considered dead if they were found upside down
122	and not moving or if they did not move when prodded with a small paint brush (Cordero, Bloomquist, &
123	Kuhar, 2007). The toxicity of imidacloprid and thiamethoxam to the nymphs were statistically analyzed
124	using SPSS (version 23.0, SPSS Inc., Chicago, IL, USA) and the LC_{50} and LC_{30} values for the newly
125	hatched nymphs were obtained.

Life table study

- 126 One hundred and fifty apterous adults were transferred onto fifteen leaf discs using a small paint brush
- 127 and 10 apterous adults were placed on each leaf disc. Each Petri dish containing a leaf disc was sealed
- 128 with a close-fitting, ventilated lid. Newly hatched nymphs were selected 24 h later and placed on a leaf
- 129 disc pre-impregnated with LC₃₀ and LC₅₀ imidacloprid and thiamethoxam or a leaf disc pre-impregnated
- 130 with distilled water containing 0.05 % (v/v) Triton X-100 and 1 % acetone.
- 131 One hundred newly hatched nymphs were exposed to each treatment; each newly hatched nymph was
- 132 kept in a separate Petri dish, and each Petri dish was treated as one replicate. The growth, survival,
- 133 mortality, and fecundity of the individuals were observed until all organisms died. After reaching the
- adult stage, the number of newly hatched nymphs reproduced by each adult every day was recorded and
- 135 removed after recording.

Life table analysis

- 136 The age-stage-specific survival rate (s_{xj} , x = age, j = stage), age-specific survival rate (l_x), age-stage
- 137 specific fecundity (f_{xi}) , and age-specific fecundity (m_x) were calculated as follows (Chi & Liu, 1985; Chi
- 138 & Getz, 1988; Chi, 1988).

141

139
$$S_{xj} = \frac{n_{xj}}{n_{01}},$$
 (1)

140
$$l_x = \sum_{j=1}^k s_{xj}$$
, (2)

$$m_{x} = \frac{\sum_{j=1}^{k} s_{xj} f_{xj}}{\sum_{j=1}^{k} s_{xj}},$$
(3)

142 where n_{01} stands for the number of newly hatched nymphs and k stands for the number of stages. The net

143 reproductive rate (R_0) , intrinsic rate of increase (r), finite rate of increase (λ) , and mean generation time

144 (*T*) were calculated as follows (Goodman, 1982):

145
$$R_0 = \sum_{x=0}^{\infty} l_x m_x , \qquad (4)$$

146
$$\sum_{x=0}^{\infty} e^{-r(x+1)} l_x m_x = 1,$$
 (5)

147
$$\lambda = e^r, \tag{6}$$

$$T = \frac{\ln R_0}{r} \,. \tag{7}$$

149 The life expectancy (e_{xj}) , i.e. the time that an individual of age x and stage j is expected to live, was

150 calculated according to Chi & Su (2006) as

151
$$e_{xj} = \sum_{i=x}^{\infty} \sum_{y=j}^{k} S'_{iy}, \qquad (8)$$

152 where s'_{iy} is the probability that an individual of age x and stage j would survive to age i and stage y.

153 Fisher (1993) defined the reproductive value (v_{xj}) as the contribution of individuals of age x and stage j

154 to the future population. It was calculated as

155
$$v_{xj} = \frac{e^{r(x+1)}}{s_{xj}} \sum_{i=x}^{\infty} e^{-r(i+1)} \sum_{y=j}^{k} s'_{iy} f_{iy} .$$
(9)

156 TWOSEX-MSChart software was used to estimate the mean values and standard errors of the population

- 157 parameters, mean longevity of first instar to fourth instar nymphs and adults, adult and total
- 158 pre-ovipositional period, mean fecundity per female adult, and the bootstrap test method was used to
- 159 compare the differences in all the treatments (B = 100,000; Chi, 2012). All curve graphs were generated

160 using SigmaPlot 12.0.

Results

Dose response bioassay for newly hatched nymphs of A. glycines

- 161 The LC₅₀ concentrations for imidacloprid and thiamethoxam were 4.440 (3.672–5.335) mg a.i./L and
- 162 7.049 (5.394–8.998) mg a.i./L respectively, whereas their LC_{30} concentrations were 3.114 (2.425–3.757)
- 163 mg a.i./L and 4.184 (2.850–5.460) mg a.i./L, respectively (Table 1).

Life history traits

164	Imidacloprid and thiamethoxam had effects on the development time, longevity, and fecundity of A.
165	glycines (Table 2). Compared with that in the control group, exposure to LC_{50} imidacloprid and
166	thiamethoxam resulted in longer first instar development time, adult pre-ovipositional period (APOP),
167	and total pre-ovipositional period (TPOP; $P < 0.05$), but decreased fecundity ($P < 0.05$) and adult
168	longevity ($P < 0.05$).
169	Compared with that in the control group (1.20 d), the development time of second instar nymphs
170	increased significantly when exposed to LC_{50} imidacloprid (1.43 d, $P < 0.05$), but no significant change
171	was observed in nymphs exposed to LC_{50} thiamethoxam (1.28 d, $P > 0.05$). The development time of the
172	third and fourth instars did not change on exposure to LC_{50} imidacloprid and thiamethoxam ($P > 0.05$).
173	Exposure to LC_{30} imidacloprid and thiamethoxam had no significant effect on the development time of
174	the first to fourth instars ($P > 0.05$). However, LC ₃₀ imidacloprid and thiamethoxam decreased the APOP
175	and reduced the fecundity of A. glycines compared with that in the control ($P < 0.05$). The longevity of
176	adults exposed to LC ₃₀ imidacloprid and thiamethoxam was significantly decreased compared with that

- 177 of the control group (11.02, 8.95, and 9.31 d in control, imidacloprid, thiamethoxam groups,
- 178 respectively; P < 0.05). The TPOP of A. glycines exposed to LC₃₀ imidacloprid (4.55 d) showed no
- 179 significant difference (P > 0.05) compared to that in the control group (4.66 d), whereas that of A.
- 180 glycines exposed to LC_{30} thiamethoxam was significantly decreased (4.29 d; P < 0.05).

Life table and fertility parameters

181	The mean fecundity per female adult, R_0 , r , and λ decreased significantly in the imidacloprid and
182	thiamethoxam treatment groups compared to the control group ($P < 0.05$, Table 3). The T in LC ₅₀
183	imidacloprid (9.50 d) and thiamethoxam (9.16 d) treatment groups was significantly longer compared
184	with that in the control group (8.20 d; $P < 0.05$). In contrast, the T in the LC ₃₀ thiamethoxam (7.71 d)
185	group was significantly decreased compared with that in the control group ($P < 0.05$), whereas that in the
186	LC_{30} imidacloprid (7.99 d) group showed no significant change ($P > 0.05$, Table 3).
187	Due to the different development rates between individuals, the age-stage specific survival rates
188	curves show obvious overlaps (Fig 1). The relative number of female adults in the LC_{30} imidacloprid and
189	thiamethoxam treatment groups was higher than that in the respective LC_{50} treatment groups.
190	Age-specific survival rate is the probability that a newly hatched nymph will reach an age x , and the
191	curve of the age-specific survival rate is a simplified form of the curve of the age-stage survival rate,

- 192 disregarding developmental stages. After treatment with imidacloprid and thiamethoxam, the l_x curve
- 193 decreased significantly (Fig 2).
- 194 The highest peak of m_x in the control group was higher than that in LC₃₀ and LC₅₀ treatment groups.
- 195 The highest peak of m_x in the control group appeared on day 8 (Fig 2), whereas that in the LC₃₀

196	imidacloprid g	group appeared of	on day 7, i.e., a c	ay earlier than that in	the control group.	The highest pe	eak

- 197 of m_x in the LC₃₀ thiamethoxam group appeared on day 6, two days earlier than that in the control group.
- 198 The highest peak of m_x in the LC₅₀ imidacloprid group appeared on day 10, two days later than that in the
- 199 control group, while the highest peak of m_x in the LC₅₀ thiamethoxam group appeared on day 9; a day
- 200 later than that in the control group (Fig 2).
- 201 The values of age-specific maternity $(l_x m_x)$ were significantly dependent on l_x and m_x , and the
- 202 maximum $l_x m_x$ values were 8, 8, 9, 7, and 6 d for the control, LC₅₀ imidacloprid, LC₅₀ thiamethoxam,
- 203 LC₃₀ imidacloprid, and LC₃₀ thiamethoxam treatment groups, respectively.
- 204 The female reproductive values in the imidacloprid and thiamethoxam treatment groups decreased
- 205 compared with those in the control group; however, the female reproductive value in the LC₃₀ treatment
- 206 group was higher than that in the LC_{50} group (Fig 3).
- 207 The age-stage life expectancy curve (e_{xi}) is shown in Fig 4. In the curve, the highest peak values of
- the first to fourth instar nymphs and female adults were lower in the treatment groups compared with the
- 209 control group.

Discussion

- 210 The life table parameters used herein reflect the total effect of imidacloprid and thiamethoxam on *A*.
- 211 glycines. We found that imidacloprid and thiamethoxam at LC₅₀ significantly increased the APOP and
- 212 TPOP and significantly decreased the mean fecundity per female adult compared with that in the control
- 213 group (P < 0.05). In contrast, the APOP in individuals exposed to imidacloprid and thiamethoxam at
- 214 LC_{30} was shorter than that in the control group (P < 0.05, Table 2). In addition, according to the results in

215	the age-stage two-sex life table, the R_0 , λ , and r also decreased significantly ($P < 0.05$, Table 3).
216	Collectively, these results indicate that both imidacloprid and thiamethoxam have inhibitory effects on
217	the reproduction of A. glycines.
218	The l_x curve is a basis for the s_{xj} curve. In this study, we found that the l_x curves of individuals
219	exposed to imidacloprid and thiamethoxam showed a declining trend (Fig 2). During the first stage, A.
220	glycines failed to respond effectively when initially exposed to a high dosage of insecticide;
221	consequently, the l_x decreased sharply, and only some surviving individuals entered the second stage.
222	During the second stage, intoxicated aphids refuse to eat or eat in small amounts and spend energy trying
223	to get out of the toxic arena. This was the stage of confrontation between insecticides stress and A.
224	glycines. The different effects of imidacloprid and thiamethoxam at LC_{50} and LC_{30} on the life table may
225	be also related to the regulation strategies of the species, such as self-metabolism and detoxification. In
226	the future research, we will be committed to metabolic detoxification, from the physiological indicators
227	and even molecular level to continue understand the deep impact of imidacloprid and thiamethoxam on
228	population dynamics. During the third stage, the survival rate continued to decline, less sharply than in
229	the first stage, but more sharply than in the second stage. During the third stage, the individual longevity
230	may also be one reason for the decrease of the l_x ; this is consistent with the decrease in the age-stage life
231	expectancy curve with increasing age (Fig 4).
232	In the present study, individuals in the LC_{50} thiamethoxam and LC_{50} imidacloprid treatment groups
233	reached their reproductive peaks 1 and 2 days later compared with those in the control group,
234	respectively. In contrast, individuals in the LC_{30} thiamethoxam and LC_{30} imidacloprid treatment groups
235	reached their reproductive peaks 2 and 1 day earlier than the control group, respectively. Different types

236	and doses of insecticides	have different biological	and ecological effects on	pests. More attention should

- 237 be paid to the increase of pest reproduction caused by low doses of insecticides (Stark, Tanigoshi,
- 238 Bounfour, & Antonelli, 1997; James & Price, 2002). For example, low-lethal concentration of
- 239 spinetoram can decrease the developmental time of Tetranychus urticae (Acari: Tetranychidae) from egg
- to adult (Wang, Zhang, Xie, Wu, & Wang, 2016). The rapid increase in the number of A. glycines
- 241 individuals during the productive peak and the fast reproduction of species from
- 242 generation-to-generation indicate that large outbreaks may occur within a short time. This phenomenon
- of low-lethal concentration promoting rapid reproduction has brought great pressure on the prevention
- and control of *A. glycines* in the field.
- 245 The actual application doses of neonicotinoids in soybean fields in northeast China was higher than
- 246 LC₅₀, but the complex environmental conditions in the fields and the drift of neonicotinoids themselves
- would make the doses of some pests exposed to less than LC_{50} . The risk of low-lethal doses
- 248 neonicotinoids stimulate the rapid reproduction of field populations would highly possible happen. We
- 249 will continue to study whether field populations show similar trends after exposure to low-lethal doses
- 250 neonicotinoids in the future.
- 251
- 252
- 253
- 254

255 Supporting information

256 S1 Fig. Age-stage specific survival rate (s_{xj}) of *Aphis glycines*. Age-stage specific survival rate (s_{xj}) of

257	Aphis glycines exposed to the following treatments: control, imidacloprid LC ₃₀ treatment group,
258	imidacloprid LC_{50} treatment group, thiamethoxam LC_{30} treatment group, and thiamethoxam LC_{50}
259	treatment group. L1 = s_{xj} of first instar nymphs; L2 = s_{xj} of second instar nymphs; L3 = s_{xj} of third
260	instar nymphs; and L4 = s_{xj} of fourth instar nymphs. (XLS)
261	
262	S2 Fig. Age-specific survival rate (l_x) , age-specific fecundity of the total population (m_x) , and
263	age-specific maternity $(l_x m_x)$ of Aphis glycines. Age-specific survival rate (l_x) , age-specific fecundity of
264	the total population (m_x) , and age-specific maternity $(l_x m_x)$ of <i>Aphis glycines</i> exposed to the following
265	treatments: control, imidacloprid LC30 treatment group, imidacloprid LC50 treatment group,
266	thiamethoxam LC_{30} treatment group, and thiamethoxam LC_{50} treatment group. (XLS)
267	
268	S3 Fig. Age-stage specific reproductive values (v_{xj}) of <i>Aphis glycines</i> . Age-stage specific reproductive
269	values (v_{xj}) of <i>Aphis glycines</i> exposed to the following treatments: control, imidacloprid LC ₃₀ treatment
270	group, imidacloprid LC_{50} treatment group, thiamethoxam LC_{30} treatment group, and thiamethoxam
271	LC ₅₀ treatment group. L1 = v_{xj} of first instar nymphs; L2 = v_{xj} of second instar nymphs; L3 = v_{xj} of third
272	instar nymphs; and L4 = v_{xj} of fourth instar nymphs. (XLS)
273	
274	S4 Fig. Life expectancy (e_{xj}) of <i>Aphis glycines</i> . Life expectancy (e_{xj}) of <i>Aphis glycines</i> exposed to the
275	following treatments: control, imidacloprid LC30 treatment group, imidacloprid LC50 treatment group,
276	thiamethoxam LC ₃₀ treatment group, and thiamethoxam LC ₅₀ treatment group. L1 = e_{xj} of first instar
277	nymphs; $L2 = e_{xj}$ of second instar nymphs; $L3 = e_{xj}$ of third instar nymphs; and $L4 = e_{xj}$ of fourth instar
278	nymphs. (XLS)

2	7	n
7	1	9

- 280 S1 Table. Toxic effects of imidacloprid and thiamethoxam on newly hatched nymphs of *Aphis glycines*.
- 281 SE = Standard error (XLS)
- 282
- 283 S2 Table. Mean value (± SE) of life history parameters of *Aphis glycines* exposed to imidacloprid and
- thiamethoxam. SE = Standard error. Means (\pm SE) followed by different letters in the same row are
- significantly different as calculated using the paired bootstrap test at the P < 0.05 level. Leaves treated
- with pure water were used as the control. L1 = mean longevity of first instar nymphs; L2 = mean
- longevity of second instar nymphs; L3 = mean longevity of third instar nymphs; L4 = mean longevity
- of fourth instar nymphs; Fecundity = mean fecundity per female adult. (DOC)
- 289
- 290 S3 Table. Mean value (± SE) of fertility parameters of Aphis glycines exposed to imidacloprid and
- thiamethoxam. Means (\pm SE) followed by different letters in the same row are significantly different as
- calculated using the paired bootstrap test at the P < 0.05 level. Leaves treated with pure water were used
- as the control. (DOC)
- 294

Acknowledgments

- 295 This work was supported by the Heilongjiang Science Foundation Project (grant number C2018011),
- 296 Special Fund for Construction of Modern Agricultural Industry Technology System (grant number
- 297 CARS-04), and Research and Development of Technology and Products on Nature Enemy Insects
- 298 Prevent and Control (No: 2017YFD0201000).
- 299

300 Author Contributions

- 301 All authors conceived research. AZ conducted experiments. AZ, LZ and TL analysed data and conducted
- 302 statistical analyses. AZ, LH and ZS wrote the manuscript. LH and KZ secured funding. All authors read
- 303 and approved the manuscript.

References

304	Abbas, N., Shad, S. A., & Shah, R. M. (2015). Resistance status of <i>Musca domestica</i> L. populations to
305	neonicotinoids and insect growth regulators in Pakistan poultry facilities. Pak. J. Zool. 47,
306	1663–1671.
307	Basit, M., Saeed, S., Saleem, M. A., Denholm, I., & Shah, M. (2013). Detection of resistance,
308	cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci
309	(Homoptera: Aleyrodidae). J. Econ. Entomol. 106, 1414–1422. https://doi.org/10.1603/ec12414.
310	Bass, C., Puinean, A. M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Slater, R. (2011). Mutation
311	of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid
312	insecticides in the aphid Myzus persicae. BMC Neurosci. 12, 51.
313	https://doi.org/10.1186/1471-2202-12-51.
314	Bass, C., Denholm, I., Williamson, M. S., & Nauen, R. (2015). The global status of insect resistance to
315	neonicotinoid insecticides. Pestic. Biochem. Phys. 121, 78–87.
316	https://doi.org/10.1016/j.pestbp.2015.04.004.
317	Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. B. I. Zool.
318	Acad. 24, 225–240.
319	Chi, H., & Su, H. Y. (2006). Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)
320	(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with
321	mathematical proof of the relationship between female fecundity and the net reproductive rate.

322 Environ. Entomol. 35, 10–21.

- 323 Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rate among
- 324 individuals. Environ. Entomol. 17, 26–34. https://doi.org/10.1093/ee/17.1.26.
- 325 Chi, H., & Getz, W. M. (1988). Mass rearing and harvesting based on an age-stage, two-sex life table: a
- 326 potato tuber worm (Lepidoptera: Gelechiidae) case study. Environ. Entomol. 17, 18–25.
- 327 Chi, H. (2012). TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis.
- 328 (http://140.120.197.173/Ecology/prod02.htm).
- 329 Cordero, R. J., Bloomquist, J. R., & Kuhar, T. P. (2007). Susceptibility of two diamondback moth
- 330 parasitoids, Diadegma insulare (Cresson) (Hymenoptera; Ichneumonidae) and Oomyzus
- 331 sokolowskii (Kurdjumov) (Hymenoptera; Eulophidae), to selected commercial insecticides. Biol.
- 332 Control. 42, 48–54. https://doi.org/10.1016/j.biocontrol.2007.04.005.
- 333 Feliciangeli, M. D., & Rabinovich, J. (1985). Vital statistics of triatominae (Hemiptera: reduviidae)
- 334 under laboratory conditions II. *Triatoma maculata*. J. Med. Entomol. 22, 43–48.
- 335 https://doi.org/10.1093/jmedent/22.1.43.
- 336 Fisher, R. A. (1993). The genetical theory of natural selection: a complete variorum edition. Oxford
- 337 University Press, Oxford, United Kingdom.
- 338 Gabre, R. M., Adham, F. K., & Chi, H. (2005). Life table of Chrysomya megacephala (Fabricius)
- 339 (Diptera: Calliphoridae). Acta Oecol. 27, 179–183. https://doi.org/10.1016/j.actao.2004.12.002.
- Goodman, D. (1982). Optimal life histories, optimal notation, and the value of reproductive value. Am.
- 341 Nat. 119, 803–823.

	Kerns, D. (2013). Cotton	G., Kerns.	Lorenz, G.	, Stewart, S. D.,	B. R.,	. Leonard.	Catchot, A.,	Cook, D.,	Gore, J.,	342
--	--------------------------	------------	------------	-------------------	--------	------------	--------------	-----------	-----------	-----

- 343 aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the
- 344 southern United States. J. Econ. Entomol. 106, 1430–1439. https://doi.org/10.1603/ec13116.
- 345 Hanson, A. A., Menger-Anderson, J., Silverstein, C., Potter, B. D., MacRae, I. V., Hodgson, E. W., ...
- 346 Koch, R. L. (2017). Evidence for soybean aphid (Hemiptera: Aphididae) resistance to pyrethroid
- 347 insecticides in the upper Midwestern United States. J. Econ. Entomol. 110, 2235-2246.
- 348 https://doi.org/10.1093/jee/tox235.
- 349 Hopper, K. R., Lanier, K., Rhoades, J. H., Hoelmer, K. A., Meikle, W. G., Heimpel, G. E., ... Woolley,
- J. B. (2017). Host specificity of *Aphelinus* species collected from soybean aphid in Asia. *Biol.*

351 *Control.* 115, 55–73. https://doi.org/10.1016/j.biocontrol.2017.09.004.

352 Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an

353 increasingly regulated world. Annu. Rev. Entomol. 51, 45–66.

- 354 https://doi.org/10.1146/annurev.ento.51.110104.151146.
- 355 James, D. G., & Price, T. S. (2002). Fecundity in two-spotted spider mite (Acari: Tetranychidae) is
- increased by direct and systemic exposure to imidacloprid. J. Econ. Entomol. 95, 729–732.
- 357 https://doi.org/10.1603/0022-0493-95.4.729.
- Jan, M. T., Abbas, N., Shad, S. A., & Saleem, M. A. (2015). Resistance to organophosphate, pyrethroid
- 359 and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius)
- 360 (Lepidoptera: noctuidae), in Pakistan. Crop Prot. 78, 247-252.
- 361 https://doi.org/10.1016/j.cropro.2015.09.020.

- 362 Khan, H., Abbas, N., Shad, S. A., & Afzal, M. B. S. (2014). Genetics and realized heritability of
- 363 resistance to imidacloprid in a poultry population of house fly, *Musca domestica* L. (Diptera:
- 364 Muscidae) from Pakistan. Pestic. Biochem. Phys. 114, 38-43.
- 365 https://doi.org/10.1016/j.pestbp.2014.07.005.
- 366 Koo, H. N., An, J. J., Park, S. E., Kim, J. I., & Kim, G. H. (2014). Regional susceptibilities to 12
- 367 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point
- 368 mutation associated with imidacloprid resistance. Crop Prot. 55, 91-97.
- 369 https://doi.org/10.1016/j.cropro.2013.09.010.
- 370 Lee, C. C. (2000). Sublethal effects of insecticides on longevity, fecundity and behaviour of insect
- 371 pests: a review. J. Biosci. 11, 107–112.
- 372 Luo, C., Jones, C. M., Devine, G., Zhang, F., Denholm, I., & Gorman, K. (2010). Insecticide resistance
- 373 in *Bemisia tabaci* biotype Q (Hemiptera: Aleyrodidae) from China. *Crop Prot.* 29, 429–434.
- 374 https://doi.org/10.1016/j.cropro.2009.10.001.
- 375 Matsuda, K., Buckingham, S. D., Kleier, D., Rauh, J. J., Grauso, M., & Sattelle, D. B. (2001).
- 376 Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends. Pharmacol.
- 377 Sci. 22, 573–580. https://doi.org/10.1016/s0165-6147(00)01820-4.
- 378 Matsumura, M., Sanada-Morimura, S., Otuka, A., Ohtsu, R., Sakumoto, S., Takeuchi, H., ... Satoh, M.
- 379 (2013). Insecticide susceptibilities in populations of two rice planthoppers, *Nilaparvata lugens* and
- 380 Sogatella furcifera, immigrating into Japan in the period 2005-2012. Pest Manag. Sci. 70, 615–622.
- 381 https://doi.org/10.1002/ps.3590.

- 382 Menger, J., Beauzay, P., Chirumamilla, A., Dierks, C., Gavloski, J., Glogoza, P., ... Koch, R. L. (2020).
- 383 Implementation of a diagnostic-concentration bioassay for detection of susceptibility to
- 384 pyrethroids in soybean aphid (Hemiptera: Aphididae). J. Econ. Entomol. 113, 932–939.
- 385 https://doi.org/10.1093/jee/toz351.
- 386 Nauen, R., & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides: current status
- and future prospects. Arch. Insect. Biochem. 58, 200–215. https://doi.org/10.1002/arch.20043.
- 388 Nauen, R., Jeschke, P., Velten, R., Beck, M. E., Ebbinghaus-Kintscher, U., Thielert, W., ... Raupach,
- 389 G. (2014). Flupyradifurone: a brief profile of a new butenolide insecticide. *Pest Manag. Sci.* 71,
- 390 850–862. https://doi.org/10.1002/ps.3932.
- 391 Ragsdale, D. W., Voegtlin, D. J., & O'neil, R. J. (2004). Soybean aphid biology in North America. Ann.
- 392 Entomol. Soc. Am. 97, 204–208. https://doi.org/10.1093/aesa/97.2.204.
- 393 Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., & Desneux, N. (2011). Ecology and
- 394 management of the soybean aphid in North America. Annu. Rev. Entomol. 56, 375–399.
- 395 https://doi.org/10.1146/annurev-ento-120709-144755.
- 396 Shi, T. F., Wang, Y. F., Liu, F., Qi, L., & Yu, L. S. (2017). Sublethal effects of the neonicotinoid
- insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae). J. Econ.
 Entomol. 110, 2283–2289. https://doi.org/10.1093/jee/tox262.
- 399 Somar, R. O., Zamani, A. A., & Alizadeh, M. (2019). Joint action toxicity of imidacloprid and
- 400 pymetrozine on the melon aphid, *Aphis gossypii*. Crop Prot. 124, 104850.
 401 https://doi.org/10.1016/j.cropro.2019.104850.

- 402 Srigiriraju, L., Semtner, P. J., & Bloomquist, J. R. (2010). Monitoring for imidacloprid resistance in the
- 403 tobacco adapted form of the green peach aphid, *Myzus persicae* (Sulzer) (Hemiptera: Aphididae),
- 404 in the eastern United States. Pest. Manag. Sci. 66, 676–685. https://doi.org/10.1002/ps.1929.
- 405 Stark, J. D., & Wennergren, U. (1995). Can population effects of pesticides be predicted from
- 406 demographic toxicological studies? J. Econ. Entomol. 88, 1089–1096.
- 407 https://doi.org/10.1093/jee/88.5.1089.
- 408 Stark, J. D., Tanigoshi, L., Bounfour, M., & Antonelli, A. (1997). Reproductive potential: its influence
- 409 on the susceptibility of a species to pesticides. *Ecotoxicol. Environ. Saf.* 37, 273–279.
- 410 https://doi.org/10.1006/eesa.1997.1552.
- 411 Tao, Y., Phung, D., Dong, F., Xu, J., Liu, X., Wu, X., ... Zheng, Y. (2019). Urinary monitoring of
- 412 neonicotinoid imidacloprid exposure to pesticide applicators. *Sci. Total Environ.* 669, 721–728.
- 413 https://doi.org/10.1016/j.scitotenv.2019.03.040.
- 414 Wang, L., Zhang, Y., Xie, W., Wu, Q., & Wang, S. (2016). Sublethal effects of spinetoram on the
- 415 two-spotted spider mite, *Tetranychus urticae* (Acari: Tetranychidae). Pestic. Biochem. Phys. 132,
- 416 102–107. https://doi.org/10.1016/j.pestbp.2016.02.002.
- 417 Wang, R. Y., Kritzman, A., Hershman, D. E., & Ghabrial, S. A. (2006). Aphis glycines as a vector of
- 418 persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops.
- 419 *Plant Dis.* 90, 920–926. https://doi.org/10.1094/pd-90-0920.
- 420 Xie, W., Wang, S., Wu, Q., Feng, Y., Pan, H., Jiao, X., ... Zhang, Y. (2010). Induction effects of host
- 421 plants on insecticide susceptibility and detoxification enzymes of *Bemisia tabaci* (Hemiptera:
- 422 Aleyrodidae). Pest. Manag. Sci. 67, 87–93. https://doi.org/10.1002/ps.2037.

- 423 Zhao, Y., Wang, Q., Ding, J., Wang, Y., Zhang, Z., Liu, F., ... Mu, W. (2018). Sublethal effects of
- 424 chlorfenapyr on the life table parameters, nutritional physiology and enzymatic properties of
- 425 Bradysia odoriphaga (Diptera: Sciaridae). Pestic. Biochem. Phys. 148, 93–102.
- 426 https://doi.org/10.1016/j.pestbp.2018.04.003.

428 Tables

429 **Table 1.**

430 Toxic effects of imidacloprid and thiamethoxam on newly hatched nymphs of *Aphis glycines*

Insecticide	Concentration (mg a.i	i./L) (95 % CL) ⁻¹	Slope ± SE	χ^2 (df)
	LC ₅₀	LC ₃₀		
Imidacloprid	4.440 (3.672–5.335)	3.114 (2.425–3.757)	3.402 ± 0.469	0.464 (5)
Thiamethoxam	7.049 (5.394–8.998)	4.184 (2.850–5.460)	2.314 ± 0.339	0.502 (5)

431 SE = Standard error

432 **Table 2.**

433 Mean value (± SE) of life history parameters of *Aphis glycines* exposed to imidacloprid and

434 thiamethoxam

Parameters		LC ₃₀		LC_{50}	
Parameters	Control	Imidacloprid	Thiamethoxam	Imidacloprid	Thiamethoxam
L1 (day)	$1.23\pm0.04c$	$1.19\pm0.05c$	$1.14\pm0.04c$	$1.88\pm0.09a$	$1.57 \pm 0.11b$
L2 (day)	$1.2\pm0.04b$	$1.17\pm0.05b$	$1.14\pm0.04b$	$1.43\pm0.08a$	$1.28\pm0.07ab$
L3 (day)	$1.13\pm0.05a$	$1.14\pm0.05a$	$1.15\pm0.05a$	$1.17\pm0.06a$	$1.15\pm0.05a$
L4 (day)	$1.01\pm0.01a$	$1.02\pm0.02a$	$1.02\pm0.02a$	$1.1\pm0.05a$	$1.06\pm0.04a$
Mean longevity of female adult (day)	$11.02\pm0.55a$	$8.95\pm0.56b$	$9.31\pm0.62b$	$8.48\pm0.64b$	$8.62\pm0.55b$
APOP (day)	$0.20\pm0.04b$	$0.05\pm0.03\text{c}$	$0.02\pm0.02c$	$1.11\pm0.15a$	$1.07\pm0.15a$
TPOP (day)	$4.66\pm0.07c$	$4.55\pm0.08c$	$4.29\pm0.07d$	$6.68\pm0.20a$	$5.93\pm0.18b$
Fecundity	$42.49 \pm 1.83a$	$20.91 \pm 1.39b$	$22.66 \pm 1.60 b$	$13.88 \pm 1.56c$	$16.02 \pm 1.37c$

435 SE = Standard error. Means (\pm SE) followed by different letters in the same row are significantly

- 437 water were used as the control. L1 = mean longevity of first instar nymphs; L2 = mean longevity of
- 438 second instar nymphs; L3 = mean longevity of third instar nymphs; L4 = mean longevity of fourth
- 439 instar nymphs; Fecundity = mean fecundity per female adult.
- 440

441

- 442
- 443
- 444
- 445

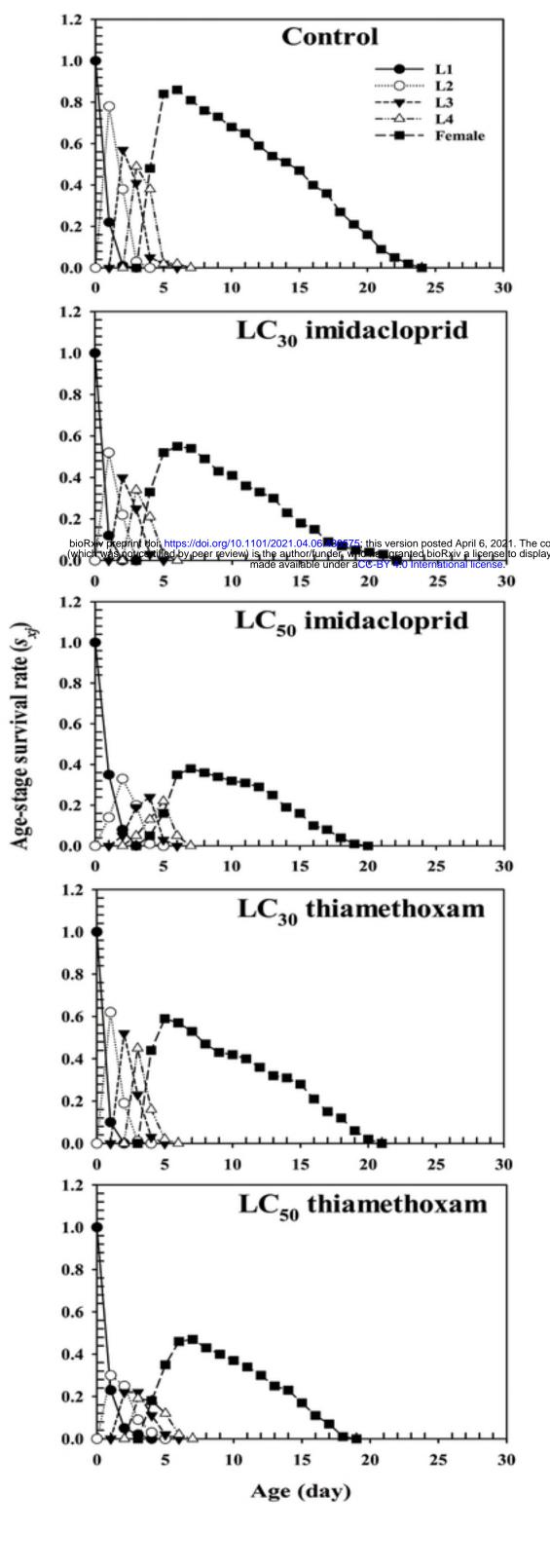
446

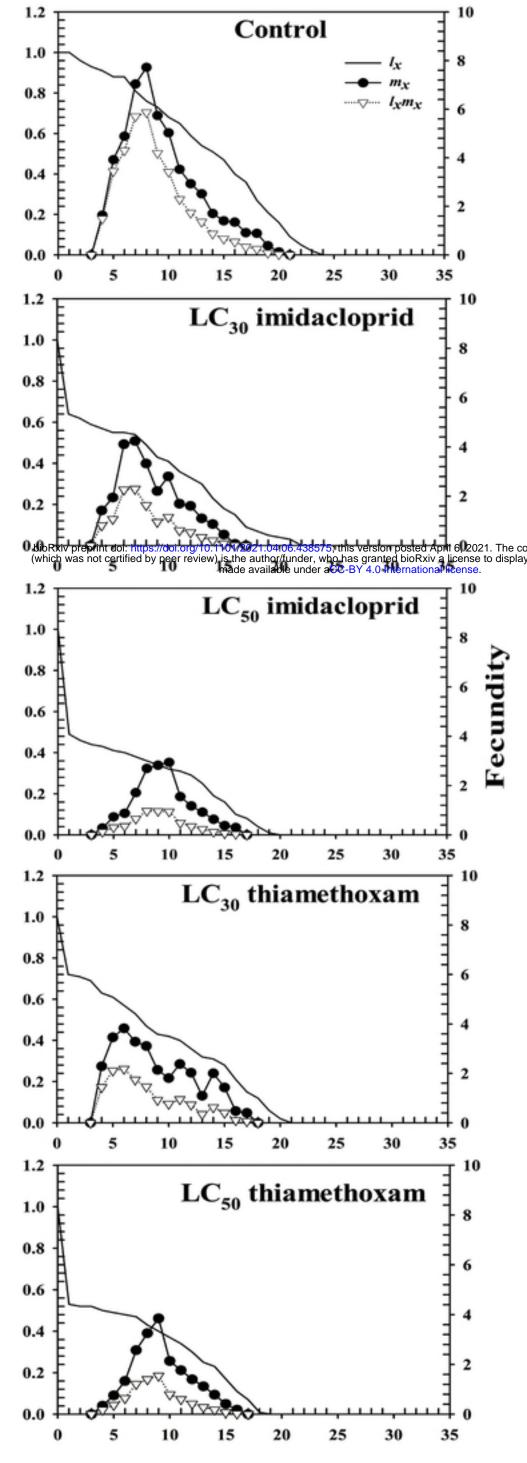
447

⁴³⁶ different as calculated using the paired bootstrap test at the P < 0.05 level. Leaves treated with pure

448 **Table 3.**

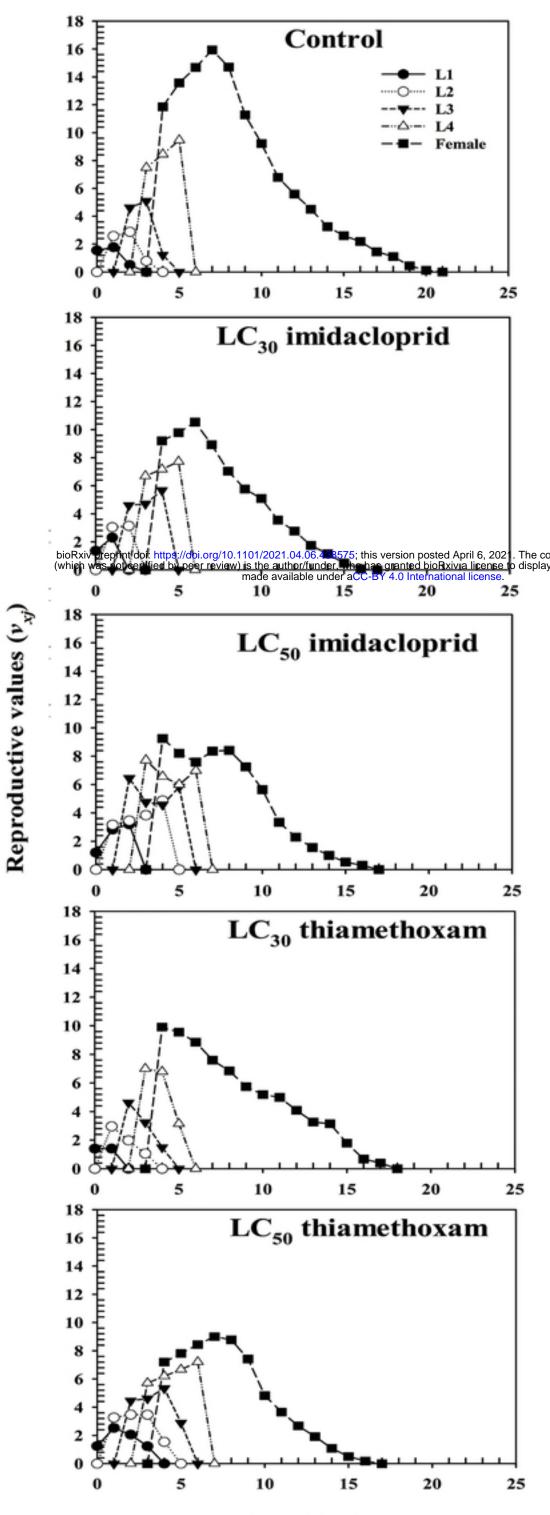
		L	30 LO		C ₅₀
Population parameters	Control	Imidacloprid	Thiamethoxam	Imidacloprid	Thiamethoxam
Intrinsic rate of increase $(r) (d^{-1})$	$0.439\pm0.008a$	$0.310\pm0.014b$	$0.341 \pm 0.015b$	$0.180\pm0.019c$	$0.223 \pm 0.016c$
Finite rate of increase (λ) (d ⁻¹)	$1.551 \pm 0.012a$	$1.363\pm0.019b$	$1.406\pm0.021b$	$1.198\pm0.023c$	$1.250\pm0.020c$
Net reproductive rate (R_0)	$36.54 \pm 2.156a$	$11.92\pm1.303b$	$13.82\pm1.466b$	$5.55\pm0.916c$	$7.69 \pm 1.028c$
Mean generation time (T) (d)	$8.20\pm0.076b$	$7.99 \pm 0.107 bc$	$7.71 \pm 0.109c$	$9.50\pm0.219a$	$9.16 \pm 0.097a$

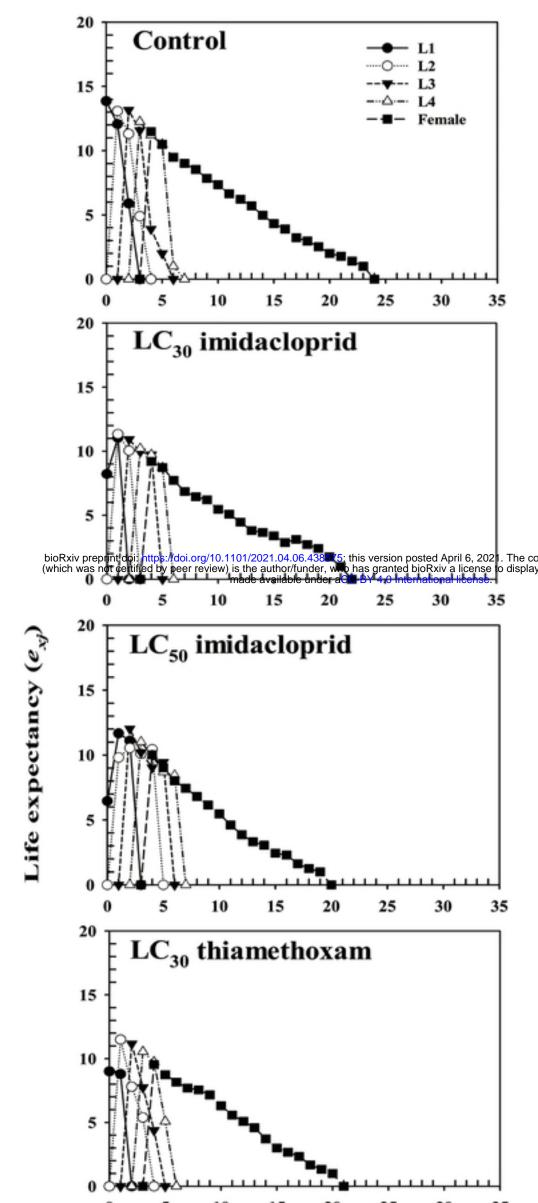

449 Mean value (± SE) of fertility parameters of *Aphis glycines* exposed to imidacloprid and thiamethoxam

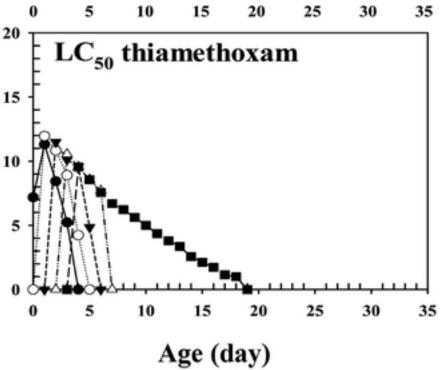

450 Means (\pm SE) followed by different letters in the same row are significantly different as calculated

451 using the paired bootstrap test at the P < 0.05 level. Leaves treated with pure water were used as the

452 control.


453




Survival rate (I_x)

Age (day)

Age (day)

