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Abstract 

Integrative modelling enables structure determination of macromolecular complexes by 

combining data from multiple experimental sources such as X-ray crystallography, electron 

microscopy (EM), or crosslinking mass spectrometry (XL-MS). It is particularly useful for 

complexes not amenable to high-resolution EM—complexes that are flexible, heterogenous, or 

imaged in cells with cryo-electron tomography. We have recently developed an integrative 

modelling protocol that allowed us to model multi-megadalton complexes as large as the nuclear 

pore complex. Here, we describe the Assembline software package, which combines multiple 

programs and libraries with our own algorithms in a streamlined modelling pipeline. Assembline 

builds ensembles of models satisfying data from atomic structures or homology models, EM maps 

and other experimental data, and provides tools for their analysis. Comparing to other methods, 

Assembline enables efficient sampling of conformational space through a multi-step procedure, 
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provides new modeling restraints, and includes a unique configuration system for setting up the 

modelling project. Our protocol achieves exhaustive sampling in less than 100 – 1,000 CPU-hours 

even for complexes in the megadalton range. For larger complexes, resources available in 

institutional or public computer clusters are needed and sufficient to run the protocol. We also 

provide step-by-step instructions for preparing the input, running the core modelling steps, and 

assessing modelling performance at any stage. 

Introduction 

Macromolecular complexes are crucial to many biological processes. The function of complexes 

depends on their three-dimensional (3D) structure–the relative arrangement of the subunits, 

which assemble to form structural scaffolds, active and ligand binding sites, and regulatory 

modules1. Determining the structure of complexes is therefore key to understand how they 

assemble and function. 

One of the most widely used methods for determining structures of large macromolecular 

complexes is cryo-electron microscopy (cryo-EM). It involves a 3D reconstruction of a so-called 

EM density map, which is used to build a structural model. The resolution of cryo-EM maps is 

sometimes sufficient to build an atomic model using only information of the map. Frequently, 

however, the high resolution is limited to more rigid regions of a complex, while flexible 

peripheral domains, that are less well-resolved, remain ambiguous2,3. Moreover, some 

complexes are difficult to resolve at high resolution due to technical challenges specific to the 

given sample or sample heterogeneity4, e.g. cell extracts containing multiple complexes5. Finally, 

recent work has demonstrated that EM maps of individual complexes can be obtained in their 

native cellular environment by applying cryo-electron tomography (cryo-ET) to vitrified 

cells6,7,8,9,10, followed by sub-tomogram averaging11. In-cell cryo-ET foreshadows a new era of 

native structural biology, but currently the cryo-ET maps rarely reach resolution beyond 1 nm8,12. 

Thus, methods for interpreting low-resolution EM maps will be crucial for realizing the potential 

of in-cell structural biology. 
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Integrative structural modelling is a method that allows determining structures based on low-

resolution EM maps13, or even when an EM map cannot be obtained14,15,16. It leverages 

information from other structural biology techniques such as X-ray crystallography, homology 

modelling, nuclear magnetic resonance (NMR), small-angle scattering (SAXS), and crosslinking 

mass spectrometry (XL-MS)17,18. Integrating data from different techniques allows building 

models at a higher precision than using a single technique alone8,19,20. Multiple structures of 

macromolecular complexes have been obtained this way, even under in-cell conditions8,7,21. 

In a typical integrative modelling workflow19,22, structures of individual subunits or domains are 

first collected using X-ray crystallography, NMR or homology modelling23. In some modelling 

software, the structures are converted to a coarse-grained representation. Second, the 

experimental data are translated into spatial restraints and used to define a scoring function for 

subsequent optimization. Third, various optimization methods are applied to find an 

arrangement of the input structures which minimizes the scoring function. The output is not a 

single model, but rather an ensemble of models equally satisfying the experimental restraints. 

Finally, the precision and exhaustiveness of sampling are assessed20 to interpret the models and 

their uncertainty.  

We have developed a versatile integrative modelling protocol that can be applied to complexes 

as large as 50 – 100 MDa nuclear pore complexes (NPCs)7,21,24, using high- and low-resolution EM 

maps derived from cryo- and negative stain EM, and cryo-ET maps resolved in cells. The protocol 

is a computational pipeline integrating our Xlink Analyzer25 graphical interface for input 

preparation, UCSF Chimera software26 for EM fitting and analysis of results, and the programming 

libraries of Integrative Modeling Platform22,27 (IMP) and Python Modeling Interface28 (PMI; an 

interface to IMP by the same authors) for modelling. The protocol implements a multi-step 

scoring and sampling procedure that enables efficient exploration of conformational space. In 

addition to the programming interface of IMP and PMI, our protocol offers a straightforward 

procedure to initially define the target system through the graphical user interface (GUI) of Xlink 

Analyzer25 and text-based configuration files, implements additional restraints, and provides 

command-line scripts that can be applied to modelling cases without any modification by the 

user. Here, we present the details of the protocol, installation, and setup instructions for the 
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Assembline software package, which implements the protocol (Supplementary Manual). We also 

provide step-by-step guidelines for applying it to any protein complex. 

Development of the protocol 

We developed the first version of our protocol to build a model of the scaffold of the human 

nuclear pore complex based on cryo-ET and XL-MS data24. Subsequently, we used it to model a 

yeast Elongator complex based on negative-stain EM maps and XL-MS data29, which was later 

validated by a high-resolution cryo-EM structure30. Recently, we have used an updated version 

of the protocol to build models of yeast NPCs7,21, and to model peripheral subunits of the 

mycobacterial Type VII secretion system31. In this work we are describing the most recent version 

of the protocol as used for the Saccharomyces cerevisiae nuclear pore complex7 (ScNPC), now 

organized in a software package called Assembline. 

Availability 

The Assembline software is freely available as an open-source Python package (website: 

https://www.embl-hamburg.de/Assembline/, git repository with code: 

https://assembline.readthedocs.io/en/latest/#), which can be installed from source code or from 

the Anaconda repository (https://anaconda.org/kosinskilab/assembline). Documentation is 

provided in the Supplementary Manual and can also be found online 

(https://assembline.readthedocs.io/en/latest/), and in the form of the step-by-step tutorials for 

modelling the yeast nuclear pore complex (Supplementary Tutorial 1, online version: 

https://scnpc-tutorial.readthedocs.io/en/latest/) and Elongator complex (Supplementary 

Tutorial 2, online version: https://elongator-tutorial.readthedocs.io/en/latest/). All the data sets 

needed for the step-by-step tutorials (i.e., for yeast NPC and Elongator complex modelling) are 

provided in https://git.embl.de/rantos/scnpc_tutorial.git (for the yeast NPC) and 

https://git.embl.de/kosinski/elongator_tutorial.git (for the Elongator complex). 

Applications 

Assembline can model protein complexes based on EM, XL-MS and protein-protein interaction 

data, e.g., affinity pull-down experiments indicating protein or domains interactions.  Assembline 

supports other experimental data types through restraints available in a programming interface 
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from IMP and PMI. When only EM data is available, Assembline can be used as a fitting program 

for fitting multiple structures simultaneously. Although in our published applications we have 

primarily used EM data, Assembline can be also applied to cases where EM data is not available, 

for example to build approximate topological models based on XL-MS data only. Complexes from 

simple dimers to assemblies of multiple subunits and complex symmetries are also amenable. 

For highly symmetric complexes, Assembline can model complexes with hundreds of subunits, 

as demonstrated by our applications to NPCs or bacterial secretion systems.  

Exemplary results from our previous applications are described in the Steps 1-6, installation, set 

up of virtual environment for modelling and project directory architecture: ~2 h per modelling 

project, assuming the input datasets are already prepared.  

Steps 7-10, calculation of fit libraries: ~1 h - 5 h, depending on number of input PDB structures to 

be fitted, number of EM maps to be used for fitting and allocated computational resources. The 

calculation of fit libraries for ScNPC takes roughly 3-5 h per input structure and for Elongator 

complex takes around 1-3 h per input structure. 

Steps 11-31, modelling with global optimization and analysis pipeline: ~1 h to days, depending 

on modelling parameters, system configuration settings, size of the complex, and allocated 

computational resources. A single global optimization run (using a single CPU core) for ScNPC 

takes around 1 h (approximately 20,000 runs to be performed) and for Elongator complex - 6 min 

(approximately 1,000 runs to be performed). 

Steps 32-34, modelling with the recombination step and analysis pipeline: ~1 h to days, 

depending on modelling parameters, system configuration settings, size of the complex, the 

number of selected models to be used for recombination, and allocated computational 

resources. A single recombination run (using a single CPU core) for Elongator complex takes 

around 4 min (approximately 1,000 runs to be performed).  

Steps 35-40, modelling with refinement and analysis pipeline: ~3 h to days, depending on 

modelling parameters, system configuration settings, size of the complex, the number of selected 

models to be used for refinement, and allocated computational resources. A single refinement 

run (using a single CPU core) for ScNPC takes around 3-4 h (approximately 20,000 runs to be 
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performed) and for Elongator complex takes around 20 min (approximately 1,000 runs to be 

performed). 

Anticipated results section. 

Overview of the procedure 

In this section, we describe the algorithmic details of Assembline (Fig 1). The exact step-by-step 

procedure is presented in the Procedure section. 

The core algorithmic feature of our protocol is a unique multi-step sampling procedure that 

efficiently explores structural configurations when an EM map is available. Modelling protein 

complexes based on EM data, particularly at low resolution, is computationally demanding due 

to the need of sampling a large conformational space (locations and orientations of multiple 

subunits within the map) and costly calculations of the cross-correlation between the EM map 

and the modelled structure. Assembline overcomes both challenges through a global 

optimization step that first calculates ensembles of fits of individual subunit and domain 

structures (called “fit libraries”) and then generates good scoring combinations of those fits. Since 

the scores of the fits have been calculated a priori, there is no need to re-calculate the cross-

correlation during the optimization, drastically speeding up calculations and enabling efficient 

sampling of the conformational space. Notably, as the original EM scores were calculated using 

the original atomic structures, the EM scores are derived from the atomic representation even if 

proteins are coarse-grained for the actual optimization. The models from the global optimization 

can be then used as input in the next steps, to either enrich conformational sampling through a 

recombination between top scoring models and/or refine the complexes using a conventional 

sampling, in which rigid bodies are moved in a continuous space through random rotations and 

translations and cross-correlation is calculated “on-the-fly”. 
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Figure 1. Assembline workflow. Available structures and experimental data are specified as input 

through configuration files. Optionally, input atomic structures are converted to coarse-grained 

beads (steps 1 and 2). If EM data is used, libraries of fits for each structure can be calculated (step 

3). The fits of all structures are sampled simultaneously by combining fits from the libraries and 

scored based on input restraints (global optimization, step 4). The best scoring models from the 

global optimization can be additionally recombined, generating potentially better scoring models 

(step 5). The best scoring models (step 6) are selected for local rigid-body or flexible refinement 

(step 7). During analysis, sampling convergence and exhaustiveness are assessed and the output 

integrative models are analyzed with respect to restraint satisfaction (step 8). 

Representation of proteins for modelling 

During modelling, input protein structures can be represented in either atomic or, to accelerate 

computation, coarse-grained representation as beads at a desired “resolution” (e.g., one bead 

represents ten amino acid residues). As a trade-off between computing efficiency and accuracy, 

multiple coarse-grained representations can be used in parallel according to the precision of 

restraints. For example, a ten-residue per bead representation can be used for the costly 

excluded volume restraint (steric clash score), while the Cα representation can be used for XL-MS 
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data-based distance restraints. The multi-scale representation is implemented using the PMI 

library28.  

Although structures are represented as rigid bodies, conformational flexibility can be 

implemented in two ways. First, flexible linkers can be added explicitly as single-residue beads 

connected by distance restraints. Second, the input structures can be divided into smaller rigid 

bodies and restrained using an elastic network to prevent distortions of the input structure.  

Additionally, homo-oligomeric complexes and cyclic symmetry are fully supported. Assembline 

automatically creates the copies of the input structures and imposes symmetry based on user-

provided symmetry definitions, and resolves an ambiguity arising when restraints are applied to 

multiple copies of the same subunit. For example, for crosslink or interaction restraints, it is 

sufficient that only one of the copies satisfies the restraint.  

Scoring function 

The scoring function for modelling is a linear combination of restraint scores as implemented in 

IMP27. Several custom restraints have been implemented along with restraints directly sourced 

from IMP. Custom restraints in Assembline include: EM restraints based on the p-values of fits in 

the fit libraries (see Calculation of fit libraries), symmetry restraints, excluded EM densities 

restraints—which can be used to penalize penetration of certain EM densities e.g., a segmented 

membrane density, EM density proximity restraints (e.g., to favor interactions of membrane-

binding proteins with a membrane), crosslinking restraints including a log-harmonic crosslink 

restraint14, elastic network restraints for preservation of protein complex interfaces, and binary 

inter-protein or inter-domain interactions. Standard restraints sourced from IMP include 

connectivity distance between neighboring domains in sequence, a steric clash score, standard 

EM fit restraint based on cross-correlation, and EM envelope penetration restraints. 

Calculation of fit libraries 

The first step of our protocol is the generation of fit libraries, which are ensembles of non-

redundant rigid body fits of the input atomic structures within the provided EM maps (before 

coarse-graining). The fit library provides alternative positions during the subsequent global 

optimization step. Typically, hundreds to thousands of fits are generated per structure. If the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.06.438590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438590


initial model of the complex has already been constructed by other means, or no EM map is used 

as a restraint, this step can be omitted and the model can be optimized immediately by the 

refinement step.   

Fit libraries are generated using the FitMap tool from UCSF Chimera26 in “global search” mode. A 

command line interface is provided to fit multiple structures into multiple maps (for example 

different versions of the EM map or maps of different states of the protein complex). The 

resulting fits are then clustered using the built-in clustering feature of UCSF Chimera FitMap, 

wherein representative models from each cluster constitute the final ensemble of non-

redundant fits. The user can modify several parameters including the number of random starting 

positions for the global fitting, clustering threshold settings, resolution of simulated densities and 

three different cross-correlation score types provided by UCSF Chimera (see the documentation  

of UCSF Chimera for details 

https://www.cgl.ucsf.edu/chimera/current/docs/UsersGuide/midas/fitmap.html).  

Finally, p-values are calculated from the cross-correlation scores of alternative fits as published 

before7,21,24,29,31,32. Briefly, the cross-correlation scores are first transformed to z-scores (Fisher's 

z-transform33) and centered, from which two-sided p-values are computed using standard 

deviation derived from an empirical null distribution (derived from all obtained unique fits and 

fitted using fdrtool R-package34). All p-values are then corrected for multiple testing using 

Benjamini–Hochberg procedure35. The corrected p-values are used as restraints during the global 

optimization step. The option of reconstructing the best-scoring fitted models at atomic 

representation for visual inspection is also available. In addition, the user can use p-values to 

identify unambiguous fits that can be kept fixed in their positions in the subsequent modelling 

steps to limit the conformational search space.   

Global optimization 

The objective of this step is to generate models of the entire complex based on the fit libraries 

via simultaneous sampling of alternative fits using Monte Carlo simulated annealing 

optimization36 (Figure 1 step 4). The optimization algorithm randomly draws upon the pre-

calculated fits from the libraries to generate candidate combinations, scores the combinations 
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according to their fit in the EM map and satisfaction of other restraints, and iteratively repeats 

the random fit selection and scoring to find better scoring solutions. The EM fit restraint is 

calculated based on p-values pre-calculated during the previous stage, and as such is derived 

from the atomic representation. Usually, this step consists of hundreds to thousands of 

independent runs (i.e., optimization trajectories restarted from random initial orientation), each 

run includes thousands of Monte Carlo sampling steps, depending on the size of the system. The 

scoring function, representation of structures, and optimization algorithms are implemented 

using functionalities from the underlying IMP and PMI programming libraries. 

This step outputs an ensemble of alternative integrative models, each scored based on violation 

of the restraints comprising the scoring function. At this point, the user can assess the sampling 

performance and select final models (see Analysis section) and/or continue to the next 

integrative modelling stages. 

Recombination 

The optional recombination stage (Figure 1 step 5) allows enriching the sampling of good-scoring 

models. This is particularly useful for systems with many rigid bodies or thousands of alternative 

fits in the fit libraries. In this step, the global optimization protocol is run again, but this time 

using only the pre-calculated alternative fits of the subunits that led to top models in the global 

optimization run. The pre-calculated fits that led to those models are retrieved from the original 

libraries to create smaller fit libraries, and used as input to the optimization algorithm identical 

to the global optimization. As the fits are coming from good scoring models, this leads to 

preferential sampling of the conformational space in best-scoring areas and often yields models 

with scores significantly better than in the first global optimization stage. 

Refinement 

Refinement (Figure 1 step 7) optimizes integrative models from the global optimization (including 

the recombination) step using the underlying IMP and PMI programming libraries. The main 

difference between the global optimization and refinement is that in the global optimization the 

EM fit restraint is pre-calculated from p-values of fits in the fit libraries, while in the refinement 

the raw cross-correlation coefficient is used and calculated “on the fly”. This difference is based 
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on the fact that the component (i.e., rigid body) positions in the refinement stage are not drawn 

from the ensemble of pre-calculated fits but translated and rotated in small increments.  

In practice, an ensemble or single best scoring model(s) can be used as input. The refinement 

calculations can be computationally expensive. Therefore, it is recommended for the user to 

provide input structures that are already approximately fitted to the EM map (e.g., output 

structures from the global optimization). Refinement can also be used independently of any prior 

integrative modelling runs, e.g., to optimize models obtained using other modelling software.  

The refinement, as in the case of global optimization, starts with representing the defined system 

at desired coarse-grained resolutions and proceeds with stochastic sampling of alternative rigid 

body conformations by Monte Carlo simulated annealing. The coordinates of flexible beads are 

optimized using the conjugate gradient algorithm. All output models are sorted by total score 

and, at this point, the user can reconstruct the top modelling solutions at atomic representation 

and continue with the analysis. 

Analysis 

Analysis of the output model ensemble (Figure 1 step 8) entails the assessment of the sampling 

convergence and exhaustiveness, estimation of the sampling and model precision, quantification 

of restraint violation, and selection of representative models or model ensembles. For the 

assessment of exhaustiveness and precision, Assembline provides a command line interface to 

generate modelling output compatible with the imp-sampcon20 toolkit from IMP. The toolkit 

assesses the exhaustiveness based on four statistical criteria and estimates sampling precision as 

the highest precision at which the sampling can be considered exhaustive. For this, the output 

ensemble of good-scoring models is split randomly into two samples of approximately equal size. 

The first two tests assess the convergence of scores and similarities between the distribution of 

scores in the two model samples. The remaining two tests, performed upon structural clustering 

of the models from the two samples, evaluate the structural similarity of models in the samples 

by checking whether each cluster includes models from each sample proportionally to its size 

and if the modelled structures from the two samples are similar in each cluster. This  analysis 

outputs several files describing the contents and metrics of each structural cluster and graphical 

plots summarizing the results of sampling precision assessment20. 
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Comparison with other methods 

Other integrative modelling software have been published and applied to a variety of systems. 

IMP27 and PMI28, which we use in our protocol, can on their own be used for integrative 

modelling. They offer the possibility to construct custom-made integrative modelling protocols 

based on multiple types of restraints, and defining the initial system architecture and its 

representation generically. However, a user of PMI or IMP would typically require Python 

programing expertise to modify and adapt the tutorial scripts to their specific modelling case. In 

contrast, our protocol brings an advantage of a versatile input configuration system consisting of 

a graphical interface and text configuration files that can be applied to a wider range of 

complexes without extra programming. This system enables configuring the input for even the 

most intricate complexes, for which structures of subunits or domains may be scattered across 

dozens of PDB files; parts of the complex might be subject to different restraints; or for which 

multiple symmetries might be present (as with the nuclear pore complexes and bacterial 

secretion systems). Our provided scripts can be applied to new systems without any modification. 

Despite the high-level interface, Assembline nevertheless offers the full functionality of IMP and 

PMI through a Python interface of Assembline. On top of IMP and PMI, our protocol implements 

its own algorithms for efficient sampling of the conformational space and provides additional 

modelling restraints. In particular, our fit library approach, which enables fast exploration of the 

conformational space, and the multi-step optimization algorithm are features not available in 

IMP or PMI. Thus, Assembline benefits from all features of IMP and PMI and extends them with 

novel and easily accessible functionalities. 

Other tools, such as FoXS37, EMageFIT (from IMP) or MultiFit38, have been implemented using 

IMP as an underlying programming library. These tools, however, focus on specific applications 

and do not offer the full flexibility that Assembline or IMP and PMI provide. Our optimization 

approach is conceptually similar to MultiFit38, which also first performs discrete optimization of 

possible configurations followed by refinement. Some limitations of MultiFit38 that motivated us 

to develop a new protocol is the reliance of MultiFit38 on a priori density segmentation that 

defines sub-areas of the map for fitting, but which might exclude good fits before the 

optimization, less extensibility compared to IMP/PMI and Assembline, and no systematic input 
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management system as included in Assembline. Thus, while MultiFit38 and Assembline could lead 

to similar results in some cases, Assembline offers more flexibility, and it is more universal, 

especially for large complexes.  

HADDOCK39 and M340 (which uses HADDOCK internally) offer integrative modelling algorithms 

specializing in higher-resolution modelling with a physical force-field applied to atomistic 

representations or a coarse-grained MARTINI41 representation. HADDOCK can be run either 

through a web-server or command line interface. Advantages of HADDOCK and M3 include full 

support of flexibility and the physical scoring function that can complement experimental 

restraints. Nevertheless, HADDOCK and M3, because of the high-resolution molecular 

representation, still cannot be applied to complexes as large as the nuclear pore complex, and 

do not provide a procedure for efficient sampling of the EM map at a large scale. Thus, HADDOCK 

and M3 could be used to refine smaller complexes modelled with Assembline or to refine 

selected interfaces in models of large complexes.  

Another versatile package for integrative modelling is PyRy3D (http://genesilico.pl/pyry3d), 

which also offers accessible user interface and a variety of restraints. In comparison, Assembline 

enables more efficient sampling algorithms and, by integrating with IMP and PMI, provides more 

restraints and tools for analysis. In principle, ROSETTA software42 can also be used for integrative 

modelling and offers a vast spectrum of modelling algorithms and full support of structural 

flexibility. However, its versatility for integrative modelling applications depends on the 

development of additional customized protocols and thus a considerable level of modelling and 

programming expertise. 

When only an EM map is available, Assembline can be used as a tool for simultaneous fitting of 

multiple components into EM maps. There are several other tools capable of producing models 

through single or multiple-fitting to medium- or low-resolution EM maps by flexible or rigid body 

fitting, for example: UCSF Chimera26, Situs43, Flex-EM44, MDFF45, γ-TEMPy46, CAMPARI47, 

iMODFIT48, MDFIT49, FOLD-EM50, or ATTRACT-EM51. For many EM-only applications and small 

complexes, these tools are sufficient and can be used instead of Assembline. Nevertheless, 

Assembline brings an advantage of a complete and versatile package that integrates all modelling 
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steps, the possibility of restraints other than, and in addition to, EM, and an integrated pipeline 

for analysis of the final models. 

In summary, Assembline brings broad usability and unique algorithmic advantages compared to 

other solutions and seamlessly integrates with complementary modelling programs. 

Limitations 

Out-of-the-box, our protocol is designed for medium-to-low-resolution modelling, approximately 

worse than 4 Å resolution. Although it can be applied to fit subunit structures to high-resolution 

EM maps, other methods are more suitable for atomic-level de novo model building or flexible 

refinement of the resulting models. Currently, it does not support nucleic acids and offers only 

partial support for flexible deformation of structures during modelling through modelling of 

loops as flexible beads and elastic-network restraints between rigid bodies. We plan to address 

these two limitations in future versions of the protocol. As with most optimization algorithms, 

the protocol also relies on multiple parameters that have to be adjusted by the user, which we 

facilitate through appropriate guidelines and examples (see Supplementary Manual and 

Supplementary Tutorial 1,2). 

Expertise needed to implement the protocol 

Users of Assembline should be familiar with the basic principles of structural modelling and 

structural analysis. Familiarity with Unix command line and executing command line programs is 

necessary, but the provided tutorials (Supplementary Tutorial 1, 2) assume only basic knowledge, 

and guide users through all steps with explanations. No programming skills are needed, but users 

should familiarize themselves with the syntax of the configuration files and graphical molecular 

visualization software, which is needed to set up the input and analyze the output. Finally, the 

ability to access and use a computer cluster is beneficial, especially for larger systems.  
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Materials 

EQUIPMENT 

Hardware 

● Personal computer or computer cluster with minimum 50 GB of free disk space and 4 GB 

of RAM memory 

● Internet connection to access the online versions of Assembline usage manual and 

tutorial material (optional), i.e., for S. cerevisiae NPC (ScNPC) and Elongator complex 

modelling 

CRITICAL   

For faster calculations, we advise to run Assembline on a workstation with as many processors 

as possible or on a computer cluster. 

Input data sets 

● Sequences of protein subunits to be modelled in the FASTA format 

● Atomic protein structures (in the PDB format) that will be used to model the protein 

complex 

● cryo-EM densities of the modelling target complex in the MRC format and/or XL-MS data 

in the Xlink Analyzer25 format 

CRITICAL 

Example data sets can be found in https://git.embl.de/rantos/scnpc_tutorial.git (ScNPC 

modelling material) and https://git.embl.de/kosinski/elongator_tutorial.git (Elongator complex 

modelling material). Other structural data types can be used through the standard IMP and PMI 

Python programming interface within a custom_restraints()function of the parameter 

file. 
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Example input files 

● Input sequence FASTA file, PDB structures and cryo-EM maps used for integrative 

modelling of the cytoplasmic ring (CR) Y-complex from ScNPC7 

(https://git.embl.de/rantos/scnpc_tutorial.git). 

● Input sequence FASTA file, PDB structures, XL-MS data sets and negative-stain EM maps 

used for integrative modelling of the Elongator complex29 

(https://git.embl.de/kosinski/elongator_tutorial.git). 

Software prerequisites 

CRITICAL 

Detailed instructions are provided for installation of all prerequisite software in the Assembline 

manual (Supplementary Manual and in the online version: 

https://assembline.readthedocs.io/en/latest/installation.html#). 

● UNIX-based operating system (e.g., Linux, Ubuntu, CentOS) 

● UCSF Chimera26 (free molecular visualization and analysis software) 

● Xlink Analyzer25 plugin for UCSF Chimera26 (graphical interface for Assembline)  

● Anaconda software (open-source distribution for Python and R for scientific 

programming, documentation: https://docs.anaconda.com/) 

● Python programming language (version 3) distribution from Anaconda 

● Assembline package (Anaconda-bundled package from kosinskilab channel in 

Anaconda) 

● IMP27 (version 2.14 or newer, package from salilab channel in Anaconda) 

● Scipy52, numpy53, scikit-learn54, matplotlib55 and pandas 

(http://doi.org/10.5281/zenodo.3715232) Python packages (packages from generic 

channel in Anaconda) 

● pyRMSD56 package (package from salilab channel in Anaconda) 
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● hdbscan57 package (package from conda-forge channel in Anaconda) 

● R programming language distribution from Anaconda 

● fdrtool34, psych (https://cran.r-project.org/web/packages/psych/index.html), ggplot2 

(https://cran.r-project.org/web/packages/ggplot2/index.html), tidyr58, data.table 

packages (packages from generic R channel in Anaconda) 

● optional, Modeller59 package (comparative modelling software free for academic users) 

● gnuplot package (http://www.gnuplot.info/) 

CRITICAL 

The software prerequisites along with the Assembline package that we describe in this work have 

been thoroughly tested in UNIX-based systems with bash terminal, therefore the protocol might 

not work as expected in OS X systems or other shell environments. 

Procedure 

Set up prior to modelling 

Timing ~2 h 

CRITICAL STEP 

In order to proceed with the following steps, first make sure you have installed all prerequisites 

listed in the Software prerequisites section. 

1. Activate the Assembline modelling virtual environment, where all software prerequisites 

have been installed, with the following command:  

source activate Assembline  

or, depending on your Anaconda setup:  

conda activate Assembline 

2. Create a new directory for the modelling project, which will be referred to as the project 

directory, with the following example command for UNIX-based systems:  
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mkdir Elongator 

CRITICAL STEP 

Input and configuration files for Assembline can be located in arbitrary locations on the 

disk, though it is recommended that they are stored in a single directory for easier 

management of the modelling project.  

3. Create a single file (in the FASTA format) with all sequences of the target subunits (i.e., 

subunit is a protein of a target complex) and store it in the project directory. Example 

FASTA file with sequences for the Elongator complex is provided in 

https://git.embl.de/kosinski/elongator_tutorial.git (Elongator complex modelling 

material). 

4. In the project directory create a new sub-directory and store all the structures of the 

target complex subunits in the PDB format. Note that the subunit chains can be organized 

in the PDB files in any way, e.g., a PDB file can contain single or multiple subunits, or extra 

proteins not used in modelling etc. 

CRITICAL STEP 

Make sure that the protein sequence and residue numbering in the PDB files correspond 

to the sequences in the FASTA file. Additionally, it is recommended to prepare the PDB 

files such that each PDB file would correspond to an anticipated rigid body (i.e., there is 

one-to-one mapping between the PDB files and the anticipated rigid bodies) that will be 

used to model the target complex. 

5. In the project directory create a new sub-directory and store all the EM maps in the MRC 

format. These maps will be used for the definition of the EM restraints (read more about 

the EM restraints in Supplementary Manual). 

6. Optionally, in the project directory create new directories and store other available data 

sets that will be used as input for integrative modelling. For example, create a new 

directory called xlinks and store XL-MS data sets in Xlink Analyzer format. 
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Calculation of fit libraries 

Timing ~5 h 

CRITICAL STEP 

The following steps for the calculation of fit libraries can be tested by retrieving and utilizing  the 

fitting data and fitting parameters provided in https://git.embl.de/rantos/scnpc_tutorial.git 

(ScNPC modelling material) and https://git.embl.de/kosinski/elongator_tutorial.git (Elongator 

complex modelling material). Furthermore, the fit libraries will be used as “discrete restraints” 

(read more in Supplementary Manual) during the global optimization runs with Assembline.  

7. Create and store in the project directory a parameter file that includes the paths to input 

PDB structures and EM maps to be used for fitting, the fitting parameters and options for 

execution of fitting on a computer cluster (recommended). An example parameter file is 

provided in https://git.embl.de/kosinski/elongator_tutorial.git (Elongator complex 

modelling material) and detailed explanations are provided in the Supplementary 

Manual.  

8. Run the fitting of the specified input PDB structures in the experimental maps with the 

following command: 

fit.py efitter_params.py 

TROUBLESHOOTING 

9. Upon completion of the fitting, start the analysis of the fit libraries by calculating the p-

values of the individual fits with the following command:  

genpval.py <fitting directory name> 

TROUBLESHOOTING 

10. Optional, enter the directory with a prefix name that includes the fitting parameters (e.g., 

results/search100000_metric_cam_inside0.3_radius500) and 

generate the models (in the PDB format) of best scoring fits for visualization. For example, 

to generate top five fits from a fit library for each input structure:  
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genPDBs_many.py -n5 top5 */*/solutions.csv 

Global optimization 

Timing ~1 h to days depending on the protein complex size and computational resources 

CRITICAL STEP 

Note that the global optimization with Assembline should be run only upon successful generation 

of the fit libraries in the previous steps. 

11. Open Xlink Analyzer graphical interface (Figure 2), which can be accessed as a plugin in 

UCSF Chimera, and create a project for the target complex, which will be used as the 

modelling configuration file (in the JSON format). 

CRITICAL STEP 

Read more on how to install Xlink Analyzer as a plugin for UCSF Chimera and how to create 

a project for the target complex from scratch in the tutorial of Xlink Analyzer described 

by Kosinski et al. (2015)25 (available at https://www.embl-

hamburg.de/XlinkAnalyzer/XlinkAnalyzer.html) and the Elongator modelling tutorial 

(https://elongator-tutorial.readthedocs.io/en/latest/json_setup.html). 

 

Figure 2. An example of Xlink Analyzer interface used for configuring the modelling project. 
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Subunits are defined in the panel on the left, while data is loaded and mapped to subunits in the 

panel on the right.  

12. Add all subunits using the Xlink Analyzer interface. 

13. Assign unique chain ID and color to every subunit. 

14. Optionally, define domains within subunits, which can be used later for e.g., defining 

restraints specific to the domains. 

15. Add sequences using the Setup panel in Xlink Analyzer and map the sequences to names 

of subunits using the Map button. 

16. Optional, add available XL-MS data sets and map the crosslinked protein names to names 

of the subunits using the Map button. 

17. Make a local copy of the Xlink Analyzer project file, e.g. copy the 

XlinkAnalyzer_project.json as X_config.json. The new 

X_config.json will be used as the configuration file for modelling, whereas the 

original file should be kept for analysis of models. 

18. Open a text editor and edit X_config.json project file manually to add modelling 

directives, which include: definition of series (grouping of subunits and domains), 

symmetry information, definition of input PDB structures and rigid bodies, specification 

of fit libraries and definition of spatial restraints. 

CRITICAL STEP 

Due to the different complexity of every modelling project, and plethora of available 

options and combinations in setting up the configuration file, the detailed description of 

how to set up this configuration file along with explanations regarding the definition steps 

are provided in Supplementary Manual. We recommend text editors with syntax 

highlighting to edit the configuration file (in JSON format), for example, SublimeText 

(https://www.sublimetext.com/) and Atom (https://atom.io/). Example configuration 

files can be found in https://git.embl.de/rantos/scnpc_tutorial.git (ScNPC modelling 
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material) and https://git.embl.de/kosinski/elongator_tutorial.git (Elongator complex 

modelling material). 

19. Create a parameter file in Python language format (e.g., params.py), which defines the 

modelling protocol, scoring functions, output parameters and some restraints for the 

global optimization stage and save the file in the project directory.  

CRITICAL STEP 

Note that although the file is in the Python language, no programming skills are required. 

If the modelling is going to be performed on a computer cluster, this parameter file should 

also include cluster submission settings. Detailed description of how to set up this file are 

provided in Supplementary Manual. We recommend text editors with syntax highlighting 

to edit the configuration file (in JSON format), for example, SublimeText 

(https://www.sublimetext.com/) and Atom (https://atom.io/). Example configuration 

files can be found in https://git.embl.de/rantos/scnpc_tutorial.git (ScNPC modelling 

material) and https://git.embl.de/kosinski/elongator_tutorial.git (Elongator complex 

modelling material). 

20. Using the Unix command line, navigate to the project directory and run the global 

optimization using the following example command, which will submit all runs to the 

computer cluster or to a standalone workstation in chunks of N models (i.e., parallel runs) 

according to the number of processors defined through ntasks parameter in the 

parameter file. The following command will submit 1,000 modelling jobs in the computer 

cluster queue or run them consecutively in chunks on a standalone workstation with each 

job leading to one model: 

assembline.py --traj --models -o out --multi --start_idx 0 -

-njobs 1000 X_config.json params.py &>log& 
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TROUBLESHOOTING 

CRITICAL STEP 

Note that the number of processors to be allocated for the modelling runs or cluster 

submission commands and templates should be specified a priori in the parameters file. 

Read more on how to customize the submission of multiple modelling runs according to 

the computational system architecture in Supplementary Manual. Additionally, it is 

suggested to perform a single test run before deploying multiple jobs to a computer 

cluster or even a local workstation with a command similar to the following example: 

assembline.py --traj --models --prefix 0000000 -o out 

config.json params.py 

21. Upon completion of the global optimization runs, enter the output directory, inspect the 

output log files to validate that the included information (e.g., the list of final parameter 

values used for modelling, the summary of the molecular system created, the scores of 

defined spatial restraints) match the expected output. 

TROUBLESHOOTING 

CRITICAL STEP 

In case that the output modelling logs do not include all the modelling parameters and 

restraints set prior to modelling then repeat the previous step after correcting the 

parameter file accordingly. Read more on how to edit the parameter file and how to 

evaluate the output logs in Supplementary Manual. 

22. While in the output directory, generate reports with total scores and individual scoring 

terms for all modelling runs with the following command: 

extract_scores.py 
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TROUBLESHOOTING 

CRITICAL STEP 

The extract_scores.py script will generate several files with lists of models and 

their respective scores. Make sure that the all_scores.csv file and 

all_scores_sorted_uniq.csv files were generated as they will be used as input 

for the analysis in the following steps. 

23. Optionally, plot histograms of all total scores and scoring terms for all modelling runs from 

global optimization with the following command: 

plot_scores.R all_scores.csv 

24. Optionally, while in the output directory, generate the best scoring models from the 

global optimization run in the mmCIF format. For example, to generate the single best 

scoring model):  

rebuild_atomic.py --project_dir <full path to the original 

project directory> --top 1 all_scores_sorted_uniq.csv 

TROUBLESHOOTING 

CRITICAL STEP 

The --project_dir option is only necessary if relative paths were used in the JSON 

configuration file for global optimization. Also note that by default the 

rebuild_atomic.py script will generate only the parts of the models that 

correspond to the specified input rigid bodies, meaning that the flexible bead parts of the 

system (if any) will not be rebuilt. Read more on how to generate flexible beads of 

subunits, or even how to generate best-scoring models in formats other than mmCIF (e.g., 

the PDB format, although this format is not recommended for large systems) in 

Supplementary Manual. 

25. Optional, visualize and inspect the modelling trajectory of the best-scoring models (or any 

other candidate model) by navigating and finding the corresponding trajectory file in 
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traj/ directory in the output folder from modelling and displaying it with UCSF 

Chimera. An example trajectory of the best scoring model from CR Y-complex (from the 

in-cell ScNPC model7) can be inspected in Supplementary Video 1.  

TROUBLESHOOTING 

26. Optionally, while in the modelling output directory, run a quick sampling convergence 

test and inspect the convergence plots that will be stored in a PDF file called 

convergence.pdf with the following command (example command to include 20 

trajectories from the modelling runs):  

plot_convergence.R total_score_logs.txt 20 

CRITICAL STEP 

If the plots clearly indicate no convergence, go back to step 19, increase the number of 

Monte Carlo steps and repeat global optimization. 

27. While in the output modelling folder, create a file containing all subunits (and the residue 

indexes) that will be used to calculate localization probability densities (e.g., 

density.txt) during the sampling exhaustiveness assessment with imp-sampcon 

exhaust tool20 from IMP with the following command: 

create_density_file.py --project_dir <path to the original 

project dir> config.json --by_rigid_body 

CRITICAL STEP 

The output file (e.g., density.txt) from create_density_file.py script is 

required for the following steps of the sampling exhaustiveness analysis; therefore it has 

to be generated with respect to a very specific format. Read more on how to generate 

the density.txt file (as well as how to compile this file for complexes including 

symmetrical copies etc.) in Supplementary Manual. Example density.txt files can be 

found in https://git.embl.de/rantos/scnpc_tutorial.git (ScNPC modelling material) and 

https://git.embl.de/kosinski/elongator_tutorial.git (Elongator complex modelling 

material). Note that in case the modelled complex is homo-oligomeric, an extra file 
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defining the symmetry is needed for the next step and can be generated using a command 

like the following example:  

create_symm_groups_file.py --project_dir <full path to 

project dir> config.json params.py 

28. Run the following command (setup_analysis.py script) which will automatically 

prepare the input files for the sampling exhaustiveness analysis with imp-sampcon 

tool20 from IMP based on the resulting integrative models:  

setup_analysis.py -s <abs path to all_scores.csv file 

produced by extract_all_scores.py> \ 

-o <specified output dir> \ 

-d <density.txt file generated in the previous step> \ 

-n <number of top scoring models to be analyzed, default 

is all models> \ 

-k <restraint score based on which to perform the 

analysis, default is total score> 

TROUBLESHOOTING 

CRITICAL STEP 

Read more about example commands and further options that can be used for the 

setup_analysis.py script in Supplementary Manual. 

29. Enter the output analysis directory created by the previous step (i.e., output directory 

from setup_analysis.py) with the following command: 

cd <analysis directory> 

30. Run the sampling exhaustiveness analysis with the imp-sampcon exhaust tool20 

from IMP to assess the sampling performance of the modelling: 

imp_sampcon exhaust -n <prefix for output files> \ 

--rmfA sample_A/sample_A_models.rmf3 \ 
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--rmfB sample_B/sample_B_models.rmf3 \ 

--scoreA scoresA.txt --scoreB scoresB.txt \ 

-d <path to density.txt file>/density.txt \ 

-m <calculator selection> \ 

-c <number of processors to use> \ 

-gp \ 

-g <float with clustering threshold step> \ 

--ambiguity <symmetry group file if applicable) 

 

CRITICAL STEP 

It is highly recommended to run the sampling exhaustiveness analysis on multiple-

processors workstation or a computer cluster as some of the testing steps during this 

analysis are computationally demanding. Examples for cluster submission options for 

imp-sampcon exhaust are provided in Supplementary Manual and Supplementary 

Tutorial 1 and 2. 

31. Inspect the four output plots and text files. If the sampling has not converged and 

sampling exhaustiveness has not been achieved, perform additional global optimization 

runs or adjust the modelling parameters, for example the number of Simulated Annealing 

steps. 

Recombination (optional) 

Timing ~1 h to days depending on the protein complex size and computational resources 

CRITICAL STEP 

Note that the recombination step should only be run upon completion of the global optimization 

step. 

32. While in the output directory of the global optimization run, use the following command 

to automatically generate the JSON format configuration file for this step: 
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setup_recombination.py \ 

--json <JSON file used for global optimization> \ 

    --scores all_scores_uniq.csv \ 

    -o <output directory for the new fit libraries> \ 

    --json_outfile <desired name for JSON config for

 recombinations> \ 

    --project_dir <original project dir> \ 

--score_thresh <score threshold for selecting the 

models> \ 

--top <number of top scoring models to use for 

extracting the fit libraries> 

33. Navigate back to the main project directory and run a similar command to the following 

example, which will perform 1,000 modelling runs and store output in the global 

optimization output folder. The command will perform the modelling by recombinations 

with Assembline using the freshly generated JSON formatted configuration file (e.g. 

config_recomb.json) and modelling parameter file from global optimization: 

assembline.py --traj --models -o out --multi --start_idx 0 -

-njobs 1000 --prefix recomb config_recomb.json params.py 

&>log& 

TROUBLESHOOTING 

CRITICAL STEP 

For recombination, usually the number of Simulated Annealing steps in params.py can 

be decreased for quicker calculations, because the used fit libraries are smaller. Read 

more on which settings are available and how to modify the parameter file generation 

procedure in Supplementary Manual. 
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34. Analyze the output from the modelling by rigid body recombinations with Assembline by 

following the exact analysis procedure described from step 21 up to step 31 (i.e., repeat 

steps 21-31). It is expected that this step generates additional good-scoring solutions. 

TROUBLESHOOTING 

Refinement 

Timing ~3 h to days depending on the protein complex size and computational resources 

CRITICAL STEP 

Note that the refinement can be run even without prior global optimization (or recombination) 

if the input rigid bodies are already approximately fitted in the EM map. Also, if the results of the 

global optimization are satisfactory, this step can be skipped. However, it is recommended to run 

the refinement to further optimize the models. The refinement mode would be also used as the 

first and the only modelling step if no EM map is available. Read more regarding the refinement 

options in Supplementary Manual or inspect examples of refinement applications in 

Supplementary Tutorials 1 and 2. 

35. While in the main project directory, run a command similar to the following example, 

which will automatically generate a generic configuration file (in the JSON format) based 

on the configuration and parameter files from global optimization: 

gen_refinement_template.py --out_json refine_template.json -

-params params.py --add_series X_config.json 

36. Open a text editor and edit the generated (from previous step) JSON configuration file 

manually to add modelling directives which might include: updated definitions of rigid 

bodies, restraints specific for the refinement, adjusted restraint weights. 

CRITICAL STEP 

The detailed description of how to set up this configuration file along with explanations 

regarding the definition steps are provided in Supplementary Manual. Example 

configuration files can be found in https://git.embl.de/rantos/scnpc_tutorial.git (ScNPC 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.06.438590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438590


modelling material) and https://git.embl.de/kosinski/elongator_tutorial.git (Elongator 

complex modelling material). 

37. In the main project directory, create and edit a copy of the global optimization parameter 

file in Python language format (if global optimization was not run beforehand then follow 

steps 11-19 to generate it from scratch). The final format of the file should be almost 

identical with the global optimization parameter file with the main differences being that 

the modelling protocol to be applied is refinement and the scoring function includes 

scoring terms derived from restraints specific to the refinement method of Assembline. 

CRITICAL STEP 

The detailed description of how to set up this file is provided in Supplementary Manual. 

38. Prepare the top best scoring models from global optimization for refinement with a 

command similar to the following example (which will create a directory containing 100 

folders with input data sets and configuration files for the top 100 models from global 

optimization):  

setup_refine.py \ 

    --top 100 \ 

    --scores out/all_scores_uniq.csv \ 

    --previous_json config.json \ 

    --refine_json_template config_refine_template.json \ 

    --refine_json_outname config_refine.json \ 

    --previous_outdir out/\ 

    --refine_outdir out/refinement 

CRITICAL STEP 

In case the global optimization was not run beforehand and the refinement is applied to 

a pre-existing model, skip this step and specify in the configuration file the paths to the 

PDB files that will be used for refinement.  
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39. Run the refinement for all selected top-scoring models from global optimization (or single 

run in case global optimization was not run beforehand) with a series of commands similar 

to the following example (a bash loop that will apply refinement to the top 100 models 

from global optimization by running 10 refinement runs for each model, i.e. 1,000 runs in 

total):  

for model_id in `ls --color=never out/refinement`; 

    do 

        echo $model_id 

     assembline.py \ 

--traj --models \ 

-o out/refinement/"$model_id"/out \ 

--multi --start_idx 0 --njobs 10 \ 

--prefix refine_"$model_id" \ 

out/refinement/"$model_id"/config_refine.json \ 

params_refine.py 

    done 

TROUBLESHOOTING 

CRITICAL STEP 

Note that the number of processors to be allocated for the modelling runs or cluster 

submission commands and templates should be specified a priori in the parameters file. 

Read more on how to customize the submission of multiple modelling runs according to 

the computational system architecture in Supplementary Manual. Additionally, it is 

suggested to perform a single test run before running multiple jobs with commands 

similar to the following example: 

model_id=`ls --color=never out/refinement | head -n 1` 

assembline.py \ 
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--traj --models --prefix 0000000 \ 

-o out/refinement/"$model_id"/out \ 

out/refinement/"$model_id"/config_refine.json \ 

params_refine.py \ 

rm -r out/refinement/"$model_id"/out 

40. Analyze the output from the modelling by refinement by following the exact procedure 

described from step 21 up to step 31 (i.e., repeat steps 21-31), but now generating the 

scores using the command: 

extract_scores.py --multi 

TROUBLESHOOTING 

CRITICAL STEP 

An example trajectory of the best scoring model (produced with refinement) from nuclear 

ring (NR) Y-complex (from the in-cell ScNPC model7) can be inspected in Supplementary 

Video 2.  

Troubleshooting 

Troubleshooting advice can be found in Table 1. 

Timing 

Steps 1-6, installation, set up of virtual environment for modelling and project directory 

architecture: ~2 h per modelling project, assuming the input datasets are already prepared.  

Steps 7-10, calculation of fit libraries: ~1 h - 5 h, depending on number of input PDB structures to 

be fitted, number of EM maps to be used for fitting and allocated computational resources. The 

calculation of fit libraries for ScNPC takes roughly 3-5 h per input structure and for Elongator 

complex takes around 1-3 h per input structure. 

Steps 11-31, modelling with global optimization and analysis pipeline: ~1 h to days, depending 

on modelling parameters, system configuration settings, size of the complex, and allocated 

computational resources. A single global optimization run (using a single CPU core) for ScNPC 
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takes around 1 h (approximately 20,000 runs to be performed) and for Elongator complex - 6 min 

(approximately 1,000 runs to be performed). 

Steps 32-34, modelling with the recombination step and analysis pipeline: ~1 h to days, 

depending on modelling parameters, system configuration settings, size of the complex, the 

number of selected models to be used for recombination, and allocated computational 

resources. A single recombination run (using a single CPU core) for Elongator complex takes 

around 4 min (approximately 1,000 runs to be performed).  

Steps 35-40, modelling with refinement and analysis pipeline: ~3 h to days, depending on 

modelling parameters, system configuration settings, size of the complex, the number of selected 

models to be used for refinement, and allocated computational resources. A single refinement 

run (using a single CPU core) for ScNPC takes around 3-4 h (approximately 20,000 runs to be 

performed) and for Elongator complex takes around 20 min (approximately 1,000 runs to be 

performed). 

Anticipated results 

The post-processed output of Assembline is an ensemble of models, along with an analysis of 

model uncertainty. The models can be exported in either coarse-grained or atomic resolution as 

PDB or CIF files. 

Overview of integrative modelling output 

The raw output of the integrative modelling stages in Assembline are models stored in bead 

representation, simple text files with rigid body transformations and the respective scores. 

Assembline provides a structural analysis toolkit with which any number of best scoring models 

can be converted to atomic representation and stored in the most common formats (e.g., PDB, 

CIF). For the production of the final atomic models, flexible loops can be rebuilt in a full atom 

representation with Modeller59 using the starting conformations of the loops derived from the 

bead representation. 

As examples, in the following sections we describe how our protocol was applied in our recent 

study to model the nuclear pore complex from S. cerevisiae7 (Supplementary Tutorial 1). We also 

demonstrate the results of modelling of the Elongator complex from S. cerevisiae29, which was 
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originally modelled with the older version of the protocol, but here is presented with the current 

version of Assembline and in a simplified setup suitable for an introductory tutorial 

(Supplementary Tutorial 2). 

Integrative modelling of ScNPC 

The nuclear pore complexes (NPCs) are large macromolecular assemblies that fuse the nuclear 

envelope and facilitate nucleocytoplasmic transport60. They are built by around 30 different 

nucleoporins (Nups) present in multiple copies, which are organized in a triple-stacked ring 

conformation that forms a central transport channel24,60,61,62. In a recent study7, we built models 

of ScNPCs based on in-cell cryo-ET data collected under wild-type and knock-out conditions.  
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Figure 3. Integrative models of ScNPC. Overview of cytoplasmic ring (left), inner ring (middle) 

and nuclear ring (right) of a, the wild-type ScNPC, b, the ScNPC from cells with nup116 gene 

knock-out (at 25 °C) and c, the ScNPC from cells with nup116 gene knock-out (at 37 °C) where the 

cytoplasmic ring is entirely missing (left).  
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The model of the wild-type ScNPC (Figure 3a) was constructed by integrating the data from cryo-

ET maps of individual rings at approximately 25 Å resolution and biochemical data on protein-

protein interactions and membrane-binding motifs63. Two of the three rings, the cytoplasmic (CR) 

and nuclear (NR) rings were modelled using the multi-step procedure of global optimization 

followed by refinement as described above (Figure 1). The inner ring (IR) model was constructed 

by immediately applying the refinement step to a previously published model of in vitro-purified 

ScNPC64. 

Two other cryo-ET datasets were collected under conditions where one of the subunits, Nup116 

linking outer and the inner rings, was genetically knocked-out and cells were grown either at 

permissive (25 °C) or non-permissive (37 °C) temperature. The two conditions led to EM maps 

with approximately 25 Å and 50 Å resolution, respectively. Modelling was performed by first 

rigid-body fitting of the wild-type scaffold NPC rings to the knock-out EM maps and then 

optimizing the models using the refinement step directly, based on the EM maps and the 

interaction restraints. The refinement of the ScNPC model at the non-permissive temperature 

was challenging due to the low resolution of the EM map—the subunits were diverging from the 

initial structure and many different models were equally satisfying the restraints. As a 

troubleshooting solution, we applied an elastic network restraint available in Assembline, which 

enables the preservation of the interfaces between rigid bodies in the starting structure as long 

as the other restraints are not in conflict. The resulting nup116 knock-out NPC model from cells 

grown under permissive temperature included the same scaffold complexes as the wild-type 

ScNPC and exhibited a very similar architecture, except for the missing density for Nup116 (Figure 

3b). In the case of the nup116 knock-out NPC model from cells grown under the non-permissive 

temperature, only the outer nuclear copies of the IR unit and the NR could be confidently 

included in the final model. Therefore, we hypothesized that our model represented a failed 

“inside-out” NPC assembly (Figure 3c). 

Details and instructions in order to reproduce the wild-type and knock-out ScNPC modelling are 

provided in the Supplementary Tutorial 1 (and online at https://scnpc-

tutorial.readthedocs.io/en/latest/).  
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Integrative modelling of the Elongator complex 

Elongator is a complex involved in tRNA modification65. In yeast, it contains six subunits, two 

copies each. In 2017, we published the integrative model of the yeast Elongator based on 

negative stain EM map at resolution of 27 Å and XL-MS data29. For the purpose of this protocol 

article, we repeated the modelling of the Elp123 subcomplex of Elongator by applying the 

updated procedure presented in this work.  

The Elongator modelling case contained three subunits, each in two copies. The crystal structures 

and homology models of entire proteins or individual domains were used as input, grouped in 

nine rigid bodies (four rigid bodies for each of the two asymmetric units and one rigid body 

encompassing two copies of the same subunit) (Figure 4a and Supplementary Tutorial 2). The 

two-fold symmetry was applied as a constraint. From the calculation of fit libraries, between 200 

and 500 fits were obtained for each rigid body. In the global optimization step, 1,000 models 

were generated. At this stage, the models already converged to a specific architecture (Figure 

4b) leading to eight clusters at the sampling precision of around 10 Å and individual cluster (or 

model) precision between 7 Å and 20 Å. The top-scoring models represented very good fits to 

the EM map and only slightly violated the crosslink distance of 30 Å (Figure 4b). Since the 

sampling was exhaustive and at high-sampling precision, the recombination stage did not need 

to be performed. The top 100 unique models were refined, performing ten refinement runs for 

each of the starting models, yielding 1,000 refined models. Two loop regions harboring crosslinks 

were treated flexibly during refinement as chain of Ca chain. The sampling precision obtained 

was approximately 20 Å and four clusters were obtained with precision of individual clusters 

between 10 Å and 20 Å. The top scoring model from refinement belonged to the largest cluster 

and satisfied all crosslinks (Figure 4c). 
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Figure 4. Integrative modelling of Elongator complex. a, Input structures (rigid bodies) used for 

modelling. b, The top-scoring model after global optimization within the EM map (gray 

transparent surface) and crosslinks indicated as blue and red bars (with red color indicating the 

crosslinks exceeding the expected distance of 30 Å, and blue - satisfying this distance). c, The top-

scoring model after the refinement satisfies all crosslinks. 

One challenge that we encountered in this case, which is common for negative stain EM maps, is 

that the calculated fitting libraries contained a very low number of alternative fits when 

generated with default options. This is likely due to high-density in few regions of the map, which 

are not reflecting the internal structure of the complex, but are an artifact of the negative stain 

method. The fit libraries are generated with UCSF Chimera by placing input structures in random 

positions in the map and then optimizing their local fit according to the EM cross-correlation 

score. If high-density regions are present, the optimization would shift the fitted structures to 

those regions, as they would give higher scores, resulting in most of the fits falling in the same 

locations. Thus, in the subsequent global optimization the models contained many clashes and 
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did not lead to plausible models. To overcome this, we generated fit libraries with decreased 

clustering thresholds and less optimization steps, which led to a wider spectrum of fits and good 

scoring models from the global optimization. 

The 3.7 Å cryo-EM structure of Elongator30, published in 2019, confirmed the model (Figure 5). 

The entire architecture was predicted correctly, including not only the localization of the domains 

but also their orientations. Although some features could be predicted only approximately, such 

as the exact orientation of the Elp3 subunit and the N-terminal domains of Elp1, functional sites 

were correctly localized relative to other subunits. This demonstrates that integrative modelling 

can generate models that enable functional interpretation of the structure. 

 

Figure 5. Comparison of the integrative model (a) and the high-resolution cryo-EM structure 

(b) of the Elp123 subcomplex of Elongator. The subunits, domains, and functional sites are 

indicated for comparison. C-ter – the C-terminus, N-ter – N-terminus. 

Details and instructions in order to reproduce the Elongator modelling are provided in 

Supplementary Tutorial 2 (and online at https://elongator-tutorial.readthedocs.io/en/latest/).  
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Supplementary information 

Supplementary Manual 

Assembline installation and usage manual. Detailed manual for Assembline protocol (online 

version: https://assembline.readthedocs.io/en/latest/#), which includes step-by-step 

explanations and suggestions on how to set up and run integrative modelling for any protein 

complex.  

Supplementary Tutorial 1 

ScNPC modelling tutorial. Step-by-step tutorial including explanations for reproducing the ScNPC 

modelling based on in-cell cryo-ET maps as described in Allegretti et al.7 (online version: 

https://scnpc-tutorial.readthedocs.io/en/latest/#). 

Supplementary Tutorial 2 

Elongator complex modelling tutorial. Step-by-step tutorial including explanations and 

suggestions for reproducing the Elongator complex modelling based on negative stain EM map 

and XL-MS data as described in Dauden et al.29 (online version: https://elongator-

tutorial.readthedocs.io/en/latest/index.html#). 

Supplementary Video 1 

CR Y-complex trajectory from global optimization. Animation video depicting the trajectory of 

the best scoring CR Y-complex model of the wild-type in-cell ScNPC7 produced with global 

optimization step. The model is shown in the coarse-grained representation inside the respective 

EM map. 

Supplementary Video 2 

NR Y-complex trajectory from refinement. Animation video depicting the trajectory of the best 

scoring NR Y-complex model of the in-cell wild-type ScNPC7 produced with refinement step. The 
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model (and the symmetrical copies) is shown in the coarse-grained representation inside the 

respective EM map. 
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