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Preface 
I wrote this paper intending to submit it as a Commentary on the Varabyou et al. 2020 Genome 
Research paper1, but apparently, Genome Research does not publish correspondence-type articles. 
That is why it is currently on BioRxiv. If you have suggestions about where this paper could 
potentially be published do not hesitate to contact me. 
 

Abstract 
RNA-sequencing (RNA-seq) has revolutionized our understanding of molecular and cellular biology. 
A central cornerstone in the analysis of RNA-seq is the bioinformatic tools that quantify the data. To 
evaluate the efficacy of these tools, scientists rely heavily on simulation of RNA-seq. Recently 
Varabyou et al. took simulation of RNA-seq data to the next level by providing simulated data, that 
includes simulation of transcriptional noise. While this represents a significant step forward in our 
ability to perform realistic benchmarks of RNA-seq tools, the data provided by Varabyou et al. need 
refinement. In the following, I suggest a few improvements with a specific focus on splicing noise. 
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Introduction 
RNA-sequencing (RNA-seq) has revolutionized our understanding of molecular- and cell biology. It 
is one of the most widely used high throughput methods, with increasing amounts of data produced 
each year. It naturally follows that accurate quantification methods are paramount. Several 
bioinformatic methods have over the last decade revolutionized transcriptomics quantification by 
enabling accurate transcript-level quantification of RNA-seq2–5. An essential component in this 
development is the benchmarking of these tools. Such benchmarking relies heavily on the simulation 
of RNA-seq data2–4. 
 
Recently Varabyou et al.1 reported the first attempt at assessing the extent of transcriptional noise in 
RNA-seq data and include it in RNA-seq simulations. To identify transcriptional noise, Varabyou et 
al. re-use the data from the impressive CHESS project6. In the CHESS project, Pertea et al. use 
StringTie4 to do a guided transcript assembly on the GTEx dataset7, which contained 9795 human 
RNA-seq samples from 49 tissues. The result of running the StringTie pipeline on all these samples 
was, after some filtering, ~20.7 million distinct transcripts, of which ~11.8 million overlapped known 
genes1. Next, Pertea et al. applied a series of stringent filters that reduced the ~20.7 million transcripts 
to the ~300.000 that constitute the CHESS reference database6. In Varabyou et al., the authors define 
all the ~20.4 million transcripts that did not make it into the final CHESS reference as noise1. 
Depending on the extend and type of overlap with the CHESS database, these noise transcripts were 
further sub-classified as intergenic, intronic, and splice noise. Varabyou et al. then sampled a set of 
real and noise transcripts and used the Polyester tool8 to simulate the noise containing RNA-seq data 
use for the their benchmark. 
 
While this research represents a significant step forward in our ability to benchmark RNA-seq 
quantification methods, the analysis and simulated data provided by Varabyou et al. suffer from a 
series of potential problems that I will describe in the following. 
 
 

Results 
The Overlap of Transcript Types 
To select what transcripts are provided to Polyester, Varabyou et al. use an elaborate sampling scheme 
based on quantifying both reference and noise transcripts in the GTEx data. While this approach 
preserves inherent transcription relationships between transcripts, it appears that it has an unintended 
consequence: Noise is simulated from a large number of genes where expression of real transcript is 
not simulated. The overlap between genes with real and splicing noise is shown for a representative 
sample in Figure 1A. Across all 30 simulations provided by Varabyou et al., I find, on average, only 
43.5% of intronic noise and 53.7% of splicing noise originate from genes where expression of real 
transcripts is also simulated (Figure 1B). Wrong transcript assembly, splicing noise (and to some 
extent also intronic noise) is expected to be a by-product of real transcription10. Therefore, the lack 
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of real transcripts could be problematic and might affect the false positive numbers and false positive 
rates reported in the benchmark presented by Varabyou et al. 
 

 
Figure 1: Overlap of genes containing real and noise transcripts. 

A) Venn diagram of genes with real and splicing noise from a representative sample (Tissue 1, sample 9). B) Summary 
of overlap in all 30 simulations. For each type of noise (x-axis), the fraction of genes with simulated noise overlaps with 

the simulation of real transcripts (y-axis). 
 
 
Defining Real and Noise Transcripts 
Another potential problem arises due to the different objectives of the CHESS and Varabyou et al. 
studies. The aim of the CHESS project was to establish a new reference transcriptome. This task 
naturally necessitates the application of a long list of strict filters. In contrast, Varabyou et al. aim to 
estimate “realistic transcriptional noise”. For this aim, strict filtering could be problematic since many 
real transcripts would be defined as noise. In short, by directly reusing the CHESS data, Varabyou et 
al. might be too stringent in the definitions of which transcripts are real and which are noise thereby 
overestimating the noise. 
 
To assess this problem from an orthogonal angle, I use IsoformSwitchAnalyzeR11 to characterize the 
transcript features of the Varabyou et al. simulations. From analyzing Open Reading Frames (ORF), 
the coding potential12, protein domains13, Premature Termination Codons (PTC), and the length of 
different transcript features, it is clear that intronic and intergenic noise transcripts are very different 
from real transcripts (Figure 2). On the other hand, a non-negligible fraction of the transcripts defined 
as splicing noise appears to be indistinguishable from real transcripts (Figure 2). The main difference 
between real and splicing transcripts seems to be that a smaller fraction (70.9% of real, 46.9% of 
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splicing) have coding potential and that, in general, splice noise transcripts are somewhat shorter and 
have shorter ORFs. The shorter transcripts could be explained by the multiple CHESS filtering step 
where transcripts “contained in another transcript” are excluded6. However, this is speculation since 
it is unclear what “contained” means in the context of both transcript and exon boundaries (e.g., will 
a transcript with a downstream alternative donor splice site or an exon-skipping event be removed?). 
By classifying these seemingly real transcripts as noise, the noise estimates provided in Varabyou et 
al. could be inflated. 
 

 
Figure 2: Characterization of transcripts included in the Varabyou et al. simulations. 

A) For each transcript type (x-axis), the percent of transcripts (y-axis) with specific annotations is shown. Sub-
plots indicate different annotations. PTC: Premature Termination Codon (which typically results in the 

transcript being degraded by Nonsense Mediated Decay (NMD). Coding potential is calculated by CPAT. B) 
Overview of continuous variables for a representative sample. For each transcript type (x-axis), different 

continuous variables (sub-plots) are shown as violin plots where dots indicate 25th, 50th (median), and 75th 
percentile. Coding potential is calculated by CPAT. 
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Choice of simulation type 
Varabyou et al. choose to use Polyester8 to simulate single-end RNA-seq data. This seems strange as 
the quantification tools used are all 1) Designed to utilize paired-end data2–4 and 2) More accurate 
when used with paired-end data14. Varabyou et al. writes that it is due to problematic coverage of 
transcripts shorter than the fragment size. This argumentation seems peculiar given that most RNA-
seq protocols specifically select for fragments transcripts in the 100-500 nucleotide range meaning 
this problem will only affect the less than 0.1% of the simulated “real” transcript that are shorter than 
500 nucleotides. Notably the GTEx data used by the authors to both define and simulate noise 
transcripts was created using an RNA-seq protocol which includes a size-selection step. 
 
Aggregating Noise 
Lastly a potential problem could arise from how the combined reference transcriptome was created. 
Varabyou et al. aggregate information from 9795 RNA-seq datasets to a single reference set 
containing both real and noise transcripts. All these 20.7 million transcripts (~486 transcripts per 
gene) are then used as a reference to quantify each individual GTEx sample. Noise levels are 
subsequently defined as the combined abundance of the transcripts defined as noise. Since transcript 
level quantification from short reads is challenging and affected by both the type of data14 (single vs 
paired-end) and the accuracy decreases as the number of transcripts increases15 the aggregation of 
noise from thousands of samples could inflate the noise estimates in individual samples simply 
because so many overlapping transcripts are quantified. Since the GTEx data is used to define the 
abundance levels for the RNA-seq simulation this problem will also have a spillover effect to the 
benchmark performed by Varabyou et al. Furthermore this problem probably increases when 
considering that the algorithm used to reconstruct the transcripts in the first place, like any other 
algorithm, is not perfect4, meaning assembly errors will also be accumulated and subsequently 
defined as noise. 
 
Discussion 

While I believe including transcriptional noise in RNA-seq simulations is an important step forward, 
the approach used by Varabyou et al. leaves room for improvement. Here I have discussed potential 
improvement in the overlap of transcripts, the definition of “noise” vs. “real”, the choice of simulation 
type as well as the problem of aggregating. From this it is clear that simulating transcriptional noise 
is not straight-forward and there are still many unanswered questions, including determining the 
extend of (the different types of) transcriptional noise in humans. 

Data availability 
The data collected via the IsoformSwitchAnalyzeR workflow for the representative sample (see 
methods) is summarized in the supplementary table and is available un-summarized via the four 
switchAnalyzeRlist R objects (saved as a single Rdata file) that can be found at 
doi.org/10.6084/m9.figshare.14307842. All data and scripts are available upon request. 
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Methods 
Data 
I downloaded the data Varabyou et al. used to simulate the RNA-seq data from 
https://doi.org/10.25739/v903-wd86 (The “simulated_experiments.tar.gz” file). The CHESS v2.2 
reference GTF was downloaded from http://ccb.jhu.edu/chess/. 
 
Gene overlap 
I imported each of the 120 simulated GTF (4 transcript type for each of the 30 simulations) files into 
R using rtracklayer::import() and extracted the sample name and transcript type (both from the 
filename) and gene ids (from the GTF file). Gene ids for different transcript types were compared 
within the same sample. The representable sample shown in figure 1A was chosen as the one where 
the overlap was closest to the average (t1_s9). 
 
Transcript analysis with IsoformSwitchAnalyzeR 
I used IsoformSwitchAnalyzeR [Ref] 1.13.06 for all analyses modifying the entire workflow to not 
only analyze isoform switches by setting onlySwitchingGenes = FALSE in all functions. 
 
From each of the 120 simulated GTFs, I created a switchAnalyzeRlist by importing the GTF into R 
using rtracklayer::import(), creating a dummy count matrix and design matrix which allows us to use 
the importRdata() function. In addition to the isoforms from the simulated GTF, I added all CHESS 
2.2. reference transcripts from the same genes which were not already present in the 
switchAnalyzeRlists were created. 
 
CDS were added as ORFs for transcripts originating from the CHESS reference using the 
addORFfromGTF() function. Next, I analyzed all transcripts not already annotated with an ORF for 
ORFs using the analyzeNovelIsoformORF() function with the analysisAllIsoformsWithoutORF = 
TRUE, orfMethod = 'longest.AnnotatedWhenPossible' and minORFlength = 180 arguments. This 
means that all transcripts without an annotated ORF were analyzed for potential ORFs. If the 
transcripts overlapped known translation start sites, these were used for the ORF analysis. An ORF 
had to be ORF to be at least 180 nucleotides (60 amino acids) to keep the same (stringent) criteria as 
the original CHESS analysis. To distinguish it from the more standard ORF definition of 100 
nucleotides (33-34 amino acids), I refer to these longer ORFs as CHESS ORFs. 
 
The biological sequences of the transcript sequences were extracted with the extractSequence() 
function. For both amino acids and nucleotide sequences, I created one non-redundant fasta file 
containing the sequences from all switchAnalyzeRlists. Coding potential was analyzed with CPAT v 
1.2.3 [Ref], and protein domains were analyzed using Pfam [Ref]. 
 
The coding potential analysis was added to the switchAnalyzeRlists using analyzeCPAT() using the 
codingCutoff = 0.725 and removeNoncodinORFs = FALSE arguments. Protein domains were added 
to the switchAnalyzeRlist using analyzePFAM(). 
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To analyze alternative splicing, the switchAnalyzeRlists were first reduced to multi-transcript genes 
using preFilter() and analyzing splicing with the analyzeAlternativeSplicing() function. 
 
Complete data and summary statistics were extracted, calculated, and visualized using tidyverse. The 
representable sample shown in Figure 2B was chosen based on which sample had the fraction of 
transcripts with CHESS ORFs closes to the mean of all samples (t0_s5). 
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