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ABSTRACT 12 

Despite the promising features of neural interfaces, their trade-off between information transfer 13 
and invasiveness has limited translation and viability outside research settings. Here, we present 14 
a non-invasive neural interface that provides access to spinal motoneuron activities from a sensor 15 
band at the wrist.  The interface decodes electric signals present at the tendon endings of the 16 
forearm muscles by using a model of signal generation and deconvolution. First, we evaluated 17 
the reliability of the interface to detect motoneuron firings, and thereafter we used the decoded 18 
neural activity for the prediction of finger movements in offline and real-time conditions. The 19 
results showed that motoneuron activity decoded from the wrist accurately predicted individual 20 
and combined finger commands and therefore allowed for highly accurate real-time control. 21 
These findings demonstrate the feasibility of a wearable, non-invasive, neural interface at the 22 
wrist for precise real-time control based on the output of the spinal cord. 23 

 24 
INTRODUCTION 25 
In our ever-growing digital world, human-machine interaction has a pivotal role not only in 26 
defining our relationship with technology but also in determining its usability and effectiveness. 27 
However, current user input systems, such as keyboards or touchscreens, are constrained by the 28 
possibilities of the physical world to capture and deliver users’ intentions. Bypassing these 29 
intermediary devices would revolutionize our interaction with technology, making control more 30 
intuitive and human centered. Neural interfaces offer a direct decoding of a user’s intentions 31 
from the nervous system and thus may enable an intuitive interaction with the environment by 32 
translating neural activity into digital inputs to external devices. This approach targets the neural 33 
code of motor commands to provide seamless and enhanced control of external systems.  34 
 35 
Traditionally, signals from the brain have been leveraged to control prostheses(1), 36 
wheelchairs(2), and exoskeletons(3), among other systems(4, 5). Nonetheless, direct brain 37 
interfaces are currently constrained by a trade-off between their information transfer and 38 
invasiveness, with non-invasive systems providing substantially smaller information bandwidth 39 
than invasive devices(6). Furthermore, acceptance of brain interfaces for daily use outside 40 
rehabilitation applications remains uncertain. In comparison, the peripheral nervous system 41 
offers a more accessible window to motor volition(7). Motoneurons in the spinal cord translate 42 
the synaptic inputs they receive from supraspinal centers and peripheral afferents into a neural 43 
output sent to the muscles(8). The axonal action potentials generated by motoneurons reach the 44 
neuromuscular junctions to excite muscle fibers. This generates muscle fiber action potentials 45 
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that propagate from the neuromuscular junctions to the tendon endings(9), generating electric 46 
fields detectable on the skin via surface electrodes(10). When detected over active muscles, this 47 
electrical activity is the electromyographic (EMG) signal, which has been extensively used as 48 
input for neuroprostheses(11). 49 
 50 
The most common approach to human-machine interfacing for decoding distal movements of the 51 
upper limb is to record EMG from forearm muscles, yet the least obtrusive and most socially 52 
acceptable location for long-term adoption of wearable devices is at the wrist due to social 53 
acceptance of wristwatches(12, 13). Tendon tissues are dominant at the wrist, and there is 54 
minimal muscle mass at the end of several forearm muscles (Fig. 1). Nonetheless, electric fields 55 
generated by neural activation can still be detected at the tendons due to volume conduction (Fig. 56 
1). Hereafter, we will refer to signals recorded over tendon tissue as tendon electric signals.  57 
 58 
A few studies have recorded the electrical activity at the wrist to decode motor intention(14–16), 59 
but the reported accuracy has been generally low. Using temporal EMG features, Botros et 60 
al.(16) achieved 88% classification accuracy in offline prediction of individual finger tasks and 61 
Jiang et al.(15) obtained 75% in a real-time control task. These accuracies are lower than those 62 
generally reported with classic EMG recordings from the forearm(17, 18). This poor 63 
performance has been explained by the convergence of multiple muscle tendons in a reduced 64 
space, which results in high crosstalk between the signals recorded at the wrist.  65 
 66 
Estimating activity of spinal motoneurons that indirectly generate the recorded fields is an 67 
alternative approach for recording electric potentials at the wrist achieved by reversing the 68 
generative model of the recorded potentials (Fig. 1). This approach has been developed for 69 
muscle recordings but not for tendon potentials. For muscle signals, the inverse problem is often 70 
solved by blind source separation(19–23).  The sparseness of the estimated sources is maximized 71 
under the assumption that the action potentials of the muscle fibers innervated by each 72 
motoneuron are unique with respect to those elicited by other motoneurons. The latter 73 
assumption is satisfied when the number of observations (sensors) is sufficiently large, i.e. in the 74 
range of tens to hundreds(24).  75 
 76 
The electrical activity recorded over tendon tissue can also theoretically be separated into 77 
contributions of individual neural sources. Each motoneuron discharge generates an electric field 78 
transmitted through the tendon tissue that can be distinguished from the fields generated by other 79 
motoneurons. The biophysical properties of electric potentials recorded over tendon tissues are 80 
known (25–28), but these signals have not previously been used to identify individual 81 
motoneuron discharges. 82 
 83 
Here we propose an innovative interface that decodes spinal motoneuron discharges from tendon 84 
electric signals at the wrist to develop a non-invasive, unobtrusive, and socially acceptable 85 
wearable. The scientific rationale of the approach is that the end-of-fiber components of the 86 
muscle fiber action potentials that produce the tendon electric fields have the same timing (with a 87 
constant delay of a few ms) as the axonal action potentials from the spinal cord(29). Therefore, 88 
we recorded tendon electric signals with modular and flexible electrode arrays that adapt to the 89 
users’ body(30). This compact design can also be paired with highly embedded systems and 90 
wireless communication to develop wearable recording devices(31). Here we demonstrate that 91 
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the decoded tendon signals from these recordings indeed correspond to individual spinal 92 
motoneuron discharges, and that this neural decoding enhances the information transfer to 93 
accurately predict individual and combined finger movements in offline and real-time control 94 
conditions. With this demonstration, we present a new high-fidelity, non-invasive, unobtrusive, 95 
and socially acceptable wearable neural interface at the wrist as a viable alternative to invasive 96 
neural recordings or traditional muscle interfaces.  97 
 98 
RESULTS  99 

To validate the wrist-wearable neural interface, we investigated the physiological properties of 100 
the decoded tendon electrical signals, and then assessed their potential for offline and real-time 101 
prediction of finger tasks. In experimental sessions, nine participants performed isometric 102 
contractions of individual fingers as well as of the combinations of thumb, index, and middle 103 
fingers at 15% and 30% of maximal force. During the tasks, high-density electrode arrays were 104 
placed around the circumference of the wrist (at least 100 channels arranged in rows of 5 105 
electrodes; Fig. 2) to record tendon electric signals. Supplementary Fig. 1 shows the spatial 106 
distribution of the average activity recorded at the tendon for each finger flexion and subject. In 107 
addition, high-density electrode arrays were mounted along the circumference of the forearm 108 
(not shown in Fig. 2, see Supplementary Fig. 2) to validate the neural nature of the decoded 109 
tendon electrical activity (see Methods). 110 

Physiological analysis 111 

The tendon electric signals were decomposed into a series of discharge timings (decoded tendon 112 
electric signals) by a convolutive blind source separation algorithm (see Methods). A 113 
representative contraction with the force profile, one tendon electric signal, and the 114 
corresponding decoded activity are depicted in Fig. 2.c. Once the tendon signals have been 115 
decoded, the spatial representation of the electric potentials can be recovered by spike-triggered 116 
averaging the tendon electric signals over time intervals centered at the detected discharge times 117 
(see Methods). Fig. 2.d shows representative 2D amplitude maps of tendon electric signals and 118 
three examples of the electric potentials generated by single motoneurons and volume 119 
conduction. The distributions of electric potentials recovered from the wrist are unique for each 120 
motoneuron, with high synchronization in their peak amplitude times due to the end-of-fiber 121 
nature of these electrical activities. 122 

On average, 6 ± 3 motoneurons were identified by source separation of the tendon electric fields 123 
per finger contraction at each force level. To ensure that this decoded tendon electrical activity 124 
indeed represented the neural output from the spinal cord, the discharge timings of the decoded 125 
tendon electric signals were used to trigger an average of the EMG signals concurrently recorded 126 
at the forearm (see Methods and Supplementary Fig. 2). The rationale for this processing is that 127 
if the discharge times decoded at the wrist correspond to the times of activation of spinal 128 
motoneurons, then the triggered average should identify muscle fiber potentials at the forearm 129 
above the baseline noise. Indeed, motoneuron activity determines muscle fiber activity 130 
synchronous with the motoneuron firings. Therefore, if the decoded times of activation from the 131 
wrist determine action potentials of muscle fibers at the forearm when used as triggers, they must 132 
correspond to discharge patterns of motoneurons. This approach provided a means for robustly 133 
validating the wrist neural interface. The action potentials at the forearm obtained by spike-134 
triggered average were considered above the baseline noise if their peak amplitude was greater 135 
than four times the noise level, as commonly assumed in spike sorting(32) (see Methods and 136 
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Supplementary Fig. 2). From the total population of 970 detected motoneurons at the wrist, 703 137 
(72.47%) resulted in detectable action potentials at the forearm. This is an extremely high 138 
proportion, considering that motoneurons detected at the wrist may innervate muscle fibers deep 139 
into the muscle which therefore would not produce sufficiently large action potentials at the 140 
forearm skin surface. This result indicated that the timings of activation decoded from the tendon 141 
electric fields indeed correspond to neural activity from the output layer of the spinal cord. This 142 
demonstrates that a peripheral recording from the skin overlying tendon tissue can be decoded 143 
into the ultimate neural code of movement. 144 

The quality of the decoding of tendon electric fields was further validated with a measure of 145 
pulse-to-noise ratio(33) (PNR) of the estimated discharge activation patterns.  The PNR is an 146 
estimate of the mean square error of the motoneuron spike detection that measures the ratio 147 
between the mean energy of the spikes at the discharge times and the baseline of the signal(33). 148 
At both force levels, the PNR was greater than 30 dB and generally higher than usually observed 149 
when decoding classic EMG recordings from the forearm(34–37) (38.9 ± 2.3 dB and 39.6 ± 3.0 150 
dB for 15% and 30% force efforts, respectively) (Fig. 2.e). These levels of PNR correspond to an 151 
accuracy in detection of spikes in the estimated sources with >90% sensitivity and < 2% false 152 
alarm rate(33).  153 

After validating the decoding procedures, we further analyzed the properties of the decoded 154 
discharge patterns to verify whether they were consistent with known physiological properties. 155 
We extracted the average discharge rate of each identified motoneuron as well as the coefficient 156 
of variation of the estimated inter-spike intervals (ratio between the standard deviation and mean 157 
of the inter spike intervals expressed as a percentage). The estimated motoneuron discharge rates 158 
were within the physiological range of 5-25 Hz(38, 39) at both force levels (12.23 ± 1.58 Hz and 159 
12.90 ± 2.14 Hz at 15% and 30% force efforts, respectively) (Fig. 2.e), being significantly higher 160 
at 30% than at 15% force effort (F1, 8 = 12.879, p = 0.007), in agreement with motoneuron’s rate 161 
coding in force production(9). The coefficient of variation of the estimated inter spike intervals 162 
was 23.51 ± 3.63% and 24.47 ± 4.01%, for 15% and 30% force efforts, respectively (Fig. 2.e), 163 
which is within known physiological values(40).  164 

The analysis of accuracy via spike-triggered average and PNR, as well as the physiological 165 
analysis of motoneuron behavior demonstrated the validity and accuracy of the proposed 166 
decoding technique. Overall, these results prove the accurate identification of the activity of 167 
individual spinal motoneurons through non-invasive wearable recordings overlying the tendon 168 
endings at the wrist. After confirming validity and accuracy, we established a human-machine 169 
interface based on the proposed neural decoding approach. 170 

User intent prediction (offline) 171 

The decoded motoneuron activity was used to classify finger movements (Fig. 3). As a reference, 172 
we compared the classification from motoneurons with that obtained using the tendon electric 173 
signals before decoding. Relevant features for pattern recognition (see Methods) were extracted 174 
from the motoneurons and tendon electric signals and were fed into independent neural networks 175 
for classification. In a first scenario, the neural network was trained with the steady contraction 176 
part of all finger tasks and rest (10 classes in total) at either 15% or 30% force effort following a 177 
ten-fold cross validation approach (see Methods and Fig. 3). Figure 3 shows the resulting 178 
classification accuracy, which was significantly higher for the decoded motoneurons than for the 179 
un-decoded tendon electric signals at both 15% (96.93 ± 2.09 % vs 81.23 ± 10.04 %; F1,8 = 180 
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23.379, p = 0.001) and 30% force efforts (97.60 ± 1.75% vs 85.62 ± 6.86 %; F1, 8 = 31.036, p = 181 
0.001). In addition, the effect of force was only significant for the tendon electric signals, 182 
yielding in higher classification accuracy at the highest force effort (F1, 8 = 8.026, p = 0.022).  183 

To simulate more realistic control conditions with variable force levels, the classification 184 
accuracy was also calculated after training and testing with finger contractions from both force 185 
levels combined following a ten-fold cross validation (see Methods and Fig. 3). The gain in 186 
classification accuracy when decoding the tendon signals was even greater in this condition 187 
(95.65 ± 2.76 % vs 69.04 ± 10.61% for decoded and un-decoded tendon signals, F1,8= 64.606, p 188 
< 0.001). The results obtained without decoding the neural activity were consistent with those 189 
reported in previous studies(15) and indicate poor classification performance. Conversely, the 190 
proposed neural decoding allowed for >95% accuracy over ten finger tasks at multiple force 191 
levels, which was substantially greater than without decoding the tendon signals as well as than 192 
conventional EMG-based interfaces(16, 17, 41). 193 

Overall, the motoneuron activation patterns identified from the wrist provided a highly accurate 194 
prediction of finger tasks.  195 

Real-time control 196 

We then implemented the decoding and classification in real-time and tested the resultant 197 
interface in an online control task on four participants. As for the offline analysis, we compared 198 
the real-time control results with the control achieved without decoding the tendon electric 199 
signals. Figure 4a shows the processing pipeline. Three repetitions of rest, plus each individual 200 
finger contraction, and all combinations of thumb, index, and middle (10 tasks in total) were 201 
recorded to train a neural network using the same signal features as for the offline analysis (see 202 
Methods and Supplementary Fig. 3). The training set was also used to calibrate the decoding 203 
parameters to be thereafter applied in real time to extract the corresponding motoneuron activity 204 
(see Methods). The motoneuron decoding and the classification were then applied online and 205 
used for control of finger tasks. Figure 4b shows the decoded signals obtained during this process 206 
from one representative participant. On average, 78 ± 8 motoneurons were identified across all 207 
tasks for each participant. During the online tests, 4 targets per class (40 in total) were presented 208 
to the participants in randomized order. The participants were given 5 s to attempt each target 209 
with a success condition of maintaining the correct gesture for 500 ms (Fig. 4c). The mean 210 
completion rate resulted significantly higher for the motoneuron (93.12 ± 2.39 %) than for the 211 
un-decoded tendon electric signals (56.87 ± 18.41%), while maintaining similar completion 212 
times (1.81 ± 0.89 s vs 1.65 ± 0.82 s). 213 

The poor online control capacity when using tendon electric signals from the wrist without 214 
decoding is in agreement with previous work(15) and indicates the poor discrimination power of 215 
mixtures of electric fields activated by motoneurons. Conversely, the control using separated 216 
motoneuron activation patterns was extremely accurate and provided large information transfer 217 
(10 classes, ⁓93% successful task completions). 218 
 219 
DISCUSSION  220 
We have demonstrated that the neural information sent from the spinal cord to muscles can be 221 
accurately decoded at the single motoneuron level with a wearable technology mounted at the 222 
wrist. This technology allowed for the accurate real-time control of 10 commands elicited by 223 
finger tasks. Thus, we have designed a unique neural interface with high information transfer 224 
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rate. The presented results show the potential of future portable, battery-operated systems worn 225 
at the wrist as un-obtrusive and viable neural interfaces to use in daily living. 226 
 227 
The neural origin of the decoded tendon signals was proven by retracing the muscle fiber action 228 
potentials from concurrent recordings from the forearm via spike-triggered averaging 229 
(Supplementary Fig. 2). This approach showed that the majority of the sources identified at the 230 
wrist coincided with action potentials at the forearm muscle fibers which were well above the 231 
baseline noise. This result demonstrates the neural origin of the decoded activity. Indeed, if the 232 
decoded activity were not generated by motoneurons, spike-triggered averaging on muscle 233 
electrical signals would yield only noise as it would be equivalent to average uncorrelated EMG 234 
signals at the forearm. The observation that approximately 30% of the decoded motoneurons did 235 
not result in averaged potentials above the noise level is explained by the location of the muscle 236 
fibers innervated by the detected motoneurons. For instance, the flexor digitorum superficialis, 237 
the flexor digitorum profundus, and the flexor pollicis longus are located deep in the forearm and 238 
therefore their innervating motoneurons generate electric potentials detectable at the wrist that 239 
may not be at the forearm. Interestingly, this indicates that the limitations of EMG recordings to 240 
superficial muscles may be surpassed by tendon recordings when multiple muscles converge into 241 
a common tendon area, such as at the wrist. In addition to proving the neural origin of the 242 
decoded activity by spike-triggered averaging, we also computed the pulse-to-noise ratio (known 243 
estimate of the mean square error(33)), coefficient of variation of the inter spike intervals 244 
(associated to the likelihood of erroneously detected action potentials(40)), and action potential 245 
discharge rate (used as a physiological indicator(38, 39)). All metrics were well within the 246 
expected accuracy and physiological standards, showing that the decoded tendon electric signals 247 
were reliably extracted and corresponded to the neural output from the spinal cord (Fig. 1).  248 
 249 
The number of identified motoneurons (6 motoneurons per finger contraction at both force 250 
efforts) was consistent with the results by Stachaczyk et al.(42) who identified between 5-8 251 
motoneurons per finger contraction when recording signals from the forearm flexor muscles. 252 
Interestingly, however, the pulse-to-noise ratio levels observed at the wrist in this study were 253 
greater than those usually reported for forearm recordings. Moreover, as discussed above, the 254 
decoding from the wrist was not biased towards detecting superficial muscles since the effect of 255 
the volume conductor at the wrist is less than at the forearm. Furthermore, the signal 256 
characteristics at the wrist are different than that at the belly of the muscle. The electric 257 
potentials recorded at the wrist are end-of-fiber components(25), which are non-propagating 258 
potentials highly synchronized across channels (as shown in Fig. 2d) and shorter in time than the 259 
propagating signals recorded from muscles(43). These characteristics result in greater temporal 260 
sparsity at the tendons because of the shorter duration of the individual potentials. Therefore, the 261 
raw tendon signals can be modelled as convolutive mixtures in which the filters applied to the 262 
sources have relatively short duration (see Methods). Short duration filters are easier to 263 
compensate since they better approximate delta functions that represent the sources. This also 264 
results in sparser observations. Overall, we have not only shown that electrical potentials 265 
recorded from tendon tissue can be decoded into neural activity but also that recording from the 266 
wrist may even be preferable over conventional muscle recordings in term of representativeness 267 
of the decoded information and accuracy. 268 
 269 
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From the decoded signals, we performed an offline classification with the aim of using the wrist 270 
interface for control applications. Results showed that the decoded signals accurately predicted 271 
finger tasks for up to 10 classes with significantly higher accuracy than the tendon electric 272 
signals without decoding. The classification accuracy for the un-decoded tendon electric signals 273 
(~83%) was slightly higher than the one obtained by Jiang et al.(15) in a real-time gesture 274 
prediction task (~75%). Although only four sensors were used in that previous study, their 275 
location was consistent with our electrode placement below the head of the ulna. In contrast, 276 
Botros et al.(16) reported higher accuracies (~88%) for offline single and combined finger 277 
prediction using the same feature set, but their electrodes targeted the muscle fibers in the 278 
proximal and medial part of the wrist instead of the tendons. The main limitation of the tendon 279 
electric signals is their high crosstalk due to the convergence of the muscle tendons in a reduced 280 
space. This contributes to the high overlap between the classes in the spatial activity maps 281 
(Supplementary Fig. 1) and feature space (Supplementary Fig. 3) of the tendon electrical signals, 282 
which resulted in an overall lower performance than the decoded signals. In contrast, previous 283 
studies by Dai and Hu showed that myoelectric activity spatial maps from the forearm can 284 
indeed differentiate between individual finger flexions(44) and extensions(45) when a large 285 
muscle area is covered. For the flexors, the performance even improved when both myoelectric 286 
and neural spatial maps were used(44). 287 
 288 
To increase the information transfer and enhance the separability between finger classes despite 289 
the limited area, the tendon electrical signals need to be decoded into the neural output of the 290 
spinal cord. However, no other study has previously addressed the potential of the wrist for non-291 
invasive neural interfacing, thus the only comparative results are from the forearm. In a finger 292 
prediction task, Stachaczyk et al.(42) obtained similar classification accuracy for the neural 293 
output of the spinal cord at the forearm (98%) to the presented here at the wrist (~97%), although 294 
only for individual finger tasks (the four digits, excluding the thumb, while here we tested 295 
classification over 10 tasks comprising individual and combined finger gestures). Therefore, the 296 
reported accuracy in finger task classification when decoding motoneurons from the wrist is even 297 
superior to that of motoneurons decoded from muscle tissue. Stachaczyk et al.(42)  also found 298 
that the neural output was robust to variations in the force level, unlike myoelectric signals from 299 
the forearm when predicting finger flexions(42). Indeed, the increased classification error of 300 
tendon electric signals when both force levels were combined was in agreement with previous 301 
literature on the effect of dynamic contractions in myoelectric pattern recognition(46, 47). These 302 
findings suggest that motoneurons discriminative power between fingers does not rely on spatial 303 
information, nor on force encoding. This is supported by the feature map of the decoded tendon 304 
electric signals presented in Supplementary Fig. 3 where the different classes exhibit higher 305 
separability than in the raw feature space, despite targeting the same area and corresponding to 306 
multiple force levels.  307 
 308 
Additional real-time experiments were carried out with multiple repetitions to validate and 309 
extend the offline results to real-life interfacing scenarios. This analysis showed that the decoded 310 
tendon electric signals from the wrist can be accurately detected, and enabled real time 311 
interfacing with over 70 motoneurons. Moreover, this neural decoding led to high reproducibility 312 
and separability between finger contractions, as evidenced by the high task completion rate 313 
(>93%) in relatively short time (~1.81s per task). To the best of our knowledge, no other study 314 
has previously implemented a pattern recognition approach with neural decoding in real time.  315 
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In conclusion, we have shown the feasibility of accurate, non-invasive, real-time, neural 316 
interfacing with wearable sensors mounted at the wrist. These innovative results open an 317 
important perspective in neural interfacing for large scale applications, in medical devices and 318 
consumer electronics applications. 319 
 320 
MATERIALS AND METHODS 321 

Offline experiment 322 

Experimental setup 323 

Nine healthy participants (4 females, 5 males, ages: 23-31) volunteered in the study. Both 324 
informed consent forms and experimental protocols were approved by Imperial College London 325 
ethics committee in accordance with the Declaration of Helsinki. 326 

Two flexible EMG electrode grids (64 channels arranged in 5x13 with 8 mm distance, 327 
GR08MM1305, OT Bioelettronica) were placed along the circumference of the wrist right below 328 
the head of the ulna by visual inspection and physical palpation. In addition, myoelectric signals 329 
were concurrently recorded from the circumference of the thickest part of the forearm using three 330 
EMG electrode grids (64 channels arranged in 8x8 with 10 mm distance, GR10MM0808, OT 331 
Bioelettronica). Both signals were simultaneously acquired by a multi-channel amplifier 332 
(Quattrocento, OT Bioelettronica), bandpass filtered between 10-500 Hz, and sampled at 2048 333 
Hz with 16-bit ADC precision. Individual finger flexion forces were recorded concurrently at 10 334 
Hz with 5 micro load cells (0-5kg CZL635, Phidget), located in an ergonomic and adjustable 335 
platform. The latter was designed to keep the hand supported while in a relaxed position. A 336 
custom program (Matlab 2019b, The MathWorks, Inc) was implemented to synchronously 337 
acquire all the signals. 338 

Participants were seated on a chair with their arm supported and the fingers placed in a 339 
comfortable position on top of each force sensor. They were facing a computer screen where 340 
cues and visual feedback of their fingers’ flexion forces were provided. The maximum voluntary 341 
force effort across each finger was calibrated for each participant at the beginning of the 342 
experiment. Thereafter, they were instructed to follow the displayed trapezoidal cues (2 s rest, 2 s 343 
ramp up, 5 s steady contraction, 2 s ramp down and 2 s rest) at 15% and 30% of the maximum 344 
force effort for each individual finger and the combinations of thumb-index, thumb-middle, 345 
index-middle and thumb-index-middle in a randomized order (18 trials in total).  346 

After the acquisition, tendon and myoelectric signals were digitally band-pass filtered between 347 
20-500 Hz (zero-phase 20th order Butterworth) and noisy channels (mostly by electrode overlap 348 
due to the excessive length of the electrode matrices) were discarded. On average 102 ± 12 349 
channels were used for further analysis. 350 

Decoding algorithm 351 

Each axonal action potential of a motoneuron determines the generation of action potentials in 352 
the innervated muscle fibers. Once excited, the muscle fiber undergo depolarization in a confined 353 
portion of their membrane. The depolarization zone, which has a length of 5-10 mm, propagates 354 
along the muscle fibers from the end-plate to the tendons. At the tendons, the depolarization zone 355 
extinguishes, generating a so-called end-of-fiber potential. The electric signals recorded over 356 
tendon regions, therefore, are dominated by the end-of-fiber potentials. Interestingly, each end-357 
of-fiber potential corresponds to an axonal action potential, such that the activation of 358 
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motoneurons is reflected by electric fields generated at the tendons. For tendon regions that 359 
correspond to the convergence of tendon endings of multiple muscles, such as at the wrist, the 360 
recorded signals are the combination of end-of-fiber potentials from multiple muscles. These 361 
tendon regions therefore are bio-screens for the multiple pools of motoneurons innervating 362 
several muscles (Fig. 1), whose coordination generates movements. Interestingly, the end-of-363 
fiber potentials have temporal high-frequency components and are less attenuated by the volume 364 
conductor than muscle propagating potentials(48). These properties make recordings at the 365 
tendons not only a feasible but also a more suited solution for neural decoding than direct muscle 366 
recordings (see Discussion). 367 

Given the above description of the origin of electric potentials recorded at the tendon regions, the 368 
following mathematical model holds: 369 

𝒙(𝑘) = &  
!

"#$

& 
%&$

'#(

𝑯"(𝑙)𝒔"(𝑘 − 𝑙) + 𝒏(𝑘) (1) 

where 𝒙(𝑘) are the tendon electric signals at time 𝑘 generated by the additive contributions of 𝑃 370 
spinal motoneuron pools innervating different muscles, plus independent noise 𝒏(𝑘). The 371 
activity of individual motoneurons is modelled as trains of delta functions at their corresponding 372 
discharge timings, convolved by their respective end-of-fiber potentials along their duration 𝐿.  373 
In equation (1), 𝒔" and 𝑯"	represent the delta trains and end-of-fiber potentials of all the 374 
motorneurons in the 𝑝*+ pool, respectively. The high-frequency nature of the end-of-fiber 375 
components at the tendons corresponds to short temporal durations compared to the propagating 376 
ones, which translate in relatively low values for 𝐿. In this way, the end-of-fiber potentials (𝑯) 377 
better approximates to the source delta functions than muscle fiber potentials. In addition, 378 
equation (1) also shows that the high temporal sparsity of the end-of-fiber potentials is also 379 
reflected in the mixed tendon electric signals (𝒙(𝑘)).  380 

Although the previous formulation provides a clear interpretation of the relation between the 381 
neural and volume conductor elements of the model, it complicates the de-mixing of its 382 
components. To simplify it, the matrices of the end-of-fiber potentials (𝑯") and motoneuron 383 
firings (𝒔") can be rewritten including their corresponding delayed versions along 𝐿 to 384 
compensate for the effect of the convolution. Moreover, tendon electric signals (𝒙(𝑘)) should 385 
also be extended to an artificial delay proportional to 𝐿 and inversely proportional to the number 386 
of electrodes, to offset the increase of motoneurons to estimate. This yields the following 387 
equation: 388 

𝒙1(𝑘) = &  
!

"#$

𝑯2"	𝒔4"(𝑘) + 𝒏1(𝑘) (2) 

where 			1 indicates the extended variables. Equation (2) reflects the presence of multiple spinal 389 
motoneuron pools innervating different muscles due to the convergence of their tendon endings 390 
at the wrist. Nevertheless, their estimation can be conveniently carried out in a single matrix 391 
form by concatenating the contributions of each pool to the global end-of-fiber potentials (𝑯22) 392 
and motoneuron firings (𝒔45)	as follows: 393 

𝑯22 = 6𝑯2$,𝑯2,, ⋯ ,𝑯2!9 (3) 
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𝒔45(𝑘) = [𝒔4$(𝑘),𝒔4,(𝑘),⋯ , 𝒔4!(𝑘)]- (4) 
Such that: 394 

𝒙12(𝑘) = 𝑯22𝒔45(𝑘) + 𝒏12(𝑘) (5) 

This expression can then be inverted by applying linear-instantaneous blind source separation 395 
while maximizing the sparseness of the sources, as long as the tendon potential generated by 396 
each motoneuron is unique in relation to the potentials generated by other motoneurons. This 397 
condition has been extensively validated for the propagating components of the muscle fiber 398 
action potentials(37, 42, 45, 49), but it has never been tested for the end-of-fiber components 399 
generated at the tendon endings. Therefore, this assumption needed to be confirmed 400 
experimentally (see Results).  401 

To validate it, the convolutive blind source separation(22) algorithm was used to invert the end-402 
of-fiber potentials of the model (finite impulse response filters) and decode the motoneuron 403 
firings from the recorded tendon electric signals. Briefly, convolutive blind source separation 404 
applies an initial whitening and fast fixed-point algorithm that maximizes sparseness(50, 51) to 405 
detect the unique sources (motoneurons),  followed by a peak-detection and clustering 406 
postprocessing to identify their corresponding discharge timings in the estimated delta trains(22). 407 
After this process, only the original motoneuron firings (non-delayed versions) were kept for the 408 
rest of the analyses. Finally, for the offline analysis only, the output of this fully automatic 409 
decomposition was validated in a semi-supervised approach that enables the modification of the 410 
thresholds of the local peak detection algorithm to update the filters of poorly detected sources 411 
and recalculate the motoneurons firings(52). Repeatedly detected motoneurons within each 412 
contraction (with > 30% shared spike timings(40)) were removed at this stage. 413 

The decomposition output was evaluated in terms of the number of identified motoneurons at the 414 
wrist and the percentage of those that corresponded to electric potentials occurring concurrently 415 
at the forearm. To do so, the fiber potentials at the forearm were calculated by spike-triggered 416 
averaging the forearm signals in 50-ms windows using the discharge times identified from the 417 
wrist as triggers. The average potentials obtained in this way were considered detectable if their 418 
peak amplitude was higher than four times the standard deviation of the baseline noise(32) 419 
computed over the first and last 15ms of the spike triggered average. If one or more channels in 420 
the array met this condition, it was concluded that the corresponding source identified from the 421 
wrist corresponded to the activation of muscle fiber action potentials and thus to the discharges 422 
of a spinal motoneuron. 423 

The accuracy of the decoding was assessed based on the pulse-to-noise ratio of the estimated 424 
spike train (mean of the detected spiking activity divided by the mean baseline of the estimated 425 
source expressed in dB(33)). In addition, the coefficient of variation of the inter spike intervals 426 
(ratio between the standard deviation and mean of the inter spike intervals expressed as a 427 
percentage) and motoneurons’ discharge rate (ratio between the number of action potentials fired 428 
by a motoneuron and their active period measured in seconds) were computed to evaluate their 429 
physiological properties. 430 

A two-way repeated measures ANOVA was used to evaluate differences in the number of 431 
motoneurons, pulse-to-noise ratio, discharge rate, coefficient of variation between force levels 432 
and finger flexions. Statistical significance was set to p < 0.05 and all calculations were 433 
performed in IBM SPSS Statistics 26. Normal distribution of all variables (9 fingers x 2 force 434 
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levels) was verified by the Shapiro-Wilk test of normality (p > 0.05). Few exceptions were found 435 
in 1) the number of motoneurons in the little finger at 15% force effort (p = 0.019), 2) the pulse-436 
to-noise ratio of the thumb at 15% (p = 0.037) and index at 30% (p = 0.005), and 3) coefficient 437 
of variation of the little at 15% (p = 0.006), thumb-index at 15% (p = 0.029) and thumb at 30% 438 
(p = 0.001). However, this low proportion of non-normal levels was considered acceptable for 439 
the two-way repeated measures ANOVA. The assumption of sphericity was checked for the 440 
finger flexion factor (levels > 2) by Mauchley’s test and if not satisfied, the Greenhouse-Geisser 441 
correction was applied to the degrees of freedom. Since no two-way interaction between the 442 
factors was found (p > 0.05), the main effects of force level and finger flexion were analyzed by 443 
one-way repeated measures ANOVAs. Bonferroni correction was applied for pair-wise 444 
comparisons between finger flexion levels.  445 

Task classification analysis 446 

For the control analysis, motoneurons across contractions were tracked based on the 2D 447 
correlation coefficient between their motoneuron action potential maps. These maps were 448 
calculated by spike-triggered averaging over 25-ms windows of all raw tendon signals at the 449 
wrist electrode array centered at the timings of the motoneurons’ spikes(53). The analysis was 450 
carried out only for those channels with significant peak amplitude (i.e. higher than two times the 451 
standard deviation of that motoneuron’s peak amplitudes among all channels). Motoneurons 452 
were considered the same if their normalized cross-correlation coefficient exceeded 0.70.  453 

Thereafter, the steady contraction part (5s) of each finger flexion was selected and concatenated 454 
along with 5s of rest for feature extraction. Motoneurons firings were windowed in intervals of 455 
120 ms with 40-ms step to compute the spike count of each motoneuron. Raw tendon electric 456 
signals were windowed alike to extract four time-domain features(54) (root mean square, slope 457 
sign changes, zero crossings and waveform length) for each channel. Although multiple features 458 
have been proposed to decode movement intentions from electric signals(16), the selected 459 
feature set is the most common in pattern recognition tasks(55).   460 

A multilayer perceptron with one hidden layer and ten hidden neurons(56) was used to classify 461 
the raw and decoded tendon features separately into 10 classes (9 finger flexions plus rest). The 462 
multilayer perceptron was trained using the gradient descent with momentum and adaptive 463 
learning rate backpropagation algorithm. Performance was evaluated in terms of classification 464 
accuracy applying ten-fold cross-validation. In addition, classification accuracy was calculated 465 
for two scenarios: training and testing with contractions from one force level only, and from both 466 
levels combined. In both cases, 2 s of each class were used for training and the remaining data (3 467 
s for the single force dataset, and 8 s for the combined) for testing.  468 

In the separate case, a two-way repeated measures ANOVA was used to evaluate differences in 469 
classification accuracy between force levels and data type. Statistical significance was set to p < 470 
0.05 and all calculations were performed in IBM SPSS Statistics 26. Normal distribution was 471 
validated by the Shapiro-Wilk test of normality with the only exception of decoded tendon 472 
signals accuracy for 15% force level (p = 0.004). When a statistically significant two-way 473 
interaction was found between force levels and data type (F1,8 = 13.807, p = 0.006), the simple 474 
main effects were analyzed with focused one-way repeated measures ANOVA fixing the levels 475 
of the interacting factors. When both force levels were combined during the training and testing, 476 
a one-way ANOVA was used to assess differences in classification accuracy due to the data type 477 
(2 levels). Normal distribution was again ensured by the Shapiro-Wilk test of normality.  478 
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Real-time experiment 479 

Four healthy participants (2 females, 2 males, ages: 25-32) participated in the online experiment 480 
(approved by Imperial College London ethics committee in accordance with the Declaration of 481 
Helsinki) after signing informed consent forms. 482 

In this case, only tendon electric signals from the wrist were acquired following the same setup 483 
previously described. Participants were comfortably seated in front of a computer screen, with 484 
their right hand resting in a neutral position on top of a table. During training, they were asked to 485 
perform isometric finger contractions against the table at up to a comfortable level following 486 
trapezoidal cues (2 s rest, 2 s ramp up, 5 s steady contraction, 2 s ramp down and 2 s rest). Three 487 
repetitions each individual finger, the combinations of thumb-index, thumb-middle, index-488 
middle and thumb-index-middle, as well as rest, were recorded in a randomized order (30 trials 489 
in total).  490 

To extract motoneurons’ firings in real-time, we implemented a dual phase blind source 491 
separation(23). In the first calibrating phase, the algorithm followed the same procedure 492 
described above to identify the latent motoneurons. Then, the obtained inverse of the end-of-493 
fiber potential filters was applied to new tendon electric signals epochs to decompose the activity 494 
of the previously identified motoneurons, and detect new action potentials using the stored spike 495 
and noise centroids of each source(23). During calibration, motoneurons with more than 20% of 496 
shared spikes were considered equal and only the one with highest pulse-to-noise ratio was 497 
preserved to avoid redundant activity. In this case the training set was used to calibrate the 498 
decomposition parameters for its later implementation in real-time during the control task. As in 499 
the previous experiment, the spike count of each motoneuron was calculated over sliding 500 
windows of 120 ms with 40 ms step (coinciding with the update rate of the system). On the other 501 
hand, the root mean square, slope sign changes, zero crossings and waveform length were 502 
extracted for the raw tendon electric signals using the same windowing process.  503 

Two multilayer perceptron with one hidden layer and ten hidden neurons(56) were used to 504 
classify the decoded and raw tendon features separately into 10 classes (9 finger flexions plus 505 
rest). They were trained using gradient descent with momentum and adaptive learning rate 506 
backpropagation over the steady part of the contraction. Both multilayer perceptrons were tested 507 
separately in a real-time task with 4 targets of each class (40 targets in total). Participants were 508 
given 5 s to attempt each target, with a required hold time of 500 ms to consider the target 509 
successfully reached. Performance was measured in terms of completion rate (number of 510 
successful targets divided by the total number of targets, expressed as a percentage) and 511 
completion time (time needed to successfully achieve a target). 512 
 513 
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FIGURES AND TABLES 698 
 699 

 700 

Fig. 1. Interfacing motoneurons in the spinal cord non-invasively from the wrist via volume conduction 
and tendon potentials. Motoneurons in the spinal cord translate the synaptic inputs they receive from 
supraspinal centres and peripheral afferents into a neural output sent to the muscles. When excited, they 
discharge axonal action potentials that reach the neuromuscular junction of the innervated muscle fibers. The 
associated electric fields can be detected at the tendon endings of the wrist using electrodes (in this case, 
arranged in a wrist-band) due to volume conduction. However, the obtained tendon electric signals experience a 
high crosstalk between each other due to the convergence of multiple tendons in the reduced space of the wrist. 
To enhance the information transfer needed for precise decoding of motor volition, the generative model of the 
recorded potentials can theoretically be reversed to estimate the activity of the spinal motoneurons as long as the 
induced electric fields at the tendons are unique for each motoneuron. 
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Fig. 2. Decoded tendon electric signals from the wrist interface. (A) Experimental setup for the concurrent 
acquisition of the tendon electric signals and individual finger flexion forces. (B)  Participant’s visual feedback 
with the contraction cues in grey and the exerted forces in blue. (C)  A representative contraction from one 
participant with the force profile in grey, one tendon electrical signal from the tendons in black, and the 
decomposed spike trains (decoded tendon electrical signals). (D) (top left) 2D spatial distribution of the root 
mean square (RMS) of each channel of the tendon electrical signals from one representative contraction, (top 
right and bottom) three examples of the reconstructed action potentials of three decoded motoneurons from the 
same contraction after spike-triggered averaging along with their corresponding RMS spatial maps. The 
channels in dark blue were discarded due to noise interference. (E)  Physiological analysis of the decoded 
tendon electrical signals from the wrist for 15% (light blue) and 30% (dark blue) force efforts in terms of the 
number of detected motoneurons (MN), pulse-to-noise ratio (PNR), coefficient of variation (CoV) of the inter 
spike intervals, and motoneuron discharge rate averaged across finger movements and subjects. The results 
indicate that the decoded tendon electrical signals from the wrist are accurate (PNR > 30 dB and CoV < 30%) 
and comply with motoneuron’s physiological behaviour (DR between 5-25Hz). The reported significance levels 
are based on two-way repeated measures ANOVA. 
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Fig. 3. Offline classification performance. Processing steps for the tendon electrical signals and decoded 
motoneurons from the wrist for the separate and combined force level analyses for finger prediction. The blocks 
represent the steady contraction part of the signals with the training and testing portions in blue and white, 
respectively. The obtained classification accuracies show that the decoded motoneuron activity (in blue) is a 
better predictor of underlying finger flexion than the un-decoded tendon electric signals (in grey), with high 
accuracy, irrespective of the force level. Plot significances are based on repeated measures ANOVA.  
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 704 

  705 

Fig. 4. Real-time control. (A)  Acquisition setup for the online testing with the processing pipelines for the 
tendon electric signals (grey) and decoded motoneurons (blue). The additional steps specific of the 
decomposition algorithm are highlighted in blue. (B)  Training set from one representative participant with the 
class cues on top (each individual finger plus all the combinations of thumb, index, and middle), one tendon 
electric signal in the middle, and the decoded motoneuron activity during the decomposition calibration at the 
bottom. (C) Success and fail conditions for the real-time control task (D) Online control performance for the 
tendon electric signals (grey) and decoded motoneurons (blue) in terms of completion rate and completion time. 
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SUPPLEMENTARY MATERIALS 706 
 707 

  708 

Fig. S1. 2D spatial distribution of the normalized amplitude of the tendon electric signals. Each subplot 
depicts the normalized root mean square of the tendon electric signals for each channel (pixel) in their 
corresponding spatial distribution in the electrode array at the wrist (view: bottom = proximal, top = distal, left = 
ulna posterior, right = ulna anterior). The values for few discarded channels due to noise have been estimated by 
2D linear interpolation. The figure shows a high overlap in the activity area of the different finger contractions 
(columns) within each subject (rows). (A) mean across the maps at 15% and 30% of force efforts from the 
offline dataset. (B) mean across the maps of the three repetitions of the training set for the online prediction task. 
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Fig. S2. Retracing motoneuron fiber action potentials at the forearm from the discharge timings decoded 
at the wrist. (A) Acquisition setup for concurrent recording of electromyogram (EMG) signals at the forearm 
and tendon electric signals at the wrist. (B) Representative EMG signal from a single contraction at the forearm. 
(C) Decoded motoneuron discharge timings from the tendon electric signals at the wrist for the same 
contraction. (D) Two representative examples of reconstructed motoneuron fiber action potentials for each 
channel at the forearm after spike trigger averaging the EMG signals across 50 ms windows centered at the 
discharge timings of the motoneurons detected at the wrist. The rationale for this approach is that if the 
discharge times decoded at the wrist correspond to the times of activation of spinal motoneurons, then the 
triggered average should identify muscle fiber potentials at the forearm above the baseline noise. The detection 
threshold was set to four times the baseline noise which is depicted for each channel as blue dotted lines. The 
channels that met this condition are framed in grey. As shown in the first example, only the channels that 
corresponded to muscle fiber action potentials were selected. Simultaneously, the detection condition was not 
met in the second example despite the variable amplitude levels, as no channel exhibited the stereotypical action 
potential waveform. This analysis showed that 703 out of 970 motoneurons decoded from the wrist were 
retraceable to the forearm, which proves the neural origin of the decoded tendon electric signals. 
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Fig. S3. Feature space for the tendon electric signals and decoded motoneurons from the online task 
training. Visualization of the features for the tendon electric signals (top) comprising the root mean square, 
slope sign changes, waveform length, and zero crossings for each channel, and the spike count of the decoded 
motoneurons (bottom) over the first three principal components with the total explained variance between 
brackets. Each column represents one participant and finger contractions are color coded. The figure shows 
higher separability between finger contractions in the motoneuron feature space than in the tendon electric 
signals one.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.06.438640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438640
http://creativecommons.org/licenses/by-nc/4.0/

