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1. Abstract5

Pedigree inference from genotype data is a challenging problem, particularly when pedigrees are6

sparsely sampled and individuals may be distantly related to their closest genotyped relatives. We7

present a new method that infers small pedigrees of close relatives and then assembles them into8

larger pedigrees. To assemble large pedigrees, we introduce several new formulas and tools including9

a new likelihood for the degree separating two small pedigrees, a method for detecting individuals10

who share background identity-by-descent (IBD) that does not reflect recent common ancestry,11

and a method for identifying the ancestral branches through which distant relatives are connected.12

Our method also takes several new approaches that help to improve the accuracy and efficiency13

of pedigree inference. In particular, we incorporate age information directly into the likelihood14

rather than using ages only for consistency checks and we employ a heuristic branch-and-bound-like15

approach to more efficiently explore the space of possible pedigrees. Together, these approaches16

make it possible to construct large pedigrees that are challenging or intractable for current inference17

methods. The new method, Bonsai, is available at https://github.com/23andMe/bonsaitree.18

2. Introduction19

The ability to infer complex multi-generational pedigrees from genotype data has many applications20

ranging from genealogical research to the study of diseases. As human genotyping datasets continue21

to grow in size, there is increasing interest in computational methods that can reconstruct large22

pedigrees efficiently and accurately.23

Although the problem of pedigree inference has been studied extensively, the majority of pedigree24

inference methods are designed for non-human species. A major challenge for pedigree reconstruction25

in non-human populations is that pairwise relationships can be difficult to infer with high accuracy,26

even when the degree of a relationship is small, because high quality genotype data may be27

unavailable. As a result, methods typically require that all or most individuals in a pedigree are28

sampled so that pedigrees can be assembled by connecting strings of parent-child, full-sibling, or29

half-sibling pairs (Almudevar 2003, Almudevar and Anderson 2012, Cowell 2009; 2013, Cussens30

et al. 2013, Wang 2004, Jones and Wang 2017, Kirkpatrick et al. 2011, Riester et al. 2009, Sheehan31
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et al. 2014). Although it is possible to connect slightly more distant relationships (Huisman 2017,32

Anderson and Ng 2016), the majority of existing pedigree inference algorithms can be characterized33

as methods for either jointly or independently inferring pairwise parent-child pairs and full or half34

sibling sets, which are then consistent with a pedigree structure when assembled together.35

In contrast to non-human pedigrees, genotype data for human populations is comparatively36

abundant and close relationships, such as parent-offspring or sibling pairs, can be inferred with a37

high degree of accuracy. The major challenge of pedigree inference in human populations is the38

fact that pedigrees are often sparsely sampled, with few genotyped sibling and parent pairs and few39

genotyped individuals beyond the most recent two or three generations. In human datasets, including40

direct-to-consumer genetic databases, genotyped individuals may have only a few genotyped relatives41

within a radius extending to first or second cousins and it is common for an individual’s closest42

relative to be more distant than a second cousin. As a result, it is difficult to construct solid43

frameworks of close relatives and their genotyped ancestors into which other genotyped individuals44

can be placed.45

There are currently two state-of-the-art methods for inferring complex human pedigrees from46

genotype data, both of which are maximum likelihood approaches that attempt to find a pedigree47

that maximizes the sum of log likelihoods of pairwise relationships, given observed patterns of48

identity-by-descent (IBD) sharing. The two methods differ primarily in the approaches they take to49

find the maximum likelihood pedigree.50

The first and older method, PRIMUS (Staples et al. 2014), explores the space of possible pedigrees51

by starting with a seed individual and then iteratively adding individuals to the pedigree. Each52

time an individual is added, the method considers all possible positions that are consistent with the53

estimated pairwise relationships and the highest likelihood configuration is selected. When adding54

an individual to the pedigree, each pedigree at the previous step serves as a seed pedigree onto55

which the individual can be added in multiple ways. By constructing a large set of pedigrees in this56

way, the algorithm efficiently explores the space of pedigrees that are compatible with the estimated57

pairwise relationships.58

In contrast to PRIMUS, the more recent CLAPPER method (Ko and Nielsen 2017) begins by59

connecting all individuals together into an initial guess of a pedigree. Then, at each subsequent60

step, the CLAPPER algorithm rearranges the relationships in the pedigree. This update step is61

done using a Markov chain Monte Carlo (MCMC) approach in which there are many different62

possible moves that can be made, such as adding or subtracting a degree of relatedness between two63

individuals, swapping the labels of two nodes, or pruning off an individual and their descendants64

and attaching them somewhere else.65

The CLAPPER method is typically more accurate than PRIMUS (Ko and Nielsen 2017), whereas66

the PRIMUS approach can be faster than the MCMC approach used by CLAPPER. However, neither67

approach was designed to infer the large and sparse pedigrees that are common in direct-to-consumer68

genetic datasets where the degree of relationship separating a pair of genotyped individuals may be69

large, verging on degrees where individuals frequently share no detectable IBD. For such pedigrees,70

searching a broad pedigree space using the approach of PRIMUS or CLAPPER is computationally71

infeasible. Instead, it is useful to develop an inference approach that dramatically narrows the space72
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of possible pedigrees, while being careful not to exclude the portion of the space containing the true73

pedigree.74

Here, we introduce a new method, Bonsai, for inferring large and sparse pedigrees. To make75

inference efficient and accurate, we first infer small pedigrees of closely-related individuals using76

an approach that efficiently explores the space of possible pedigrees. This approach is similar to77

PRIMUS, but differs in key ways that make the search of the pedigree space both more efficient78

and more thorough. The small pedigrees are then assembled into larger pedigrees using several new79

techniques, including a generalized version of the DRUID method of Ramstetter et al. (2018), which80

allows our method to link distantly related individuals into large and sparsely sampled pedigrees.81

We refer to the first stage as “Small Bonsai” and to the second stage as “Big Bonsai” (Figure 1).82

We first describe the small and big Bonsai methods, then use both simulated and real data to83

investigate the performance of the methods and their components.84

Bonsai

Input data:
 - IBD segments
 - Ages
 - Sexes

Compute Pairwise
Likelihoods

Build small 
Pedigrees

Connect small 
Pedigrees

Output:
 - Pedigree

1

2

3

Figure 1. Overview of the full Bonsai method. Details of methods 1, 2, and
3 are presented in Algorithms 1, 2, and 4, respectively.

3. Subjects and Methods85

3.1. Overview of the Bonsai method. The Bonsai method is summarized in Figure 1. The86

input to the method consists of ages and sexes for a set of putatively-related individuals, along with87

IBD segments inferred between each pair of individuals. The method then proceeds through three88

stages in sequence.89

First, the relationship between each pair of genotyped individuals is inferred using age and90

pairwise IBD data. The likelihoods of many other possible relationships are also computed and91

stored for each pair. Next, small pedigrees of closely-related individuals are inferred from these92

pairwise likelihoods. Finally, the inferred small pedigrees are assembled into large and sparse93

pedigrees.94

Constructing small pedigrees and combining them together allows us to make use of information95

in small pedigree structures to improve the accuracy with which more distant relationships are96
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inferred. This approach allows us to more precisely infer the ancestral lineages through which small97

pedigrees are connected, the number of common ancestors shared by each pair of individuals, and98

segments of so-called background IBD that do not reflect recent ancestry. Each of these additional99

pieces of information makes it possible to proactively reduce the space of possible pedigrees that100

must be searched, making inference tractable for large and sparse pedigrees.101

3.2. Stage 1: inferring pairwise relationships. The first stage of the Bonsai method is to

infer the likelihoods of many possible relationships between each pair of putative relatives. To

make the computation of the likelihood efficient without large sacrifices in accuracy, we use a

composite likelihood that is the product of the likelihoods of different IBD summary statistics and

the likelihoods of the pairwise age differences between the individuals. The genetic component LgR
of the likelihood, computed from IBD, is multiplied by the age component LaR of the likelihood to

obtain the final likelihood LR of a given relationship type, R:

LR = LgRLaR. (1)

The likelihood is composite, rather than exact, because we do not model the joint distribution of the102

IBD count and length summary statistics whose product is LgR and because there is an underlying103

joint distribution of IBD sharing and age difference that is not captured by the product of the two104

likelihoods LgR and LaR.105

3.2.1. Pairwise genetic likelihoods. To compute the genetic component of the composite pairwise106

relationship likelihood, we consider regions of the genome shared identically by descent in a haploid107

fashion on just one chromatid in each individual, as well as regions shared IBD in a diploid fashion108

on both chromatids. We use the terms “IBD1 segment” and “IBD2 segment” to refer to regions of109

haploid and diploid IBD, respectively. The genetic component of the pairwise likelihood is computed110

using the total length of IBD1 segments, the total length of IBD2 segments, the total number of111

IBD1 segments, and the total number of IBD2 segments.112

It is possible to compute the probability of an observed shared pattern of IBD analytically.113

However, in practice we find that error in IBD inference leads to differences between the empirical114

and analytical IBD distributions for each relationship type, especially for close relationships. Thus,115

we use likelihoods obtained as moment-fitted Poisson and Gaussian approximations of simulated116

distributions.117

Let T i,j1 and T i,j2 be the total lengths of IBD 1 and 2, respectively for a pair of individuals, i and

j and let Ci,j1 and Ci,j2 be the counts of the number of IBD 1 and 2 segments shared between two

individuals. We follow the convention that uppercase variables T1, T2, C1, C2, etc. denote random

variables and their lowercase counterparts, t1, t2, c1, c2, etc. denote their observed values. The

genetic component of the composite likelihood for a given relationship type, R, between a pair of

individuals, i and j, is then computed as

LgR(i, j) ≈ fR(t1)fR(t2)PR(c1)PR(c2), (2)

where fR(t1) ≡ f
T i,j
1

(t1;R) is the probability density function of the sum of lengths of all IBD 1118

segments for a relationship of type R and PR(c1) ≡ P(C1 = c1;R) is the probability mass function119
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for the total number of segments of IBD1 for a relationship of type R. The quantities fR(t2) and120

PR(c2) are defined analogously for segments of IBD 2.121

In Equation (2), the quantities fR(t1) and fR(t2) are modeled as Gaussian distributions and the122

distributions PR(c1) and PR(c2) are Poisson with means given by the expected numbers of IBD1123

and IBD2 segments, respectively between two individuals of relationship type R. The mean and124

variance of TRi , and the mean of CRi for a relationship of type R were obtained empirically using125

simulations. Details of the simulations used to obtain these moments are provided in Section 3.6.4.126

3.2.2. Pairwise age likelihoods. The pairwise age likelihood for a given relationship type, R, was127

obtained by moment-fitting a Gaussian distribution to the differences between the ages of 23andMe128

customers who self-reported to be of relationship type R (Figure 2). We required that the self-129

reported relationship between each pair of individuals could be verified through a string of inferred130

parent-child or full-sibling relationships. For example, a self-reported first-cousin relationship131

between individuals i and j was verified if i and j each had inferred parents in the 23andMe132

database, and if these parents in turn had the same pair of inferred parents, or were inferred to be133

full siblings.134

For two customers, i and j, with ages ai and aj , the age component of the likelihood for relationship

type R was modeled as a Gaussian distribution with the empirical mean and variance:

LaR(i, j) =
e−[(ai−aj)−µRa ]2/2(σRa )2

σRa
√

2π
. (3)

In Equation (3), µRa and σRa are the moment-fitted mean and standard deviation of the empirical135

age difference for all pairs of customers who reported the pairwise relationship, R. Note that the136

probability LaR(i, j) is not symmetrical in the ages, ai and aj . This is useful for determining the137

directionality of the relationship between two people, such as parent-child or nephew-aunt when age138

information is available.139

3.3. The likelihood of a pedigree. The composite likelihood, LP , of a pedigree P is computed

as the product of genetic and age likelihoods (Equation 1) for all pairs of individuals in the pedigree,

LP =
∏
i,j∈P

LgR(i, j)LaR(i, j). (4)

where R is the relationship between i and j implied by the pedigree structure. This likelihood is140

efficiently computed as each new individual is added to the pedigree. By doing so, we can inductively141

extend the existing relationships of the parents and/or children of the newly-added person to obtain142

the relationships of the new person to all existing individuals in the pedigree. We then add the log143

likelihoods of each of these new pairwise relationships to the log likelihood of the pedigree without144

the new individual.145

3.4. The “Small” Bonsai method. To construct a pedigree from pairwise likelihoods, the Small146

Bonsai method begins by placing a focal individual by itself in the pedigree (Figure 3). This147

focal individual is typically the person with the closest average degree of relationship to all other148

individuals in the putatively-related set, but any individual can be chosen. At each subsequent149

step of the Small Bonsai algorithm, the next individual to be placed is chosen to be the unplaced150
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Close relatives Degree 4

Degree 5 Degree 6

Figure 2. Empirical age difference distributions. Kernel densities for the
absolute difference in age between a pair of relatives of a given type. The number of
pairs of each type used in the analysis is given in parentheses. Different panels show
relationships of different degrees.

individual with the closest inferred degree of relationship with one of the individuals already placed151

in the pedigree, where ties are broken by the total amount of IBD shared. Because each pair of152

individuals has many possible relationships, we determine the order in which individuals are added153

using the most likely pairwise relationship for each pair.154

The next individual to be placed is considered in all ways that are consistent with the most155

likely inferred pairwise relationships to individuals already placed. In particular, for a user-specified156

parameter r, we consider the top r most likely pairwise relationships between the new individual157

and their closest relative in the set of placed individuals and we place the individual in all ways158

that are compatible with each of these r most-likely relationships. When adding an individual to159

the pedigree, we must not only add them in all possible ways to a particular pedigree, we also add160

them in all r ways to all high-likelihood pedigrees that were formed at the previous step.161

When two or more pedigrees formed by adding an individual would be topologically identical, we162

only construct one of the pedigrees. For example, in the second row of Figure 3, because the sexes163

of the parents are unknown and there are no placed relatives except the focal individual that can164

be used for triangulation, adding an avuncular relative through the right parent is topologically165
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Step 1

Step 2

Step 3

Step 4

Figure 3. The Small Bonsai method. An example of the sequence of steps for
building a small pedigree is shown. The sequence proceeds from top to bottom in
the figure. The ith row of pedigrees in rectangles represents the ith step of the Small
Bonsai algorithm in which the ith individual is added to a pedigree. Red boxes
indicate pedigrees that are retained and carried forward to the next step. Black
boxes indicate pedigrees with low likelihoods that are discarded.

identical to adding them through the left parent. Therefore, we only build one of these pedigrees166

(the one on the far left of the second row).167

To avoid a rapid expansion in the number of pedigrees at each step, we employ a heuristic168

branch-and-bound-like procedure in which we discard each pedigree at the end of each step that is169

very unlikely, compared with the most likely pedigree. In particular, we discard all pedigrees whose170

likelihoods are less than a fraction f` of the likelihood of the most likely pedigree, where a pedigree’s171

likelihood is the product over the likelihoods of the pairwise relationships implied by the pedigree172

(Section 3.3). In practice, when individuals are closely related, there are only a few pedigrees that173

have high likelihoods and the rest can be discarded. As a result, the likelihood threshold has a low174

impact on accuracy while serving to dramatically speed up pedigree building.175

This heuristic branch-and-branch-and-bound-likebound-like procedure is repeated until no un-176

placed individual has a pairwise point-estimated degree that is within a user-specified degree d177

of any placed individual. At this point, the Small Bonsai algorithm is terminated. If unplaced178

individuals remain, a new focal individual is chosen from among the unplaced individuals and the179

Small Bonsai algorithm is applied again. The Small Bonsai algorithm is applied repeatedly, choosing180

a new focal individual each time, until all individuals have been placed into some pedigree.181

Figure 3 shows an example sequence for constructing a pedigree using the Small Bonsai method.182

In the first row of the figure, a focal individual (shaded yellow square) is placed into a pedigree183

on their own. Grey diamonds indicate their parents, whose sexes are unspecified. In the second184

row, the unplaced individual with the closest degree of relationship to the placed individual, is185

placed into the pedigree (yellow circle). The new individual is placed in all ways that are consistent186

with the top r most likely relationships inferred in the pairwise relationship inference step (Section187

3.2). Here, we have chosen r = 3. These r = 3 most likely relationships happen to be “avuncular,”188

“grandparental,” and “half-sibling” in the example shown. This is the “branch” step of the heuristic189

branch-and-bound-like procedure.190

Before placing the next individual, we evaluate the likelihood of each pedigree, computed as the191

product of pairwise likelihoods of the relationships induced by the pedigree. We retain only those192
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pedigrees whose likelihoods are at least a fraction f` of the likelihood of the most likely pedigree.193

This is the “bound” step of the heuristic branch-and-bound-like procedure.194

In the third row of the diagram, the unplaced individual (yellow circle) with the closest degree195

of relationship to a placed individual is added to all pedigrees that were carried forward from the196

previous step. The new individual is added to each pedigree in all ways that are consistent with197

the top r most likely relationships to their closest placed relative (purple square with a yellow198

boundary). Again, these relationships happen to be “avuncular,” “grandparent,” and “half-sibling”199

in the example. We then perform the “bound” step, retaining only those pedigrees whose likelihoods200

are at least a fraction f` of the likelihood of the most likely pedigree.201

In the fourth row, we show one final iteration of the procedure. Again, the unplaced individual202

(yellow circle) is added in all ways that are consistent with the top r most likely pairwise point203

estimated relationships with their closest relative (purple circle with yellow a boundary). In this204

case the most likely point-estimated relationship happens to be “parental.” Because parent-child205

relationships are inferred with near certainty, we have only placed the individual as a parent in the206

diagram, omitting the next 2 most likely relationships which will be considerably less likely.207

3.5. The “Big” Bonsai method.208

3.5.1. Overview of the Big Bonsai method. When building a pedigree containing distantly-related209

individuals, the Small Bonsai method is first applied repeatedly to build sets of small non-overlapping210

pedigrees. The union of individuals in these small pedigrees is equal to the set of individuals in the211

full pedigree. The Big Bonsai method is then applied to combine the small pedigrees together, one212

pair at a time, with the two pedigrees sharing the most total IBD combined at each step.213

The Big Bonsai method relies on several new methods we introduce that are useful for different214

aspects of combining pedigrees together. The first method is a generalized version of the DRUID215

estimator (Ramstetter et al. 2018) for inferring the degree of relatedness separating the common216

ancestors of two small pedigrees. The DRUID estimator was derived for specific pedigree structures,217

such as a set of siblings and their avuncular relatives connected to another such pedigree through218

the common grandparental ancestors of the two pedigrees. Here, we generalize the DRUID estimator219

to any pair of outbred pedigrees and, in Appendix 6.3, we further generalize the DRUID estimator220

to the case in which two pedigrees are connected through two individuals who are not the common221

ancestors of their respective pedigrees.222

The second tool we introduce is an approximation of the likelihood of the degree separating223

two pedigrees, as a function of the total IBD shared between the two pedigrees. This likelihood,224

which was inspired by the DRUID estimator, makes it possible to evaluate the relative likelihoods225

of different degrees separating two pedigrees in addition to obtaining a point estimate of the degree.226

The third tool we introduce is a new test for detecting segments of background IBD. Background227

IBD segments are regions of the genome that are shared identically-by-state (IBS) and which did228

not arise by transmission from a single shared common ancestor. Instead, these segments arose229

because of demographic or evolutionary processes, such as a population bottleneck. They are long230

regions of IBS with hidden recombination events and they can provide misleading information about231
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Table 1. Variable definitions.

Variable Definition
R A specific relationship type (e.g., parent-child).
LR Likelihood of relationship R.
LgR Genetic component of the likelihood of relationship R.
LaR Age component of the likelihood of relationship R.
Ci Count of segments of IBD of type i, where i ∈ {1, 2}.
Ti Total length of IBD of type i, where i ∈ {1, 2}.
µRa Mean age difference for two individuals with relationship R.
σRa Standard deviation of the age difference for two individuals with relationship R.
ai Age of individual i.
P A pedigree.
N (or NA, NP , NS) A set of individuals (corresponding to ancestor A, pedigree P, or pedigree set S).
A (or AN , Ai) A specific common ancestor (of N , Ni).
A (or AN , Ai) Set of ancestors (of N , Ni).
Λ (or Λi) Induced subtree relating a set of nodes N or Ni.
di,j True genetic degree separating individuals i and j.
dL(i, j) Maximum likelihood estimate of the degree between individuals i and j.
dD(i, j) Generalized DRUID estimate of the degree between individuals i and j.
G Set of common ancestors connecting two individuals or pedigrees.
Oi The event that IBD is observed in individual i.
pi,0 The probability that an allele is not observed at a specified locus in individual i.
pi,1 The probability that an allele is observed at a specified locus in individual i.
Ti,j The total length of IBD observed between sets Ni and Nj .
Li,j Length of a single merged segment of IBD observed between sets Ni and Nj .
I The event that an ancestrally transmitted allele is shared IBD between sets Ni and Nj .
Lgenome Length of the genome in centimorgans.
Ci The set of children of node i.
r Number of most likely relationships considered for each new individual in Small Bonsai.
f` Fraction of likelihood of most likely pedigree below which we discard a pedigree.
(d1, d2, n) Degree tuple of the form (up, down, number common ancs) (Ko and Nielsen 2017).
Degree Defined as d1 + d2 − n+ 1.

the degree of relationship between a pair of individuals. Background IBD segments can lead to232

mis-inferred pedigrees, particularly when pedigrees are sparsely genotyped.233

The fourth tool we introduce is a method for determining the correct ancestral lineages through234

which two or more pedigrees are connected. This approach relies on detecting overlapping IBD235

segments that are inconsistent with certain lineage combinations.236

We also derive a recursive formula for computing the probability of an observed presence-absence237

pattern of an ancestrally transmitted allele in their descendants. This formula is useful for developing238

the generalized DRUID estimator and the likelihoods for degree estimation and background IBD239

detection.240

Together, the new tools we introduce can be used to identify the ancestors through which two241

small pedigrees are connected, infer the degree separating the two ancestors, and identify and discard242

individuals whose IBD sharing patterns appear to be background IBD. By using these inference243
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10BONSAI: AN EFFICIENT METHOD FOR INFERRING LARGE HUMAN PEDIGREES FROM GENOTYPE DATA

tools to identify highly-likely ways of connecting pedigrees, the space of possible pedigrees can be244

considerably reduced. We now describe each of these approaches in detail.245

3.5.2. The probability of a presence-absence pattern of an ancestral allele. Consider two pedigrees246

P1 and P2 of genotyped individuals, N1 and N2, related through a common ancestor (or pair of247

ancestors), G (Figure 4). Let A1 be the common ancestor of N1 in P1 and let A2 be the common248

ancestor of N2 in P2.249

Consider an allele transmitted from one chromatid in G to its descendants. We begin by deriving250

the probability of the observed pattern of presence and absence of the ancestral allele among251

descendants of A1 and A2. Let dA1,G and dA2,G be the degrees separating A1 and A2 from the set252

of most recent common ancestors, G, of the pedigree. G corresponds to two individuals if A1 and253

A2 are descended from an ancestral couple and G corresponds to a single common ancestor if A1254

and A2 are descended from a pair of half siblings. We do not consider cases of endogamy, where G255

corresponds to more than one ancestor other than a mate pair.256

A1

A2

dA1,G
dA2,G

1
2

3
4

56

G

P1 P2

Figure 4. Example of an observed pattern of presence and absence of an
ancestral allele. Genotyped individuals are shaded in purple. Filled and empty
diamonds below indicate the presence or absence of the allele from G. Red dots
on purple genotyped individuals indicate the set of genotyped individuals with no
direct genotyped ancestors. Red dots on grey ungenotyped individuals indicate
the most recent common ancestors transmitting the segments to the genotyped
individuals. Dashed orange lines indicate the paths by which the allele is transmitted
from common ancestor G. The number of meioses separating A1 and A2 from a
common ancestor, G, are dA1,G and dA2,G.

Figure 4 shows a presence-absence pattern of an inherited allele among genotyped individuals in257

the two small pedigrees P1 and P2. The probability of the observed presence and absence pattern258

can be computed recursively by conditioning on whether the allele was observed in the ancestor of259

each individual. This approach is similar to Felsenstein’s tree pruning algorithm (Felsenstein 1981).260

Let Oi be a random variable describing the event that a copy of the allele is transmitted to261

descendant i and is observed. We set Oi = 1 if the allele is observed in individual i and Oi = 0 if it262
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is not observed. The probabilities P(Oi = 0) and P(Oi = 1) can be computed by conditioning on263

whether the allele in G was observed in the node of the induced subtree immediately ancestral to i.264

Defining

pi,0 ≡ P(Oi = 0), pi,1 ≡ P(Oi = 1), (5)

we show in Appendix 6.1 that the probabilities can be computed using the recurision

pi,0 = [1− 2−di,a(i) ]pa(i),1 + pa(i),0,

pi,1 = 2−di,a(i)pa(i),1, (6)

with the base conditions pg,0 = 0 and pg,1 = 1 for each allelic copy, g, in G. The probability of an265

observed IBD sharing pattern {O1, ..., Ok} across k leaf nodes can be computed recursively using266

Equation (6).267

3.5.3. The generalized DRUID estimator. Ramstetter et al. (2018) developed a method for inferring268

degrees of relatedness among distant relatives. The method addresses the problem that the amount269

of IBD shared between two individuals decreases exponentially with their degree of relatedness,270

resulting in very little information for inferring degrees between distant relatives. In fact, there can271

be a non-negligible probability that distant relatives will share no IBD segments at all, especially if272

information contained in short IBD segments is discarded to reduce the rate of false positive IBD273

segments.274

Because two genealogically-related individuals may share little or no IBD, it is helpful to leverage275

IBD segments shared among close relatives of the two individuals when inferring their degree of276

relatedness. Figure 5 illustrates the utility of considering IBD segments among groups of individuals277

rather than pairwise IBD when the degree of relatedness is not small. In particular, individuals 3278

and 4 in Figure 5 share no IBD segments. Thus, one cannot infer their degree of relatedness without279

additional information. However, if close relatives of 3 and 4 do share IBD with one another, and if280

pedigrees can be inferred relating these close relatives to 3 and 4, then we can use the IBD in these281

relatives to estimate the degree of relationship between 3 and 4.282

Leveraging IBD shared by close relatives has the effect of increasing the amount of available data283

for inferring pairwise relationships. Ramstetter et al. (2018) demonstrated that an approach based284

on summarizing IBD from close relatives can greatly improve the accuracy of estimates of distant285

degrees of relatedness compared with the approach of computing a composite likelihood over all286

pairs of individuals (Staples et al. 2016). These two approaches are shown in Figure 5.287

Let N1 and N2 be two sets of genotyped individuals; for example, sets N1 = {2, 3} and N2 =288

{4, 5, 6} in Figure 5B. Let A1 and A2 be the most recent common ancestors ofN1 andN2, respectively289

and let d(A1, A2) denote the degree between A1 and A2. The DRUID estimator of d(A1, A2) derived290

by Ramstetter et al. is obtained by first merging all IBD segments observed between N1 and N2.291

The total merged IBD is then converted into a point estimate of the amount of IBD shared between292

the common ancestor A1 and the common ancestor A2.293

The amount of IBD shared between A1 and A2 is estimated by considering the fraction ϕ1 of294

the genome of A1 that is passed on to its genotyped descendants in N1 and the fraction ϕ2 of295

the genome of A2 that is passed on to its genotyped descendants in N2. If IBD(A1, A2) is the296
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1
2

3
4

5

6

7 1
2

3
4

5

6

7

A B

A1

A2

Figure 5. Leveraging IBD from close relatives to infer the degree of relat-
edness between individuals. Each panel in the figure shows a comparison between
two pedigrees. Purple-shading indicates individuals who have been genotyped. Red
lines indicate IBD shared between a genotyped individual in the pedigree containing
1, 2, and 3 and a genotyped individual in the pedigree containing 4, 5, 6, and 7.
Orange dashed lines in Panel (A) indicate pairwise degrees of relatedness among
all cross-pedigree pairs. The orange dashed line in Panel (B) indicates the degree
of relatedness between the common ancestor A1 of the IBD-carrying individuals in
the left pedigree and the common ancestor A2 of the IBD-carrying individuals in
the right pedigree. In Panel (A), pairwise IBD is summarized to infer the degree
separating the two pedigrees. In Panel (B), IBD information in the descendants of
A1 and A2 is summarized to infer the degree of relatedness among these two common
ancestors. The approach in Panel (A) is taken by the PADRE method (Staples et al.
2016). The approach in Panel (B) is taken by the DRUID method (Ramstetter et al.
2018).

amount of IBD shared between A1 and A2, then the expected amount shared between N1 and297

N2 is IBD(N1,N2) = ϕ1ϕ2IBD(A1, A2). Solving for IBD(A1, A2) yields a point estimator of298

IBD(A1, A2) in terms of the observed quantity IBD(N1,N2).299

Ramstetter et al. (2018) derived formulas for ϕ1 and ϕ2 for specific pedigree configurations, such300

as sets of siblings or siblings together with avuncular relatives. Here, we generalize the DRUID301

estimator to arbitrary outbred pedigrees and further generalize the method to include the case302

in which A1 is descended from a descendant A2 who is ancestral to only a subset of genotyped303

individuals in N2.304

The fraction ϕi of the genome of Ai that is passed on to some descendant in Ni can be computed

as

ϕi = 1−
∏
n∈Ni

pn,0, (7)

where the quantities pn,0 are computed recursively using Equation (6). Thus, an estimate of the

amount of IBD shared between A1 and A2 is

ÎBD(A1, A2) =
IBD(N1,N2)

ϕ1ϕ2
. (8)
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Using the expression φ̂ = ÎBD(A1, A2)/4Lgenome for the kinship coefficient when all IBD is of type

1, we obtain the generalized DRUID estimator

dD(A1, A2) = d :
1

2d+3/2
≤ IBD(N1,N2)

4ϕ1ϕ2Lgenome
<

1

2d+1/2
, (9)

where the bounds come from Manichaikul et al. (2010) and are the ones used for the DRUID305

estimator presented in Ramstetter et al. (2018).306

In Appendix 6.3, we demonstrate how the DRUID estimator can be further generalized to the307

case in which A1 is descended from one of the individuals in N2, or from an internal node of the308

induced subtree that is a descendant of A2. Thus, we obtain a version of the DRUID estimator that309

can be applied to general outbred pedigrees.310

3.5.4. The likelihood of the degree of relatedness among groups of individuals. Using the DRUID311

principle, we can develop a likelihood estimator of the pairwise degree of relatedness between the312

common ancestors A1 and A2, given the observed total IBD T1,2 between the genotyped descendants313

of A1 and A2.314

Consider again the scenario depicted in Figure 4 in which two sets of genotyped individuals, N1

and N2, are related through a common ancestor or pair of ancestors, G. The probability that a

given allele from G is observed IBD between N1 and N2 can be obtained by conditioning on the

events that it is observed in A1 and A2. Let I denote the event that the allele is observed IBD.

Then

P(I) = ϕ1P(OA1 = 1)ϕ2P(OA2 = 1)

= ϕ1ϕ22−(dA1,G
+dA2,G

), (10)

where ϕi is computed using Equation (7).315

If A1 and A2 had exactly one common ancestor with one allele to transmit, then Equation (10)316

would be the fraction of the genome in which we expect to find some segment shared IBD between317

some member of N1 and some member of N2. However, we must now account for the fact that each318

common ancestor of A1 and A2 in G carries two allelic copies and that there can be either one or319

two such common ancestors.320

Let |G| denote the number of common ancestors of A1 and A2, each of which carries two alleles

at the locus of interest. Let Ic denote the complement of event I, i.e., the event that a specific

allele from G is not observed IBD. Thus, we have

P(Ic) = 1− P(I). (11)

Then the probability that none of the 2|G| alleles is observed IBD is P(Ic)2|G|, and the probability321

that at least one of the alleles is observed is 1− P(Ic)2|G|.322

We can use the probability of observing an allele IBD to obtain an approximate likelihood of the323

total length T1,2 of IBD observed between descendants of A1 and A2. The mean of this distribution324

is simply the expected length of the genome in a state of IBD between the two clades, which is325

E[T1,2] = (1− P(Ic)2|G|)Lgenome. (12)
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14BONSAI: AN EFFICIENT METHOD FOR INFERRING LARGE HUMAN PEDIGREES FROM GENOTYPE DATA

An approximation of the variance of T1,2 is derived in Section 6.2 and is given by

Var(T1,2) ≈ (1− P(Ic)2|G|)Lgenome
E[L2

1,2]

E[L1,2]
, (13)

where L1,2 is the length of any given IBD segment between A1 and A2 formed by merging all IBD326

segments between leaf nodes in A1 and A2 that overlap one another. The moments E[Lm1,2] are327

derived in Appendix 6.2 and can be computed using Equation (28) or (29).328

If the segments, L1,2 were each exponentially distributed, then T1,2 would have a gamma distri-

bution. In practice, a gamma distribution is an accurate approximation for the distribution of T1,2,

given that the length T1,2 is greater than zero. Thus, we can approximate the distribution of T1,2 by

T1,2|T1,2 > 0 ∼ Gamma(k1,2, θ1,2),

where k1,2 and θ1,2 are found by matching the mean and variance of the gamma distribution with

E[T1,2] and Var(T1,2). Thus, we obtain

T1,2|T1,2 > 0 ∼ Gamma(
E[L1,2]2

Var(L1,2)
,
Var(L1,2)

E[L1,2]
), (14)

where E[L1,2] and E[L2
1,2] are given by Equation (29).329

If every IBD segment has some length, we can assume that T1,2 is only identically zero when there

are no IBD segments. The distribution of the number of segments can be modeled as a Poisson

random variable with mean E[N1,2] equal to the expected number N1,2 of merged segments shared

between N1 and N2. The probability that there are no segments is then e−E[N1,2]. Thus, we have

the approximation

fT1,2(t1,2) ≈


tk−1
1,2

Γ(k)θk
e−t1,2/θ(1− e−E[N1,2]) if t1,2 > 0

e−E[N1,2] if t1,2 = 0.
, (15)

where k = E[L1,2]2/Var(L1,2), θ = Var(L1,2)/E[L1,2] and E[N1,2] is given in Equation (25). Figure330

S2 shows analytical values computed using Equations (12) and (13) compared to empirical values331

from simulations. Figure S3 shows the approximate analytical distribution computed using Equation332

(15) compared to the empirical distribution computed from simulations. Although the gamma333

distribution in Equation (15) provides a good fit to the empirical distribution, a Gaussian distribution334

can be more robust in practice because the gamma approximation is slightly underdispersed compared335

with the true distribution. In practice, we use the Gaussian distribution for inference.336

A maximum likelihood estimator of the degree between A1 and A2 can be obtained by determining

the degree dL(A1, A2) between A1 and A2 for which value of the distribution in Equation (15) is

maximized. This gives the maximum likelihood estimator

dL(A1, A2) = arg maxdfT1,2(t1,2; d). (16)

3.5.5. Likelihoods for identifying background IBD. Individuals with no recent relationship can share337

small segments of IBD by chance, especially in populations with recent or severe bottlenecks. This338

kind of IBD is referred to as background IBD and it poses a considerable challenge to accurate339

pedigree inference.340
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Previous methods have addressed background IBD by various approaches. For example, the341

authors of the ERSA method (Huff et al. 2011) presented an approach for modeling the distribution342

of background IBD among unrelated individuals and then performing a likelihood ratio test to343

determine whether the IBD shared between a new pair of individuals was significantly different from344

background.345

Power for detecting background IBD can be increased by comparing sets of individuals rather than346

pairs of individuals, leveraging the information inherent in previously-inferred pedigree structures.347

As we demonstrate, such an approach makes it possible to detect background IBD between sets of348

individuals without prior knowledge of the distribution of background IBD. This is useful because it349

can be challenging to know a priori the expected amount of background IBD between a given pair350

of individuals.351

We take an approach to identifying background IBD in which we consider the information352

contained in IBD sharing patterns across multiple individuals to determine when IBD is background353

and when it is due to true recent ancestry. In particular, we consider the problem in which all of the354

IBD observed in an individual is either background IBD, or true IBD due to a recent relationship.355

To illustrate the approach, consider the IBD sharing pattern shown in Figure 6. Individuals 3 and356

4 share relatively large amounts of IBD with 5 and 6, compared with the amount shared between357

{1, 2} and {5, 6}. If 1 and 2 were much more distantly related to 5 and 6 than 3 and 4, we might358

not consider the amount of IBD they share with 5 and 6 to be unusually small. However, because 1,359

2, 3, and 4 have similar degrees of relatedness to 5 and 6, the amount of IBD shared by 1 and 2360

appears to be unusually low. If we can say that the amount of IBD shared below node 7 is smaller361

than expected by chance, then we can assume that the IBD observed in 1 and 2 is background IBD362

and remove these nodes from consideration when connecting the left and right pedigrees.363

1 2
4

5

6

G

A2

A1
8

37

Figure 6. Detecting background IBD. Genotyped individuals are shaded in
purple. Vertical red lines indicate IBD segments shared between the genotyped
descendants of A1 and the genotyped descendants of A2.

We test for background IBD in practice through a series of hypothesis tests. Given that IBD is364

observed between two sets of nodes, N1 and N2, we take the putative common ancestors A1 and365

A2 through which the IBD was inherited to be the most recent common ancestors of N1 and N2,366

respectively. We then consider each of the descendant nodes, c, immediately below A1 in turn (e.g.,367
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7 and 8 in Figure 6) and we ask whether the amount of observed IBD below the node is much368

lower or higher than expected by chance, given the degree between A1 and A2 inferred using all the369

descendant nodes below A1, excluding c.370

If we assume that some individuals in N1 are related to some individuals in N2, then on average371

the observed IBD will represent true IBD, plus background IBD. The individuals sharing the greatest372

amount of IBD, relative to their genealogical positions, are likely to be the truly-related individuals.373

When testing for background IBD, we assume that the individuals sharing the greatest amount of374

IBD are truly related and we test for background IBD only in the individuals sharing less IBD.375

Thus, the child node c∗ of A1 with the greatest IBD sharing with N2 is exempt from our test.376

We drop all nodes that reject the null hypothesis of this test and re-set the ancestral node to377

be the common ancestor of all remaining IBD-carrying nodes. For example, if we detected that378

the clade below node 7 in Figure 6 had much lower IBD than expected by chance, we would drop379

node 7 and its descendants from consideration and set the true common ancestor relating the two380

pedigrees to be node 8. We iteratively repeat this procedure until no nodes are dropped. We then381

repeat the procedure for the nodes immediately below A2.382

Let Cn denote the set of children of node n. To test whether the IBD observed below a child383

node c ∈ Cn is background IBD, we establish an approximation of the null hypothesis H0 that the384

observed IBD below node c is real and we ask whether this hypothesis is rejected in favor of the385

alternative hypothesis H1 that the IBD is background.386

UnderH0, we assume that the degree dH0(A1, A2) betweenA1 andA2 is the maximum likelihood es-

timate dH0(A1, A2) = dL(A1, A2\c), or the generalized DRUID estimate dH0(A1, A2) = dD(A1, A2\c)
ignoring clade c. We then perform the following test

Reject H0 at level α if:

P(Tc,A2 ≤ tc,A2 ; dH0(A1, A2)) < α/2,

or P(Tc,A2 ≥ tc,A2 ; dH0(A1, A2)) < α/2. (17)

where Tc,A2 is the random variable describing the amount of IBD between descendants of c and387

descendants of A2 with observed value tc,A2 . The distribution of Tc,A2 is given by Equation (15). It388

is reasonable to be conservative when dropping background IBD so that true relationships are called389

as background IBD only a small fraction of the time. Thus, in practice, we take α to be small, such390

as α = 10−3.391

3.5.6. Determining the ancestral branches through which to connect pedigrees. One difficulty in392

constructing large pedigrees is determining the ancestors through which two sets of gentoyped393

individuals are related. A simple fundamental question is whether two lineages are both on the394

maternal side of an individual, both on the paternal side, or on opposite parental sides. Without395

genotyped parents, the side through which a lineage passes can be difficult to determine, although396

sex chromosomes and mitochondrial haplotypes can be used to resolve the parent of origin in some397

cases.398

We consider the problem of inferring whether two distant sets of relatives are related through399

the same parent of a focal individual, or through different parents. The scenario we consider is400
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illustrated in Figure 7. The amount of IBD shared among the red and purple pedigrees in Figure 7401

is uninformative about whether they are related through the same parent. Even if the purple and402

red pedigrees in Figure 7 shared no IBD, they could still be related to individual 1 through the403

same parent by passing through different grandparents. However, if the red and purple pedigrees404

are related to the focal individual 1 through the same parent, the IBD segments the purple pedigree405

shares with individual 1 cannot spatially overlap with the segments the red pedigree shares with406

individual 1. This is because two overlapping segments would have undergone recombination in the407

parent (i.e., individual 10). The result will either be a spliced segment (Figure 7), or the replacement408

of one segment by the other with possible reduction in segment size.409

In the Big Bonsai method, when there are multiple possible grandparents of a common ancestor410

through which we can connect a focal set of nodes N in a focal pedigree P to two distantly-related411

pedigrees P1 and P2, we examine whether the IBD segments between P1 and N overlap with the412

IBD segments between P2 and N . The efficacy of checking segment overlaps is discussed in Section413

4.3 using simulated data.414

Apparently equally 
reasonable points 

of connection 

2

5
4 6 7

1

8 9

3

A A
B

B
A

B

C D

11

A
10

B

Figure 7. Determining the parental side of distant relatives. Individual 1
in the cyan pedigree shares segment A IBD with individuals 2 and 5 in the purple
pedigree and they share segment B IBD with individuals 3 and 11 in the red pedigree.
If the lineage connecting individual 1 to the purple pedigree passes through ancestor 8
and the lineage connecting individual 1 to the red pedigree passes through individual
9, then the ranges of segments A and B cannot overlap because individual 10 only
transmits one recombined haplotype to individual 1. Observing abutting segments A
and B is evidence that the cyan pedigree is connected to the purple and red pedigrees
through the same parent. Observing spatially overlapping segments A and B is
evidence that the purple and red pedigrees are connected through different parents
of individual 1. In the absence of segment overlaps and splicing information, the
orange dashed lines indicate equally reasonable ways to connect the purple and cyan
pedigrees.

3.5.7. Summary of the Big Bonsai algorithm. We combine the tools in Sections 3.5.2 – 3.5.6 to obtain415

the Big Bonsai method presented in Algorithm 4. The input for the Big Bonsai method consists of416

small pedigrees inferred using the Small Bonsai method. It assembles these small pedigrees into417
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a large and sparsely-sampled pedigree by iteratively combining the two pedigrees that share the418

greatest total length of IBD until all pedigrees have been agglomerated into a single pedigree, or419

discarded because they cannot be combined in a reasonable way.420

We assume that a pair of pedigrees, P1 and P2, can only be combined in ways that connect421

individuals who share IBD. When combining two pedigrees, the Big Bonsai method identifies the422

sets, N1 and N2 of genotyped nodes in each pedigree that share at least one IBD segment with an423

individual in the other pedigree. If the set Ni does not have at least one common ancestor, we find424

the set Ãi of most recent ancestral nodes whose descendants comprise Ni. The pair of ancestors425

A1 ∈ Ã1 and A2 ∈ Ã2 whose descendants share the greatest total length of IBD is then determined426

and we redefine N1 and N2 to be the genotyped descendants of A1 and A2, respectively.427

Our objective is to identify pairs of individuals through which P1 and P2 can be connected in428

such a way that all individuals in N1 are related to all individuals in N2. This is accomplished429

if and only if the sets N1 and N2 share at least one common ancestor. Sets N1 and N2 will be430

connected through a common ancestor if their respective common ancestors, A1 and A2, share a431

common ancestor or if A1 is descended from any individual in N2 or from any ancestor on the432

induced subtree Λ2 of pedigree P2 relating N2 to one another. Similarly, sets N1 and N2 will have a433

common ancestor if A2 is descended from any individual in N1 or from any ancestor on the induced434

tree Λ1 of pedigree P1 relating N1.435

We present a generalized DRUID estimator in Appendix 6.3 for connecting pedigrees through436

individuals A who are not common ancestors of N1 or N2. However, connecting pedigrees P1 and437

P2 through all possible pairs can be computationally inefficient. Instead, we can accept a certain438

loss in accuracy and allow pedigrees to be connected only through common ancestors. We find439

that this approach works well in practice, generating pedigrees that are nearly as accurate as those440

constructed by connecting P1 and P2 in all possible ways.441

Let A1 be a most recent common ancestor of N1 and let A2 be a most recent common ancestor442

of N2. For each pair of possible ancestors (A1, A2), we compute the generalized DRUID estimate443

dD(A1, A2) of the degree using Equation (9). We then perform the test for background IBD described444

in Section 3.5.5, which potentially results in a new pair of common ancestors A′1 and A′2 whose445

descendants do not share detectable background IBD. If the pair (A′1, A
′
2) differs from the original446

pair (A1, A2), we replace A1 and A2 with A′1 and A′2 and recompute the generalized DRUID estimate447

dD(A1, A2). At the end of these steps, we have a set of possible ancestral pairs through which P1448

and P2 can be connected, along with point estimates, dD(A1, A2), of the total degree separating449

each pair.450

It remains to evaluate the likelihood of each pair and degree. Following the notation of Ko and451

Nielsen (2017), denote the relationship between a pair of individuals A1 and A2 with common452

ancestor (or ancestral pair) G by (d1, d2, n), where d1 is the number of meiotic events separating453

A1 from G, d2 is the number of meiotic events separating A2 from G, and n = |G| is the number454

of common ancestors. For a given estimate dD(A1, A2) of the degree between A1 and A2 and a455

number of common ancestors n, we consider all relationship types (d1, d2, n) corresponding to degree456

dD(A1, A2); in other words, we consider all relationship types such that d1 +d2 = dD(A1, A2)+n−1.457
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For a given pair of ancestors A1 and A2, and for each relationship (d1, d2, n), we connect A1 to A2458

through all such relationships and we evaluate the composite likelihoods of the resulting pedigrees459

computed using Equation (4). All pedigrees whose likelihoods are at least a fraction f` of that of460

the most likely pedigree are stored and the rest are discarded. We also apply the test in Section461

3.5.6 for incompatible ancestral lineages to each retained pedigree and we retain only those pairs462

that pass the test.463

Here, we have considered the procedure for combining two pedigrees P1 and P2. However, the464

output of the Small Bonsai method is a set of high-likelihood pedigrees S and the input to the465

Big Bonsai method is a list ~S = [S1, ..., SK ] of such sets. Let NS denote the genotyped node set466

corresponding to the pedigree set S; in other words, NS is the genotyped node set of every pedigree467

P ∈ S. If N is the set of genotyped nodes in the full pedigree, then
⋃K
i=1NSi = N .468

At each step of the Big Bonsai method, we compare each pair of genotyped sets NSi and NSj469

(1 ≤ i, j ≤ K) to determine the pair with the greatest shared total amount of IBD. Here, the total470

amount of IBD is the total length of IBD obtained by merging the segments shared between all471

pairs of individuals (u, v) ∈ NSi ⊗NSj . We then identify the subsets Ni ⊆ NSi and Nj ⊆ NSj that472

share IBD and we combine each pair of pedigrees (Pi,Pj) ∈ Si ⊗ Sj through all pairs of possible473

most recent common ancestors of Ni and Nj . The full algorithm is presented in Algorithm 4.474

It is possible to mis-infer relationships early in the process of pedigree building that lead to475

conflicts several steps later in the process. The downstream effects of a misplaced individual can476

be difficult to predict and prevent without a bird’s-eye view of the pedigree, but misplaced pairs477

of relatives can often be detected after the pedigree is built. In practice, we include a final step478

in the pedigree building process to detect internal inconsistencies by comparing the final pairwise479

relationships implied by the pedigree structure to the initial pairwise likelihood predictions. When480

the inferred relationships have low pairwise likelihoods, we rebuild the pedigree, iteratively expanding481

the number of pedigrees that are retained at each step to increase the chances that the correct482

pedigree is explored. We also correct pairwise point estimates that are likely to be incorrect when483

viewed in the context of a fully-built pedigree before attempting to re-infer the pedigree.484

Putting together the point estimator, the Small Bonsai method, and the Big Bonsai method, we485

obtain the full Bonsai method shown in Figure 1. Outlines of the three primary stages of Bonsai486

are shown in Algorithms 1, 2, and 4. The Bonsai method performs these stages in series.487

3.6. Subjects and simulations. Our empirical analyses are based on simulated data, as well as a488

dataset comprised of the pedigrees of 23andMe research participants. All simulations and analyses489

that used real genotype data were performed using individuals consented for research at 23andMe.490

3.6.1. Overview of simulations. Simulations were carried out using two different general approaches.491

In one approach, no genotype or customer data were used and IBD segments were known with492

certainty, their positions and lengths being recorded during the simulation process. In the second493

simulation approach, the full-genome genotypes of research-consented 23andMe customers were used494

for the pedigree founders and genotypes were simulated for individuals in all subsequent generations495

through cross-over events. IBD segments were then inferred between each pair of individuals using496

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.06.438656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438656
http://creativecommons.org/licenses/by-nc-nd/4.0/


20BONSAI: AN EFFICIENT METHOD FOR INFERRING LARGE HUMAN PEDIGREES FROM GENOTYPE DATA

Algorithm 1 Pairwise likelihoods and point estimates. Compute the likelihood of many
different relationships between a pair of individuals, i and j, and obtain a point estimate of the
relationship between i and j.

Input: Ages ai, aj , pairwise total lengths ti,j1 and ti,j2 if IBD1 and IBD2, and pairwise counts ci,j1

and ci,j2 of IBD1 and IBD2 segments.

~R ← List of relationships at which to evaluate the likelihood
L = Initialize dictionary mapping relationships to likelihoods
Lmax = −∞
for R ∈ ~R do

Compute LgR using Equation (2)
Compute LaR using Equation (3)
Compute LR = LaRL

g
R as in Equation (1)

L[R] = LR
if LR > Lmax then
Lmax = LR
R̂ = R # Estimated pairwise relationship

end if
end for
return R̂, L

an in-house method for inferring IBD on unphased data (Henn et al. 2012), which is similar to that497

of Seidman et al. (2020)498

In all simulations, the number of cross-over events in each meiosis was drawn such that the499

expected number of events was one per 100 cM and the locations of cross-overs were sampled500

uniformly along chromosomes.501

3.6.2. Validated real pedigrees. To evaluate Bonsai on true pedigrees, we constructed 204 validated502

pedigrees for individuals in the 23andMe database. By considering pedigrees in which all individuals503

were genotyped, we were able to construct each pedigree with a high degree of certainty by connecting504

parent-child pairs inferred using Algorithm 1. To ensure that the true pedigree was known with505

certainty, we considered quartets of genotyped customers with at least two full-sibling children506

and two parents. We identified pedigrees in which each individual was connected to every other507

individual through a chain composed of these building blocks. We further restricted our attention508

to pedigrees that spanned at least three generations with at least one pair of first cousins.509

Pedigrees identified in this way allowed us to know the true pedigree structure because parent-510

offspring and full-sibling pairs can be inferred with nearly perfect accuracy and the quartet structure511

allows us to further confirm each inferred relationship using the other pairs in the quartet. In512

particular, we required that each sibling pair had inferred child-parent relationships with the same513

two parents using Algorithm 1. We also required the self-reported ages of both parents to be at514

least 17 years older than the self-reported ages of the children.515

3.6.3. Self-reported pedigrees. The Family Tree feature provided by 23andMe allows users to edit516

and validate relationships in their pedigrees. We considered a set of such pedigrees where users had517

either verified or changed relationships, indicating that they knew the correct relationships for at518

least a subset of individuals in the pedigree. We considered only individuals in these pedigrees who519
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Algorithm 2 Small Bonsai algorithm. Infer a Small Bonsai pedigree.

Input:

• like dict[id1][id2][L] # Dictionary mapping pairs of IDs to likelihood

dictionaries L produced by Algorithm 1

• max deg # Max degree between any placed pair.

• max append types # Max number of ways to add a new person to a pedigree.

• f` # Fraction of least to most likely pedigree likelihoods.

• focal id # ID of focal individual.

P = Initialize pedigree with focal id
U = Initialize set of (“unplaced”) individuals not in P
S = {P} # Set of pedigrees built so far

while |U | > 0 and minu∈U,p∈P{d̂u,p} ≤ max deg do

(u, p) = arg minu∈U,p∈P{d̂u,p} # Unplaced individual closest to any placed individual
S′ = Initialize empty set of pedigrees built on this step
for P ∈ S do

~R =reverseargsort(like dict[p][u]) # Sort by highest to lowest likelihood relationship

for R in ~R[0 : max append types] do
for ρ ≡ R do # Relationships ρ consistent with R
P ′ = P with u placed in relationship ρ, relative to p
S′ = S′

⋃{P ′}
end for

end for
end for
P∗ = arg maxP∈S′(L(P)) # Most likely pedigree
S = {P ∈ S′ : L(P) ≥ f`L(P∗)}

end while
return S

Algorithm 3 Detect background IBD. Detect whether the IBD observed in one of the clades
directly descended from A1 in pedigree P1 carries background IBD relative to the descendants of
A2 in pedigree P2.

function DropBackground(A1, A2)
dD(A1, A2) = Generalized DRUID estimated degree
Λ1(A1) = Induced subtree below A1 connecting NA1

N = NA1

c∗ = arg maxc∈Children(A1){Tc,A2} # Clade sharing most IBD with A2.
for c ∈ Children(A1)\c∗ do

if Reject H0(Tc,A2) then
N = N\Nc

end if
end for
if A1 = AN then

Return A1

else
Return DropBackground(AN , A2)

end if
end function
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Algorithm 4 Big Bonsai algorithm. Combine Small Bonsai pedigrees into a Big Bonsai pedigree.

# Infer small pedigrees
U = Initialize set of unplaced individuals
~S = Initialize empty list of sets of pedigrees
while |U | > 0 do

focal id = arg minu∈U ( 1
|U\u|

∑
u′∈U\u d̂u,u′) # ID with closest mean degree to all other IDs

S = SmallBonsai(focal id) # Infer a set S of likely pedigrees for focal id
~S.append(S)

end while

# Combine small pedigrees

while length(~S) > 0 do
S1, S2 = arg maxS1,S2∈~S(TNS1

,NS2
) # Pedigree sets with greatest shared total IBD

Ñ1 = Subset of N1 related to N2

Ñ2 = Subset of N2 related to N1

S = Initialize empty set of pedigrees
for P1 ∈ S1,P2 ∈ S2 do
AÑ1

= CommonAncestors(Ñ1) # Set of common ancestors of Ñ1

AÑ2
= CommonAncestors(Ñ2) # Set of common ancestors of Ñ2

for A1 ∈ AÑ1
, A2 ∈ AÑ2

do

dD(A1, A2) = Infer generalized DRUID estimate between A1 and A2

A′1 = DropBackground(A1, A2) # Algorithn 3
A′2 = DropBackground(A2, A1) # Algorithn 3
if OverlapIBD(A′1, A

′
2) then

Continue # Ignore pairs (A′1, A
′
2) that fail the overlap conflict test in Section 3.5.6

end if
dD(A′1, A

′
2) = Infer generalized DRUID estimate between A′1 and A′2

for |G| = 1, 2 do # Number of common ancestors G of A′1 and A′2
d = dD(A′1, A

′
2) + |G| − 1

for d1 = 0, ..., d do
d2 = d− d1

ρ = (d1, d2, |G|) # relationship
P1,2 = New pedigree from connecting A′1 to A′2 through relationship ρ
S.add(P1,2)

end for
end for

end for
P∗ = arg maxP∈S(L(P))
S = {P ∈ S : L(P) ≥ f`L(P∗)}

end for
S1 = S
~S.delete(S2)

end while
return ~S
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were consented for research and re-built the pedigree using only the subset of research-consented520

individuals. The inferred relationships in the pedigree could then be compared with the user-verified521

relationships.522

3.6.4. Simulations for fitting empirical pairwise genetic likelihood distributions. The distribution of523

the total length of IBD1 and IBD2, the distribution of lengths of IBD1 and IBD2 segments, and the524

distribution of the total counts of IBD1 and IBD2 segments for a specified relationship type R were525

obtained by simulating full genomes for 100 pairs of individuals of the relationship type. For each526

simulation replicate, a pedigree was specified containing the relationship of interest and cross-over527

events were simulated within the pedigree.528

Over the 100 replicates, we computed the mean µQ and standard deviation σQ of the quantities529

Q = T1, T2, C1, and C2 where T1 is the total genome-wide length of IBD1, T2 is the total genome-530

wide length of IBD2, C1 is the total genome-wide count of IBD1 segments, and C2 is the total531

genome-wide count of IBD2 segments.532

3.6.5. Large simulated pedigrees. The 204 validated customer pedigrees described in Section 3.6.2533

are small enough that the Small Bonsai method is capable of building them without resorting534

to the Big Bonsai method. To evaluate the Big Bonsai method, we required considerably larger535

pedigrees whose structures were known with certainty. Although many pedigrees for 23andMe536

research-consented customers are large, the relationships within them are typically not known with537

certainty. Therefore, we simulated large pedigrees to evaluate the Big Bonsai method.538

Exact IBD was simulated for pedigrees with a depth of five generations by choosing a focal539

individual and building the “cone” of ancestors comprised of two parents, four grandparents, eight540

great-grandparents, and sixteen great-great-grandparents. For each individual in the ancestral cone,541

a second spouse was added with probability 0.2. Then, two children were created for every pair542

of spouses in the pedigree. Two children were repeatedly sampled for every spouse pair with no543

children until the generation with the focal individual was reached. An example of a pedigree544

generated by this approach is shown in Supplemental Figure S1.545

3.6.6. Simulated pedigrees for testing degree inference. The approach for simulating pedigrees for546

degree inference was similar to that in Section 3.6.5; however, the pedigree structure was different.547

For these pedigrees, we were interested in inferring the degree between a pair of common ancestors548

A1 and A2, given IBD observed between their descendants N1 and N2.549

For this analysis, we created two identical small pedigrees P1 and P2. Each small pedigree had550

the same structure comprised of the common ancestor A1 or A2, their spouse, their two children,551

and four grandchildren, where the grandchildren were comprised of two children for each child of552

A1 or A2. The ancestors A1 and A2 were then connected by degree d(A1, A2) through a pair of553

common ancestors, where the degree d varied from 1 to 10.554

4. Results555

We considered both simulated and real data to investigate the performance of the small and big556

Bonsai methods and their components.557
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4.1. Degree estimation. To evaluate the accuracy of degree inference using the likelihood estimator558

(Equation 16) and the generalized DRUID estimator (Equation 9), we applied these estimators to559

infer the degree between common ancestors A1 and A2 of two small pedigrees P1 and P2 (Section560

3.6.6). Figure 8 shows the accuracy of the likelihood estimator dL and the generalized DRUID561

estimator dD for inferring the degree d, conditional on the event that any IBD at all was observed562

between the leaf nodes in P1 and P2. From Figure 8 it can be seen that both the maximum likelihood563

estimator dL and the generalized DRUID estimator dD have similar accuracies for inferring the564

degree d. Moreover, the DRUID estimate is nearly identical to the maximum likelihood estimate,565

which is important in practice because it implies that connecting two pedigrees through the degree566

inferred by DRUID results in a pedigree that is approximately the maximum likelihood pedigree.567

This result can dramatically speed up pedigree inference and, in practice, we use the generalized568

DRUID estimator for inferring the degree of separation between two small pedigrees.569

|d̂� d|  1

|d̂� d|  2 |d̂� d|  3

d̂ = d

Figure 8. The accuracy of the likelihood method (Equation 16) and the
generalized DRUID method (Equation 9) for inferring the degree be-
tween a pair of common ancestors. The accuracy of the estimate is shown for
four different tolerances: exactly equal to the true degree, within one degree of the
true degree, within two degrees of the true degree, and within three degrees of the
true degree.

4.2. Background IBD detection. To evaluate the efficacy of the test in Equation (17) for570

detecting background IBD, we simulated pedigrees comprised of three small pedigrees, P1, P2, and571
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P3, connected together (Figure 9). In one set of simulations, pedigree P1 was related only to P2572

and not P3 (Figure 9, Scenario 1). This allowed us to simulate background IBD among all pairs573

of individuals and then attempt to detect it. In another set of simulations, pedigree P1 was truly574

related to all other individuals (Figure 9, Scenario 2). This second set of simulations allowed us to575

evaluate the rate at which background IBD was detected even when there was true IBD between P1576

and P3 as well as background IBD. Note that in all simulations, all pairs shared a nonzero expected577

amount of background IBD so that even truly related individuals carried additional background578

IBD.579

For all pedigrees, we simulated background IBD between each pair of individuals by sampling580

the number of background IBD segments from a Poisson distribution with mean λbgd = 0.05, 0.5, 1,581

or 5. We then sampled the length L of each observed background segment from a thresholded582

exponential distribution with mean 7 cM and minimum length of 5 cM. A minimum of 5 cM was583

chosen because, in practice, small segments can be difficult to infer and it is a common practice to584

employ a minimum cutoff on the length of IBD segments to reduce the rate of false positives (Huff585

et al. 2011).586

The rates of background IBD we tested corresponded to values spanning the empirically observed587

range of background segment counts in broad human populations in the 23andMe database. When588

considering only segments greater than 5 cM in length, the average number of background IBD589

segments between a pair of individuals is between 0.01 and 0.02 for most human populations.590

However, for populations with historical bottlenecks, the expected background IBD count can be591

closer to λbgd = 5.592

Figure 9A shows the fraction of times the null hypothesis H0 in Equation (17) was rejected when593

individuals shared an average of 0.05 background IBD segments. Blue bars correspond to simulation594

replicates in which all IBD shared between P1 and P3 was background (Scenario 1) and orange595

bars correspond to simulation replicates in which background IBD between P1 and P3 existed in596

addition to true IBD.597

Each bar in Figure 9A was calculated using 50 simulated pedigrees. From Figures 9A and 9B, it598

can be seen that for a level of background IBD consistent with the majority of human populations,599

the test correctly identified background IBD a large fraction of the time. Moreover, the test typically600

did not detect background IBD when there was also true IBD in addition to background IBD.601

For high levels of background IBD consistent with populations with severe bottlenecks, it was602

much more difficult to detect background IBD (Figures 9C and 9D). This was especially true when603

the internal branch length b was long and background IBD dominated true IBD.604

This is problematic because the detection of background IBD is particularly important in these605

populations. However, the amount of background IBD is controllable to some degree by establishing606

a threshold for the minimum length of an IBD segment to be included in an analysis. The higher607

the threshold, the fewer the number of false positive segments and the longer the length of the608

background IBD segments that are not filtered by the threshold. By using this threshold when609

detecting background IBD, it is possible to increase the power for detecting background IBD. This610

can be seen in Figures 9E-G, which show the same simulations shown in 9B-D, but discarding all611

segments shorter than 10 cM.612
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Scenario 1

P3

P1

P2

b

a

Scenario 2

P3

P1

P2

b

a

�bgd = 0.05 �bgd = 0.5

A B

�bgd = 1 �bgd = 5

C D

E F G
�bgd = 1 �bgd = 5�bgd = 0.5

Figure 9. Evaluating the use of the test in Equation (17) for detecting
background IBD. Scenario 1 shows a pedigree structure in which any IBD observed
between P1 and P3 is background IBD. Scenario 2 shows a pedigree structure in
which IBD shared between P1 and P3 comprises both true and background IBD.
Branch lengths a and b were variable. (A)-(D) Rates for detecting background IBD
under scenarios 1 and 2. (E)-(G) Same as (B)-(D), but using only segments at least
10 cM in length. Plots are shown for α = 10−3.

4.3. Segment overlap detection. We evaluated the degree to which overlapping IBD segments613

can be informative about the ancestors through which two pedigrees are connected using the614

large simulated pedigrees described in Section 3.6.5. For each pedigree, we considered the four615

grandparents of a focal individual and the leaves descended from all lineages extending up from each616

of the four grandparents. In the example large pedigree shown in Figure S1, the focal individual is617

one of the yellow leaf nodes and the clades corresponding to the four leaf sets are colored in green,618

cyan, red, and magenta.619

For a pair of leaf sets related to the focal individual through an ancestral couple, we expect to see620

no overlap in the IBD segments shared with the focal individual. For a pair of leaf sets related to the621

focal individual through two grandparents who are not a couple, we expect to observe overlapping622

segments occasionally.623

Figure 3 shows the rate at which segments from one leaf set overlapped segments from another624

leaf set by more than a fraction f of the total IBD observed between the two leaf sets, combined,625

for f ∈ 0.01, 0.05, 0.1, 0.15, 0.2.626
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Let i denote the focal individual. For leaf sets N1 and N2 with total amounts of IBD to the627

focal individual denoted by Ti,N1 and Ti,N2 , let Ti,N1∪N2 denote the total length of merged segments628

between focal individual i and either set. We recorded an overlap in segments if the following629

relationship was satisfied: Ti,N1 + Ti,N2 − Ti,N1∪N2 > fTi,N1∪N2 .630

Figure 10 indicates that even with few sampled leaves from each leaf set, it is possible to631

detect overlapping IBD segments a large fraction of the time when the leaves are related through632

grandparents who are not a couple. Each bar in Figure 3 was computed using 100 pedigrees, each633

with four pairs of leaf sets related to individual 1 through a pair of grandparents who were not a634

couple. Only IBD segments greater than 5 cM in length were considered.635

Figure 10. The probability of observing an IBD segment overlap. The
plot shows the probability of observing an overlap of at least fraction f (f =
0.01, 0.05, 0.1, 0.2) among segments shared IBD between the focal individual and
sets of leaves related to the focal individual through ancestors who are not a couple.
IBD segments were simulated for large pedigrees like that shown in Figure S1. IBD
was computed between the focal individual and the leaf nodes of each of the four
clades related to the focal individual through each of the four grandparents (colored
green, cyan, red, and magenta in Figure S1). An observed IBD segment overlap
was evidence that the lineages were related to the focal individual through a pair of
ancestors who were not a couple.

4.4. Timing and accuracy of Small Bonsai, compared with PRIMUS. To evaluate the636

accuracy and runtime of Bonsai in comparison with PRIMUS, we applied PRIMUS and Bonsai to a637

set of 204 pedigrees comprised of research-consented 23andMe customers (Section 3.6.2) in which638

all individuals were genotyped and for which the true pedigree was known with a high degree of639

certainty.640
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Pedigrees in which all individuals have been genotyped are simple to infer by connecting together641

first degree relatives. The difficulty is in constructing pedigrees in which only a small fraction of642

individuals have been genotyped. Therefore, to evaluate the accuracy of Bonsai, we subsampled the643

validated pedigrees and performed inference using the subset of individuals, ignoring the remaining644

individuals. The resulting pedigree could then be compared to the subgraph of the true pedigree645

corresponding to the subsampled individuals to determine the accuracy of the inference.646

We subsampled each pedigree to 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% of its members with a647

minimum of at least two individuals sampled per pedigree. Figure 11 shows the degree to which648

each method recovered each relationship type. From Figure 11, it can be seen that the Bonsai649

algorithm achieved improved accuracy for inferring relationships, and that when at least 50% of650

individuals were sampled, Bonsai inferred the correct pedigree with near perfect accuracy.651

We also compared the runtime of the Bonsai method to the runtime of PRIMUS for the same set652

of pedigrees described in Section 3.6.2. Figure 12 shows the runtime for Small Bonsai compared to653

the runtime for PRIMUS for different percentages of sampled lineages from each of the pedigrees.654

The runtimes for Bonsai and PRIMUS were similar when few or many individuals were sampled,655

although Bonsai was slightly faster. In these regimes, pedigrees were fast to construct because656

individuals could be connected through close relatives, which were inferred with high confidence.657

However, when the number of individuals sampled was moderate and there were several possible658

pedigree configurations with high likelihoods, the Bonsai method was significantly faster than659

PRIMUS.660

4.5. Timing and accuracy of the Big Bonsai method. Reconstruction of large pedigrees using661

the Small Bonsai method can be computationally challenging due to a quickly-expanding state662

space of possible pedigrees. Figure 13 shows timing and accuracy results for reconstructing large663

five-generation pedigrees simulated using the approach described in Section 3.6.5. For these analyses,664

we were interested in the ability of Big Bonsai to infer pedigrees that were realistic representations665

of direct-to-consumer genetic data. In realistic pedigrees, individuals beyond the most recent two666

generations may not have been sampled. When sampling individuals for the pedigree, we sampled667

individuals only in the most recent two generations who were not founders. This provided a pool of668

approximately 130 individuals who could be sampled out of a total of at least 261 individuals in669

each pedigree, including pedigree founders.670

To evaluate the ability of the Big Bonsai method to reconstruct pedigrees with sparsely sampled671

individuals, we further subsampled 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% of the approximately672

130 non-founder individuals in the most recent two generations. Sampling 10% of these individuals673

corresponds to sampling approximately 5% of all individuals in the full pedigree and sampling 100%674

of these individuals corresponds to sampling approximately 50% of all individuals in the pedigree675

overall. Our sampling scheme presents a further challenge to pedigree reconstruction because the676

samples did not contain ancestral individuals who could provide additional information about the677

degrees of distant relationships.678

From Figure 13A, it can be seen that the runtime is on the order of several seconds per pedigree,679

even though pedigree sizes were large. Bonsai built pedigrees with over one hundred sampled680

individuals in tens of seconds.681
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Figure 11. Comparison of Bonsai with PRIMUS. Panel A shows the accuracy
of Bonsai for inferring different relationships when 10% of individuals were sampled
from each pedigree. The relationship type between a pair of individuals i and j
is indicated as a tuple of the form (di,G, dj,G, |G|) following the notation of Ko
and Nielsen (2017). Panel B shows the accuracy for PRIMUS applied to the same
individuals with the same pairwise likelihoods as Panel A. Panels C and D compare
Bonsai with PRIMUS when 30% of individuals were sampled and panels E and F
compare Bonsai with PRIMUS when 50% of individuals were sampled. Accuracy of
Bonsai was perfect for 60-100% of lineages, although PRIMUS continued to mis-infer
some relationships.
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Figure 12. Comparison of runtime between Bonsai and PRIMUS. Runtime
was evaluated using 204 pedigrees of 23andMe research participants that were known
with a high degree of certainty. Because every individual in each pedigree was
genotyped, we sampled 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% of their members
uniformly at random without replacement. The subsampled individuals were then
used to reconstruct the pedigrees using PRIMUS and Bonsai using the same IBD,
age, and sex data. The x-axis in the figure is the fraction of sampled individuals in
each of the 204 pedigrees that were used for pedigree inference. The y-axis is the
average time in seconds required to reconstruct a pedigree.

The Big Bonsai method is designed to drop small pedigrees from consideration, rather than682

combining them with the other pedigrees when an inconsistency is detected. This can occur, for683

example, if the small pedigree is inferred with a very unlikely relationship despite re-running with684

parameter values that search a broader pedigree space and attempting to correct relationships that685

are judged to be inaccurate. Figure 13B indicates that the fraction of times individuals or small686

pedigrees were dropped was small, as the number of placed individuals was typically very close to687

the number of sampled individuals.688

Figures 13C-D show the accuracy for inferring large pedigrees when different fractions of indi-689

viduals were sampled. Close relationships were typically reconstructed accurately, whereas distant690

relationships were more challenging, yet still generally accurate especially when the fraction of691

sampled individuals was high.692

Note that, because the ages of individuals in the pedigree conformed to average age differences693

between generations, it was sometimes possible to distinguish distant half relationships from distant694

full relationships. For example, a pair of individuals of the same age related by four degrees of695

separation is more likely to be a pair of half first cousins, rather than a full first cousin once removed.696

Half relationships are likely to be more challenging to infer in practice, given that age differences697

may differ from expectation.698

4.6. Reconstruction of self-reported pedigrees using Big Bonsai. We also compared rela-699

tionships inferred by Bonsai with self-reported relationships using 265 pedigrees for which the700
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Figure 13. Timing and accuracy of the Big Bonsai method. Large pedigrees
were simulated with a depth of five generations and two offspring per pair as
described in Section 3.6.5. To capture the sparsity of pedigrees observed in direct-to-
consumer customer data, we sampled only a fraction of individuals in each pedigree
and used these as the genotyped individuals to infer the pedigree. Individuals
were only sampled from the most recent two generations because ancestors are
often ungenotyped in human data and because inference is more challenging when
genotyped ancestors are unavailable. (A) Runtime for Big Bonsai as a function of the
fraction of sampled individuals in the most recent two generations. (B) The number
of sampled individuals in each pedigree and the mean number placed, averaged across
100 replicates. (C)-(E) The fraction of pairs with a given relationship type that
were inferred to have each other relationship type. Tuples (di,G, dj,G, |G|) indicate a
specific relationship type between individuals i and j using the notation of Ko and
Nielsen (2017): (up, down, number of common ancestors). The tuple (inf,inf,None)
indicates unrelated individuals.
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relationships between two or more individuals had been self-reported by the focal individual for701

whom the pedigree was built (Section 3.6.3).702

Figure 14 shows the correspondence of each inferred relationship type with the self-reported703

relationship type. The plots show the fraction of times the self-reported and inferred relationships704

agreed exactly in that their relationship tuples (up, down, number of ancestors) were the same. The705

plots also show the fraction of times the relationships agreed in degree, the fraction of times the706

relationships agreed within one degree, and the fraction of times relationships agreed within two707

degrees.708

The inferred and self-reported relationships typically agreed for close relationships up to first709

cousins. However, the inferred relationship often differed from the self-reported relationship for710

distant relationship types, and occasionally for relatives as close as siblings or parents. For parent-711

child and full sibling pairs, it is possible to check whether the self-reported relationship is correct712

because the IBD sharing patterns for these relationships are very distinct from other relationship713

types. It is of interest to note that in all but one case in which the inferred and self-reported714

relationships differed for a parent-child or full sibling pair, the self-reported relationship was, in fact,715

incorrect due to impossible levels of shared IBD. In these cases, it was frequently the case that a716

self-reported parent-child pair shared no IBD, or that a self-reported full sibling pair shared no IBD2717

and instead had an IBD sharing pattern that was more consistent with a half sibling or a cousin. In718

only one case was the self-reported relationship type consistent with the IBD sharing pattern, and719

in this case one individual had a self-reported age much greater than 100 years, leading to a strong720

contribution from the age component of the likelihood and an incorrectly inferred relationship type.721

For distant relationships, we observed greater disparities between the self-reported and inferred722

values. However, the inferred degree was often within one or two degrees of the self-reported723

relationship, even for relationships as distant as seventh degree or higher in some cases. Moreover,724

relationships for which the self-reported and inferred degrees differed by more than two degrees725

typically had few self-reported pairs (Figure 14). This relatively high accuracy for distant relationship726

degree is consistent with our analysis of the accuracy of the generalized DRUID estimator.727

5. Discussion728

We have presented a method for inferring large pedigrees quickly and accurately, even when the729

fraction of genotyped individuals in a pedigree is low and the distance between an individual and730

their closest relative can be moderate or large. Our method has three component algorithms that are731

applied in sequence: 1) a method to infer the likelihoods of pairwise relationships between each pair732

of individuals using both age and IBD data, 2) a method for inferring pedigrees of small-to-moderate733

size, and 3) a novel method for combining small pedigrees together into large and sparsely-sampled734

pedigrees.735

Our Small Bonsai algorithm efficiently explores the space of possible pedigrees using a constructive736

approach. This approach is similar to that of PRIMUS (Staples et al. 2014), but it employs several737

new features that make it more efficient and more accurate than PRIMUS, including incorporating738

ages directly into the likelihoods, expanding the set of pedigrees that are explored, and introducing739

a branch-and-bound-like method for exploring the space of pedigrees more efficiently.740
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Figure 14. Comparison with self-reported pedigrees. Comparison of pre-
dicted relationships with self-reported relationships. Blue markers show the fraction
of relationship pairs for which the inferred and self-reported relationships agreed
exactly. The orange, green, and red markers show the fraction of pairs for which the
degrees of the inferred and self-reported relationships differed by at most 0, 1, or 2
degrees, respectively. The number of pairs for each relationship is shown above the
curves. Dashed lines are included to improve visibility.

Although the new methodological approaches implemented in the Small Bonsai method provide a741

pedigree inference algorithm with improved accuracy and performance, the primary novelty of the742

Bonsai method is in the Big Bonsai algorithm, which combines small pedigrees together into large743

and sparsely-sampled pedigrees. This algorithm makes it possible to construct pedigrees that are744

much bigger than the maximum size that can be constructed by current approaches.745

The construction of large and sparse pedigrees requires a fundamentally different approach from746

combining individuals one at a time as is done in PRIMUS, or searching a broad pedigree space by747

rearranging pedigrees as is done in CLAPPER. Because the space of possible pedigrees is large, it748

is useful to proactively and dramatically narrow the set of possible pedigrees to include only the749

pedigrees with the highest likelihoods.750

Combining small pedigrees together into large and sparse pedigrees makes it possible to leverage751

information in the previously-inferred small pedigrees to identify the most likely ways in which the752

small pedigrees can be connected together. Leveraging information across small pedigrees allows753

us to more accurately infer the degree of relatedness between two small pedigrees and to identify754

background IBD.755

We have introduced three new tools for combining pedigrees together. First, we have generalized756

the DRUID method of Ramstetter et al. (2018) to apply to general outbred pedigrees, rather757

than specific pedigree structures. We have also extended the method to allow pedigrees to be758

connected through pairs of individuals who are not common ancestors. We have also shown that the759

generalized DRUID estimate is nearly identical to the maximum likelihood estimate. Thus, rather760

than exploring multiple ways of connecting two pedigrees and selecting the most likely pedigree, we761

can simply connect the two pedigrees through the DRUID point estimate and achieve nearly the762

same result, greatly speeding up the inference process.763
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The second tool we have introduced is an approximate likelihood for the degree separating the764

common ancestors of two pedigrees as a function of the total length of IBD shared by the pedigrees.765

This likelihood is used as the foundation for our method for testing whether the IBD shared between766

two sets of individuals is the result of a true relationship, or whether the IBD is background IBD.767

Our approach obviates the need to infer the population or family-level distribution of IBD, which768

is useful because the expected amount of background IBD between a pair of individuals can be769

challenging to know in advance. By testing IBD between groups of individuals rather than pairs, we770

also reduce problems with multiple testing.771

Although we intentionally did not incorporate the population or family-level distribution of772

background IBD into our background IBD detection method, one can imagine a method that773

combines our approach with such a distribution to improve the power for detecting background774

IBD when the population or family-level distribution of background IBD is known.775

Finally, we have introduced a method for determining when the connection of pedigrees through776

certain ancestral branches is inconsistent with patterns of IBD overlap. This method makes it777

possible to assign two pedigrees to the correct parental sides of a focal individual in a focal pedigree.778

Using only information contained in pairwise IBD sharing, these inconsistent pedigrees would not779

be detected; pedigrees formed by connecting two pedigrees through incompatible grandparental780

lineages would appear to have the same likelihood as the true pedigree. Our approach achieves high781

accuracy even when few relatives on each parental side have been sampled.782

Compared to previous methods for inferring complex human pedigrees, the Bonsai method yields783

improvements in both accuracy and computational efficiency and makes it possible to build pedigrees784

that are considerably larger than those that were possible before. The speed of pedigree building785

depends on the complexity of the pedigree, the proportion of individuals who are genotyped, and the786

distribution of these individuals throughout the generations of the pedigree. As a result, it can be787

difficult to characterize the runtime of Bonsai relative to other methods. However, in a comparison788

of runtime on 204 real-world pedigrees, Bonsai was always faster than the current fastest method789

PRIMUS. For large complicated pedigrees, Bonsai built pedigrees in a matter of seconds that took790

hours or which did not complete when built with PRIMUS or the Small Bonsai method alone.791

Although we have presented an approach based on IBD segment overlaps for partitioning sets792

of distant relatives into their respective parental sides, relative to a focal individual or clade, it is793

likely that additional resolution could be gained by using IBD detected on sex chromosomes. At794

present, the Bonsai method uses only autosomal IBD to avoid considering the sexes of ancestral795

individuals along the paths connecting each pair of individuals when computing the likelihood of796

their relationship. Increased accuracy can also be obtained by using SNP-level information in our797

test of IBD overlap, such as opposite homozygotes, instead of IBD segments, as overlaps often occur798

between segments that are too short to be identified by existing IBD methods.799

There is also potential to improve close relationship estimates by using phasing information.800

Williams et al. (2020) have demonstrated that half-sibling, avuncular, and grandparental relation-801

ships, which have been difficult to differentiate historically due to the fact that the total amount of802

IBD is the same for each of these relationship types, can be differentiated by making use of long-range803

phasing information. Phased IBD estimates, obtained from programs such as the PhasedIBD method804
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of Freyman et al. (2020), could provide a considerable boost in accuracy for close relationships.805

Improved close relationships would lead to improved distant relationships due to the fact that the806

small pedigree structures being connected would be more accurate. The PhasedIBD method of807

Freyman et al. could also improve distant relationship estimates through more accurate inference of808

short IBD segments.809

Although our method for detecting background IBD is able to distinguish background IBD from810

true IBD when the level of background IBD is low, the approach struggles when there is a significant811

quantity of background IBD. In such cases, other approaches for accounting for background IBD812

when inferring relationships can be used. One approach is to detect the amount of “self” IBD shared813

between homologous chromosomes in each individual in a pedigree. Assuming that all individuals814

in the pedigree come from the same population, the amount of self IBD provides an expected level815

of background IBD sharing between two haplotypes that can then be subtracted from each pairwise816

relationship of which the individual is a member. We find that this approach improves pedigree817

inference accuracy in practice.818

The approach of using self IBD to adjust pairwise IBD estimates can also be an effective approach819

when inferring pedigrees with recent consanguinity. The current Bonsai method assumes that820

pedigrees are graphs without cycles. However, it is possible to include cycles when adding new821

individuals to the pedigree if individuals have substantial self IBD and their relationships with822

others are indicative of recent consanguinity. This approach can be used together with distributions823

that are specifically trained on relationships with consanguinity.824

Approaches for inferring pedigrees in the context of background IBD and consanguinity are825

important for improving pedigree inference in all human populations. Although the theoretically826

maximal accuracy with which a pedigree can be inferred differs across human populations due to827

differences in demographic histories, it is likely that improvements in accuracy can be attained for828

all populations through improved methodology, such as the improvement of pairwise relationship829

inference by methods such as deep-learning trained in specific populations, the inclusion of additional830

consanguineous relationship types, and the inclusion of additional genetic information from sex831

chromosomes and mitochondrial DNA. By nature, pedigree inference is a complicated problem832

requiring methods that can handle a wide variety of pedigree structures and input data. However,833

our results show that the inference of large and sparse human pedigrees is tractable, and that834

accuracy will continue to increase as pedigrees become increasingly densely sampled.835

6. Appendix836

6.1. The probability of a pattern of IBD. Consider the induced subtree in a pedigree relating837

a set of genotyped individuals. This tree is shown with dashed red lines in Figure 4 with nodes of838

the tree indicated with red dots. Let a(i) denote the direct ancestral node of node i in this tree.839

For example, in the tree in Figure 4, we have a(1) = A1, a(6) = A1, a(2) = 6, a(3) = 6, a(4) = A2,840

a(5) = A2, a(A1) = G and a(A2) = G.841

Assuming that all IBD segments are observed, we have

P(Oi = 1) = P(Oi = 1|Oa(i) = 1)P(Oa(i) = 1) + P(Oi = 1|Oa(i) = 0)P(Oa(i) = 0)
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= P(Oi = 1|Oa(i) = 1)P(Oa(i) = 1)

= 2−di,a(i)P(Oa(i) = 1), (18)

where di,a(i) is the number of meioses separating individual i from their ancestor a(i). Similarly, we

have

P(Oi = 0) = P(Oi = 0|Oa(i) = 1)P(Oa(i) = 1) + P(Oi = 0|Oa(i) = 0)P(Oa(i) = 0)

= [1− 2−di,a(i) ]P(Oa(i) = 1) + P(Oa(i) = 0). (19)

In the final lines of Equations (18) and (19), we have used the fact that the probability that an842

allelic copy is transmitted in one meiosis is 1/2.843

Equations (18) and (19) establish a recursion for computing the probability of an observed

presence and absence pattern from a given ancestral allelic copy at a single base of the genome.

Defining

pi,0 ≡ P(Oi = 0), pi,1 ≡ P(Oi = 1),

we can express the recursion compactly as

pi,0 = [1− 2−di,a(i) ]pa(i),1 + pa(i),0,

pi,1 = 2−di,a(i)pa(i),1,

with the base conditions pg,0 = 0 and pg,1 = 1 for each chromatid, g, in G. The probability of an844

observed IBD sharing pattern {O1, ..., Ok} across k leaf nodes can be computed recursively using845

Equation (6).846

6.2. Approximating the variance of T1,2. Here, we derive an approximation of the variance of847

the total length, T1,2, of IBD shared across the genotyped descendants of two acenstral individuals, A1848

and A2. When we encounter a patch of IBD at a locus, the length of the patch can be approximated849

as the maximum length of |N1| × |N2| different IBD segments, where Ni is the set of genotyped850

nodes below ancestor Ai at locus m in which the IBD segment is observed. This approximation851

comes from conceptualizing IBD sharing among the |N1| IBD segment carrying descendants of A1852

and the |N2| IBD segment carrying descendants of A2 as |N1| × |N2| independent segments with853

a single point at which all segments overlap. The length of the merged segment to one side of854

this focal point then has a distribution given by the maximum of |N1| × |N2| exponential random855

variables whose means depend on the degree of separation between the corresponding pairs of leaf856

individuals. To simplify matters, we assume that the length of the full merged overlapping segment857

(not just to the left or right) is exponentially distributed.858

This approximation is an oversimplification of the IBD sharing pattern because the segments are859

not truly independent and need not overlap at a single point. Moreover, under this approximation,860

the length of the merged segment would be the maximum over sums of identically distributed861

random variables, representing the sum of the length of a segment to the right of the center point and862

the length of the segment to the left. However, we are not overly concerned with these drawbacks of863

the conceptualization because our main goal is to obtain an accurate, yet simple approximation864

of the variance of the distribution. We also assume that no member of Ni is the direct ancestor865
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of another member of the set, which holds in practice if we drop all individuals from Ni who are866

descended from others.867

The length, `i,j , of an IBD segment between leaf nodes i and j is can be modeled as an exponentially868

distributed random variable with mean length µij = Lgenome/di,jR, where di,j is the degree of869

relationship between them and R is the expected number of recombination events, genome wide, in870

one meiosis (Huff et al. 2011). When the length of the genome is expressed in centimorgans (cM), the871

expected number of recombination events in the genome is Lgenome/100. Thus, the expected length872

in cM of an IBD segment between individuals i and j separated by di,j meioses is µij = 100/di,j .873

Let L1,2 denote a random variable describing the length of the segment formed by merging all874

segments at a given locus m between descendants of A1 and A2. If the lengths of all segments at875

this locus were independent, their merged length in our conceptualization would have a distribution876

given by the maximum over independent exponentially distributed random variables with means877

{µi,j}i∈N1,j∈N2 .878

If the leaf nodes with observed IBD at the marker are N1 and N2, then we have L1,2 =

max({`i,j}i∈N1,j∈N2). Under this condition, the cumulative density function (CDF) FL(`;N1,N2)

of L is

FL1,2(`;N1,N2)

= P(L1,2 < `;N1,N2)

= P(`i,j < `, for i ∈ N1, j ∈ N2)

=
∏
i∈N1

∏
j∈N2

P(`i,j < `)

=
∏
i∈N1

∏
j∈N2

(1− e−λi,j`)

= 1−
∑

i∈N1,j∈N2

e−λi,j` +
∑

i,u∈N1,j,v∈N2

e−(λi,j+λu,v)`(1− δ(i,j),(u,v)) (20)

−
∑

i,u,w∈N1,j,v,z∈N2

e−(λi,j+λu,v+λz,w)`(1− δ(i,j),(u,v))(1− δ(i,j),(z,w))(1− δ(u,v),(z,w)) + · · · ,

(21)

where λi,j = 1/µi,j = di,j/100 and δ(a,b),(c,d) is the Kronecker delta between tuples (a, b) and (c, d),879

which is equal to one when (a, b) = (c, d) and zero, otherwise.880

The sets N1 and N2 are, themselves, random variables. Summing over all sets N1 and N2, we

have

FL1,2(`) =
∑
N1,N1

FL1,2(`;N1,N2)P(N1)P(N2), (22)

where the probabilities P(N1) and P(N2) are probabilities of observing IBD in the sets of leaf nodes881

below A1 and A2 and can be approximated using the recursion in Equation (6).882

Over the length of the genome, the number N1,2 of IBD segments between the descendants of883

A1 and A2 is approximately Poisson distributed with mean (1− P(Ic)2|G|)Lgenome/E[L1,2]. This884

rate comes from the fact that the average total amount of the genome in a patch of IBD is885
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(1− P(Ic)2|G|)Lgenome while the average length of any given segment is E[L1,2]. When the lengths886

of IBD are short and far apart, which they are when the degree between A1 and A2 is large, this is887

a reasonable approximation. This is precisely the regime in which the distribution in Equation (15)888

is most useful.889

The total length T1,2 of merged IBD among the descendants of A1 and A2 is

T1,2 =

N1,2∑
n=1

L1,2. (23)

We can derive the variance of T1,2 using the law of total variance as

Var(T1,2) = E[Var(T1,2|N1,2)] + Var(E[T1,2|N1,2])

= E[N1,2Var(L1,2)] + Var(N1,2E[L1,2])

= E[N1,2]Var(L1,2) + Var(N1,2)E[L1,2]2. (24)

Note that because N1,2 ∼ Poisson((1− P(Ic)2|G|)Lgenome/E[L1,2]), we have

E[N1,2] = Var(N1,2) = (1− P(Ic)2|G|)Lgenome/E[L1,2]. (25)

So Equation (24) simplifies to

Var(T1,2) =
(1− P(Ic)2|G|)Lgenome

E[L1,2]
[Var(L1,2) + E[L1,2]2]

= (1− P(Ic)2|G|)Lgenome
E[L2

1,2]

E[L1,2]
, (26)

where we have used the fact that Var(X) = E[X2]− E[X]2.890

It remains to find E[L1,2] and E[L2
1,2]. Using the CDF of L1,2 in Equation (22) and the fact that

E[Xm] = m!
∫
R x

m−1[1− FX(x)]dx, we have

EN1,N2 [Lm1,2] = m!

∫ ∞
`=0

xm−1[1− FL1,2(`;N1,N2)]d`

=
∑

i∈N1,j∈N2

∫ ∞
`=0

m!`m−1e−λi,j`d`−
∑

i,u∈N1,j,v∈N2

∫ ∞
`=0

m!`m−1e−(λi,j+λu,v)`d`

+
∑

i,u,w∈N1,j,v,z∈N2

∫ ∞
`=0

m!`m−1e−(λi,j+λu,v+λz,w)`d`+ · · ·

=
∑

i∈N1,j∈N2

m!

λmi,j
−

∑
i,u∈N1,j,v∈N2

m!

(λi,j + λu,v)m

+
∑

i,u,w∈N1,j,v,z∈N2

m!

(λi,j + λu,v + λz,w)m
+ · · · (27)

where the integrals in Equation (27) can be evaluated by noting that they are essentially expressions891

for the moments of exponential random variables with parameters λi, (λi + λj), (λi + λj + λk), etc.892

Thus, we can use Equation (27) to compute

E[Lm1,2] =
∑
N1,N1

EN1,N2 [Lm1,2]P(N1,N2), (28)
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where P(N1,N2) is the probability of observing IBD segments at the leaves N1 and N2, and is893

approximated using the recursion in Equation (6). We then plug Equation (28) in to obtain the894

variance of T1,2 in Equation (26).895

In practice, it is too computationally demanding to compute the sums in Equation (28) because

the terms EN1,N2 [L1,2], EN1,N2 [L2
1,2], and P(N1,N2) are not fast to compute in large quantities.

However, the probabilities P(N1,N2) can be computed quickly enough, allowing us to find the most

likely sets of leaf nodes, N̂1 and N̂2, with observed IBD. Thus, in practice we use an approximation

in which we assume that the most likely IBD pattern has been observed and we compute

E[Lm1,2] ≈ EN̂1,N̂2
[Lm1,2]. (29)

The assumption used in this approximation is that most patterns of observed IBD at the leaves are896

unlikely compared with the most likely patterns and that most likely patterns of IBD will yield897

similar moments E[Lm1,2].898

6.3. Re-rooting the DRUID estimator. In some scenarios, the common ancestors, A1 and A2,899

of sets of individuals N1 and N2, may not be related through a common ancestor or ancestral pair of900

both A1 and A2. In particular A2 can be the direct descendant of A1, or vice versa. This scenario,901

along with the scenario treated in Section 3.5.3 in which N1 and N2 are connected through their902

common ancestors, covers all possible ways in which N1 and N2 can be connected such that they903

are mutually related, i.e., so that they share a common ancestor.904

We now describe an approach for computing the generalized DRUID estimate when A2 is905

descended from an individual A who is the common ancestor of only a subset of N1. We consider A906

to be any node ancestral to some node in N1, including any member of N1 itself.907

Let Λ1(A1) denote the induced subtree in pedigree P1 that relates A1 and their descendants908

N1. To obtain the generalized DRUID estimate when A2 is descended from A, we re-root the tree909

Λ1(A1) at A to obtain a re-rooted tree Λ̃1(A). We then compute the generalized DRUID estimate910

from Section 3.5.3 using the re-rooted tree Λ̃1(A). The estimate between A and A2 obtained using911

Equation (9) applied to Λ̃1(A) and Λ2(A2) is then the number of meioses separating A and A2.912

The one complication is that A2 can be descended from both A and a spouse A′, who is also an913

ancestor of one or more of A’s genotyped descendants NA. In this case, A2 is more closely related914

to NA than to N1\NA by one degree. We solve this problem by representing the clades of shared915

descendants twice on the re-rooted tree, obtaining a multi-labeled tree (Figure 15). In contrast, if916

A2 is descended from A and a spouse A′′ who is not ancestral to any genotyped descendants, we do917

not duplicate the descendants of A on the tree.918
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Figure 15. Re-rooting the DRUID estimator. (A) The pedigrees relating N1

and N2, respectively. The induced subtree relating the descendants of internal node
A is shown in orange. (B) The re-rooted tree when A2 is descended from A and A′′.
(C) The re-rooted tree when A2 is descended from A and A′.
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Figure S2. Analytical versus empirical mean and variance of T1,2. Ana-
lytical means were computed using Equation (12) and analytical variances were
computed using Equation (13). Empirical means and variances were computed using
simulated pedigrees comprised of two small pedigrees P1 and P2 connected through
either one or two common ancestors. Pedigree P1 had a randomly generated structure
simulated by starting with the pair of root individuals and their two children. At
each subsequent generation, each leaf node had a probability 1/2 of having one
offspring and 1/2 of having two offspring. Pedigree P1 was extended down from the
root nodes until the total number of leaves was |N1|. Pedigree P2 was simulated in
the same way, but independently of P1. One common ancestor A1 of P1 was then
connected to one common ancestor A2 of P2 through either one or two common
ancestors, G. The degrees dA1,G and dA2,G were set to either 3 or 5 and the number
of common ancestors |G| was either 1 or 2. Thus, the genealogical degrees between
A1 and A2 were in the set {5, 6, 7, 8, 9, 10}. The number of leaves in each pedigree
was either Ni = 2 or Ni = 4. We ran 10 simulation replicates for each configuration
of dA1,G, dA2,G, |N1|, |N2|, and |G|.
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Figure S3. Analytical versus empirical distributions of T1,2. Analytical
distributions were computed using Equation (15). Empirical distributions were
simulated in the manner described in Figure S2.
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