
Title 1 

Unbalanced dietary patterns contribute to the pathogenesis of precocious puberty 2 

by affecting gut microbiota and host metabolites 3 

 4 

Authors: 5 

Ying Wang1, 2#，Dingfeng Wu3, 4#，Hongying Li 1 ,2 ，Xiangrong Liang 1, 2，Na Jiao5, 6，Wenxing 6 

Gao3，Lu Zhao 2，Han Yu2，Qian Wang2，Yongsheng Ge2 ，Changying Zhao2，Meiling Huo 2，7 

Ruifang Cao7，Sheng Gao3， Liwen Tao3，Yunchao Ling7 ，Lingna Zhao7，Xin Lv 1, 2 ，Yi Liu1, 8 
2，Lehai Zhang 1, 2，Haokui Zhou8，Guoqing Zhang7 ，Guoping Zhao7, 9, 10，Lei Zhang1, 10, 11*，9 

Ruixin Zhu3, 4, 6*，Zhongtao Gai1, 2* 10 
1Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, 11 

P.R.China. 12 
2Jinan Children's Hospital, Jinan 250022, P.R.China. 13 
3Department of Gastroenterology, The Shanghai Tenth People's Hospital, Department of 14 

Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai 200092, 15 

P.R.China. 16 
4Bioinformatics Division, GloriousMed Clinical Laboratory Co., Ltd., Shanghai 201318, P. R.China. 17 

5Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and 18 

Pelvic Floor Diseases, Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen 19 

University, Guangzhou 510655, P.R. China. 20 
6Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai 201318, P. R.China. 21 

7CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of 22 

Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 23 

Shanghai 200031, P.R.China. 24 
8Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, 25 

P.R.China. 26 
9Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, P.R.China. 27 
10Microbiome-X, National Institute of Health Data Science of China & Institute for Medical 28 

Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, P.R.China. 29 

11. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong 30 

University, Jinan 250012, P.R.China. 31 
# Equal contributors 32 
*Correspondence: zhanglei7@sdu.edu.cn (L.Z.), rxzhu@tongji.edu.cn (RX.Z.), gzt@etyy.com 33 

(ZT.G.) 34 

 35 

 36 

 37 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.07.438759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438759


 38 

ABSTRACT: 39 

Precocious puberty (PP) mostly stems from endocrine disorders. However, its 40 

triggering factors, especially for the early onset of partial PP, and the associated 41 

pathogenic mechanisms remain ambiguous. In this study, a systematic analysis in the 42 

form of a questionnaire of lifestyles, gut microbiome, and serum metabolome data was 43 

carried out to examine the pathogenesis of PP in a cohort comprised of 200 girls, with 44 

or without PP. The analysis revealed substantial alterations in gut microbiota, serum 45 

metabolites, as well as lifestyle patterns in the PP group, which were characterized by 46 

an elevated abundance of β-glucuronidase-producing and butyrate-producing bacteria, 47 

and excessive lipid concentration with decreased levels of organic nitrogen compounds 48 

in the serum of the participants. These differential microbes and metabolites tend to be 49 

reliable non-invasive diagnostic biomarkers aiding the early diagnosis of PP and exhibit 50 

a strong discriminative power (AUC = 0.93 and AUC = 0.97, respectively). 51 

Furthermore, the microbial biomarkers were confirmed in an independent validation 52 

cohort (n = 83, AUC = 0.85). Moreover, structural equation modeling revealed that 53 

unhealthy dietary habits were the primary contributors for the alteration of gut 54 

microbiota and serum metabolites, triggering the imbalance in the host hormones that 55 

leads to premature physical development. Our study determines a causal relationship 56 

among the gut microbiota, host metabolites, diet, and clinical characteristics of 57 

preadolescent girls who experienced early onset of PP, and formulates non-invasive 58 

diagnostic tools demonstrating excellent performance for the early detection of PP. 59 

Keywords: causality, dietary pattern, gut microbiota, metabolomics, precocious 60 

puberty.  61 

 62 

INTRODUCTION 63 

Precocious puberty (PP) refers to the premature occurrence of pubertal development or 64 

secondary sexual characteristics, before the age of 8 in girls and 9 in boys, depicted by 65 
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features such as advanced breast and ovary development along with rapid bone growth 66 

or maturation (Root, 2000), where the morbidity rate is also seen to rise progressively 67 

(Kim et al., 2015). PP is a hormonal condition predominantly seen in females and can 68 

be attributed to endocrine disorders, accompanied by an elevated sex hormone secretion 69 

(Du et al., 2019). However, there still exists lack of clarity about the triggering factors 70 

of this condition, especially for the premature onset of partial PP, and the pathogenic 71 

mechanisms associated with it. It has been reported that dietary patterns seem to 72 

considerably influence the estrogen metabolism mechanism, which is inextricably 73 

linked with PP (Chen et al., 2018; Kim et al., 2011b; Merzenich et al., 1993; Rogers et 74 

al., 2010). Over-nutrition or hyperalimentation, the excessive consumption of processed 75 

and high-fat diet, is considered to be the principal agent responsible for the secular 76 

decline in pubertal age (Muir, 2006; Soliman et al., 2014). Certain animal studies have 77 

suggested that postnatal over-nutrition tends to invariably escalate the secretion of 78 

luteinizing hormone (LH), follicle stimulating hormone (FSH), leptin, and insulin 79 

levels in pubertal females, while the consumption of postnatal high-fat diet after 80 

commencing weaning stimulates premature puberty in females (Soliman et al., 2014). 81 

At the same time, harmful dietary patterns seem to significantly affect the composition 82 

of human gut microbiota and metabolome (Kong et al., 2014; Sheflin et al., 2017). A 83 

number of former studies conducted on adults with estrogen-mediated diseases, such as 84 

experiencing menopausal symptoms, revealed that gut microbiota is capable of 85 

effectively regulating metabolism and transforming estrogen-like compounds to 86 

biologically active forms (Baker et al., 2017; Frankenfeld et al., 2014). Hence, PP has 87 

been understood to be the outcome of early activation of hypothalamic-pituitary-88 

gonadal (HPG) axis initiated by certain pathophysiological stimuli, such as gut 89 

microbiota or diet patterns (Brito et al., 1999; Cussotto et al., 2018; Qi et al., 2012).  90 

Therefore, we investigated the gut microbiome and serum metabolome with respect to 91 

the lifestyle information and clinical characteristics for a cohort of 200 participants, 92 

where 133 girls experienced partial PP in early onset stage while 67 were healthy girls. 93 

Our study registered an imperative association between the key metabolomics and 94 

bacterial biomarkers, and their promising discriminatory power values by analyzing the 95 
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discovery and validation cohorts. Our innovative structural equation modeling (SEM) 96 

analysis demonstrated the direct and/or indirect causal relationships across various 97 

factors of this study for determining PP in preadolescent girls, such as gut microbiota, 98 

host metabolism, lifestyles, and clinical characteristics. 99 

 100 

RESULTS 101 

Baseline Characteristics of Participants 102 

200 female participants were recruited for this study (Table 1). 168 stool samples from participants 103 

were collected for 16S rRNA sequencing to probe the microbiota alterations existing among girls 104 

with PP (n = 105) and normal girls (n = 63). The average age of girls in the PP and the normal groups 105 

at the time of stool sample collection was 6.641 (95 confidence interval, ci95 = 0.403) and 7.008 106 

(ci95 = 0.515) years (P = 0.278, Table 1), respectively. 129 serum samples were collected for 107 

untargeted metabolomics analysis, which included 45 PP and 84 normal girls illustrating an average 108 

age of 6.662 (ci95 = 0.458) and 6.250 (ci95 = 0.571) years (P = 0.289, Table 1), respectively. 109 

Additionally, lifestyle information of the 200 participants was obtained by means of a questionnaire 110 

involving 117 variables of dietary patterns, living environment, maternal health, childbirth, and the 111 

physical condition of participants as well as their parents. For the dietary patterns of the participants, 112 

15 variables, including seafood (FDR = 2.36e-5), freshwater products (FDR = 2.91e-5), tubers (FDR 113 

= 0.65e-3), and vegetables (FDR = 0.0021), showed significant differences between PP and the 114 

normal group (Table S1). Likewise, 3 variables depicting the physical condition of the participants, 115 

like dental care (FDR = 0.021), eczema (FDR = 0.045), and normal vaccination (FDR = 0.047), also 116 

showed significant differences among the two groups under consideration (Table S1). 117 

 118 

Gut Microbiota Dysbiosis in Girls Suffering from PP 119 

Gut microbial composition displayed a huge variation between PP and the normal group. As 120 

compared to the normal girls (P < 0.001, Fig. 1A), significantly elevated bacterial richness was 121 

observed in the PP group. At the same time, the microbial diversity in the PP group appeared to be 122 

substantially distinct from that of the normal group, which was further validated by PERMANOVA 123 

test (pseudo-F = 3.24, P = 0.001, Fig. 1B). 45 notably differential amplicon sequence variants (ASVs) 124 
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were identified from the gut microbiota samples of the PP group and the normal controls (FDR < 125 

0.05, Table S2). The abundance of ASVs, assigned as Bacteroidaceae, Ruminococcaceae, 126 

Faecalibacterium, Enterobacteriaceae, and Escherichia-Shigella, was witnessed to have increased, 127 

while those of genus Agathobacter and family Peptostreptococcaceae (Romboutsia and 128 

Intestinibacter (1)) seemed to have decreased in the PP group (Fig. 1D, Table S2). Most of these 129 

differential taxa exhibited the potential of encoding/producing β-glucuronidase (Fig. 1D, Table S2), 130 

an enzyme that deconjugates estrogens into their active forms (Mcintosh et al.).  131 

Furthermore, alterations on microbiome-mediated functional potentials were also explored, which 132 

led to the identification of 88 differential pathways (FDR < 0.05) between PP and the normal group 133 

(Fig. S1A). The PP group demonstrated enhanced activity levels in most metabolic processes, such 134 

as metabolizing carbohydrate, cofactor and vitamin, fatty acid and lipid, and inorganic nutrient 135 

metabolism.  136 

 137 

Microbial Markers Could Act as Non-Invasive Tools for PP Diagnosis 138 

To explore the possibility of differential microbes functioning as prospects of novel non-invasive 139 

tools for PP diagnosis, a classification model was designed by employing 45 differential ASVs via 140 

random forest algorithm. The model emerged highly capable for performing the clinical diagnosis 141 

of PP, with an area under the receiver operating characteristic curve (AUC) of about 0.93 (Fig. 1C). 142 

Afterwards, the classification model was validated in an independent cohort (n = 83, Table S3) to 143 

further measure its generalization ability. The model constituting of 13 out of 45 differential ASVs 144 

that exhibited the same abundance change pattern accomplished excellent results for distinguishing 145 

between PP and the normal group with an AUC of about 0.85 (Fig. S2B). These 13 ASVs primarily 146 

belonged to Bacteroides and Enterobacteriaceae (Table S3) and illustrated critical elevation 147 

regarding several metabolic processes in the PP group (Fig. S1B). 148 

 149 

Latent Microbial Factors Revealed Underlying Relationships of Altered Microbiome 150 

Delving into the underlying relationships among differential taxa, we performed exploratory factor 151 

analysis (EFA) and identified 10 latent microbial factors, which revealed the latent patterns of the 152 

change in gut microbiota. These factors were then presented in the microbial co-occurrence network 153 

(Fig. 1D). The classification models designed on the basis of these 10 microbial factors achieved a 154 
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high accuracy (AUC = 0.88, Fig. S2A) in distinguishing the PP group from the normal controls, not 155 

only indicating the efficacy of the EFA analysis but also preserving the vital information possessed 156 

by differential taxa. Methodically speaking, Gammaproteobacteria, such as family 157 

Enterobacteriaceae and genus Escherichia-Shigella, which retained a strong correlation with each 158 

other, were members of Factor 1 and 6 (Fig. 1D). The chief members of Factor 2, genus 159 

Subdoligranulum and Faecalibacterium of family Ruminococcaceae, are known as butyrate-160 

producing bacteria in gut microbiota (Cussotto et al., 2018). Besides, four taxa, Romboutsia, 161 

Intestinibacter, Streptococcus, and Haemophilus, present in a considerably low concentration in the 162 

PP group, expressed a strong loading in Factor 7 (Fig. 1D, Table S2). Notably, several species 163 

(except Peptostreptocaccaceae, Factor 7), were witnessed in elevated measures in the PP group (Fig. 164 

1D, Table S2). Among them, factor Bacteroides, butyrate-producing bacteria, Enterobacteriaceaes, 165 

and Burkholderiaceae appeared to be the most relevant towards the microbial metabolic pathways 166 

(Fig. S1B) and could prove to be instrumental in microbial biological functions.  167 

 168 

Altered Serum Metabolome in Girls Suffering from PP 169 

Untargeted metabolomic profiles were evaluated under LC-MS/MS system in 84 PP and 45 normal 170 

girls (Table 1) for the purpose of investigating metabolite alterations, and 182 differential 171 

metabolites were identified (FDR < 0.05, Table S4). Among them, 131 differential metabolites, such 172 

as Phenylalanine, 4-Guanidinobutamide, and Lysophosphatidylcholine (LPC), were present in 173 

decreased quantities in the PP group as compared to the normal controls (Table S4). Significantly, 174 

these 182 differential metabolites were remarkably efficient in differentiating the PP group from the 175 

normal controls and obtained an AUC of 0.97 (Fig. 2B), which appears to be higher than microbial 176 

markers. 177 

 178 

Organic Nitrogen Compounds and Lipids Were the Characteristic Latent Metabolic Factors 179 

Analogous to the EFA analysis for microbiota, 12 latent metabolic factors were identified based on 180 

their differential metabolites (Fig. 2A, Table S4). Preserving the foremost information, the metabolic 181 

factors exhibited the detection capability comparable to that of the differential metabolites for 182 

detecting PP (AUC = 0.97, Fig. S2C). Specifically, Factor 1 constituted of organic nitrogen 183 

compounds (Fig. 2A), including oligopeptide and nitrogen-containing alkaloids (such as 184 
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Ethylmorphine, Levallorphan, and Alangicine), and their abundances were seen consistently 185 

declining in the PP group (Table S4). The serum levels of lipids in the PP group (Factor 2), such as 186 

Oleoylethanolamide (Fold-change, FC = 158.85), 17beta-Nitro-5alpha-androstane (FC = 59.90), 187 

Thiofanox (FC = 54.32), and 17-Methylstearate (FC = 17.33) were observed to be considerably 188 

elevated (Fig. 2A, Table S4). In addition, an appreciable reduction in several other differential 189 

metabolites, such as organosulfur compound (Factor 3), phenylalanine (Factor 5), and terpenoid 190 

(Factor 6) were detected in the PP group as compared to the normal group (Table S4). 191 

 192 

Associations Between Microbial Factors and Metabolic Factors 193 

Subsequently, the associations between microbial and metabolic factors were evaluated to discover 194 

the potential key drivers of such modifications. Relatively, organic polycyclic compound  195 

expressed vital positive correlations with Lachnospira, Enterobacteriaceae, Dialister, 196 

Peptostreptococcaceae, and Burkholderiaceae (Fig. 2C). Among them, Enterobacteriaceae was 197 

positively associated with aferine, phenylalanine, and with LPC as well. The overlapping metabolic 198 

pathways, such as amino acid, carbohydrate, aromatic compound metabolic pathway, and others 199 

(Glycolysis II, Glyoxylate cycle, and Incomplete reductive TCA cycle), could prove to be the 200 

foundation of the strong relationships between microbiota and metabolites (Fig. S1B). Interestingly, 201 

even though Bacteroides and butyrate-producing bacteria exhibited striking correlations to most 202 

metabolic pathways (Fig. S1B), they were not significantly associated with the differential 203 

metabolites of PP (Fig. 2C). Furthermore, organic nitrogen compounds and lipids revealed no 204 

substantial connection with most of the gut microbiota factors, except for factor Alistipes and factor 205 

Dialister (Fig. 2C), suggesting that they may be directly affected by other factors, such as lifestyles. 206 

 207 

Three PP Subtypes Were Revealed by Differential Metabolites 208 

In comparison to the gut microbiota, more evident modifications were seen in serum metabolism 209 

(Fig. S3A, B). The girls in the PP group were classified into three subgroups based on the expression 210 

of 182 differential metabolites, all of which demonstrated varied metabolite patterns, implying that 211 

PP could be categorized into 3 different subtypes. Specifically, latent metabolic factors, organic 212 

nitrogen compounds, and organic polycyclic compounds emerged critically different among the 213 

three defined subtypes (Fig. S3C and Table S5). Moreover, some latent microbial factors, such as 214 
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Peptostrptococcaceae and Lachnospira, also expressed varying abundance patterns among these 215 

subtypes. Additionally, clinical laboratory tests, such as for LH, testosterone (TES), Zn, and Ca, 216 

presented a similar trend (Fig. S3C). Although the widely utilized standard suggests no difference 217 

between the various phenotypes (Table S5), subtype 2 showed a tendency to be distinct from the 218 

other two subtypes and appeared to be more analogous to the normal group, which highlights the 219 

individual differences among the PP group, especially in the metabolic changes. 220 

 221 

Dietary Pattern Varied Significantly between Groups 222 

Detailed lifestyle information that may potentially affect the PP group was obtained, including 223 

dietary patterns, living environment, maternal health, childbirth, and physical condition of the 224 

participants and their parents (Table S1). Dietary patterns presented considerable differences among 225 

the patients and displayed good discriminative ability for distinguishing the PP group from the 226 

normal controls, obtaining an AUC of about 0.87 (Fig. S2D). However, other lifestyle variables 227 

failed to express any significant variations between the normal and the PP groups (Table S1) along 228 

with a poor discriminative ability (Fig. S2E-H). 229 

Furthermore, EFA facilitated the identification of 9 latent dietary factors derived from the dietary 230 

patterns recorded (Fig. 3A, Table S6), which preserved the foremost information of dietary patterns 231 

(AUC = 0.86, Fig. 3C). As expected, these latent dietary factors were an amalgamation of the various 232 

aspects of the children's diet, such as healthy foods, junk foods, items containing monosodium 233 

glutamate (MSG), and the balance between meat and vegetables. The most critical latent dietary 234 

factor, healthy foods, appeared to have a significantly lower intake rate in the PP group (FDR = 235 

0.30e-4, Fig. 3B), which entails preferences for seafood, freshwater products, tubers, vegetables, 236 

bean products, fruits, nuts, etc. (Table S6). Several noteworthy correlations were noticed between 237 

dietary, microbial, and metabolic factors (Fig. 3D). The intake of healthy foods expressed a highly 238 

negative correlation with the abundance of serum lipid (P < 0.01). On the other hand, the intake of 239 

snacks and drinks were witnessed to be positively linked with the organic nitrogen compounds (P 240 

< 0.01), whereas negatively correlated with butyrate-producing bacteria (P < 0.05). These results 241 

were indicative of the unbalanced dietary patterns influencing the PP progression through 242 

microbiota and metabolites. 243 

 244 
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Unbalanced Dietary Patterns Affecting PP Progression Through Microbiota and Metabolites 245 

Supported by the above results, potential causal relationships among gut microbiota, metabolites, 246 

dietary patterns, and the characteristics of the disease were investigated. For this purpose, we 247 

introduced the innovative SEM path analysis to construct a credible model (Fisher's C = 815.85 with 248 

P = 0.341) in accordance with the correlation results (Fig. 2, 3 and Fig S2I) and our prior knowledge 249 

about the subject, to reveal the internal connections among them (Fig. 4). Hormones (estradiol (E2), 250 

prolactin (PRL), LH and FSH, and trace elements (Zn, Ca, My, Cu, Fe) were significantly regulated 251 

by gut microbiota and serum metabolism. Among the serum metabolism agents, lipids elevated in 252 

the most dramatic fashion in the PP group (Table S4), positively affecting the ovarian volume (P < 253 

0.05), while producing a negative effect on the breast volume (P < 0.05). The reduced intake of 254 

healthy foods (P < 0.001) and elevated intake of all-meat diet (P < 0.001) were known to be the 255 

primary factors causing the surge of serum lipids. Similarly, organic nitrogen compounds, the 256 

principal metabolic factor, produced a significantly positive effect on the level of serum E2 and 257 

further affected the development of ovarian volume. As an important sex hormone, LH was 258 

appreciably decreased in the PP group (P < 0.01, Table S7) and generated a considerably positive 259 

effect on the bone age (P < 0.05) and uterine volume (P < 0.001) in the PP group (Fig. 4). In serum 260 

metabolism, LPC may be the chief influencing factor of LH (P < 0.05, Fig. S2I). Furthermore, 261 

butyrate-producing bacteria, including genus Subdoligranulum and Faecalibacterium of family 262 

Ruminococcaceae, produced stronger positive effects on the follicle size (P < 0.05). The up-263 

regulation of butyrate-producing bacteria may possibly be able to explain the premature 264 

development of follicles in the PP group. 265 

The SEM analysis revealed that dietary patterns were the most vital of all the catalysts of change in 266 

microbiota and metabolism. Simultaneously, the dysbiosis of the gut bacteria taxa and metabolites 267 

produced a remarkable effect on the host hormone levels and PP progression (Fig. 4).  268 

 269 

 270 

DISCUSSION 271 

Mounting evidence suggests that gut microbiota and metabolism are the major decisive forces of 272 

the growth in children (Tamburini et al., 2016a; Yatsunenko et al., 2012). Nevertheless, no definite 273 

explanation is available about the effects of gut microbiota and serum metabolism in the 274 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.07.438759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438759


pathogenesis of precocious puberty. In this study, we performed a systematic analysis investigating 275 

the lifestyle patterns, altered microbiota, metabolome, and their relationship with PP.  276 

It was found that the PP group showed a significant dysbiosis of gut microbiota and serum 277 

metabolome, which could be mainly attributed to the unhealthy dietary habits, directly affecting the 278 

progression of PP. At the same time, gut microbiota and serum metabolome could prove to be non-279 

invasive as well as reliable diagnostic biomarkers for the early detection of PP, expressing an AUC 280 

= 0.93 and 0.97, respectively, and can help evade the time-consuming and painful gonadotropin-281 

releasing hormone (GnRH) stimulation test (Kim et al., 2011a).  282 

Diet shapes our gut microbiota in the early stages of our life (Tamburini et al., 2016b; Zmora et 283 

al., 2019). A large number of studies have suggested that unhealthy dietary habits shift the gut 284 

microbiota and may very well contribute to the pathogenesis of various metabolic diseases, 285 

including overweight, obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic 286 

diseases, and malnutrition (Fan and Pedersen, 2020; Tamburini et al., 2016b). An extensively shifted 287 

microbial composition was detected in the PP group, implying a dysbiosis of gut bacterial 288 

community. β-glucuronidase-producing bacteria, including Alistipes, Bacteroides, Escherichia, and 289 

Faecalibacterium were noticed to be significantly increased in the PP group, possibly triggering the 290 

elevated levels of circulating estrogen and increased estrogenic burden, which actuate the onset of 291 

PP (Baker et al., 2017; Mcintosh et al.; Sultan et al., 2012). The shift in gut microbiota, especially 292 

Bacteroides and butyrate-producing bacteria is capable of affecting various metabolic processes 293 

(Fan and Pedersen, 2020), such as carbohydrate, fatty acid, and lipid metabolism activity (Fig. S1).  294 

Interestingly, butyrate-producing bacteria, which was considered to be a beneficial bacteria for 295 

maintaining the gut health in several preceding studies (Cheng et al., 2016; Valles-Colomer et al., 296 

2019), may emerge as a pathogenic agent for PP. Considering the promoting effect of butyrate to 297 

the levels of LH (Ruddon et al., 1979) and FSH (Ghosh and Cox; Liang et al., 2020), we propose 298 

that overproducing butyrate induced by gut bacteria may produce a detrimental effect on the health 299 

condition during puberty, especially for follicular development (Fig. 4). Consistent with the previous 300 

study on the gut microbiota of girls suffering from PP conducted by Dong et al., the gut bacteria 301 

related to the production of short-chain fatty acids (SCFAs) are known to be present in increased 302 

concentrations in girls suffering from PP, which promote the expression of the leptin gene, activate 303 

the HPG axis through a high concentration of SCFAs, and trigger the early onset of puberty (Dong 304 
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et al., 2019). 305 

Moreover, PP gives rise to a more serious metabolic disturbance. Differential metabolites exhibit 306 

a strong ability for PP diagnosis (AUC = 0.97) and present three different PP subtypes. A large 307 

amount of organic nitrogen compound down-regulation and lipid up-regulation with high fold-308 

change were seen to be the chief characteristics of PP serum metabolome. Decreased intake of 309 

healthy foods (P < 0.001), the unique differential dietary pattern of PP, illustrated a direct effect on 310 

the serum levels of lipids (2-158 fold increase), which was previously verified in high-fat diet mice 311 

(Walker et al., 2017). Overnutrition and excessive intake of processed and high-fat food leads to 312 

obesity at the beginning of the PP pathogenesis (Latronico et al., 2016; Mugo et al., 2007). In 313 

addition, animal studies have also indicated that postnatal overnutrition consistently increases the 314 

LH, FSH, leptin, and insulin levels in pubertal females, and postnatal high fat diet after commencing 315 

weaning tends to trigger advanced puberty in females [31,32]. The dysbiosis of the serum 316 

metabolites indicates an influence on the level of serum metallic elements (Ca, Zn, Cu, Mg, and Pb), 317 

which could be potential endocrine disrupters that are capable of modulating estrogenic activity of 318 

endogenous hormones (Arjmandi et al., 1993). 319 

Unlike the traditional correlation research, this study adopted the causal inference method based 320 

on the SEM analysis, which has been progressively implemented for varied purposes in the 321 

microbiome field (Chen et al., 2019; Mamet et al., 2019). This method can effectively derive and 322 

comprehend the causal relationships between dietary patterns, gut microbiota, serum metabolome, 323 

and PP. Being constrained by prior knowledge and data integrity, the explanation for some results 324 

remains unclear, and requires further in-depth research. 325 

In summary, it was found that unhealthy dietary habits could disrupt the homeostasis of gut 326 

microbiota and serum metabolism, and consequently trigger the imbalance of hormones, leading to 327 

the excessive change of physical development progress and PP genesis. Therefore, the intestinal 328 

microbiota may be regarded as a prospective therapeutic target for the prevention and treatment of 329 

PP.  330 

Limitations of Study 331 

The etiology of PP remains complicated; hence it requires further validation by employing larger 332 

samples and effectively designing disease prediction models. In addition, although this study 333 

included the validation cohorts, the multi-center studies and big sizes of the validation cohorts will 334 
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be needed to further validate the biomarkers found in this study. 335 

 336 

Materials and methods 337 

Study participants 338 

133 girl participants with partial PP and 67 normal girls were recruited in the discovery cohort at 339 

Qilu Children’s Hospital, Shandong University (Table 1) for this study. 66 normal and 17 girls 340 

suffering from PP (age < 8) were included in the independent validation cohort to externally verify 341 

our findings. The PP group was diagnosed in accordance with the criteria defined by Lawson 342 

Wilkins Pediatric Endocrine Society. Exclusion criteria includes (1) other organic etiologies with 343 

presence of isointense tumor on magnetic resonance imaging (MRI); (2) usage of antibiotics, 344 

probiotics, or prebiotics within 3 months before enrolling; (3) associated endocrine, gastrointestinal, 345 

metabolic disease (including obesity and diabetes, among others), mental disease, or hepatobiliary 346 

disease. Recruited age-matched normal controls were girls below 8 years of age without PP. The 347 

study protocol was maintained in accordance with the Declaration of Helsinki and was approved by 348 

the Ethics Committee of Qilu Children’s Hospital (ETYY-2016-202). Written informed consents 349 

and questionnaires were obtained from the children’s parents. 350 

 351 

Sample collection 352 

Stool and blood samples were collected from each participant and stored at -80 °C before analysis. 353 

200 mg stool was preserved in sterile 2 ml tubes containing pure ethanol, aliquoted (Tinygene 354 

Biological Company, China) and stored at -80 °C for 16S rRNA sequencing. Blood samples were 355 

thawed at 4 °C, 3000 rpm, and centrifuged at 4 °C for 10 min. Serum aliquots were immediately 356 

frozen at -80 °C for further untargeted metabolomics analysis. The study was approved by local 357 

ethics committees (Qilu Children’s Hospital of Shandong University, IRB Number EYY-2016-202) 358 

and informed consent was obtained from all the participating subjects. 359 

 360 

DNA extraction and illumina sequencing 361 

Total DNA extraction from fecal samples (250 mg, wet weight) was performed using a Fast DNA 362 

SPIN Kit for feces (MP Biomedicals, Santa Ana, CA, USA), as per the manufacturer’s instructions. 363 

The V1-V2 hypervariable region was amplified with the universal primer pair F27 (5’ -364 
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AGAGTTTGATCMTGGCTCAG-3’) and R355 (5’- GCTGCCTCCCGTAGGAGT -3’). 365 

Sequencing was conducted on Illumina HiSeq 2500 System (Illumina Inc., San Diego, CA, USA) 366 

using the 2× 250 paired-end mode following the standard Illumina platform protocols. All 367 

sequencing data is available at NODE (http://www.biosino.org/node) with the accession number 368 

OEP000731. 369 

 370 

16S rRNA gene sequencing data analysis 371 

16S rRNA sequencing data was analyzed using Quantitative Insights Into Microbial Ecology 372 

(QIIME2 V.2019.07). In brief, raw sequence data was demultiplexed and DADA2 (SP) was 373 

employed to denoise sequencing reads for quality control and the identification of amplicon 374 

sequence variants (ASVs) via q2-dada2 plugin. Taxonomy classification was carried out by utilizing 375 

classify-sklearn based on a Naiva Bayes classifier against the Silva-132-99 reference sequences. 376 

Respective sequences of each ASV were aligned with Multiple Alignment using Fast Fourier 377 

Transform (MAFFT) (Katoh et al., 2002) (via q2-alignment) and the phylogenetic tree was 378 

constructed with Fast-Tree (Price et al., 2010) (via q2-phylogeny). Chao1, an index of richness 379 

estimator, was calculated to assess the community alpha diversity. Principal coordinate analysis 380 

(PCoA) was performed based on the Bray-Curtis distance; and PERMANOVA test was conducted to 381 

evaluate the significant differences present among the microbial communities, with 9999 382 

permutations. 383 

Additionally, the functions of gut microbiota were inferred based on 16S rRNA sequencing data 384 

using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 385 

(PICRUSt2), as previously described (Douglas et al., 2020). 386 

 387 

Untargeted metabolomics and analysis 388 

100 μL of serum sample was transferred to an EP tube. After the addition of 300 μL of methanol 389 

(containing internal standard 1 μg/mL), the samples were vortexed for 30 s, followed by sonication 390 

for 10 min in ice-water bath, and incubation for 1 h at -20 °C to precipitate the proteins. The sample 391 

was then centrifuged at 12000 rpm for 15 min at 4 °C. The resulting supernatants were then 392 

transferred to LC-MS vials and stored at -80 °C until the UHPLC-QE Orbitrap/MS analysis. The 393 
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quality control sample was prepared by mixing an equal aliquot of the supernatants from all the 394 

samples collected.  395 

LC-MS/MS analyses were performed using an UHPLC system (1290, Agilent Technologies) with 396 

a UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm) coupled to Q Exactive (Orbitrap MS, Thermo). 397 

The mobile phase A was 0.1% formic acid in water for positive, and 5 mmol/L ammonium acetate 398 

in water for negative, and the mobile phase B was acetonitrile. The elution gradient was set as 399 

follows: 0 min, 1% B; 1 min, 1% B; 8 min, 99% B; 10 min, 99% B; 10.1 min, 1% B; 12 min, 1% 400 

B. The flow rate was 0.5 mL/min. The injection volume was 2 μL. The QE mass spectrometer was 401 

utilized due to its ability to acquire MS/MS spectra on an information-dependent basis (IDA) during 402 

an LC/MS experiment. In this mode, the acquisition software (Xcalibur 4.0.27, Thermo) 403 

continuously examines the full scan survey MS data as it collects and triggers the acquisition of 404 

MS/MS spectra depending on preselected criteria. ESI source conditions were set as follows: Sheath 405 

gas flow rate as 45 Arb, Aux gas flow rate as 15Arb, Capillary temperature at 400 °C, Full ms 406 

resolution as 70000, MS/MS resolution as 17500, Collision energy as 20/40/60 eV in NCE model, 407 

Spray Voltage as 4.0 kV (positive) or -3.6 kV (negative), respectively. 408 

Raw data was converted to mzXML format using ProteoWizard and processed using MAPS 409 

software (version 1.0). Preprocessed results were employed to generate a data matrix which 410 

consisted of the retention time (RT), mass-to-charge ratio (m/z) values, and peak intensity. In-house 411 

MS2 database was applied for metabolites identification. 412 

 413 

Questionnaire survey 414 

Questionnaires were distributed to the participants and their parents in presence of trained doctors, 415 

providing professional guidance throughout the whole process. From the questionnaire survey, 117 416 

variables were collected, involving dietary pattern, living environment, maternal health, childbirth, 417 

and personal physical condition of the recruited girls (PP and normal group), as well as the physical 418 

condition of their parents.  419 

The dietary pattern section in our questionnaire was based on the most frequently consumed foods 420 

that were clinically considered to be closely related to PP, including vegetables, fruits, seafood, meat, 421 

cereal, tubers, eggs, milk, bean products, nuts, fungi, greasy food, beverages, fried food, sweets, 422 

barbecued food, puffed food, pickles, gourmet powder, and tonic, on a 4-level intake frequency 423 
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scale. The dietary section also entailed personal food preferences, including preferences for fruit, 424 

vegetables, meat, pasta, bean products, fried food, snacks, beverage, meat, etc.  425 

The variables regarding living environment included presence of pets, use of mineral water, 426 

existence of bowel dysfunction of close contacts, presence of plastic foam products, pesticides, 427 

fertilizers, insecticide, etc. The questionnaire also separately covered the physical condition of 428 

participants’ parents, including stomachaches, abdomen distension, diarrhea, gastric acid 429 

regurgitation, constipation, hypertension, hyperglycemia, anemia, rheumatism, urticaria, 430 

immunodeficiency, and irregular menstruation and menarche age (only for mothers). The data about 431 

maternal conditions during pregnancy and delivery was derived, including reproductive age, 432 

medication during pregnancy, secretory disorders during pregnancy, folic acid supplement, dietary 433 

patterns, alcohol consumption, abnormal fetal movement, oxytocin, dystocia, or fetal hypoxia, 434 

cesarean delivery, or spontaneous delivery, etc. The physical condition of the recruited girls was 435 

investigated thoroughly, including sleep disorder, poor weight gain, jaundice, eczema, diarrhea, oral 436 

malodor, sediment in urine, smelly urine, perianal red, dental caries, etc. 437 

 438 

Clinical laboratory tests 439 

Clinical parameters were determined at the clinical lab of Qilu Children’s Hospital. The trace 440 

element (Cu, Zn, Ca, Mg, Fe, and Pb) levels from serum samples were measured using the flame 441 

atomic absorption method (BH5100, Bohui, China). The thyroid function test was conducted by 442 

analyzing the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and 443 

thyroid stimulating hormone (TSH), employing the chemi-luminescence immunoassay methods 444 

(Abbott, Architect I2000, US). GnRH stimulation test was conducted for the luteinizing hormone 445 

(LH) and follicle-stimulating hormone (FSH) utilizing the chemi-luminescence immunoassay 446 

methods (Abbott, Architect I2000, US). Cortisol (COR), adrenocortieotropic hormone (ACTH), 447 

alpha fetoprotein (AFP), and carcinoembryonic antigens (CEA) were measured by chemi-448 

luminescence immunoassay methods (LIAISON, type 2210, Germany). The plasma levels of the 449 

insulin and insulin-like growth factors were quantified by adopting immunoluminescence method 450 

(Siemens immulite 2000, USA). The sizes of uterus, breasts, and ovaries, as well as the number of 451 

ovarian follicles were determined by employing B-ultrasonic examination (EPIQ5, L12-5, Philips, 452 

Holland). The hand-wrist radiographs were used for bone-age assessment through nuclear magnetic 453 
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resonance (MRI) examination (Digital Dianost3, Philips, Holland). 454 

 455 

Co-occurrence analysis 456 

Co-occurrence analysis was applied for microbial, metabolic, or dietary network by using 457 

correlations (Spearman, Spearman or Kendall). Correlations with P ≤ 0.05 (permutation test with 458 

1000 permutations) were included in the co-occurrence networks. Network visualization was 459 

conducted using Gephi software (M et al., 2009).  460 

 461 

Disease diagnosis model 462 

Classification model of different samples was constructed using Random Forest classifier in Scikit-463 

learn package of Python (3.6.0)(F et al., 2011). The AUC of 5-fold cross-validation was utilized to 464 

measure the discriminative ability of the differential biomarkers. 465 

 466 

Exploratory factor analysis 467 

For differential microbiota, metabolites, and dietary patterns, exploratory factor analysis (EFA) was 468 

employed to identify the latent factors with FactorAnalyzer in Python (C, 2016). The number of 469 

factors, solutions (minimum residual, maximum likelihood or principal factor), and rotations 470 

(varimax or promax) of EFA were determined by minimizing information loss after dimension 471 

reduction, which was evaluated by the discriminative ability of the classification of normal and PP 472 

samples. Latent factors with high loading were explained and labeled based on the observed 473 

variables and former knowledge. 474 

 475 

Structural equation model 476 

Based on the latent factors from EFA, path analysis of the SEM (D et al., 2019) was employed to 477 

discover the causal relationships between lifestyle, gut microbiota, metabolism, and clinical 478 

characteristics of disease. Considering that the samples cannot match perfectly, piecewise SEM 479 

(Shipley, 2013) was used for confirmatory path analysis in our study, in which each set of 480 

relationships was determined independently (or locally). The p-value of Fisher’s C statistic was 481 

adopted to prove the overall rationality of the model and to facilitate the model comparison and 482 

selection. 483 
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 484 

Statistical analysis 485 

All statistical analyses were conducted using Python (3.6.0). Statistical significance was determined 486 

by two-sided Wilcoxon rank-sum test, Permutation test or one-sided Fisher's exact test, and 487 

Benjamini-Hochberg test was applied to control the false positive rate (FDR) under multiple 488 

comparisons. Differences were considered statistically significant when FDR < 0.05. 489 

 490 
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 628 

Table 1. The number of sample and age distribution in this study. 629 

 16S (n=168) Metabolism (n=129) Overlap (n=97) 

Normal (n=67) 7.008 ± 0.515 (n=63) 6.250 ± 0.571 (n=45) 6.211 ± 0.629 (n=41) 

PP (n=133) 6.641 ± 0.403 (n=105) 6.662 ± 0.458 (n=84) 6.890 ± 0.530 (n=56) 

P (t-test) 0.278 0.289 0.108 

Age Statistics (mean ± 95 confidence interval) and difference analysis (t-test) 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 
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Figures  638 

 639 

Fig. 1. Gut microbiota dysbiosis in girls with partial PP. A. The α diversity of gut microbiota based on Chao1 for 640 

PP and normal group (***: P< 0.001). B. PCoA of bacterial beta diversity based on the Bray-Curtis distance between 641 

PP and normal groups. C. The ROC curve of the disease discriminating ability with 45 differential ASVs. D. Co-642 

occurrence network of differential microbiota through Spearman’s rank correlation analysis with P<0.05. Microbiota 643 

are colored by their main latent microbial factor and the strength of correlation is represented by line thickness. The 644 

abundance changes of the representative microbiota is displayed as bar plot (*: FDR < 0.05, **: FDR < 0.01). -645 

glucuronidase-producing bacteria are labeled with a red star.  646 
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 647 

Fig. 2. The change of serum metabolome in girls with partial PP. A. Co-occurrence network of differential 648 

metabolites through Spearman’s rank correlation analysis with P<0.05. Metabolites are colored by their main latent 649 

metabolic factor and the strength of correlation is represented by line thickness. B. The ROC curve of the disease 650 

discriminating ability with 182 differential metabolites. C. Heatmap plot of Pearson correlation between microbial 651 

and metabolic latent factors. (*: P < 0.05, **: P < 0.01.) 652 

 653 

 654 

 655 
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 658 

Fig. 3. The change of dietary patterns in girls with partial PP. A. Co-occurrence network of dietary patterns 659 

through Spearman’s or Kendall’s rank correlation analysis with P<0.05. Dietary patterns are colored by their main 660 

latent metabolic factor and the strength of correlation is represented by line thickness. B. The difference of healthy 661 

food (Factor1) intake between normal and PP groups. C. The ROC curve of the disease discriminating ability with 662 

9 latent dietary factors. D. Heatmap plot of Pearson correlation between latent dietary factors and microbial or 663 

metabolic latent factors. (*: P < 0.05, **: P < 0.01.) 664 
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 671 

Fig 4. Causal relationships between the latent factors of the dietary, gut microbiota, metabolism, and clinical 672 

characteristics. Structural equation model is implemented using piecewise SEM in R. Different types of causal 673 

effect are colored by different colors (red: positive, blue: negative) and the strength of effect is represented by line 674 

thickness. (-:P>0.05, *: P < 0.05, **: P < 0.01, ***: P < 0.001, #: the regression uses glm in R with Poisson 675 

distribution).  676 
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Supplementary materials: 692 

 693 

 694 

Fig. S1. The dysbiosis of metabolic pathways in gut microbiota. A. The differential abundance changes of gut 695 

microbial metabolic pathways. B. The significant correlation links between gut microbiota, serum metabolome, and 696 

pathways. 697 
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 698 

Fig. S2. The ROC curve of the disease discriminating ability and Correlation between latent microbial factors, 699 

latent metabolic factors, hormones, and phenotypes. The ROC curve of the disease discriminating ability with 700 

10 latent microbial factors (A), 13 taxa in external dataset (B), 12 metabolic latent factors (C), dietary patterns (D), 701 

living environment (E), physical condition of parents (F), maternal health and childbirth (G) and physical condition 702 

of participants (H). I. Correlation between latent microbial factors, latent metabolic factors, hormones, and 703 

phenotypes. All relationships were calculated by Pearson correlation in Python with 1000 permutation test (*:P < 704 

0.05, **: P < 0.01.) 705 

 706 

 707 

 708 
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 709 

Fig. S3. Three different subtypes in PP group. A. Pearson correlation between differential metabolites. B. Pearson 710 

correlation of samples with differential serum metabolites. Three subtypes were defined through hierarchical 711 

clustering algorithm with Euclidean distance. C. The difference between subtypes in gut microbiota, serum 712 

metabolome, and clinical laboratory tests. (ns: P>0.05, *: P < 0.05, **: P < 0.01, ***: P < 0.001.). 713 
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Table S1. Differential life styles between normal and PP group. 718 

Table S2. Differential gut microbiota between normal and PP group and latent factors. 719 

Table S3. 13 taxa presented same differential abundance change in external dataset. 720 

Table S4. Differential serum metabolites between normal and PP group and latent factors. 721 

Table S5. Gut microbiota, serum metabolome, clinical laboratory tests, and phenotype difference between PP 722 

subtypes. 723 

Table S6. Latent factors of life styles. 724 

Table S7. Differential clinical laboratory variables between normal and PP group. 725 
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