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Abstract

Clustering genetic variants based on their associations with different traits can provide
insight into their underlying biological mechanisms. Existing clustering approaches typically
group variants based on the similarity of their association estimates for various traits. We
present a new procedure for clustering variants based on their proportional associations with
different traits, which is more reflective of the underlying mechanisms to which they relate.
The method is based on a mixture model approach for directional clustering and includes
a noise cluster that provides robustness to outliers. The procedure performs well across a
range of simulation scenarios. In an applied setting, clustering genetic variants associated
with body mass index generates groups reflective of distinct biological pathways. Mendelian
randomization analyses support that the clusters vary in their effect on coronary heart disease,
including one cluster that represents elevated body mass index with a favourable metabolic
profile and reduced coronary heart disease risk. Analysis of the biological pathways underlying
this cluster identifies inflammation as playing a key role in mediating the effects of increased
body mass index on coronary heart disease.

Introduction

In recent years, the number of genome-wide association studies (GWAS) has grown enormously
[1]. Such studies provide valuable information linking genetic variants across the human genome
to a wide range of traits. What often remain less understood are the underlying mechanisms by
which the associated genetic variants affect the traits. Insight into these mechanisms may be gained
by investigating the pattern of associations with other related traits: genetic variants that share
similar association patterns may be thought to act via similar mechanisms [2]. For example, some
genetic variants associated with type 2 diabetes are also associated with obesity related traits such
as body mass index (BMI), whereas others are instead associated with traits such as triglycerides,
suggesting that the variants influence type 2 diabetes risk via different biological mechanisms [3].

A number of techniques have been implemented to cluster genetic variants based on their as-
sociations with traits that are believed to be relevant in informing biological pathways. The traits
often include separate risk factors or potential mediators of some disease outcome(s) of interest.
A common approach is to use hierarchical clustering, which groups observations based on their
distance from each other [4, 5, 6, 7]. The number of clusters is then chosen heuristically. Other
clustering approaches which have been applied to genetic variant-trait association estimates include
fuzzy c-means [6] and Bayesian nonnegative matrix factorization [3]. A related approach which aims
to determine distinct components of genetic variant-trait associations uses truncated singular value
decomposition [8].

A key characteristic of previously implemented approaches is that they cluster based on the
Euclidean distance between vectors of the genetic variant-trait association estimates, defined as
the length of the line between the association estimates plotted as points on a graph. However,
when trying to determine shared biological mechanisms, a more relevant clustering target is the
proportional associations of each genetic variant with the set of traits. If two variants influence a
set of related traits via a common mechanism, the genetic associations may differ considerably in
magnitude due to one variant having a stronger effect than the other. However, their proportional
associations across the traits will be similar for both variants. Equivalent to looking at proportional
associations is to consider the direction of the association vector from the origin. That is, in order to
distinguish between variants which act via different mechanisms, it is the direction of the association
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vector rather than its location in space which is of most importance. This is illustrated graphically
in Fig. 1.

In this paper we introduce a novel procedure for clustering genetic variants based on their
associations with a given set of traits to identify groups with common biological mechanisms. We
develop the NAvMix (Noise-Augmented von Mises–Fisher Mixture model) clustering method, which
extends a directional clustering approach to include a noise cluster as well as a data-driven method
for choosing the number of clusters. The method is shown in a simulation study to perform well in
identifying true clusters and to outperform alternative approaches across a range of scenarios. We
further apply the procedure to cluster genetic variants associated with body mass index (BMI). We
study the downstream effects of the different components of BMI on coronary heart disease (CHD)
using Mendelian randomization, which uses genetic variants as instrumental variables to study
potential causal effects of a risk factor on an outcome [9, 10]. We identify a BMI increasing cluster
of variants associated with a favourable cardiometabolic profile and lower CHD risk. Analysis of
the biological pathways which underlie each group of variants suggests that a key difference of this
cluster compared with the others is its distinct effect on systemic inflammation. The clustering
method demonstrated in this work is thus able to identify distinct pathways underlying complex
traits, in turn highlighting specific mechanisms for therapeutic intervention.

Results

Overview of the proposed clustering approach

We use a mixture model approach to clustering, which supposes that each observation is a realisation
from one of a fixed number of probability distributions. Since we are interested in clustering based
on direction of association, we fit a mixture of von Mises–Fisher (vMF) distributions, which is a
distribution characterised by the mean direction of the observations from the origin and a dispersion
parameter. A mixture model of vMF distributions has previously been described by Banerjee et al.
[11]. We augment this approach by including a noise cluster, in recognition of the fact that not
all observed vectors of genetic variant-trait association estimates are expected to fit well within
the set of specified distributions. The noise cluster will contain outliers to the specified model,
providing robustness to the identification of clusters. Our method of clustering is thus to fit a
Noise-Augmented von Mises–Fisher Mixture model (NAvMix).

The NAvMix algorithm outputs a probability for each observation belonging to each cluster
based on the given data. Each observation can then be assigned according to which cluster it has
the highest probability of membership (referred to as hard clustering). The approach also provides
the ability for soft clustering, which is where an observation is assigned to any cluster for which
it has a probability of membership over a certain level, so that observations may belong to more
than one cluster. Although the algorithm requires a fixed number of clusters to be specified, we
repeat the procedure for varying numbers of clusters then chose the final number using the Bayesian
Information Criterion (BIC). Full details of the procedure are given in the Methods section.

Let β̂j· be the vector of association estimates of genetic variant j with the set of traits under

consideration, and let Σ̂j be the covariance matrix of this vector. We assume that the genetic
variants are independent of each other (that is, no linkage disequilibrium). We also note that the
association estimates do not need to have been taken in the same sample, so we can consider sets
of associations between genetic variants and any trait for which corresponding GWAS summary
statistics are available. Although it is possible to input the raw association estimates into the
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algorithm, we propose inputting the standardised association estimates, given by Σ̂
−1/2
j β̂j· for the

jth variant. The standardisation means that each element of the input vector is independent and
has the same standard error. It thus is able to account for correlation between association estimates.
Assuming all genetic associations are estimated with the same sample size for a given trait, this will
not distort the direction vector. Otherwise, the direction vector will be weighted toward traits for
which the associations are more precisely estimated. The first step in the algorithm is to transform
each input vector to have a magnitude of one. This is done by dividing each vector by its Euclidean
distance from the origin. We shall refer to this as normalisation. The normalised vectors represent
the proportional association estimates.

The diagonal elements of the covariance matrices represent the variances of the genetic variant-
trait association estimates. The off-diagonal elements represent the covariances between these esti-
mates. If the genetic associations are estimated in separate samples for each trait, these covariances
will be theoretically equal to zero. If the association estimates are taken from the same sample,
the covariances will still be approximately zero if the traits are independent. If the traits are cor-
related, an estimate of this correlation is required to estimate the full covariance matrix in the one
sample setting. This is easily computed using individual level data (Methods). If published GWAS
summary statistics are being used, this information will not always be available. Nonetheless, the
simulation study presented in the following section shows the clustering approach still performs well
in the case where traits are truly correlated but the correlation estimates are set to zero.

Simulation results

We performed a simulation study in order to evaluate the performance of the proposed method
and to compare it with alternative clustering approaches. We chose two methods for comparison.
The first was to fit Gaussian mixture models to the standardised association estimates using the
mclust algorithm in R [12]. The method was chosen for comparison because it is a model-based
approach that is able to estimate the number of clusters by fitting multiple models and choosing
between them using a principled model selection criterion. The second approach used for compar-
ison was to fit Gaussian mixture models using the proportional association estimates. This is a
case of model misspecification, since the association estimates after normalisation will not follow
Gaussian distributions, even if the association estimates themselves do (see, for example, Fig. 1).
It thus demonstrates the result of applying a method for clustering based on Euclidean distance
to proportional associations. Note that other R packages which implement a form of directional
clustering were not used for comparison because they either do not allow for estimation of the
number of clusters (for example, skmeans [13], which uses the spherical k-means algorithm) or do
not incorporate a noise cluster (for example, movMF [14]), and so performance cannot easily be
compared.

We simulated data for genetic variants across six scenarios, where the number of traits (denoted
by m) was either 2 or 9 and the number of clusters (K) was either 1, 2 or 4. In each scenario, 100
genetic variants were generated from these clusters and 20 additional noise genetic variants were
generated. In the primary simulation study presented here, the genetic variant-trait associations
were estimated in a single sample of 20 000 individuals. The traits were correlated but the off-
diagonal entries of the covariance matrices were set to zero. This emulates the scenario in which
genetic variant-trait associations are estimated in the same sample but where only GWAS summary
data, with no trait correlation estimates, are available. The Supplementary Information presents
the results of two further simulation studies. In the first, the estimated trait correlation from
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individual level data is incorporated into the procedure, so the full estimated covariance matrices
are used. In the second, the association estimates are taken from different samples of different sizes.
Full details of the simulation parameters are given in the Methods section.

We evaluated the performance of each method using three measures: the Rand index [15];
the mean number of clusters estimated; and the mean number of observations assigned to the
noise cluster. The Rand index is a similarity measure between the true and estimated cluster
memberships, and shows how well each method allocated the observations. The closer to 1, the
closer the estimated cluster membership is to the truth. Fig. 2 shows boxplots of the Rand index
for each method and scenario. In calculating the Rand index we exclude genetic variants that truly
belong to the noise cluster. Table 1 shows the mean number of clusters estimated and the mean
size of the noise cluster for each method and scenario.

NAvMix performed very well in terms of allocating the observations to the correct clusters,
with a median Rand index over 0.965 in all scenarios. It selected the correct number of clusters
in almost all repetitions of all scenarios, with the exception that in the 9-dimensional scenario
with 4 true clusters, it tended to slightly overestimate (estimating 4.45 on average). NAvMix also
outperformed the other methods across each of the metrics considered. The median Rand index
was higher, and the spread of the Rand indices was lower, in each scenario. The mclust algorithm,
on average, underestimated the number of clusters, whereas mclust using proportional associations,
on average, overestimated the number of clusters. Furthermore, mclust tended to allocate fewer
observations to the noise cluster than NAvMix, and mclust using proportional associations, on
average, allocated more observations to the noise cluster than NAvMix. A point of particular note
is that the approaches which used mclust tended to find a number of clusters where there were
no truly distinct clusters (that is, in the K = 1 scenarios), whereas NAvMix did not find spurious
clusters in these null scenarios.

When incorporating trait correlation estimates, the median Rand index and its spread, as well
as the mean number of clusters, were very similar to the results obtained without these estimates
(Fig. S1 and Table S1). This suggests that the procedure is robust to missing trait correlation
estimates. The results were also similar when estimating associations in separate samples (Fig. S2
and Table S2).

Clustering BMI associated genetic variants

We applied our procedure to cluster BMI associated genetic variants identified by the GWAS of
Pulit et al. [16]. We considered genetic variants associated with BMI at a p-value < 5 × 10−8

and pruned at r2 < 0.001. The clustering was performed in relation to the genetic associations
with nine traits: body fat percentage; systolic blood pressure (SBP); triglycerides; high-density
lipoprotein cholesterol (HDL); educational attainment; physical activity; lifetime smoking score;
waist-to-hip ratio (WHR); and type 2 diabetes. These are lifestyle or cardiometabolic traits which
have previously been shown to be related to BMI and which may offer insight into the pathways
to downstream effects of BMI such as CHD [17, 18]. The genetic association estimates with these
traits were all obtained from publicly available GWAS summary statistics (Methods). We clustered
the 539 genetic variants that were available across all datasets. The full list of genetic variants and
their allocated cluster, along with their probabilities of membership for each cluster, is given in
Table S3.

Five clusters were identified, with 1 genetic variant allocated to the noise cluster. Fig. 3 shows
a heat map of the proportional genetic association estimates with each trait by cluster and Fig. 4
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plots the means of each fitted vMF distribution, representing the proportional associations for an
observation at the centre of each cluster. The largest four clusters, labelled Clusters 1–4, contain
genetic variants with very similar positive average proportional associations with fat percentage,
WHR and type 2 diabetes. Variants in Cluster 3 have close to zero average association with SBP,
whereas those in Clusters 1, 2, and 4 have positive average association with SBP. Variants in Cluster
2 have close to zero average association with smoking, whereas those in Clusters 1, 3 and 4 have
positive average association with smoking. Variants in Cluster 4 have positive average association
with HDL and negative average association with triglycerides, in contrast with those in Clusters
1–3.

Cluster 5 contains 20 genetic variants. These variants, on average, are positively associated with
HDL and negatively associated with SBP, triglycerides, WHR and type 2 diabetes. These variants
also have close to zero average association with smoking, physical activity and education, as well
as weaker positive association with fat percentage compared with the other four clusters.

Mendelian randomization estimates of the effect of BMI on CHD

Mendelian randomization has previously suggested that BMI has a positive causal effect on CHD
risk using as instruments 94 genetic variants identified by Locke et al. [19] [20]. We applied two-
sample Mendelian randomization [21] using as instruments the set of BMI associated genetic variants
which were used for clustering, as well as separately using the sets of variants for each cluster in
turn (Methods). As well as applying the inverse-variance weighted (MR-IVW) method [22], we
also performed as sensitivity analyses the MR-Median method [23], the Contamination Mixture
(MR-ConMix) method [24] and the MR-PRESSO method [25]. Each of these methods provides a
valid test for the causal null hypothesis under different sets of assumptions (Methods).

Fig. 5 shows scatterplots of the genetic association estimates with BMI against their association
estimates with CHD risk for each set of instruments considered, as well the results of the Mendelian
randomization analyses. When using the full set of genetic variants as instruments, the results
suggest a positive effect of increased BMI on CHD risk, with an estimated odds ratio (OR) from
MR-IVW of 1.50 (95 % confidence interval of 1.40–1.62) per 1 standard deviation increase in
genetically predicted BMI. All sensitivity analyses gave similar estimates. This is in line with the
results of Larsson et al. [20]. A similar result was obtained using the largest two clusters, with an
estimated OR of 1.83 (1.68–2.00) using Cluster 1 and of 1.54 (1.38–1.72) using Cluster 2. When
using the Cluster 3 genetic variants as instruments, the estimate attenuated toward the null, with
an estimated OR of 1.22 (0.99–1.50). When using Cluster 4 genetic variants as instruments, there
was no evidence that increased BMI is associated with CHD risk, with an estimated OR of 0.94
(0.69–1.29). When using Cluster 5 genetic variants as instruments, the results suggest a decrease in
CHD risk from increased BMI, with an estimated OR of 0.34 (0.19–0.64). Note that the MR-Egger
intercept test [26] did not show evidence of directional pleiotropy in any of these analyses (Table
S4).

Exploring the biological pathways of clusters of BMI associated variants

We conducted gene set analysis on the BMI associated variants using the Functional Mapping
and Annotation Platform [27] in order to examine the biological pathways relating to each clus-
ter. The variants were mapped to genes based on positional and eQTL mappings, which were in
turn tested for enrichment in gene sets from various pathway databases (Methods). A number of
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distinct patterns emerge: Cluster 1 variants are associated with pathways related to cell division
and differentiation; Cluster 3 variants with pathways related to cellular signalling; Cluster 4 vari-
ants with pathways related to lipid metabolism; and Cluster 5 variants with pathways related to
inflammation. Cluster 2 variants were not found to be significantly enriched with any of the tested
pathways. The full set of pathways associated with the mapped genes is given in Table S5.

The role of Cluster 5 variants in inflammation is of particular interest given its proposed relation
to favourable adiposity. In order to confirm the role of these variants in inflammation, we conducted
a Mendelian randomization analysis to examine the association of genetically predicted BMI, using
all variants and each cluster separately, with C-reactive protein (CRP), a measure of systemic
inflammation (Methods). The results from the MR-IVW method are shown in Fig. 6. When using
all variants as instruments, MR-IVW estimated an increase in CRP of 0.44 standard deviations
(95% confidence interval of 0.38–0.50) per standard deviation increase in genetically predicted
BMI. The results when using Clusters 1–4 as instruments were in line with this. However, there
was no evidence that the component of BMI predicted by Cluster 5 variants is associated with CRP
(MR-IVW estimate of 0.01, 95% confidence interval of -0.24–0.27). These findings were supported
in sensitivity analyses (see Fig. S3).

To further explore the pathways by which the various clusters affect inflammation, we performed
separate Mendelian randomization analyses with the 41 cytokines and growth factors studied by
Ahola-Olli et al. [28] and Kalaoja et al. [29] as outcomes (see Table S6 for the full list of cytokines
and growth factors considered). Fig. 7 shows the MR-IVW estimates for each cluster and out-
come. There was evidence of variation in the effects of BMI predicted by Cluster 5 variants on
the cytokines compared with the effects of BMI predicted by the other clusters. For a number of
inflammatory traits, such as hepatocyte growth factor (HGF) and TNF-related apoptosis induc-
ing ligand (TRAIL), BMI predicted by Cluster 5 variants showed a weaker association than the
other clusters. In some cases, such as for monocyte chemotactic protein-1 (MCP1), the MR-IVW
estimates using Cluster 5 variants were in the opposite direction to the other clusters.

Discussion

In this paper we have presented a procedure for clustering genetic variants based on their associa-
tions with a given set of traits using the NAvMix method. The method uses a directional clustering
algorithm to distinguish between genetic variants based on their proportional associations with the
traits. Since it is a model-based clustering approach, it has many advantages over current methods
that are employed for clustering genetic variants based on trait associations, such as a data-driven
method for choosing the number of clusters and the ability to use soft clustering. The inclusion of a
noise cluster provides robustness to outliers, offering greater confidence in the identified clusters. A
simulation study showed the method performs well in a range of settings, and that it outperformed
alternative clustering approaches in assigning observations based on proportional associations. Im-
portantly, the method did not identify false positive clusters in the simulation setting when no true
clusters existed in the data, in contrast to the other methods considered.

The application to clustering BMI associated genetic variants identified five clusters, suggesting
that genetic predictors of BMI can be broken down into five separate mechanisms based on their
associations with the traits considered. Mendelian randomization analyses provided evidence that
the different pathways affecting BMI have different downstream effects on CHD risk. When using as
instruments the set of genetic variants in Clusters 1 and 2, the Mendelian randomization estimate
of BMI on CHD risk was positive, in line with the established overall effect of increased BMI. When
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using as instruments the set of variants in Cluster 3, the estimate was still positive but attenuated
to the null. The main difference between this cluster and Clusters 1 and 2 is that the variants do
not, on average, associate with increased SBP. Previous evidence suggests that increased SBP is a
downstream consequence of increased BMI [30], and has also been shown to have a causal effect
on CHD [24]. Our results therefore support that the genetically predicted component of BMI that
does not associate with increased SBP has a lower positive effect on CHD risk. However, there is
still evidence of a positive causal effect, suggesting there are other mechanisms by which increased
BMI may increase CHD risk [31].

When using as instruments the set of genetic variants in Cluster 4, which have average associ-
ations with increased HDL and decreased triglycerides, Mendelian randomization suggested there
was no association with CHD risk. Furthermore, the Mendelian randomization estimate of the com-
ponent of BMI predicted by the variants in Cluster 5 was negative. That is, in Cluster 5, we have
identified genetic variants related to a BMI increasing pathway that is protective of CHD. Orientat-
ing to the BMI-increasing alleles, these genetic variants are associated with a favourable metabolic
profile, namely increased HDL and decreased SBP, triglycerides, WHR and type 2 diabetes liability.

By analysing the biological pathways underpinning the different clusters, we found evidence
supporting that inflammation plays a key role in mediating the effect of obesity on cardiovascular
risk. Furthermore, our findings identify possible inflammatory pathways related to elevated BMI
that represent therapeutic targets for preventing CHD. Specifically, the estimated effects of Cluster
5 variants, in contrast to the BMI increasing variants more generally, are consistent with lower
levels of key inflammatory cytokines implicated in CHD pathogenesis, including HGF [32], MCP1
[33] and TRAIL [34]. By ameliorating the increased inflammation attributable to elevated BMI, its
detrimental effects on CHD risk may also be mitigated.

A number of studies have previously sought to identify genetic variants associated with metabol-
ically favourable adiposity. Huang et al. [35] conducted pairwise significance tests between adiposity
traits and various other cardiometabolic traits to identify genetic variants which, for at least one
such pairing, associate with an increase in the adiposity trait and a decrease in the cardiometabolic
trait. A similar approach to identifying genetic variants associated with favourable adiposity has
also been performed by Yaghootkar et al. [36]. Our approach differs to these in that our clusters
are formed without using genetic associations with the risk factor or outcome of interest, in this
case BMI and CHD, but rather in relation to the chosen traits. Therefore, any difference between
clusters in their associations with CHD risk is a meaningful statistical test, rather than a difference
driven by the clustering algorithm.

The proposed approach has some limitations. It uses as input the full covariance matrix of the
genetic variant-trait associations. An estimate of the full covariance matrix relies on estimates of
the trait correlations, either from individual level data or from a reference dataset. Without this,
the full covariance matrix requires either the assumption that the traits are uncorrelated or that
the genetic variant-trait associations are estimated in separate samples. In practice, it is unlikely
that the entire set of traits will be uncorrelated, since they would typically be related at least via
common association with the primary trait of interest. However, the simulation study suggested the
method is robust to ignoring the genetic variant-trait association correlations. This also suggests
that the approach is robust to some participant overlap in the samples.

Another limitation is that the results are dependent on the choice of traits used to cluster on.
Domain knowledge should be used to select a set of traits which are believed to be informative
of potential mechanisms of the genetic variants under consideration. Future research will look to
extend the method to include feature selection [37], so that the inclusion of a moderate to large

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.438817doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438817
http://creativecommons.org/licenses/by/4.0/


number of traits, many of which may not distinguish between clusters, is possible. It should be
noted that adding highly correlated traits does not add much extra information, and may impact
the results if correlation estimates are not incorporated. Thus, if there are a number of traits of
interest which are highly correlated, it is better to chose just one of them.

In conclusion, we have presented a procedure for clustering genetic variants based on their
direction of association with relevant traits, in order to gain insight into their underlying biological
mechanisms and pathways. We have demonstrated the utility of clustering genetic variants in
this way by applying the method to BMI associated genetic variants and performing Mendelian
randomization analyses to infer the differential effects of distinct BMI increasing pathways on CHD
risk.

Methods

The von Mises–Fisher distribution

The m-dimensional von Mises–Fisher (vMF) distribution has probability density function

f (x | µ, κ) = Cm (κ) eκµ
′x,

where ‖x‖ = ‖µ‖ = 1 and Cm (κ) is a normalising constant given by

Cν (x) =
xν/2−1

(2π)
ν/2

Iν/2−1 (x)
,

where Iν (x) is the modified Bessel function of the first kind and order ν [38, 11]. The mean
parameter µ is a unit vector which represents the direction from the origin in m-dimensional space.
The concentration parameter κ represents the spread of observations around the mean. When
κ = 0, the distribution is the uniform distribution on the (m− 1)-dimensional unit sphere. As κ
increases, the distribution becomes increasingly focused around the point on the unit sphere given
by µ.

The noise-augmented von Mises–Fisher mixture model

Suppose we have m-dimensional observations X = {x1, . . . ,xn} where ‖xj‖ = 1 for all i (if the
observations are not normalised to have magnitude 1, then this normalisation is the first step in the
procedure). Here, xj represents the vector of proportional association estimates for genetic variant
j with the m traits. Further suppose that each observation either belongs to one of K clusters, each
cluster containing observations from a vMF distribution, or else belongs to none of these clusters
and is therefore considered noise. We can represent this with the K + 1 component vMF mixture
model given by

p (xj | Θ) =
K+1∑
k=1

p (xj , zj = k | µk, κk) =
K+1∑
k=1

πkf (xj | µk, κk)

for the jth observation, where:

• Θ = {µ1, . . . ,µK , κ1, . . . , κK , π1, . . . , πK+1};
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• z = {z1, . . . , zn} denotes cluster membership (that is, zj = k if xj belongs to cluster k);

• πk is the mixing proportion of cluster k, with
∑K+1
k=1 πk = 1;

• f (x | µ, κ) is the density function of the m-dimensional vMF distribution;

• µK+1 is the unit vector which is fixed according to the global sample mean direction, given
by

µK+1 =

∑n
j=1 xj∥∥∥∑n
j=1 xj

∥∥∥ ;

• κK+1 is fixed at a number close to zero (for example 0.0001).

In this model, cluster K + 1 is referred to as the noise cluster. With κ close to zero, the distribu-
tion function represents the uniform distribution on the (m− 1)-dimensional unit sphere, and so
observations which do not fit well to the other K clusters will tend to be assigned here.

The log-likelihood function is

lK (Θ) =
n∑
j=1

log

{
K+1∑
k=1

πkf (xj | µk, κk)

}
.

In order to maximise the likelihood function to obtain estimates of the parameters Θ, we would
require knowledge of the latent variables z. Mixture models of this sort are thus fitted using the
EM algorithm [39].

The EM algorithm

Suppose we have an estimate of Θ, denoted by Θ̂. Let Q
(
Θ | Θ̂

)
= Ez|X,Θ̂lK (Θ). Then

Q
(
Θ | Θ̂

)
=

n∑
j=1

K+1∑
k=1

γjk log {πkf (xj | µk, κk)} ,

where

γjk = Pr
(
zj = k | xj , Θ̂

)
=

πkf (xj | µk, κk)∑K+1
l=1 f (xj | µl, κl)

, k = 1, . . . ,K + 1.

Computing the γjk for a given Θ̂ is the E step in the EM algorithm.

Given the γjk, we can estimate Θ by maximising Q
(
Θ | Θ̂

)
. Following Banerjee et al. [11], the

parameter estimates are obtained from

µ̂k =

∑n
j=1 γjkxj∥∥∥∑n
j=1 γjkxj

∥∥∥ , k = 1, . . . ,K,

Im/2 (κ̂k)

Im/2−1 (κ̂k)
=

∥∥∥∑n
j=1 γjkxj

∥∥∥∥∥∥∑n
j=1 γjk

∥∥∥ , k = 1, . . . ,K (1)
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π̂k =
1

n

n∑
j=1

γjk, k = 1, . . . ,K + 1.

This is the M step of the EM algorithm. Note that we do not update the noise cluster parameters,
µK+1 and κK+1, but we do update the proportion of observations which are assigned to the noise
cluster, π̂K+1. Now, (1) does not give a closed form solution for computing κ̂k. However, a number
of methods for approximating these solutions have been proposed which allow the concentration
parameter estimates to be easily updated. Banerjee et al. [11] proposed the approximation

κ̂k =
r̄km− r̄3k

1− r̄2k
,

where

r̄k =

∥∥∥∑n
j=1 γjkxj

∥∥∥∥∥∥∑n
j=1 γjk

∥∥∥ .

Hornik and Grün [14] summarise several other approximation methods and provide software for
implementing each of them. Note that, in practice, values of r̄ very close to 1 can cause numerical
problems, (due to the fact that this relates to the case where the observations are almost all at the
same point, and the precision is thus close to infinity). To get around this, we cap the value that
κ̂k can take at 500.

The EM algorithm can be started at either the E step, given an initial estimate of Θ, or at the
M step, given initial values of the γjk. The algorithm is iterated until the absolute value of the

difference between successive values of lK

(
Θ̂
)

is less than some predefined convergence threshold.

In our simulation study and applied example, we used 10−4 as the convergence threshold.

Initialisation of the algorithm

In order to initialise the algorithm, we must first set an initial proportion of observations which

belong in the noise cluster, which we will denote by 0 < π̂
(0)
K+1 < 1. We then perform the spherical

k-means procedure [13], which clusters observations based on similarity of their direction from the
origin, analogous to the k-means procedure which clusters observations based on Euclidean distance.
We take as initial values, for i = 1, . . . , n,

γik =

{
1− π̂(0)

K+1, if observation i is assigned to cluster k
0, otherwise

, k = 1, . . . ,K

γi(K+1) = π̂
(0)
K+1.

We then begin the EM algorithm at the M step. Note that the spherical k-means procedure relies
on an initial random set of cluster means, and thus its results are sensitive to this randomisation.
There is a possibility that certain initial values from the procedure will result in the EM algorithm
converging to a local, rather than global, maximum. We therefore run the algorithm a number
of times in practice, each time beginning with different initial values. We take as final parameter
estimates those which result in the EM algorithm converging to the greatest maximum. In our
simulation study and applied example, we ran the algorithm with 5 different initialisations.
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Choosing the number of clusters

In practice, we will not know the number of clusters to fit to the data. The number of clusters can
be determined using an information criterion, for example BIC [40, 41]. For successive values of K,
we perform the algorithm above and compute

φm (K) = −2lK

(
Θ̂
)

+ rm (K) log (n) ,

where rm (K) = (m+ 2)K +m is the number of parameters estimated. We continue until φm (K)
increases for successive iterations. The final number of clusters is then taken to be arg minK φm (K).

Assigning cluster membership

Output from the procedure for fitting the mixture model is a set of probabilities for each observation
belonging to each cluster (that is, the γik parameters). The simplest approach for assigning cluster
membership is to assign each observation to the cluster for which it has the greatest probability of
membership (that is, ẑi = arg maxk γik). This is the approach used in both the simulation study
and the applied example presented in this paper.

Mixture model approaches to clustering allow for flexibility in the way that cluster membership is
assigned. For increased confidence in the clusters, a threshold could be set such that an observation
is only assigned to a cluster if the probability of membership is greater than a certain level. Those
which do not meet the threshold for any cluster remain unassigned. Finally, soft clustering is
possible, whereby observations are assigned to any cluster for which its probability of membership
is greater than a certain level. Under the soft clustering approach, an observation may be assigned
to more than one cluster.

Genetic variant-trait association covariance matrix

For variant j, the (k, l)th element of Σ̂j is given by

se
(
β̂jk

)
se
(
β̂jl

)
cor
(
β̂jk, β̂jl

)
,

where se
(
β̂jk

)
is the standard error of β̂jk. If the genetic variant-trait associations are estimated in

separate, non-overlapping, samples, then cor
(
β̂jk, β̂jl

)
= 0 and Σ̂j can be taken to be the diagonal

matrix with kth diagonal entry equal to se2
(
β̂jk

)
. If the traits are estimated in the same sample,

then the off-diagonal entries of Σ̂j will be non-zero. Although the correlation between β̂jk and β̂jl
is not easily estimated, provided the jth genetic variant explains only a small proportion of the

variance in the kth and lth traits, then cor
(
β̂jk, β̂jl

)
≈ cor (Xk, Xl) [42]. We can therefore compute

the (k, l)th entry of Σ̂j , i 6= j, by

se
(
β̂jk

)
se
(
β̂jl

)
ĉor (Xk, Xl) ,

where ĉor (Xk, Xl) is an estimate of the correlation between the kth and lth traits. As a result
of this, if the traits are assumed to be independent, then the off-diagonal entries of Σ̂j can be
approximated by zeros, and the covariance matrix taken to be diagonal as in the separate samples
case.
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Simulation study

We simulated n = 120 independent genetic variants for Nl individuals, denoted Gij for individual
i and genetic variant j, and m traits, denoted Xik for individual i and trait l, from the following
model

Gij ∼ Binomial (2,mafj)

Ui, εi1, . . . , εim ∼ N (0, 1) , independently

Xil =
n∑
j=1

βjlGij + γlUi +
√

1− γ2l εil,

for i = 1, . . . , Nk and l = 1, . . . ,m. The common variable Ui is included to induce correlation be-
tween the errors, while maintaining the same amount of variation explained by the genetic variants.
The γl values, which determine the magnitude and direction of correlation between the traits, were
generated from the Uniform (−0.8, 0.8) distribution. The minor allele frequencies (denoted in the
model by mafj) were generated from the Uniform (0.01, 0.5) distribution. The number of traits was
either m = 2 or 9.

The first 100 genetic variant-trait associations were split into 1, 2 or 4 clusters. For the 2 cluster
scenarios, each cluster contained 50 genetic variants. For the 4 cluster scenarios, the first cluster
contained 40 genetic variants, and the other three clusters contained 20 genetic variants. The βj1
values were generated from the Uniform (0.05, 0.4) distribution for the first two clusters, and from
the Uniform (−0.4, 0.05) distribution for the second two clusters. For each l = 2, . . . ,m, the βjl
values were generated by tan (vj)βj1. The vj values were generated from the truncated normal
distribution with mean δk, variance 0.22 and truncation points (δk − 0.2, δk + 0.2), where the δk
values are as follows. For the 1 cluster scenarios, δ1 = π/4, m = 2, and

δ1 = (π/4, π/4, π/4, π/4, π/4, π/4, π/4, π/4) ,

m = 9. For the 2 cluster scenarios, δ1 = π/4 and δ2 = −π/4, m = 2, and

δ1 = (π/4, π/4, π/8, π/8, π/8, π/8, π/8, π/8)

δ2 = (−π/4,−π/4, π/8, π/8, π/8, π/8,−π/8,−π/8) ,

m = 9. For the 4 cluster scenarios, δ1 = δ3 = π/4 and δ2 = δ4 = −π/4, m = 2, and

δ1 = (π/4, π/4, π/8, π/8, π/8, π/8, π/8, π/8)

δ2 = (π/4, π/4, π/4, π/4, 0, 0, 0, 0)

δ3 = (−π/4,−π/4, π/8, π/8, π/8, π/8,−π/8,−π/8) ,

δ4 = (−π/4,−π/4,−π/4,−π/4, 0, 0, 0, 0) ,

m = 9. The lth element of δk represents the mean angle from the origin, in radians, of the
values (βj1, βjl), j = 1, . . . , 100. The effect of this setup is that the angle from the origin of the
pair (βj1, βjl) is centered around a cluster specific mean and bounded according to the truncation
points. Each cluster can thus be considered to contain genetic variants acting in similar directions
on the given traits. The final 20 genetic variants were simulated to represent noise. For these
genetic variants, the βjl values, l = 1, . . . ,m, were generated from a normal distribution with mean
0 and variance 0.22.
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The estimated genetic variant-trait associations were computed using simple linear regression of
each trait on each genetic variant in turn. For the primary simulation study presented in the Results
section, the associations were estimated in the same sample of size 20 000. The Supplementary
Information also presents results for scenarios where the associations were estimated in separate
samples with sizes varying between 20 000 and 44 000.

The resulting datasets were clustered using NAvMix with an initial proportion of genetic variants
in the noise cluster of 0.05, and using mclust with an initial noise cluster of of 5 randomly selected
genetic variants.

Clustering BMI associated genetic variants

Genetic variant association estimates with BMI were taken from the GWAS of Pulit et al. [16].
Variants with p-value < 5 × 10−8 were pruned using the TwoSampleMR package in R [43] with
r2 = 0.001.

Genetic variant association estimates with body fat percentage, SBP, triglycerides and HDL
were taken from results from the Neale Lab which are based on the UK Biobank dataset (http:
//www.nealelab.is/uk-biobank/). Genetic variant associations for educational attainment were
taken from the GWAS of Okbay et al. [44]; for physical activity, the GWAS of Doherty et al. [45];
for lifetime smoking score, the GWAS of Wootton et al. [46]; for WHR the GWAS of Pulit et al.
[16]; and for type 2 diabetes, the GWAS of Mahajan et al. [6]. Note that for the educational
attainment dataset, one BMI associated genetic variant (rs10761785) was replaced with a proxy
(rs2163188) with r2 = 0.9842 (identified using PhenoScanner [47, 48]). All studies used were
performed on samples of individuals of European ancestry or predominantly European ancestry.
All genetic variant trait-association estimates were orientated with respect to the alleles such that
the associations with BMI were positive.

Clustering was performed using NAvMix with an initial proportion of genetic variants in the
noise cluster of 0.05, and 5 separate initialisations of the algorithm was used. The probability of
membership of each genetic variant to each cluster produced by the algorithm is shown in Table
S3.

Mendelian randomization analyses

A genetic variant is a valid instrumental variable for a Mendelian randomization analysis if it
is: associated with the risk factor; independent of any confounders of the risk factor-outcome
relationship; and has no causal pathway to the outcome other than via the risk factor [49]. Under
the two-sample framework, the genetic variant-risk factor and genetic variant-outcome associations
are estimated in separate samples [21]. Under the assumption that all variants in the analysis
are valid instruments, MR-IVW produces a statistically consistent estimator of the causal effect
and a test for the causal null hypothesis [22]. The three methods used for sensitivity analyses
were chosen since they each produce a valid estimate of the causal effect of BMI on CHD under
different assumptions [50]: MR-Median (a majority of the genetic variants are valid instrument);
the Contamination Mixture method (a plurality of the genetic variants are valid instruments); and
the MR-PRESSO method (the InSIDE assumption is met). The intercept test from the MR-Egger
method was used to test for the presence of unmeasured directional pleiotropy. Analyses were
carried out using the MendelianRandomization [51, 52] and MRPRESSO [25] packages.

Genetic variant association estimates with CHD were taken from the CARDIoGRAMplusC4D
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dataset of Nikpay et al. [53] and accessed using PhenoScanner [47, 48]. Genetic variant associa-
tions with CRP were taken from results from the Neale Lab which are based on the UK Biobank
dataset (http://www.nealelab.is/uk-biobank/). Genetic variant association estimates with the
41 cytokines and growth factors were taken from the data supporting Ahola-Olli et al. [28] and
Kalaoja et al. [29]. Table S7 gives a list of the BMI associated genetic variants which were not
available in each of the outcome datasets and were therefore excluded from the relevant Mendelian
randomization analyses.

Gene mapping and gene set analysis

The 539 BMI associated genetic variants were mapped to genes using the SNP2GENE function
in FUMA [27]. Summary statistics for each cluster of variants were uploaded separately, and
were identified as pre-defined lead SNPs. Both positional and eQTL mapping was performed.
For the eQTL mapping, tissue types were selected as all those from the following sources: EQTL
catalogue; PsychENCODE; van der Wijst et al. scRNA eQTLs; DICE; eQTLGen; Blood eQTLs;
MuTHER; xQTLServer; ComminMind Consortium; BRAINEAC; and GTEx v8. All other default
settings were used. Gene set analysis was performed using the GENE2FUNC function. The results
presented in Table S5 include all canonical pathways from MsigDB which associate with the mapped
genes using hypergeometric tests (with multiple test correction applied per cluster).

Data availability

All the data used in this paper are publicly available and can be accessed via the references given.

Code availability

R code for performing the NAvMix clustering algorithm, and for reproducing the simulation results
and applied analysis, can be found at https://github.com/aj-grant/navmix.
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Figure 1: Illustrative figure showing the difference between clustering based on Euclidean distance
compared with direction. Panel (a) plots 90 simulated points representing genetic associations
with two traits. Each point was generated from one of three bivariate normal distributions. Panel
(b) plots the normalised genetic associations, representing the proportional association of each
genetic variant with respect to the two traits. All points sit on the unit circle. The green points
represent genetic variants which are positively associated with each trait by similar magnitudes. The
orange points represent genetic variants which are positively associated with trait 1 and negatively
associated with trait 2, again by similar magnitudes. Methods based on Euclidean distance such
as Gaussian mixture models and hierarchical clustering would consider there to be three clusters,
distinguishing between the light and dark green points, as shown in Panel (a). Directional clustering
approaches would consider there to be two clusters, grouping the green points in the same cluster.
This is shown in Panel (b), where the points are clearly grouped in two separate clusters.

Table 1: Mean number of clusters estimated and mean number of observations allocated to the
noise cluster for each simulated scenario using NAvMix, mclust, and mclust using proportional
associations (pr).

Number of clusters Number of noise variants
Number of
traits (m)

Number of
clusters (K)

NAvMix mclust mclust (pr) NAvMix mclust mclust (pr)

2 1 1.00 1.93 3.73 18.99 15.05 19.00
2 2.00 2.10 4.62 17.36 12.26 17.60
4 4.00 2.15 6.13 14.24 14.49 15.11

9 1 1.01 2.18 1.04 21.72 18.06 23.01
2 2.00 2.82 2.00 23.42 17.67 24.83
4 4.45 4.21 4.93 21.20 18.21 23.39
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Figure 2: Boxplots of the Rand index for each scenario using NAvMix, mclust, and mclust using
proportional associations (pr).
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Figure 3: Heat map showing the association estimates of the genetic variants with each trait by
cluster, excluding the noise cluster. The association estimates were first standardised by dividing by
their standard errors, then normalised so that the vectors of association estimates for each variant
have magnitude one. Thus, the values shown represent the proportional association estimates for
each genetic variant on the set of traits.
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Figure 4: Radial plot of the mean vector of the fitted von Mises–Fisher distribution for each
cluster. The plotted points represent the standardised proportional association with each trait for
an observation at the centre of each cluster.
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Figure 5: Scatterplots of the associations of each genetic variant with BMI (standard deviation
units) and the log odds ratio of CHD risk, and forest plots showing estimates and 95% confidence
intervals from Mendelian randomization, for all genetic variants and for each cluster. Mendelian
randomization estimates represent the change in odds ratio of CHD risk per 1 standard deviation
increase in genetically predicted BMI.
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Figure 6: MR-IVW estimates and 95% confidence intervals of the association of genetically predicted
BMI with CRP, for all genetic variants and for each cluster. The estimates represent the change in
CRP in standard deviation units per 1 standard deviation increase in genetically predicted BMI.
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Figure 7: MR-IVW estimates (expressed as Z-scores, i.e. estimate divided by its standard error) for
the association of genetically predicted BMI with 41 cytokines and growth factors. Values denoted
with * have a p-value less than 0.05/41.
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