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Abstract

Diffusion tensor imaging (DTI) is widely used to extract valuable tissue measurements
and white matter (WM) fiber orientations, even though its lack of specificity is now well-
known, especially for WM fiber crossings. Models such as constrained spherical decon-
volution (CSD) take advantage of HARDI data to compute fiber orientation distribution
functions (fODF) and tackle the orientational part of the DTI limitations. Furthermore,
the recent introduction of tensor-valued diffusion MRI allows for diffusional variance de-
composition (DIVIDE), opening the door to the computation of measures more specific
to microstructure than DTI measures, such as microscopic fractional anisotropy (µFA).
However, tensor-valued diffusion MRI data is not compatible with latest versions of CSD
and the impacts of such atypical data on fODF reconstruction with CSD are yet to be
studied. In this work, we lay down the mathematical and computational foundations of a
tensor-valued CSD and use simulated data to explore the effects of various combinations
of diffusion encodings on the angular resolution of extracted fOFDs. We also compare
the combinations with regards to their performance at producing accurate and precise
µFA with DIVIDE, and present an optimised protocol for both methods. We show that
our proposed protocol enables the reconstruction of both fODFs and µFA on in vivo
data.

Keywords: Diffusion MRI, Tensor-valued dMRI, White Matter Fiber Crossing,
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1. Introduction

Diffusion MRI (dMRI) [Le Bihan and Breton, 1985] allows for non-invasive probing
of the diffusion of water molecules in tissues such as the human brain. In particular,
diffusion tensor imaging (DTI) [Basser et al., 1994] models the average voxel content with
a diffusion tensor to get access to valuable information about the intra-voxel diffusion
profile. Indeed, the diffusion tensor gives insight into the orientation of the white matter
(WM) fibers and leads to the calculation of DTI measures, such as the well known mean
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diffusivity (MD), fractional anisotropy (FA) [Basser and Pierpaoli, 1996], axial diffusivity
(AD) and radial diffusivity (RD). While the orientation of the diffusion tensor and the
computation of these measures are great tools for the study of WM in the brain and are
widely used, important limitations were pointed out [Wheeler-Kingshott and Cercignani,
2009; Jones and Cercignani, 2010]. Furthermore, Tuch et al. [2002] showed that DTI
cannot properly model a voxel containing multiple WM fiber orientations. This leads to
the famous FA drop in WM fiber crossings and to a counter-intuitive FA increase in, e.g.,
Alzheimer lesions [Douaud et al., 2011; Teipel et al., 2014], resulting in a very ambiguous
interpretation of this measure in what is estimated to represent 60 to 90% of voxels in
a typical whole-brain scan [Descoteaux, 2008; Jeurissen et al., 2013; Volz et al., 2018].
To obtain a better WM fiber orientation profile, Tuch et al. [2002] proposed the high
angular resolution diffusion imaging (HARDI) idea, which gave birth to many HARDI-
based methods such as constrained spherical deconvolution (CSD) [Tournier et al., 2004,
2007; Descoteaux et al., 2009], used to extract a fiber orientation distribution function
(fODF) from HARDI data. These fODFs can then serve as guides for tractography
algorithms [Mori et al., 1999; Poupon et al., 2000; Catani et al., 2002], allowing structural
connectivity human brain mapping studies and applications.

An extension of DTI, diffusion kurtosis imaging (DKI) [Jensen et al., 2005], enables
to estimate a first measure of tissue heterogeneity: the mean kurtosis. However, this
mean kurtosis is not specific, as it originates from both microscopic anisotropy (probing
pure cell elongation) and isotropic heterogeneity (variance of isotropic diffusivities or
variance of cell densities). A new dMRI technique introduced in the mid-2010s, called
tensor-valued dMRI [Eriksson et al., 2013, 2015; Westin et al., 2014, 2016] or b-tensor
encoding, shows great promises in alleviating the lack of specificity of conventional dMRI
techniques such as DTI or DKI. In particular, Lasič et al. [2014] proposed a way to disen-
tangle the isotropic and anisotropic components of the diffusional variance, leading to new
measures of microscopic anisotropy and isotropic heterogeneity. Recent papers [Nilsson
et al., 2020; Naranjo et al., 2021] have even established clinically feasible tensor-valued
dMRI scans providing sufficient data to compute these new measures with similar meth-
ods. Moreover, many studies have investigated the potential of tensor-valued diffusion
encoding for microstructural characterizations of brain tumors and neurodegenerative
diseases [Szczepankiewicz et al., 2015, 2016; Andersen et al., 2020; Kamiya et al., 2020;
Nilsson et al., 2020].

Several studies have accounted for sub-voxel WM fascicle orientations while employ-
ing tensor-valued diffusion encoding to capture the aforementioned diffusion measures
[Cottaar et al., 2020; Reymbaut et al., 2020a,b, 2021; de Almeida Martins et al., 2021].
However, much remains to be done in evaluating the effects of various diffusion encodings
on fODF reconstruction with CSD. Indeed, the standard single-shell single-tissue CSD
(ssst-CSD) [Tournier et al., 2007; Descoteaux et al., 2009] does not allow for the use of
tensor-valued dMRI data and the current state of the literature does not provide any
CSD model that can use such data as input, except for one conference abstract [Jeuris-
sen and Szczepankiewicz, June 2018]. Nevertheless, the work of Jeurissen et al. [2014]
on extending the ssst-CSD model to a multi-shell multi-tissue CSD (msmt-CSD) model
is a great example of the flexibility of CSD, allowing it to take multi-shell dMRI data as
input and accurately differentiate brain tissues.

This paper establishes the foundations of a tensor-valued diffusion encoding CSD
model, as a mathematical extension of msmt-CSD, enabling the reconstruction of fODFs
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using tensor-valued dMRI data. The impacts of different combinations of b-tensor shapes,
namely linear, planar and spherical tensors, on the reconstruction of fODFs are explored
using the adapted CSD model on simulated data. In parallel, these combinations are also
challenged with a method for disentangling the diffusional variance, and performances
on both methods are compared to lead to the overall best combination. It is important
to propose a technique that can extract both accurate crossing fibers as well as advanced
microstructural maps from tensor-valued dMRI. Thus, we propose a 10 minutes long
tensor-valued dMRI protocol enabling an accurate reconstruction of the fODFs while
also allowing the computation of the b-tensor encoding microstructure measures. The
performances of this final protocol are shown on in vivo data as a demonstration of the
new tensor-valued diffusion encoding CSD model’s potential.

2. Theory

Assuming a non diffusion-weighted (DW) signal S0, the DW signal Si for an acquisi-
tion direction i is defined as

Si = S0

∫
D

P (D)e−Bi:DdD, (1)

where P (D) is the intra-voxel diffusion tensor distribution (DTD) and Bi : D denotes
the Frobenius inner product between the so-called b-tensor Bi and a diffusion tensor D:

Bi : D =
∑
m,n

[Bi]mn[D]mn. (2)

Note that this definition of the signal assumes an heterogeneous intra-voxel content,
described by the DTD [Basser and Pajevic, 2003; Jian et al., 2007; Reymbaut, 2020].

2.1. Diffusional variance from the DTD

Following the formalism of Szczepankiewicz [2016], different measures can be calcu-
lated from the DTD P (D). For instance, the average (denoted by 〈·〉) of the diffusion
tensors across the DTD in a voxel gives a voxel-scale diffusion tensor 〈D〉, the same one
that is at the center of the DTI model. From this, it is well known that the mean diffusiv-
ity (MD) is obtained according to MD= Eλ[〈D〉], where Eλ[·] is the average over tensor
eigenvalues λ. However, the MD can also be calculated as the average of all isotropic
diffusivities Eλ[D] in the DTD:

MD = 〈Eλ[D]〉. (3)

The DTD also contains information about the isotropic variance VI, reflecting the
isotropic heterogeneity of the voxel, and the anisotropic variance VA, describing the
microscopic anisotropy of the voxel. These diffusional variances are calculated as follow,
with Vλ[·] being the population variance of tensor eigenvalues λ:

VI = 〈Eλ[D]2〉 − Eλ[〈D〉]2, (4)

VA =
2

5
〈Vλ[D]〉. (5)
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Diffusional variance decomposition (DIVIDE) can be used to extract MD, VI and VA

from tensor-valued dMRI data with at least two different b-tensor encodings Lasič et al.
[2014]; Szczepankiewicz et al. [2015, 2016]. This method estimates the isotropic and
anisotropic variances of the DTD by fitting the following inverse Laplace transform of
the gamma distribution function [Röding et al., 2012] to powder-averaged tensor-valued
dMRI data S̄i:

S̄i = S0

(
1 + bi

VD

MD

)−MD2

VD

, (6)

where VD = VI + b2∆,iVA is the diffusional variance and b∆,i is a factor describing the
encoding shape (b∆,i = 1 for linear, b∆,i = −0.5 for planar and b∆,i = 0 for spherical).
This disentanglement of the diffusional variances enables the definition of the microscopic
fractional anisotropy µFA [Lasič et al., 2014; Reymbaut, 2020] as:

µFA =

√
3

2
· 〈Vλ[D]〉
〈Eλ[D]2〉+ 〈Vλ[D]〉 =

√
3

2
·

5
2VA

VI + MD2 + 5
2VA

. (7)

This new measure is thus representative of the average anisotropy computed across all
microscopic environments in a voxel, with values going from 0 (purely isotropic cellular
structures) to 1 (purely stick-like cellular structures). In comparison, the typical FA
computed from DTI gives information about the anisotropy observed at the voxel scale,
consequently depending on the orientation coherence of the underlying cellular structures,
which is quantified by the order parameter (OP) [Lasič et al., 2014]. The µFA becomes
equal to the FA in voxels where all microscopic environments are perfectly identical and
ordered.

2.2. Tensor-valued constrained spherical deconvolution

In the case of a single homogeneous axisymmetric fiber with orientation uk ≡ (θk, φk),
the DTD from equation 1 becomes a Dirac distribution peaked at a single diffusion tensor
Dk of main eigenvector uk, axial and radial diffusivities D‖ and D⊥. The Frobenius inner
product from equation 2 then becomes

Bi : Dk =
bi,S
3

(D‖ + 2D⊥) + bi,L(D‖ cos2 βik +D⊥ sin2 βik), (8)

where the angle βik separating the orientation of the b-tensor ei ≡ (Θi,Φi) and the fiber
orientation uk is given by the spherical law of cosines

cosβik = cos Θi cos θk + sin Θi sin θk cos(Φi − φk). (9)

The couple (bi,S , bi,L) determines the b-tensor’s encoding type such as
(bi,S , bi,L) = (0, bi) for linear tensor encoding (LTE)

(bi,S , bi,L) = (bi, 0) for spherical tensor encoding (STE)

(bi,S , bi,L) = (3bi/2,−bi/2) for planar tensor encoding (PTE)

, (10)

where bi is the typical b-value, given by bi = Tr(Bi), the trace of the b-tensor.
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With the DTD being a Dirac distribution peaked at a single diffusion tensor and
substituting the Frobenius inner product from equation 8, equation 1 simplifies to

Si = S0e
−

bi,S
3 (D‖+2D⊥)−bi,L(D‖ cos2 βik+D⊥ sin2 βik) ≡ Kεi(bi; ei,uk), (11)

where we introduce the single fiber response function (FRF) or convolution kernel Kεi ,
which changes according to the diffusion encoding of acquisition i, such that εi ∈ {linear,
planar, spherical}. If multiple identical homogeneous axisymmetric fibers are present,
the equation becomes an integral over the unit sphere S2

Si =

∫
S2
Kεi(bi; ei,u)f(u)d2u, (12)

where the diffusion signal is modeled as the convolution of an fODF f(u) with a fiber
response function Kεi(bi; ei,u). The fODF weighs different unit orientations of fiber in
the signal, while the response function corresponds to the DW signal of a single fiber
with orientation u.

Using equation 10, the fiber response functions for linear, planar and spherical tensor
encoding are

Klinear(bi; ei,uk) = S0 · exp
[
−bi(D‖ cos2 βik +D⊥ sin2 βik)

]
Kplanar(bi; ei,uk) = S0 · exp

[
− bi2 (D‖ sin2 βik +D⊥[1 + cos2 βik])

]
.

Kspherical(bi; ei,uk) = S0 · exp
[
− bi3 (D‖ + 2D⊥)

] (13)

Figure 1 shows these encoding dependent theoretical FRFs for multiple b-values and
tissues, namely white matter, grey matter (GM) and the cerebrospinal fluid (CSF), from
diffusivity values taken from the literature and real data examples (see section 3.4).

The fODF is usually expressed as a linear combination of NSH basis functions Yj(u),
such as spherical harmonics (SH), leading to

f(u) =

NSH∑
j=1

wjYj(u), (14)

where wj are the SH coefficients in the case of an SH basis. Applying this to equation
12 then gives

Si =

NSH∑
j=1

wj

∫
S2
Kεi(bi; ei,u)Yj(u)d2u, (15)

which can be written simply as a linear problem:

S = K ·w, (16)

where the following matrix K and column vectors S and w read:

[S]i = Si [K]ij =

∫
S2
Kεi(bi; ei,u)Yj(u)d2u [w]j = wj . (17)

Note that in the case of a linear encoding only acquisition, equation 15 falls back to the
classic single-shell or multi-shell formulation, with a single linear fiber response function
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Figure 1: Visualisation of fiber response functions computed from equation 13 for different b-values
and tissues. The WM tissue, defined by D‖ = 1.7 × 10−3mm2/s and D⊥ = 0.3 × 10−3mm2/s, shows

varying FRFs for LTE, PTE and STE. For GM (D‖ = D⊥ = 0.6 × 10−3mm2/s) and CSF (D‖ =

D⊥ = 3.0× 10−3mm2/s), all tensor encodings produce the same FRF. Every fiber response function is
calculated using S0 = 1 and a diffusion tensor pointing in the z-axis. The FRFs for CSF are too small
to be visible at b ≥ 2000 s/mm2, because the diffusivities are high and lead to the amplitude of each
b > 1000 s/mm2 losing a factor of approximately 4.5 from the amplitude of the previous shell.

per b-value. The linearized problem of equation 16 can then be solved using the msmt-
CSD model developed by Jeurissen et al. [2014]. In this paper, the authors expand the
ssst-CSD method from Tournier et al. [2007]; Descoteaux et al. [2009] to allow m shells
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and n tissues, resulting in the following constrained linear least squares problem:

ŵ1

...
ŵn

 = arg min
w1

...
wn



1

2

∥∥∥∥∥∥∥
K1,1 . . . K1,n

...
. . .

...
Km,1 . . . Km,n

 ·
w1

...
wn

−
S1

...
Sm


∥∥∥∥∥∥∥

2

2



fulfilling the condition

A1 0 0

0
. . . 0

0 0 An

 ·
w1

...
wn

 ≥ 0,

(18)

where Aj is the matrix relating the coefficients wj to the fODF amplitudes. Solving this
equation leads to the unknown vectors of coefficients of the fODF, with one vector for
each tissue. In the case of m = n = 1, this equation goes back to the ssst-CSD formalism.

3. Methods

3.1. Implementation of tensor-valued constrained spherical deconvolution

In the case of tensor-valued dMRI data, the linearized problem of equation 16 can be
solved using an extension of equation 18 that enables CSD with multiple tensor-valued
encodings, a method we call multi-encoding msmt-CSD (memsmt-CSD). This allows
for mε shells per encoding ε, and n tissues. The convolution kernels then become a
concatenation of the different encoding kernels, such as the linear (KL with mL shells),
planar (KP with mP shells) and spherical (KS with mS shells) ones. The signals vector
becomes a concatenation of the signal vectors from different encodings, such as the LTE
(SL), the PTE (SP) and the STE (SS) ones, leading to the following constrained linear
least squares problem:

ŵ1

...
ŵn

 = arg min
w1

...
wn





1

2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



KL
1,1 . . . KL

1,n
...

. . .
...

KL
mL,1 . . . KL

mL,n

KP
1,1 . . . KP

1,n
...

. . .
...

KP
mP,1 . . . KP

mP,n

KS
1,1 . . . KS

1,n
...

. . .
...

KS
mS,1 . . . KS

mS,n



·

w1

...
wn

−



SL
1
...

SL
mL

SP
1
...

SP
mP

SS
1
...

SS
mS



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2


fulfilling the condition

A1 0 0

0
. . . 0

0 0 An

 ·
w1

...
wn

 ≥ 0,

(19)
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where Aj is the matrix relating the coefficients wj to the fODF amplitudes. Again,
solving this equation leads to the unknown vector of fODFs coefficients for each tissue.
From these, the volume fraction (VF) of each tissue can be calculated as the amplitude
of their first coefficient, leading to a sort of tissue segmentation.

Figure 2: Summary of the computational steps used in this study, comprising DTI, memsmt-CSD and
DIVIDE, for linear, planar and spherical tensor encodings, and three tissues (WM, GM and CSF). FA
and µFA images are adapted from Szczepankiewicz et al. [2015].

Both constrained linear least squares problems from equations 18 and 19 can be
rewritten as a strictly convex quadratic programming (QP) problem, using the compact
nomenclature of equation 16 such that:

ŵ = argmin
w

1

2
wTPw + QTw subject to Aw ≥ 0, (20)

where P = KTK and Q = −KTS. This QP problem is solved with DIPY [Garyfallidis
et al., 2014], which uses a QP solver implemented in CVXPY [Diamond and Boyd, 2016;
Agrawal et al., 2018], based on the OSQP solver [Stellato et al., 2020]. The fiber response
functions Kεi(bi; ei,u) for each encoding and b-value pair are calculated from equation
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13 using diffusivities extracted from a DTI fit for each tissue. Figure 2 summarizes the
computational steps of tensor-valued constrained spherical deconvolution.

3.2. Measures computation

The DTI measures such as FA and diffusivities (AD, MD, RD) are calculated using
the eigenvalues of the diffusion tensor obtained from a DTI fit, as shown by Basser and
Pierpaoli [1996]. The fit is performed only on the linear encoding data and with shells
below b = 1200 s/mm2.

The measures enabled by the combination of at least two different b-tensor encodings
are obtained using the DIVIDE method. The implementation of this method is strongly
inspired by Nilsson et al. [2018]. Note that although DIVIDE relies on powder-averaged
signals, it has suggested to be, to some extent, robust to not perfectly rotation invariant
signals [Reymbaut et al., 2020c]. The present study focuses on the microscopic fractional
anisotropy (µFA) introduced by Lasič et al. [2014] and calculated using equation 7, in
comparison to the FA. Figure 2 summarizes the processing steps leading to the FA and
µFA.

3.3. Simulating tensor-valued diffusion data

To study the impact of different combination of diffusion encoding shapes and number
of directions per shells on the fODFs and the computation of the µFA, tensor-valued
diffusion data is simulated using a discrete version of equation 1. The first step is to
choose a set of Nk diffusion tensors Dk that will describe the composition of the voxel,
each of them being associated with a tissue compartment. These diffusion tensors are
defined by their eigenvalues in their principal axis system (PAS), such that

Dk,PAS =

Dk,‖ 0 0
0 Dk,⊥ 0
0 0 Dk,⊥

 , (21)

where Dk,‖ and Dk,⊥ are the axial and radial diffusivities, respectively. For each of
these diffusion tensors, Dk,‖ and Dk,⊥ are converted into the isotropic diffusivity Dk,iso

and the normalized anisotropy Dk,∆ [Conturo et al., 1996], describing the anisotropy
of the diffusion tensor, following the relations Dk,iso = (Dk,‖ + 2Dk,⊥)/3 and Dk,∆ =
(Dk,‖ − Dk,⊥)/(3Dk,iso). Then, both Dk,iso and Dk,∆ become the mean of discrete
Gaussian distributions with a given relative standard deviation (STD) σk (relative to its
mean) and N discrete elements. These two Gaussian distributions are weighted by the
volume fraction and the non-DW signal S0k

of the tissue compartment they represent.
The distribution centered at Dk,iso is also flipped to ensure a negative covariance between
the two distributions. Then, the distributions of Dk,iso and Dk,∆ are converted back to
Dk,‖ and Dk,⊥ distributions, creating a distribution of diffusion tensors PDk

described by
the distributions of axial and radial diffusivities. The Nk weighted DTD are concatenated
into a single DTD representing the whole voxel’s content. Finally, every diffusion tensor
in the DTD is rotated by given angles θk and φk, corresponding to the orientation of their
initial mean diffusion tensor Dk. The angles θk and φk follow the physics convention
for spherical coordinates, meaning that θk gives the angle with respect to the z axis,
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while φk gives the angle with respect to the x axis. This allows the computation, for any
chosen b-tensor Bi, of the diffusion signal in the voxel:

Si =

Nk∑
k=1

PDk
e−Bi:Dk . (22)

The signal obtained from this process can also be subject to added noise, which is
calculated with respect to a given S0 and signal to noise ratio (SNR), relative the chosen
S0:

S = S0

√(
S

S0
+

1

SNR
· σrand

)2

+

(
1

SNR
· σrand

)2

, (23)

where σrand is a random number going from 0 to 1.
From the DTD, the ground truth µFA is calculated using equations from section 2.1.

3.4. Simulated anatomy

The simulation method previously described is used to generate the DW signals of
five typical voxels, representing the fictional anatomy of this study. These voxels are
composed of various volume fractions of four different tissue compartments (Nk = 4),
each compartment k being defined by the parameters Dk,‖, Dk,⊥, θk, φk, σk and S0,k.
Table 1 shows the parameters configuration for each tissue compartment, comprising
two identical WM compartments separated by a certain angle α, one grey matter (GM)
compartment and one cerebrospinal fluid (CSF) compartment. Table 2 presents the
composition of the five simulated voxels. The first voxel is a WM fiber crossing of equal
proportions, described by the separation angle α. The second voxel is a single WM fiber,
while the fourth and fifth voxels are 100% GM and CSF, respectively. The third voxel
represents a partial volume between voxel 2 and voxel 4, composed of 50% WM fiber and
50% GM.

Compartments Dk,‖(×10−3mm2/s) Dk,⊥(×10−3mm2/s) θk S0,k

WM1 1.7 0.3 90 1100
WM2 1.7 0.3 90− α 1100
GM 0.6 0.6 0 1500
CSF 3.0 3.0 0 3700

Table 1: Parameters configuration of the four tissue compartments used to generate simulated data.
The two WM compartments are built from the same diffusivities and only differ by the orientation of
their diffusion tensor Dk, separated by α degrees in the y-z plane. The angle θk for GM and CSF
are both equal to 0 since their diffusion tensor is isotropic, thus not depending on orientation. For all
compartments, φk = 0 and σk = 0.15. A different non-DW signal S0,k is set for each tissue type.

The choice of the axial and radial diffusivities is motivated by typical in vivo diffusivity
values. WM and CSF diffusivities are inspired by Pierpaoli and Basser [1996]; Alexander
[2008]; Alexander et al. [2010]; Zhang et al. [2012], while GM diffusivity value comes from
Pierpaoli and Basser [1996]; Liu et al. [2006]. Moreover, the non-DW signal S0,k set for
WM, GM and CSF are approximated from data obtained from the MGH-USC Human
Connectome Project database [Glasser et al., 2013; Sotiropoulos et al., 2013].
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Compartments Voxel 1 Voxel 2 Voxel 3 Voxel 4 Voxel 5

WM1 50 100 50 0 0
WM2 50 0 0 0 0
GM 0 0 50 100 0
CSF 0 0 0 0 100

Table 2: Voxels composition, described by the volume fractions, in percentage, of each tissue compart-
ment.

Throughout the simulation experiments, only the angle α and the SNR vary, as
does the set of b-tensors Bi. The relative STD σk stays constant at 15%, providing
some variance to the distribution of diffusion tensors composing the voxels. To test the
limits of memsmt-CSD, the WM fiber crossing of voxel 1 is simulated many times using
different values of α, from 90 to 50 degrees. The effects of noise on the memsmt-CSD
and the DIVIDE processes are studied using simulated data without noise (SNR=∞),
with SNR=30 and with SNR=15, inspired by Tournier et al. [2007]; Descoteaux et al.
[2009].

3.5. Simulated datasets

The fictional anatomy set up is used to explore and test different acquisition protocols,
each represented by a set of b-tensors Bi. These schemes can also be described by a set
of b-values, a number of diffusion encoding gradient directions and different choices of
encoding shapes. This representation is favoured over the b-tensor itself, as it is easier to
grasp and compare to conventional acquisition schemes. The chosen b-values and number
of gradient directions per shell, adapted from Nilsson et al. [2020] to allow memsmt-
CSD, are presented in table 3 as L, P1, P2, S1 and S2. A typical multi-shell multi-tissue
acquisition [Theaud et al., 2020] is also added as Lmsmt for comparison purposes, as it
contains the same total amount of directions as L and S2 combined.

b-value Linear1 Linear2 Planar1 Planar2 Spherical1 Spherical2
(s/mm2) (L) (Lmsmt) (P1) (P2) (S1) (S2)

0 3 5 1 2 1 2
100 3 0 3 6 3 6
700 3 8 3 6 3 6
1200 12 30 6 10 6 10
1800 18 0 6 16 6 16
2400 24 60 0 0 0 0

Total 63 103 19 40 19 40

Table 3: Six gradient tables chosen for this study. Each column shows the number of encoding directions
in the corresponding shell. The last row shows the total number of directions, including b = 0 s/mm2.

The encoding directions are distributed between shells and encodings using the elec-
trostatic repulsion implementation of Caruyer et al. [2013] (with default inter-shell cou-
pling weights). More precisely, the L and Lmsmt directions are first both calculated
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separately from the other encodings. Then, the directions are recalculated when L is
used in a protocol with planar encoding, to get the best directional coverage over the
shells and the encodings. Directional considerations are different for spherical encoding,
as the framework laid out in Section 2 presents spherical diffusion encoding as a perfectly
isotropic measurement. In practice, anisotropy in the frequency content of spherically
encoded gradient waveforms [Lundell and Lasič, 2020; Szczepankiewicz et al., 2020] and
eddy currents [Szczepankiewicz et al., 2020] create situations wherein spherical b-tensors
should preferably be rotated. This means that there is a set of directions for L when
it is alone or with spherical encoding only, and different sets of directions when it is
combined with P1 or P2, which we call L∗ and L∗∗, respectively. The spherical encod-
ing directions from S2 are also separately calculated using the same method, and the
directions of S1 are subsampled from it. The subsampling of the encoding directions is
done using a method that chooses the directions such as to minimize the electrostatic
repulsion energy, based on the implementation from Caruyer et al. [2013]. All of these
gradient directions distributions are shown and available at figure A.13.

The gradient tables described in table 3 are combined in different ways to test the
impact of diffusion encodings and number of encoding directions on both memsmt-CSD
and DIVIDE, while varying the α angle and the SNR. The tested protocols are presented
in table 4. Note that we add a separate protocol, Lmsmt, corresponding to the gradient
table Lmsmt and only tested with memsmt-CSD.

L LP1 LP2 LS1 LS2 LP1S1 LP2S1 LP2S2

L L∗, P 1 L∗∗, P 2 L, S1 L, S2 L∗, P 1, S1 L∗∗, P 2, S1 L∗∗, P 2, S2

Table 4: Eight protocols tested in the study (first row). These are combinations of gradient tables from
table 3 (second row). Note that the set of directions for L changes depending on whether or not it is
combined with either of the planar encoding gradient tables. These linear encoding directions sets are
defined as L (without planar), L∗ (with P1) and L∗∗ (with P2).

Each of these protocols are simulated Nrep = 1000 times, to avoid outliers due to
noise. All the outputs of memsmt-CSD, the DTI fit and DIVIDE are averaged over the
Nrep repetitions. Their standard deviation allows to keep track of the variability of the
process and compute the precision of it.

3.6. In vivo acquisitions

To confirm the conclusions drawn from the simulated data, the protocols from table
4 were also acquired in vivo on two healthy male volunteers. These in vivo data acqui-
sitions were taken on a Philips Ingenia 3T system with a 32-channel head coil (Philips
Healthcare, Best, The Netherlands). Tensor-valued dMRI was made possible by a proto-
type spin-echo single-shot EPI sequence that enables the use of arbitrary b-tensor shapes
for diffusion encoding. Planar and spherical encoding were achieved using asymmetric
gradient waveforms, optimized to minimize TE using a constrained optimization method
described in Sjölund et al. [2015], with the following settings: Euclidian norm, heat dissi-
pation factor 0.7, amplitude limit of 45 mT/m and a slew rate limit of 90 T/m/s. Imaging
was performed on the two volunteers at different resolutions, with the following set of
constant parameters: SENSE = 2, Multiband-SENSE = 2, and partial-Fourier = 0.65,
and two sets of parameters depending on the resolution. The set at 2.5 mm isotropic

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.07.438845doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438845
http://creativecommons.org/licenses/by/4.0/


(first volunteer) was: resolution = 2.5× 2.5× 2.5 mm3, TE = 117 ms, TR = 5.6 s, FOV
= 240× 240 mm2, slices = 48, while the set at 2.0 mm isotropic (second volunteer) was:
resolution = 2× 2× 2 mm3, TE = 119.5 ms, TR = 7.2 s, FOV = 224× 224 mm2, slices
= 60. Given these sets of parameters, the acquisition times of each protocol from table 4
are presented in table 5. Protocol Lmsmt has the same acquisition time as protocol LS2.
Note that the significant increase of time compared to the 3 minutes protocol of Nilsson
et al. [2020] is due to the added number of directions for LTE, the different MRI scanner
and the increased resolution for the set at 2 mm isotropic.

L LP1 LP2 LS1 LS2 LP1S1 LP2S1 LP2S2

Set 2.5 mm iso 6:22 8:26 10:29 8:26 10:29 10:30 12:33 14:36
Set 2.0 mm iso 8:11 10:50 13:29 10:50 13:29 13:29 16:08 18:47

Table 5: Real acquisition times of the protocols presented in table 4, in minutes.

T1-weighted images were also acquired at a resolution of 0.8× 0.8× 0.8 mm3 to help
identifying the tissue types for the computation of the response functions.

3.7. Processing

The in vivo DW data was preprocessed using an adapted version of the Tractoflow
pipeline [Theaud et al., 2020]. More precisely, the pipeline performs the MP-PCA de-
noising technique (Mrtrix3) [Veraart et al., 2016], followed by susceptibility-induced dis-
tortion correction (FSL topup) [Andersson et al., 2003; Smith et al., 2004] and N4 bias
field correction (ANTs) [Avants et al., 2009], on all DW images. Motion correction was
not necessary on these less than 15 min long acquisitions.

The T1-weighted images were also treated by the pipeline, starting with a brain
extraction tool (BET) [Smith, 2002] from FSL and a non-local means denoising (DIPY)
[Coupé et al., 2008]. Then, the structural images were segmented into three tissues, WM,
GM and CSF, using the FAST tool [Zhang et al., 2001] from FSL and finally registered
on the DW images with ANTs.

This tissue segmentation led to binary masks necessary to extract axial and radial dif-
fusivities for each tissue using a DTI model fitted with a weighted least squares method.
The memsmt-CSD method was computed with a maximal SH order of 8 and with the
Descoteaux07 [Descoteaux et al., 2007] SH basis adapted by DIPY, and using the de-
fault parameters of OSQP. As for the fit of the inverse Laplace transform of the gamma
distribution function, the set of parameters were, following the nomenclature of [Nils-
son et al., 2018]: do weight=True, do pa weight=True, do multiple s0=True, fit iters=1,
guess iters=50 and all other default parameters from the authors.

4. Results

4.1. Simulated data

Figure 3 shows an example of the memsmt-CSD, DTI fit and DIVIDE outputs from
the fictional anatomy described in section 3.4, using simulated protocol LP2S2 with a
crossing of 90 degrees, without noise and with SNR=15. More precisely, it displays the
fODFs obtained from memsmt-CSD on top of the derived volume fractions. The VF are
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Figure 3: Demonstration of memsmt-CSD, DTI fit and DIVIDE methods on the simulated anatomy
described in section 3.4, with protocol LP2S2 and a separation angle of 90 degrees in voxel 1, for
SNR=∞ and 15. The first row is the memsmt-CSD output, namely the WM fODFs and the volume
fractions, RGB coded. The second and third rows show the FA calculated from a DTI fit and the µFA
computed from DIVIDE, respectively. The fODFs are added on top of them to emphasize the contents
of the voxels. FA and µFA values go from 0 to 1 (black to white color gradient).

represented with an RGB code, where red, green and blue are the CSF, GM and WM
channels, respectively. For each voxel, the VF is normalized by the maximum value of all
voxels, meaning that the VF keeps track of the absolute amplitude of each channel. A
voxel containing partial volumes will therefore appear as a darker mix of the implicated
channel, as seen in voxel 3 with the darker blue color (50% WM and 50% GM). Note that
all VF voxels in this work are displayed with an opacity factor of 0.5 as well, with the
purpose of increasing the fODFs visibility. Figure 3 also shows a comparison between the
FA calculated from DTI and the µFA extracted with the DIVIDE method, with values
comprised between 0 (black) to 1 (white).

The crossing WM fibers separation performances of each protocol from table 4 and
protocol Lmsmt are shown on figures 4, 5 and 6 for SNR=∞, SNR=30 and SNR=15,
respectively. The WM fODFs are the mean of 1000 repetitions of the simulation for
SNR=15 and SNR=30, and the variance of this fODFs distribution is visible as the
white lobes around the fODFs, corresponding precisely to the fODFs times two standard
deviations. Without noise, all protocols show a very similar performance, being able to
separate the two fibers up to an angle of 55 degrees and failing for 50 degrees. The same
outcome is visible at SNR=30. As for SNR=15, each protocol is able to separate the
two peaks up to an angle of 60 degrees, but protocols containing planar tensor encoding,
P1 or P2, fail for tighter angles. The linear tensor only protocol (L), the typical multi-
shell multi-tissue protocol Lmsmt and the combined linear and spherical tensor encodings
protocols (LS1 and LS2) achieve peaks separation at 55 degrees. Furthermore, these
protocols seem to produce tighter fODFs, especially Lmsmt. Each protocol performs
better with less noise in terms of angular resolution and precision, according to the
diminishing variance of the fODFs.
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Figure 4: Crossing fibers of voxel 1 reconstructed with memsmt-CSD from the protocols presented in
table 4 and protocol Lmsmt, at various separation angles and for SNR = ∞. In the background is the
associated VF map, which is 100% WM and thus blue in this case. The red lines are the detected
maxima of the fODFs.

Figure 5: Crossing fibers of voxel 1 reconstructed with memsmt-CSD from the protocols presented in
table 4 and protocol Lmsmt, at various separation angles and for SNR = 30. In the background is the
associated VF map, which is 100% WM and thus blue in this case. The colored surfaces correspond to
the mean fODF over 1000 simulations, whereas the white surfaces represent the mean plus two standard
deviations. The red lines are the detected maxima of the fODFs.
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Figure 6: Crossing fibers of voxel 1 reconstructed with memsmt-CSD from the protocols presented in
table 4 and protocol Lmsmt, at various separation angles and for SNR = 15. In the background is the
associated VF map, which is 100% WM and thus blue in this case. The colored surfaces correspond to
the mean fODF over 1000 simulations, whereas the white surfaces represent the mean plus two standard
deviations. The red lines are the detected maxima of the fODFs.

Figure 7 shows a more precise representation of the angular resolution of the tested
protocols at every studied SNR values, through a plot of the number of fiber orientations
(NuFO) extracted with respect to the separation angle. This points out the exact angle
at which the protocols fail to separate the two fibers, noticeable by the drops in the
curves, allowing a better understanding of the behaviours presented on figures 4, 5 and
6.

Without noise, all protocols perform the same, losing the WM fiber crossing right
before the 50 degrees mark, at 51 degrees, as the NuFO drops from 2 to 1. At SNR=30,
protocols L, Lmsmt, LS2 and LS1 start to separate themselves from protocols containing
planar tensor encoding (P1 or P2), as they lose 1 degree from SNR=∞, whereas all the
other protocols lose 2 degrees. While figure 6 shows a seemingly big difference (5 degrees)
between L, Lmsmt, LS2 and LS1 and the rest of the protocols at SNR=15, figure 7 indicate
that all protocols differ from a maximum of 4 degrees at this SNR, with the exception of
Lmsmt. Indeed, the combination of only linear and planar encodings (LP2 and LP1) has
the lowest angular resolution at 58 degrees, followed closely by the protocols composed
of all encoding types (LP1S1, LP2S1 and LP2S2) with 57 degrees. The L, LS2 and LS1

protocols are able to distinguish tighter angles, dropping from 2 to 1 NuFO after 55
degrees. The Lmsmt protocol has the highest angular resolution with 53 degrees.
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Figure 7: Angular dependency of the number of fiber orientations extracted from the mean fODF over
1000 simulations with memsmt-CSD from the studied protocols in voxel 1, at various SNR. Note that
for each angle, the dots are slightly shifted to better distinguish the protocols, but touching dots are
truly at the same angle value.

The precision and accuracy of the DIVIDE method at computing the µFA with
different protocols is presented on figure 8, where the µFA from every protocol, as well as
the ground truth µFA, are plotted for the five simulated voxels, for each SNR. Throughout
each protocol, the µFA computed without noise is following the ground truth value, while
the noisy data deviates from it. The error bars, computed from the variance over the
1000 repetitions, also show the precision of the protocols. It is worth noting that the
µFA computed for every protocol at each voxel is always overlapping with the ground
truth value when considering the error bars, for both SNR=15 and 30. For voxels 1 to
3 at these SNR values, protocols LS2, LP2S1 and LP2S2 are consistently more precise
than other protocols, since their error bars are significantly smaller. These protocols also
show better accuracy, being closer to the ground truth most of the time in voxels 1 to
3. As for voxels 4 and 5, all protocols with noisy data produce approximately the same
overestimated µFA, with similar precision. It is notable that LS2, LP2S1 and LP2S2 lead
to the closest value to the GT in voxel 4, by a thin margin. Still for SNR=15 and 30,
protocols LP2, LS1 and LP1S1 all perform similarly for each voxel, while protocol LP1

has by far the worst accuracy and precision, especially in voxels 1 to 3.
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Figure 8: Mean µFA over 1000 simulations for each voxel and each protocols, at various SNR. The error
bars correspond to the standard deviation extracted from the 1000 repetitions of the simulations. The
black squares and the horizontal dashed grey lines represent the ground truth µFA.

4.2. In vivo data

Figures 9 and 11 show memsmt-CSD outputs with protocol LS2 on in vivo data
acquired with resolutions of 2.5×2.5×2.5 mm3 and 2×2×2 mm3 respectively, following
the preprocessing steps discussed in section 3.7 (see figure A.14 for examples of raw
data). Once again, the RGB coded volume fractions allow to distinguish between the
three studied tissues, WM, GM and CSF.

More precisely, these figures display a chosen brain slice that exhibit voxels similar
to the fictional anatomy studied by simulation. Indeed, figures 9 and 11 contain voxels
of pure single WM fiber as well as WM fiber crossing voxels. They also contain voxels
of CSF and GM and a zoom of a region with tissues interface.

Figures 10 and 12 present the FA and µFA for the same brain slice as figures 9 and 11,
respectively. The FA, calculated only from the LTE protocol (L), shows high intensity
voxels where single WM fibers are present, and lower intensity where WM fibers are
crossing (see figures 9 and 11 for comparison with fODFs). The µFA in the other hand,
calculated from the combination of LTE and STE for protocol LS2, shows high intensity
voxels for all of the WM voxels, regardless of the presence of crossings.
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Figure 9: Section of an in vivo human brain coronal slice at 2.5 mm isotropic showing the WM fODFs
obtained from memsmt-CSD with protocol LS2, on top of the computed volume fractions map. The VF
is RGB coded, with red being the CSF, green the GM and blue the WM.

Figure 10: Same brain coronal slice as figure 9, still at 2.5 mm isotropic, showing the FA computed
from DTI with protocol L and the µFA computed from DIVIDE with protocol LS2. Both measures have
values going from 0 (black) to 1 (white).
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Figure 11: Section of an in vivo human brain coronal slice at 2.0 mm isotropic showing the WM fODFs
obtained from memsmt-CSD with protocol LS2, on top of the computed volume fractions map. The VF
is RGB coded, with red being the CSF, green the GM and blue the WM. In the red box is a zoomed
version of a region containing WM and GM partial volumes, alongside CSF voxels.

Figure 12: Same brain coronal slice as figure 11, still at 2.0 mm isotropic, showing the FA computed
from DTI with protocol L and the µFA computed from DIVIDE with protocol LS2. Both measures have
values going from 0 (black) to 1 (white).
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5. Discussion

5.1. Choices of b-values and number of directions per shell

The choices of b-values and number of gradient directions per shell, previously pre-
sented in table 3, were inspired by [Nilsson et al., 2020]. In this paper, the authors present
a three-minute tensor-valued dMRI protocol enabling the calculation of the diffusional
variances, and thus, the µFA, via a powder-averaged two-term cumulant expansion ap-
proach. This approach is comparable to the DIVIDE method used in our study, according
to Reymbaut et al. [2020c]. The adaptations made from Nilsson et al. [2020] affect both
the b-values and the number of directions per shells. Their protocol consisted on four
b-values (b = 100, 700, 1400, and 2000 s/mm2) acquired in 3, 3, 6, and 6 directions
for the linear encoding, and 6, 6, 10, and 16 directions for the spherical encoding. We
modified the b-values to get a b = 1200 s/mm2 for the DTI fit [Jones and Basser, 2004],
swapping it with the b = 1400 s/mm2. We also diminished the b = 2000 s/mm2 to a b =
1800 s/mm2 to keep a smaller gap between the b-values to help fit equation 6, and we
added a b = 2400 s/mm2 shell for CSD purposes. As shown by figure 8, this distribution
of b-values seems to provide sufficient coverage to get proper µFA values.

The number of directions per shell taken from Nilsson et al. [2020] ensures a good
enough directional coverage for the rotation invariant criteria. However, this number is
too low to perform CSD, or even to get a well defined DTI fit. Based on the results
from Jones [2004], we chose to take 12 directions for the b = 1200 s/mm2 shell in linear
encoding. Figure 3 indeed shows that the FA calculated from DTI with this configuration
is in agreement with the literature [Pierpaoli and Basser, 1996], with high values in voxels
of single WM fiber (voxel 2), lower values in WM fiber crossings (voxel 1) and near-zero
values in voxels with only isotropic contents (voxel 4 and 5). This figure also justifies the
choice of 12 directions by the fact that the FA does not change much from data without
noise to data of SNR=15. Note that the DTI fit can also be achieved on planar and
spherical encodings, allowing the calculation of FA and MD with planar encoding and
MD with spherical encoding. However, we chose to use only the linear encoding for DTI
measures computation, as fits from other encodings seemed to be heavily sensitive to
noise. As for the two higher b-values, 18 and 24 directions were taken, respectively, for
a total of 54 directions over b = 1000 s/mm2 available for the standard msmt-CSD with
linear encoding. The performances of protocol L for SNR=15, presented on figures 6 and
7, confirm that this amount of directions, combined with the lower shells, is enough to
propel the angular resolution up to 55 degrees with msmt-CSD.

Since the proposed number of directions for the spherical encoded gradients S2 mostly
serves for SNR purposes and not for directional coverage, as a single spherical encoded
signal is already rotation invariant [Szczepankiewicz, 2016], we reduced the number of
directions to 3, 3, 6 and 6, creating a spherical encoding gradient table S1 with shorter
acquisition time, at the price of lower SNR. Figure 8 show that for low SNR (15), the
DIVIDE method is indeed affected by the decrease of STE directions, as LS1 is signifi-
cantly less precise than LS2. As for memsmt-CSD, it does not seem to be impacted by
this effect, as demonstrated by figure 7, where both LS1 and LS2 perform as well as the
LTE only protocol (L). therefore, reducing the number of directions from S2 to S1 might
not be good for µFA computation, but it does not affect the fODFs computation.

In addition to linear and spherical encodings, two planar encoding gradient tables
P1 and P2 were created with the same amount of directions that were tested for linear
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encoding by Nilsson et al. [2020]. The smaller one, P1, should be sufficient to get rotation
invariant signals, since planar encoding requires less directions than linear encoding in
that matter [Szczepankiewicz, 2016; Szczepankiewicz et al., 2019]. Considering this,
the results from figure 8, showing that protocol LP1 is the worst in terms of accuracy
and precision when it comes to µFA computation with noise, probably indicate that
planar tensor encoding suffers more from noise than spherical tensor encoding in terms
of DIVIDE. Indeed, even with more directions (LP2), PTE ranks in the middle of the
pack, LS2 being more precise. It is important to mention that PTE suffering more from
noise does not mean that it has a lower SNR than STE. It mean that applying noise to
PTE signals weakens more severely the precision of the DIVIDE method, compared to
STE, which does not depend on direction.

5.2. Effects of protocol choice on the computation of µFA

The choice of protocol has a big impact on the accuracy and the precision of the
computed µFA, as shown by figure 8. According to this figure, PTE alone with LTE
(LP1 and LP2) is consistently underperforming other protocols in voxels containing WM
(voxels 1 to 3). In these voxels, we demonstrate that STE and LTE combined can produce
accurate and precise measures of µFA, if a sufficient amount of directions is used, which
is the case of LS2. This observation agrees with the conclusions of Nilsson et al. [2020]
about their proposed protocol, very similar to LS2. Furthermore, the use of three tensor
shapes with enough directions can also provide good µFA measures, as LP2S1 and LP2S2

display accuracy and precision very similar to LS2. However, the higher acquisition times
needed for LP2S1 and LP2S2 do not procure significant advantage to the computation of
the µFA, leaving LS2 with the best time to quality ratio.

In voxels 4 and 5, composed of GM and CSF respectively, a constant overestimation
of the µFA is observed. This is due to the noise inducing apparent anisotropy at the
microscopic scales, increasing the µFA. Indeed, this is confirmed by the fact that this
effect appears only when adding noise, since µFA is accurately estimated at SNR=∞ and
starts to deviate more and more with added noise. In fact, this increase of anisotropy
measures with noise is a well known phenomenon discussed in Pierpaoli and Basser [1996];
Jones and Basser [2004] and caused by eigenvalue repulsion [Mehta, 2004]. Ultimately,
no protocol stands out as the better one for these two voxels.

5.3. Effects of protocol choice on the angular resolution of a WM fiber crossing

The choice of protocol has a smaller impact for the results of memsmt-CSD than it
has for the DIVIDE method. Indeed, figures 4, 5 and 6 present the effects of adding
planar and/or spherical tensor shapes to a LTE protocol. Instinctively, it would be
surprising to see a complete breakdown when adding additional tensor-valued encodings.
As a matter of fact, figure 7 shows that adding a STE gradient table (S1 or S2) to
the linear (L) protocol does not diminish the minimal angle at which CSD is able to
distinguish two WM fibers crossing, regardless of the SNR. Nevertheless, the figure also
shows that adding either of the two PTE gradient tables (P1 or P2) to the linear (L)
protocol decreases the angular resolution of the CSD method by 4 degrees at SNR=15.
This effect is indeed more visible at low SNR, meaning that PTE might not react well
with noise when it comes to distinguishing two WM fiber populations. Adding STE to
LP1 or LP2 seems to lower this negative effect, as it allows memsmt-CSD to reach 1 more
degree of separation at SNR=15.
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All of these variations of angular resolution are quite small and are not able to high-
light a bad protocol from table 4. However, when comparing to a typical multi-shell
protocol with the same amount of gradient directions as protocol LS2, the gap between
all these protocols seems to increase. In fact, protocol Lmsmt outperforms every protocol
containing PTE by at least 5 degrees of angular resolution at SNR=15. Only protocols
L, LS1 and LS2 are still able to compete with only 2 degrees less than Lmsmt at SNR=15,
and no difference at SNR=30. Furthermore, if the acquisition time is brought to the dis-
cussion (see table 5), three tensor shapes protocols (LP1S1, LP2S1 and LP2S2) are not
worth the longer time, and protocols LS1 and LS2 then stand out as the better choices
of multi-encoding protocols for computing WM fibers crossing with memsmt-CSD.

5.4. Combined memsmt-CSD and DIVIDE performances

While figure 3 serves as a proof of concept for the memsmt-CSD, DTI fit and DIVIDE
methods, figures 7 and 8 bring to light the importance of the chosen protocol for fODFs
angular resolution and µFA computation. Indeed, when combining the conclusions of
section 5.2 and 5.3, protocol LS2 arises as the best choice for computing both memsmt-
CSD and DIVIDE. Even if the typical Lmsmt protocol shows the better results for CSD,
reorganising the gradient directions distribution to create LS2 from the same amount of
directions only leads to the lost of a few degrees of angular resolution, while enabling the
DIVIDE process.

Figures 9 and 10 provide an example of what protocol LS2 can achieve in terms of
WM fODF reconstruction and measures calculation at a typical resolution for tensor-
valued dMRI data (2.5 mm isotropic). Figures 11 and 12 show that this resolution can
be increased to 2.0 mm isotropic and still produce valuable WM fODF reconstruction
and measures calculation. Figures 9 and 11 show that memsmt-CSD, combined with
protocol LS2, is able to produce clean WM fODFs in WM voxels, but most importantly
in crossing fibers voxels. Furthermore, it is able to distinguish WM from GM and CSF,
rendering a sort of tissue segmentation. Figures 10 and 12 show that the LTE part of
protocol LS2 can be used to produce a FA map that represent very well the WM voxel,
when compared to the WM segmentation from memsmt-CSD, apart from the famous
FA drop in crossing fibers voxels. Besides, figures 10 and 12 also show that the same
protocol can be used to compute a µFA map, which does not suffer like the FA in crossing
fibers. However, the µFA seems to be swelled a bit, especially in regions of WM and
GM interface. This phenomena is probably attributable to the noise level of these in
vivo acquisition, but perhaps a better calibration of the DIVIDE method could be done.
Nevertheless, those figures prove that memsmt-CSD is viable and that fODFs, FA and
µFA can all be computed from protocol LS2.

5.5. Recommendations and future work

Considering all of the above, we recommend using our combination of LTE and STE
gradient tables to create the LS2 protocol in the scope of computing both fODFs and
µFA. Indeed, this protocol uses two different tensor encoding shapes for an accurate
and precise computation of the µFA with a DIVIDE method, while not losing too much
angular resolution with memsmt-CSD in comparison to similar msmt-CSD. Furthermore,
its acquisition time of approximately 10 minutes at a resolution of 2.5 mm isotropic
makes it attractive for research purposes. If possible, we recommend spending 3 more
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minutes to push the resolution up to 2.0 mm isotropic and get less partial volume voxels.
As structural connectivity, tractometry and connectomics is becoming more and more
present in research and disease applications, it is important to push for higher spatial
resolution multi-dimensional acquisition in clinically feasible times.

While the in vivo results of memsmt-CSD are promising, the computed µFA could
benefit from more denoising or better DIVIDE tuning. Nevertheless, the proposed pro-
tocol is a starting point for future research, where fODFs and µFA are both of interest.
Further investigation of the impact of multiple b-tensor shapes on the VF values and
fODF reconstruction in voxels of partial volume would be needed. Indeed, the interest-
ing problem of the presence of an isotropic compartment inside a WM voxel could be
better suited for a protocol containing STE, like LS2. Moreover, comparing the proposed
protocol LS2 and protocol Lmsmt with in vivo data could enlighten the pros and cons
of memsmt-CSD and provide a better understanding of the effects of this technique on
microstructure estimation at the voxel level but also at the tractography and connectome
level.

6. Conclusion

In this work, we first established the mathematical and computational foundations of a
multi-encoding msmt-CSD model, able to compute fODFs and volume fraction maps from
tensor-valued dMRI data. Using simulated data, we showed that the model can indeed
produce multi-tissue volume fraction maps and white matter fODFs in single and crossing
fibers voxels. Furthermore, these fODFs do not suffer in terms of angular resolution
when adding sufficient amount of spherical tensor encoding acquisitions to a linear tensor
encoding. Adding planar tensor encoding to a linear one however decreases the angular
resolution by a few degrees, discouraging the use of PTE for memsmt-CSD. Moreover,
the performance of different combinations of linear, planar and spherical gradient tables
were also evaluated with the DIVIDE method on the simulated data. We showed that
while combining three b-tensor shapes provides great accuracy and precision in µFA
computation, the use of the protocol proposed for memsmt-CSD, combining only linear
and spherical b-tensors, also yields competing accuracy and precision values.

We thus propose a 10 min protocol at 2.5 mm isotropic and a 13 min protocol at 2
mm isotropic combining linear and spherical b-tensor encodings to get both memsmt-
CSD and diffusional variance decomposition methods. These protocols therefore kill two
birds with one stone, allowing the reconstruction of accurate crossing fiber fODFs for
tractography/connectivity while being able to extract the µFA map precisely.
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Appendix A. Datasets & Databases
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Figure A.13: Visualization of the gradient directions distribution for each protocols studied. The
first five columns represent the distribution at b-values of 100, 700, 1200, 1800 and 2400 s/mm2.
For these columns, the amplitudes of the spheres are proportional to the b-values. The last
column is every shell combined on one sphere. The exact gradient tables are available at
https://doi.org/10.5281/zenodo.4628539.
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Figure A.14: Examples of the raw data used in this study. The two first rows are images from the 2.5
mm isotropic dataset, with the first of these row being the L gradient table and the second one being
S2. The two last rows are images from the 2.0 mm isotropic dataset, with the first of these row being
the L gradient table and the second one being S2. Under each image is the b-value, in s/mm2.
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