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ABSTRACT1

Environment can alter the degree of phenotypic variation and covariation, potentially influencing evolu-2

tionary trajectories. However, environment-driven changes in phenotypic variation remain understudied.3

In an e�ort to exploit the abundance of RNASequencing data now available, an increasing number of4

ecological studies rely on population-level correlation to characterize the plastic response of the entire5

transcriptome and to identify environmentally responsive molecular pathways. These studies are funda-6

mentally interested in identifying groups of genes that respond in concert to environmental shifts. We7

show that population-level di�erential co-expression exhibits biases when capturing changes of regulatory8

activity and strength in rice plants responding to elevated temperature. One possible cause of this bias is9

regulatory saturation, the observation that detectable co-variance between a regulator and its target may10

be low as their transcript abundances are induced. This phenomenon appears to be particularly acute for11

rapid-onset environmental stressors. However, our results suggest that temporal correlations may be a12

reliable means to detect transient regulatory activity following rapid onset environmental perturbations13

such as temperature stress. Such temporal bias is likely to confound the studies of phenotypic integration,14

where high-order organismal traits are hypothesized to be more integrated with strong correlation under15

stressful conditions, while recent transcriptome studies exhibited weaker coexpression between genes under16

stressful conditions. Collectively, our results point to the need to account for the nuances of molecular17

interactions and the possibly confounding e�ects that these can introduce into conventional approaches18

to study transcriptome datasets.19
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1 INTRODUCTION20

Organisms evolve to maximize their individual performance under dynamically changing environments.21

The capacity of a single genotype to generate a range of environmentally induced phenotypes is known22

as phenotypic plasticity. Phenotypic plasticity has been widely documented (Stotz et al. 2021) and has23

recently received considerable attention as it may allow populations to persist in the face of rapid climate24

change (West-Eberhard 2003, Oostra et al. 2018, Nicotra et al. 2010, Gibert et al. 2019). Understanding25

the molecular and genetic basis of phenotypic plasticity has long been a goal for evolutionary genetics26

(Smith 1990, Bradshaw 1965) as a means to dissect trait co-variances and to predict the functional27

consequences of variable plastic mechanisms within and between populations (Des Marais et al. 2013,28

Palakurty et al. 2018, Tanner et al. 2022). Gene expression neatly bridges an organism’s genotype to its29

cellular biology and, by extension, higher-order developmental and physiological processes (Wray et al.30

2003, Carroll 2008) and, at genome scale, is orchestrated by the underlying “Transcription Regulatory31

Network” (TRN) (Gibson 2008). Transcription factors (TF) are key nodes in TRNs that regulate the32

expression of other genes (Buchanan et al. 2010), coordinating the entire transcriptional program, and33

are often found to drive large-e�ect loci associated with the environmental response (Alonso-Blanco et al.34

2005, Yano et al. 2000, Fukao et al. 2011). Transcriptional regulation can be highly responsive to both35

external and internal environmental cues, although formally linking these cellular phenotypes to whole36

organism environmental responses remains a challenge.37

Considering each gene’s expression separately may fail to capture the full picture of the evolution and38

plastic response of the transcriptome collectively. Examining gene modules with coherent expression39

will make it more tractable to identify groups of genes associated with ecologically relevant outcomes40

(Palakurty et al. 2018). Therefore, gene co-expression and network analysis have been widely used to41

study multiple genes together. For example, co-expression and clustering analysis have been used to42

understand how the environment alters the expression and function of suits of genes simultaneously (Yan43

et al. 2019, Lea et al. 2019, Tanner et al. 2022, Zhao et al. 2016, Wang et al. 2013, Palakurty et al. 2018,44

Schneider et al. 2014, Fu et al. 2014), or to identify evolutionarily conserved functional modules between45

species (Ferrari et al. 2018, Gao et al. 2012, Monaco et al. 2015, Ruprecht et al. 2017a,b, Horn et al.46

2016). However, the ease of performing di�erential co-expression analyses using existing approaches such47

as WGCNA (Langfelder and Horvath 2008) can obscure the assumptions they make about regulatory48

interactions. It is critical to understand possible biases and confounding factors using co-expression and49

module analysis.50

Phenotypic integration refers to the magnitude of correlations among groups of related traits in a given51

organism (Pigliucci 2003). Phenotypic integration and modularity represent important factors and52

constraints that influence the phenotypic plasticity and evolutionary trajectory (Villamil 2018, Gianoli53

and Palacio-López 2009, Pigliucci and Preston 2004, Schlichting 1989). The ecological significance of54

patterns of changing phenotypic integration is not fully understood. Previous studies in phenotypic55

integration hypothesized that the number and strength of significant correlations among traits increase56
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with environmental stress (Waitt and Levin 1993, Schlichting 1989, Gianoli 2004, García-Verdugo et al.57

2009, Chapin 1991). However, recent studies on molecular traits (e.g., genome-wide gene expression)58

provided seemlingly conflicting evidence: the degree of covariation tends to be higher under benign59

conditions than under stressful conditions (Lea et al. 2019, Tanner et al. 2022, Southworth et al. 2009,60

Anglani et al. 2014). We here hypotheze that low population-level trait-trait correlations in gene expression61

under a stressful condition may be caused by a widely observed phenomenon called regulatory saturation.62

Regulatory saturation can occur when the transcript abundance of regulators is too high such that extra63

transcript will not lead to increased transcription of target genes. In a regulatory saturation regime, a64

low population correlation does not necessarily mean that the regulatory activity between two genes is65

low. Conversely, it means the regulation and integration strength of two genes are tight and strong. In66

the present work, we account for such potential confounding factors by considering the temporal context67

of gene expression.68

Extensive e�orts have been made to exploit the so-called “fourth dimension” of environmental response —69

time — to better understand the dynamics of TRNs and to identify putative signaling pathways or key70

regulatory genes (Bechtold et al. 2016, Yeung et al. 2018, Varala et al. 2018, Zander et al. 2020, Song et al.71

2016, Greenham et al. 2017, Windram et al. 2012, Gargouri et al. 2015, Alvarez-Fernandez et al. 2020).72

Here, we exploit this temporal component of gene co-expression to characterize the dynamic organismal73

response to environmental conditions using an existing data set in rice (Wilkins et al. 2016). We contrast74

two broad approaches for using correlations between the transcript abundances of two genes: temporal75

correlations and population correlations. Population correlations are correlations of multiple individual76

samples at a given time point. Temporal correlations are correlations of two transcripts’ abundance over77

a time course for an individual sample.78

Our analyses and simulation demonstrate that multiple types of temporal bias can occur when analyzing79

gene expression data, any of which could confound ecological or evolutionary inference. First, the number,80

identity, and period between sampling time points may not capture the transient transcriptional response81

of genes and, by extension, their co-variance with other transcrips (Bar-Joseph et al. 2012). Second,82

population coexpression may fail to capture transient induction of regulatory activities when the gene-gene83

interaction is under a regulatory saturated regime. Regulatory saturation can be particularly misleading84

because a population correlation may capture the transient reponse of a single gene’s expression, yet85

miss responsive regulatory interactions if the duration of high regulatory activity is short. A potential86

implication of regulatory saturation points to the need to account for temporal bias when studying87

phenotypic integration, or the regulatory coherence for molecular traits. Our study provides evidence88

of increasing within-individual phenotypic integration following stress treatments. Third, temporal89

correlation can alleviate the second temporal bias and capture transient interactions. Collectively, our90

work emphasizes both that transient regulatory interactions may lead to bias in population transcriptomic91

analyses as well as o�er an opportunity to understand the evolution of gene regulation in better detail if92

properly accounted for in analyses.93
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2 MATERIALS AND METHODS94

2.1 Data retrieval95

We utilized a TRN prior previously constructed by Wilkins et al. (2016), which was obtained from the96

integration of ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) data and the97

CIS-BP database of TF binding motif (Weirauch et al. 2014). We elected not to use their complete98

“Environmental Gene Regulatory Influence Network” because the estimation of the final network relied on99

information from mRNA-seq time series data; the analyses presented here represent a unique approach to100

analyzing these data. Genes that had corresponding cis-regulatory elements of TF in a region of open101

chromatin in their promoter regions are identified as the target gene for a given TF (Wilkins et al. 2016).102

Note that the open accessible regulatory region derived from the ATAC-seq of rice leaves remained stable103

across multiple environmental conditions in the Wilkins et al. study. In total, this “network prior” has104

38,137 interactions: 357 TFs were inferred to interact with 3240 target genes. Interactions can be between105

TFs and non-TF targets, or between two TFs.106

The RNA-seq data derive from chamber-grown plants and were retrieved from the Gene Expression107

Omnibus (www.ncbi.nlm.nih.gov/geo/) under accession number GSE74793. This dataset comprises108

time-coursed libraries for four rice cultivars exposed to control (benign), heat shock, and water deficit109

conditions. Samples were collected with 15 min intervals for up to 4h for each of the treatments; specifically,110

18 time points for controlled conditions; 9 time points for drought treatment; and 16 time points for heat111

treatment. Here we used a time window of nine time points in each condition for analysis. TF family112

annotations were downloaded from the Plant TF database (Riaño-Pachón et al. 2007), from which Heat113

Shock Factors are those with the TF family label “HSF”. “Known” drought-related TFs were obtained114

from https://funricegenes.github.io/ in June 2020 using the search terms “drought”, “ABA”, and115

“drought tolerance”.116

2.2 Dynamic correlations for regulator-target pairs117

The expression relationship observed between genes in a time series sample may be caused by the time118

lag inherent in molecular interactions, in this case, transcriptional regulation. Such time lag reflects the119

time required for a TF’s activity to influence the expression of its target genes because transcription and120

translation take place over non-negligible time periods. Traditional correlation coe�cients (e.g., Pearson121

correlation) cannot account for the staggered relationship between a regulator and a target. Here, we122

used a metric we call Max Cross Correlation (MCC), building on the cross-correlation between transcript123

abundances estimated by RNA-Seq, to examine the activities of regulatory interactions. The MCC over124

the time course has a direction constraint (from regulator to target) to evaluate the regulatory status.125

Consider two discrete time series denoting f(t) (regulator) and g(t) (target), both of length of N number126

of time points, the cross-correlation function is defined as:127
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Sf,g(·) =

Y
]

[

1
N≠·

qN≠|· |≠1
n=0 f̃(n + ·)g̃(n), · Ø 0

Sg,f (≠·), · < 0
(1)

where the f̃(n) is a normalized time series (zero mean, unit variance). The maximum cross correlation128

Sf,g(·) is calculated under condition of m Æ · Æ 0, where m is the max delay. The time delay that129

possesses the max correlation is defined as ·reg, representing the approximate time delay that occurs130

between a given regulatory-target pair. The max delay is set as 1, which in the current dataset represents131

a 15 min time interval. For comparison between maximum cross correlation distributions under multiple132

conditions, we used a Kolmogorov-Smirnov test using the ks.test function in R. Note that it is unknown133

to what extent of the temporal resolution the present method is e�ective in revealing the transient134

dynamic of the regulatory activity (the sampling interval in our dataset is 15 min).135

2.3 Simulations for the minimal activation model136

To illustrate the potential bias in capturing changing regulatory activities by using population level137

correlation, we implement simulation through a minimal activation model. The rate of production of TF138

X and gene Y (Fig. 4A) is described by the following equation:139

˙[X] = —xSx

1+Sx
+ —basal ≠ dx[X], (2)

˙[Y ] = —y( [X]
kx

)n

1+( [X]
kx

)n
+ —basal ≠ dy[Y ]. (3)

[X] and [Y ] denote the mRNA concentrations of TF X and gene Y respectively. TF X a�ects the140

transcription of gene Y . The regulated expression of genes is represented by Hill function with cooperativity141

exponent n. It is assumed that each transcript degrades at a rate proportional to its own concentration142

(dx and dy). Assume that the basal synthesis rate for X and Y is constant and equal with —basal. —y can143

be taken as the maximum strength of regulations. The stochastic dynamics of the system are implemented144

through Gillespie stochastic simulation algorithm (Gillespie 1977). The Hill function can be tuned by145

the binding a�nity Kx and the Hill coe�cient n. The Hill coe�cient quantifies the cooperativity of146

transcription factor bindings and thus the steepness of the sigmoidal stimulus-response curve of regulation.147

TFs often work cooperatively, where the binding of one TF to DNA enhances the binding of extra TFs.148

For example, a Hill coe�cient n > 1 is indicative of positive cooperativity and thus, the system exhibits149

ultrasensitivity (Blüthgen et al. 2007). The other parameter, Kx, indicates the binding a�nity of a150

TF-DNA binding. We can manipulate the active range of regulatory interactions by these two parameters.151

A set of parameters including the induction signal strength Sx are determined to enable two regulatory152

regimes (Fig. 4C and 4F). Two types of perturbation imposed on cells at steady state are simulated,153

including press and pulse perturbations (Fig 4B). The press perturbation maintains the external signal154

at a certain high level throughout the time course, whereas the pulse perturbation indicates a discrete,155

transient induction of the external signal. We assume the external perturbation modulates the gene156

expression dynamics by the signal Sx.157
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Temporal dynamics of TF X and gene Y were simulated for 100 times. The cross-correlation function is158

calculated for the bulk time series of X and Y (average of 100 simulations), whereas the population-level159

Pearson’s correlation coe�cient (PCC) is calculated at each time point by using 100 simulations during160

the simulation.161

3 RESULTS162

3.1 Temporal bias in revealing dynamic regulatory interactions163

We first evaluate the overall dynamic patterns of pairwise regulatory interactions by calculating the164

Maximum Cross Correlation (MCC, see Methods) for each pair of transcripts in a static network reported165

previously (Wilkins et al. 2016). The data comprise four rice cultivars grown under control, dehydration166

stress, or elevated temperature conditions; here we analyze the data by condition over a time duration167

of 135 minutes following the incidence of stress. Calculated MCC (Figure 1) is from all four cultivars168

were merged stress-wise. We set a threshold of 0.69 (p-value = 0.01) together with a fold-change cuto�169

(Fig. 2) according to the MCC under controlled conditions as the cuto� for the activation of regulatory170

interactions. We use the terms regulatory coherence and decoherence to mean increasing or decreasing171

co-expression, respectively. The coherence in our analyzes is reflected in higher MCCs under heat or172

dehydration stress conditions compared to control samples, as imposed by Wilkins et al.(Wilkins et al.173

2016).174

The MCC distributions (Figure 1) reveal that stressful environments increase the coexpression strength175

among measured transcripts in the network prior. The distribution of the MCC under heat (Kolmogorov-176

Smirnov test statistic D = 0.0445, p-value < 2.2 ◊ 10≠16) and drought (Kolmogorov-Smirnov test statistic177

D = 0.0929, p-value < 2.2 ◊ 10≠16) conditions are significantly di�erent from the control condition.178

We identified significant TF-gene interactions in stressful conditions which were not observed in the179

controlled condition, and vice versa. We found greater support for the former number: out of 38127 total180

interactions in the network prior, 496 and 839 pairs transition to active pairs in heat and drying stress,181

respectively (light blue points in Fig. 2A and 2B), whereas only 91 and 115 of them transition to inactive182

pairs under heat or drying, respectively. The observation of regulatory coherence is robust to various183

thresholds for activation (Fig. S1 and Fig. S2) and the max time lag (See Supporting Information A.2184

and Fig. S3). Collectively, these results suggest a strong bias towards regulatory coherence in this rice185

expression dataset.186

Our observation that co-expression increases with the onset of stress (regulatory coherence) is seemingly187

inconsistent with a recent study. Working with gene expression profiles of human monocytes exposed to a188

stress in vitro, Lea et al. calculated the di�erential population correlation among pairwise transcripts189

and found evidence supporting regulatory decoherence following perturbation (Lea et al. 2019). To190

explore the possible role of statistical methodology to explain the di�ering results of our two studies,191

we conducted a cross-sectional analysis by calculating population-level coexpression in the above rice192
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gene expression data and our static network prior. Strikingly, for heat shock stress response, population193

correlations show little or no evidence of regulatory coherence under stress (Fig. 3A, S5 and S7). At many194

time points, the distributions of correlation coe�cients under the stress condition are skewed towards195

regulatory decoherence (Fig. S5). These results are at odds with our observation of strong regulatory196

coherence in heat-stressed individuals when temporal correlations are assessed. An even more striking197

contrast is observed in the so-called heat shock regulon (Fig. 3A and Fig. 3B), formed by the Heat Shock198

Family TFs and their interactions with target genes in the static network prior, where the assessment199

using temporal correlations generates a starker contrast between control and stress condition than using200

population correlation at any time point. Such observation suggested that two approaches may capture201

di�erent aspects of stress responses.202

On the other hand, for drought stress response, population-based coexpression analysis shows regulatory203

coherence at several time points (Fig. S6). One confounding factor that may inflate estimated correlations,204

as pointed out by Lea et al. (2019), Parsana et al. (2019), is technical and latent biological covariates205

(e.g. genotype, cultivar e�ect) which may lead to spurious correlations. To explore how the inclusion of206

multiple genotypes in a population sample might a�ect correlation estimates, we use another dataset from207

Brachypodium with larger number of replicates for drought treatments across two inbred lines (Yun et al.208

2021, in prep). In this larger, genotypically segregated sample, we still observe evidence of regulatory209

coherence in transcriptional response to drought treatment (Fig. S4).210

3.2 Regulatory saturation as a cause for temporal bias211

Through a simple mathematical model, we illustrate how regulatory saturation may be a confounding212

factor for identifying environmentally responsive transcriptional interactions. We contrast the outcomes213

of population-level metrics with our measure based on cross-correlation. A typical regulation function214

between a TF and a target gene (modeled as a dose-response curve) can be characterized as a Hill215

function (Alon 2019, Chu et al. 2009), which a is sigmoidal curve (See Methods) as shown in Fig. 4C and216

4F (grey line). Two perturbation regimes are considered: A saturated regime in which additional TF217

transcripts beyond some concentration threshold fail to induce additive responses in their target genes,218

and a non-saturated regime characterized as the portion of a dose-response curve in which additional219

TF transcripts are associated with increased expression of their targets. We assume that the external220

perturbation modulates the gene expression dynamics by the signal Sx. Smaller Kx and larger Hill221

coe�cients n, indicative of higher binding a�nity and cooperativity of transcription factor binding (See222

Methods), increase the probability of regulatory saturation after environmental perturbation. Saturation223

of the regulatory interaction e�ectively masks the di�erential regulatory interaction upon perturbation,224

even if the TF X is nominally an environmentally induced activator of the gene Y . In addition, two225

possible external perturbation regimes are simulated (Fig. 4B): press perturbation and pulse perturbation,226

which di�er in the duration of the perturbation imposed on the given regulatory pair. If the upstream227

signal for a TF-gene pair has the property of adaptation, the signal induction may only last for a short228

period of time. Adaptation here is defined by the ability of circuits to respond to input change but to229
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return to the pre-stimulus output level, even when the input change persists (Ma et al. 2009, Briat et al.230

2016).231

Fig. 4E shows that, under a saturated regime, the population-level correlation between X and Y can232

appear even lower under a perturbation, despite the fact that the interaction between X and Y is activated233

by an environmental perturbation. On the other hand, under a non-saturated regime, the population-level234

correlation between the regulator and its target increases (Fig. 4H). It should be noted that under a235

non-cooperative binding mode (i.e., Hill coe�cient equals 1), the population-level correlation will decrease236

independently under the saturation regime. Therefore, how population-level correlations change relies237

upon whether a given transcriptional interaction is under a saturated regime or not; population-level238

correlations can fail to capture such transient environmentally responsive links. These results are robust239

across parameter configurations (Fig. S8 and Fig. S9). Such a bias can be termed the temporal bias240

(Yuan et al. 2021). However, the temporal correlation between TF X and target gene Y is sensitive241

enough to characterize the environmentally induced activation under both saturated and non-saturated242

regimes induced by either press or pulse perturbation by the signal, Sx (Fig. 4D and G). These results243

highlight the likely incidence of false negatives in identifying responsive gene interactions when relying on244

population-level correlations. While Bar-Joseph and colleagues (Bar-Joseph et al. 2012) have argued that245

temporal information enable the identification of transient transcription changes, our results suggest that246

even if transient transcriptional changes of single gene are captured the population correlation analysis247

can also have low power to identify responsive links because of potential regulatory saturation (as shown248

in simulation Fig. 4E and empirical data Fig. 3A and 3B), reinforcing the importance of using temporal249

information to recover environmentally responsive interactions.250

However, despite our observation that temporal correlation can robustly detect transient responses of251

regulatory activity, this approach may obscure the complicated dynamics of regulatory activity over the252

time course. Specifically, temporal correlations cannot track real-time regulatory activities (Fig. 4D and253

Fig. 4G). Conversely, population correlation over multiple time-steps may recover the dynamic activity254

of a regulatory interaction (Fig. 4E and 4H). In the following sections, we will leverage the temporal255

component of stress response by using both temporal correlations and population correlations over time.256

3.3 Temporal correlations prioritizing novel candidates in regulating stress257

responses258

We next analysed dynamic transcriptional rewiring through temporal correlation. We examined whether259

certain TF families a�ect the activation of regulatory interactions (Fig. S10) and find that, as expected,260

many TFs with high di�erential mean MCC in the heat-stress data set are annotated as Heat Shock261

transcription Factors (HSFs).262

Inspecting the relationship between di�erential gene expression and the di�erential activity for a given263

TF here estimated by MCCs of a TF with its target genes reveals that several known HSFs do not264

independently show strong expression response to the stressor but do show a clear response according265
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to the di�erential activity. We also find several interesting candidate TFs outside of the HSF family266

which have high di�erential regulatory scores but little or no apparent di�erential expression in pairwise267

contrasts between control and treatment conditions (Fig. 5A). In the heat data set, the TF OsTCP7 has268

a di�erential regulatory score of 0.54 but was not identified as di�erentially expressed by Wilkins et al.269

2016 (Fig. 5C). TCPs are broadly involved in regulating cell proliferation and growth (Martín-Trillo and270

Cubas 2010) and so OsTCP7 may be an interesting candidate for functional validation in the context of271

heat stress response.272

While the HSF TFs comprise a gene family and are generally interpreted as coordinating plant response273

to heat stress (von Koskull-Döring et al. 2007), the regulatory control of response to soil drying is more274

distributed among diverse gene families and regulatory pathways (Joshi et al. 2016, Manna et al. 2020,275

Des Marais et al. 2012). Our analysis of the drought response data identified several TFs with previously276

demonstrated roles in rice dehydration response (Fig. 5D). These include HOX24 (Bhattacharjee et al.277

2021) and ZFP182 (Huang et al. 2012), both of which were also found by Wilkins et al. to show a278

strong di�erential response. Several interesting candidates emerge among the list of TFs which have279

high di�erential regulatory score but low di�erential expression response. One such gene is PIF-Like280

12 (Nakamura et al. 2007) which, to our knowledge, has no known role in dehydration response but is281

paralagous to OsPIL1 which integrates cues from the circadian clock and dehydration signaling to control282

internode elongation in rice (Todaka et al. 2012). Additional candidate genes with high regulatory scores283

under elevated temperature or dehydration stress are shown in Table S1 and S2. We hypothesize that the284

di�erential activity calculated by temporal correlation could be used to identify novel stress-responsive285

regulators in this and other systems.286

3.4 Dynamic TF activity under dehydration conditions reveal signal propa-287

gation upon environmental perturbations288

Above we showed using stochastic simulations that population correlations may be suitable for estimating289

the activity of a regulatory link even though they may miss transient interaction changes (Fig. 4). On the290

other hand, temporal correlation is capable of capturing transient responses of regulatory activities but291

may miss some important information over the whole time course of treatment since it only gives a single292

summarized value without possible temporal fluctuation during the time course, leading to a di�erent type293

of temporal bias. In the rice dataset considered here, temporal correlations do not show a strong signal294

in detecting drought-responsive TF (Fig. 5B), while temporal correlations do detect heat-responsive TFs295

(Fig. 5A). To explore the possible reason for this discrepancy, we next analyze TF activities over time296

under drought treatment by using the population correlation. We find that the population correlation297

can indeed unveil the dynamic regulatory map in additional layers through temporal correlation.298

We first construct a network hierarchy in the TF-only subnetwork from the network prior (Fig. 6A).299

Since the network has feedback loops (See Supporting Information A.1), we used a generalized bottom-up300

approach (Yu and Gerstein 2006). In essence, we define all TFs that do not regulate any other TFs as301
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bottom TFs and define the level of the remaining TFs by their shortest distance to a bottom TF. Caveats302

and the other alternative approach constructing hierarchy are discussed in the Supporting Information303

(Fig. S12). 89 of the 357 TFs in the network neither regulate other TFs nor are themselves regulated by304

other TFs; thus, these 89 TFs are not present in the generalized hierarchical structure. The regulatory305

signal can be amplified and propagated in a top-down manner, which can be observed in the mean306

expression level and temporal fluctuation (based on the rice transcriptome data) of TFs in the generalized307

hierarchy, in which TFs in the top layers show lower expression and weaker fluctuations as compared to308

the bottom TFs (Fig. 6B). Such evidence implies that di�erential expression analysis may bias towards309

bottom TFs and other downstream target genes which likely have higher transcript abundances and310

higher fluctuations that provide the variance necessary to infer signatures of environmental response.311

We next examined dynamic TF activities after the drought treatment. A transcription factor’s activity at312

one time point is calculated as the average population coexpression level (PCC) with all of its target313

genes at that time point in the static network prior we used above. Therefore, we obtained temporal314

activities of TFs at control and drought condition. We filtered the TF pools by removing non-responsive315

TF using paired t test (p < 0.05) comparing temporal activities of a TF across two conditions (although316

this filtering step has only a moderate e�ect on the results; See Fig S11). Note that many responsive TFs317

do not individually exhibit di�erential expression between control and drought conditions, suggesting318

that many transcriptional regulations can occur without significantly changing the abundance of the319

regulators themselves. And, as expected, genes that cannot be detected by di�erential expression but320

are identified as responsive TFs by their activities tend to occur in the upper layers of the TF hierarchy.321

Specifically, 7 out of 9 responsive TFs at top layers do not exhibit di�erential expression at any time322

point, while there is only 1 out of 8 responsive TFs showing di�erential expression. This observation323

suggests that there is signal amplification through the transcriptional cascade: higher layer TFs and324

master regulators are more likely to control downstream genes without a detectable change in their own325

transcript abundances in the data available. Therefore, when analyzing a transcriptome of transcription326

factors, contrasting regulatory activities (e.g., using coexpression as we did) under stress and control327

condition may be necessary for prioritizing responsive genes because the signal of di�erential expression328

appears to decay along the regulatory hierarchy from top down.329

Overall, we observed two regulatory waves for temporal activities (Fig. 6C), which were not prominent330

in the temporal expression profile considered above (Fig. 6B). We speculate that these two waves may331

represent distinct phases rice response to the relatively severe drying imposed, perhaps before and after332

turgor loss occurs (Buckley 2005). We note that Wilkins et al. observed two distinct phases of drying333

response with respect to carbon assimilation, with a steep decline in assimilation during the initial phase334

followed by a slower decline beginning around the 60th minute following onset of dehydration stress335

(Wilkins et al. 2016). We next clustered short time series of single TF activities with STEM (Ernst and336

Bar-Joseph 2006), which identifies interactions using unsupervised clustering and, in our data, infers337

the occurence of two regulatory waves along with putative drivers of each wave. We found four distinct338

groups of TFs (Fig. 6C insets, Fig. 6D and Fig. 6E). Fig. 6D presents a group of TFs with continuously339
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increasing activity over the time course. Fig. 6E, top left inset of Fig. 6C and bottom right inset of340

Fig. 6C show groups driving both waves, the first wave and the second wave alone respectively. The341

group of TFs putatively driving the second wave contains two TFs: RR21, from the bottom layer, encodes342

a putative response regulator involved in cytokinin signaling (Tsai et al. 2012), while GL1A, from the343

top layer, encodes an ortholog of the Arabidopsis R2R3 MYB transcription factor GL1 (Zheng et al.344

2021). A cascade of TFs representing the shortest path between these two TFs were identified in the345

TF-only network prior (Fig. 6C), showing how regulatory signals are propogated through the network. In346

summary, instead of temporal correlation, examining population level coexpression a�ord us opportunity347

to track the evolving regulatory activity following perturbation.348

4 DISCUSSION349

Many regulatory interactions in TRNs, and thus co-expression relationships inferred from genome-350

scale gene expression measures, are context-dependent (Dunlop et al. 2008, Luscombe et al. 2004).351

Environmental cues can a�ect the behavior of regulators by, e.g., changing their abundance or their352

binding a�nity to target DNA sequences, and thereby change their regulatory interactions with other353

genes and possibly e�ect whole-organismal response. For instance, an interaction can be inactive simply354

because the concentration of the regulator is outside its e�ective range for the target (Dunlop et al.355

2008). Notably, even if a regulatory interaction is activated, its regulatory activity can be low as the356

dose-response curve may be under a saturated regime in which additional units of the regulator do not357

result in changed activity of its target(s). Alternatively, interactions may be inactive as a result of the358

chromatin state of target genes, the post-translational modification of the regulator itself, the presence of359

inhibitory factors, or the absence of co-factors (Toledo and Wahl 2006, Piggot and Hilbert 2004). While360

these fundamental features of gene regulation are widely appreciated, it is less often considered how361

such transient processes may confound ecological studies, or how they might be exploited to enhance the362

interpretative value of the types of transcriptomic datasets now routinely generated by ecologists and363

evolutionary biologists, which is a central motivation for our study.364

Studies in human disease and plant and animal stress response frequently use genome-wide gene expression365

data to study changes in co-expression changes and network rewiring in response to environmental366

perturbation (Fukushima 2013, Southworth et al. 2009, de la Fuente 2010, Amar et al. 2013, Choi et al.367

2005, Kostka and Spang 2004, Deng et al. 2015, Yan et al. 2019, Cho et al. 2009, Fukushima et al.368

2012, de la Fuente 2010, Zeisel et al. 2015, Bhar et al. 2013, Fiannaca et al. 2015). Ultimately, the369

objective of these studies is to identify the genetic and molecular basis of environmental responses as370

a means to parameterize models of molecular evolution (Wray et al. 2003), to identify the molecular371

genetic basis of evolutionary adaptation (Cheviron et al. 2012, Garfield et al. 2013, Carvallo et al. 2011),372

to understand abnormal regulation in disease states, and to design medical interventions (Southworth373

et al. 2009, de la Fuente 2010, Amar et al. 2013, Kostka and Spang 2004) and breeding strategies374

(Fukushima et al. 2012). However, many past studies have relied on population-level statistics to identify375
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di�erential gene-gene interactions (Cortijo et al. 2020, Fukushima et al. 2012, Deng et al. 2015, Lea et al.376

2019). While statistically straightforward, such widely used population-based methods likely miss many377

dynamic interactions which drive the organismal response, thereby generating an incomplete picture of378

these complex systems. First, without a static transcriptional network prior, generating a pairwise gene379

co-expression network and detecting responsive links can lead to false positives as many of links may be380

indirect and not involve any causal regulatory relationship (Feizi et al. 2013, Barzel and Barabási 2013).381

Second, population-level statistics are often confounded by individual covariates such as genotype, age,382

and sex (Parsana et al. 2019, Lea et al. 2019). Third, even within an isogenic homogeneous population,383

cross sectional population correlations may be confounded by switch-like transitions and ultrasensitivity384

in gene regulation, thereby failing to characterize the dynamic network rewiring (Fig. 3 and Fig. 4). By385

contrast, temporal correlation can fail to identify real-time regulatory activity (Fig. 4).386

In the present study, we implemented a stochastic simulation of a simple regulatory model under two387

perturbation regimes. We show that, under a cooperative binding mode (Hill coe�ecient n > 1, indicating388

that early-acting TFs enhance bindings of TFs that come later), the population-level co-expression changes389

of an environmentally induced link depend upon whether the gene regulation is under a saturated regime390

or not. That is to say, di�erential population coexpression is neither powerful nor robust in detecting391

responsive links. Our results also indicate that while population-level correlations may be confounded392

by saturated regulation, temporal correlations of gene expression time series are robust under both393

saturated and unsaturated regimes. Hence, while temporal co-expression tends to be coherent upon394

environmental perturbation, whether the co-expression measured using population statistics becomes395

coherent or decoherent may depend upon the specific parameters of a given gene pair and the environmental396

condition. That such potential temporal bias can occur when using cross-sectional data (i.e., population-397

level correlation) has been established in the medical literature (Yuan et al. 2021). Notably, by measuring398

the activity of 6500 designed promoters using a fluorescence reporter, van Dijk and colleagues (van399

Dijk et al. 2017) found that the activities of the target promoters can become saturated with increasing400

abundance of the active form of TFs, and that the pattern becomes more pronounced with more binding401

sites or higher binding a�nity.402

Plant responses to environmental stressors are physiologically complex (Bohnert et al. 1995) and often403

context-dependent and species-specific (Bouzid et al. 2019). Importantly, we found that temporal bias404

is prominent under heat stress, whereas under drought stress, such bias is not. Furthermore, when405

removing other covariates (genotypic variation), drought treatments lead to clear patterns of regulatory406

coherence and increasing phenotypic integration when assessing population correlations, which suggests407

that regulatory saturation is relatively less common during drought response. We reason that such a408

distinct pattern reflects the varying etiology of response to di�erent stressors and is largely attributable to409

the internal environment an organism experienced during stress onset: drying is a fairly gradual process410

internally, while the heat treatment is a shock – particularly as often implemented in laboratory settings –411

and a more rapid onset process for an organism. Therefore, we suspect that the drought response is under412

an unsaturated regime in the rice data studied here and is relatively mild compared to the heat response.413
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On the contrary, the heat shock treatment is intense and thereby possibly under a saturated regulatory414

regime in the rice data. Environmental responses that show regulatory saturation may not have been415

optimized by natural selection: rapid heat shock of the type often imposed in the laboratory seting is416

likely rare in the wild. Further analysis is needed to examine to what extent this type of saturated417

regulatory regime is present in real data.418

Our observation that co-expression increases with the onset of two stresses in rice is seemingly inconsistent419

with a recent study which used gene expression data collected from human monocytes to infer population420

correlation among transcripts (Lea et al. 2019). Several other population-level studies have likewise421

reported that environmental perturbation may lead to declining co-expression (Southworth et al. 2009,422

Anglani et al. 2014, Tanner et al. 2022). From a quantitative genetic perspective, a commonly observed423

result is that phenotypic integration in a population (i.e., the number and strength of significant correlations424

among traits) increases with environmental stress (Waitt and Levin 1993, Schlichting 1989, Gianoli 2004,425

García-Verdugo et al. 2009). However, stress-induced decanalization theory (Gibson 2009) suggests that426

new mutations or stressful environments may disrupt fine-tuned connections in a transcriptional network427

(Lea et al. 2019). Notably, decanalization has been hypothesized to explain complex traits and human428

disease (Hu et al. 2016). The degree of stress imposed on the system may dictate whether coherence (or429

integration) as opposed to decoherence is observed. A possible reconciliation between our results and430

the decoherence reported by Lea et al, may be that the monocytes studied by Lea et al. experienced a431

relatively more stressful environment than the rice plants studied by Wilkins et al. Indeed, we recently432

showed that trait co-variances vary considerably along a single environmental index (Monroe et al. 2021),433

suggesting that genome-scale regulatory interactions likely transition from coherent to decoherent along434

such axes. Such gradients of response should be carefully considered during the design of experiments435

(Poorter et al. 2016).436
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Figure 1: Temporal correlations under multiple environmental conditions show regulatory

coherence Temporal correlation is caculated as the Max Cross Correlation (with lag Æ 1, see Methods)
for each pair of transcripts, using a previously constructed static network prior. The data comprise
four rice cultivars grown under control, dehydration stress, or elevated temperature conditions, and here
we analyze the data by condition over a time duration of 135 minutes following the incidence of stress.
Calculated Maximum Cross Correlations (MCC) from all four cultivars were merged stress-wise.
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Figure 2: Environmental perturbations lead to contrasting patterns using temporal and

population correlation. A. Comparison of the temporal correlation (Max Cross Correlation, MCC) for
each regulator-target pair under control condition against heat condition. B. Comparison of the temporal
correlation (MCC) for each regulator-target pair under control condition against soil drying condition.
C. and D. show the Pearson Correlation Coe�cient (PCC) of each regulator-target pair at 135 min
after heat (C) and drought (D) treatment. The regulator-target pairs that are not significant in both
conditions are in grey, for which the cuto� is 0.69 (p-value = 0.01). Red and blue labels highlight the
pairs that show regulatory decoherence and regulatory coherence, respectively. Solid lines indicate that
the ratio between regulatory scores under control and perturbed conditions is larger than 5.
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461

Figure 3: Heat shock regulon shows strong contrasting patterns upon heat shock treatment.

A. Pearson Correlation Coe�cient (PCC) under control and heat condition within heat shock regulon
over the time course. Each boxplot represents the distribution of PCC under a given time and treatment.
B. Max Cross Correlation (MCC) within the heat shock regulon. Genes in the heat shock regulon are
identified by extracting links that include a regulator from the Heat Shock Family (HSF). As a family,
HSFs have been demonstrated previously to show an important role in regulating genome-wide responses
to elevated temperature in diverse species (Wang et al. 2004, Ohama et al. 2017). C. A schematic diagram
depicts possible explanation of the temporal bias through regulatory saturation. The blue link is activated
upon the perturbation (ground truth) by increasing the concentration of the regulator (an activator).
However, if the dose-response curve is a sigmoid shape function, chances are the population correlation
may not be able to detect such activation.
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474

Figure 4: Illustrated examples through stochastic simulation indicate the robustness of

using temporal correlation to detect regulatory coherence. The population level correlation
may lead to temporal bias in detecting regulatory coherence depending on the regulatory regime. A. A
schematic illustration of the minimal activation model explored here and B. input signals corresponding
to three perturbation scenarios. C - E. The cross correlation function and population-level correlation
between activator X and target Y under a saturated regime. The cross correlation function robustly
reveals a peak in response to perturbations while the perturbation may lead to reduction of correlation
when using population correlation over the time course. F - H. The cross correlation function and
population-level correlation between activator X and target Y under a non-saturated regime. Under a
non-saturated regime, both the population correlation and the temporal correlation can detect elevated
level of coexpression. Colors represent three di�erent types of external environmental conditions which
lead to internal signaling (Steady state, press perturbation, and pulse perturbation). R(·) is the cross
correlation function with · indicating the time delay. Note that the perturbation is imposed at t = 0 in
E and H.
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Figure 5: Temporal correlation reveals putative key regulators of stress response. A. The
average di�erential Max Correlation Coe�cient (MCC) for each regulator in the network prior under heat
condition. Violin plots show members of the HSF family TF and non-HSF family TF, respectively. B.

The average di�erential MCC for each regulator in the network prior under drought condition. Known
drought-related TFs were obtained from https://funricegenes.github.io/, where genes linked with
keywords “drought”, “ABA”, and “drought tolerance” were extracted. The average di�erential MCC
is calculated as the averaged MCC changed across conditions. The comparison of heat C. and drought
D. di�erential expression (the number of time points showing di�erential expression from the original
Wilkins et al. analysis) versus di�erential MCC. Salmon points denote the Heat Shock Family (HSF)
regulators. The number of time points with di�erential expression is counted for each time point and
each genotypes (Maximum number is 4 ú 16 = 64). Negative numbers on the x-axis indicate number of
time points in which the gene was observed to be downregulated as compared to control conditions.
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504

Figure 6: Population correlation over time characterizing the dynamics of Transcription

Factor activities under dehydration in a regulatory network hierarchy. A. The hierarchical
structure of the network prior constructed by a generalized bottom-up approach. Each curve represents a
regulatory interaction in the network prior. The color indicates the level of a Transcription Factor (TF)
in the hierarchy from top (left) to bottom (right) B. Comparison of mean expression value of responsive
TFs in the network hierarchy. The label of each line shows the number of TFs within each level. C.

Dynamic TF activities calculated by average population Pearson Correlation Coe�cients of a TF with all
its target genes. Two waves of TF activity can be observed; we thus clustered all the TF’s activity within
the hierarchy over time with the assistant of STEM (Ernst and Bar-Joseph 2006). Four distinct patterns
are shown: 1) Continuously increasing D; 2). Driving both two waves (E); 3) and 4) are two groups of
TFs drive the first and second regulatory wave separately Insets. of C.. The shortest path in the C

shows the regulatory cascade driving the second regulatory wave.
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