1	The causal role of transcranial alternating current
2	stimulation at alpha frequency in boosting visual perceptual
3	learning
4	Abbreviated title: The causal role of alpha tACS in boosting visual perceptual
5	learning
6	
7	Qing He ^{1, 2, 3, 4} , Xin-Yue Yang ^{1, 2, 3, 4} , Baoqi Gong ^{1, 2, 3, 4} , Keyan Bi ^{1, 2, 3, 4} , Fang Fang ^{1, 2, 3, 4}
8	
9 10	¹ School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health;
10	² Key Laboratory of Machine Perception, Ministry of Education;
12	³ IDG/McGovern Institute for Brain Research;
13	⁴ Peking-Tsinghua Center for Life Sciences;
14	Peking University, 100871 Beijing, China
15	
16	* Corresponding author: Fang Fang (<u>ffang@pku.edu.cn)</u>
17	
18	Number of figures: 4
19	Number of tables: 1
20	Number of words for Abstract: 243
21	Number of words for Introduction: 594
22	Number of words for Discussion: 1277
23	
24	Declaration of interests:
25	No.
26	
27	Acknowledgements:
28	We thank Rui-Ling Cai for her help in data collection, and Dr. Qian Wang for her
29	helpful comments on the draft. This work was supported by the National Natural
30	Science Foundation of China (31930053), Beijing Municipal Science and Technology
31	Commission (Z181100001518002) and Beijing Academy of Artificial Intelligence

32 (BAAI).

33 Abstract

34	Extensive training improves our ability to perceive visual contents around us, a
35	phenomenon known as visual perceptual learning (VPL). Numerous studies have been
36	conducted to understand the mechanisms of VPL, while the neural oscillatory
37	mechanisms underpinning VPL has yet to be elucidated. To this end, we adopted
38	transcranial alternating current stimulation (tACS), a neuromodulatory technique that
39	can alter ongoing brain rhythms in a frequency-specific manner by applying external
40	weak electric fields, to stimulate targeted cortical areas in human subjects while they
41	performed an orientation discrimination learning task. Five groups of subjects
42	undertook five daily training sessions to execute the task. Four groups received
43	occipital tACS stimulation at 10 Hz (alpha band), 20 Hz (beta band), 40 Hz (gamma
44	band), or sham 10 Hz (sham), and one group was stimulated at the sensorimotor
45	regions by 10 Hz tACS. Compared with the sham stimulation, occipital tACS at 10
46	Hz, but not at 20 Hz or 40 Hz, increased both the learning rate and performance
47	improvement. However, when 10 Hz tACS was delivered to the sensorimotor areas,
48	the modulatory effects of tACS were absent, suggesting that tACS modulated the
49	orientation discrimination learning in a frequency- and location-specific manner.
50	Moreover, the tACS-induced enhancement lasted at least two months after the
51	termination of training. Our findings provide strong evidence for the causal role of
52	alpha oscillations in VPL and shed new light on the design of effective
53	neuromodulation protocols that might facilitate rehabilitation for patients with
54	neuro-ophthalmological disorders.
55	

56 Significance Statement

57	Performance of visual tasks can be enhanced substantially by training, which is
58	known as visual perceptual learning (VPL). However, little is known about the neural
59	oscillatory mechanisms underlying VPL. To probe the causal link between a given
60	oscillatory frequency band and VPL, transcranial alternating current stimulation
61	(tACS) was applied while subjects performed an orientation discrimination learning
62	task. Our results revealed that tACS modulates VPL in a frequency- and
63	location-specific manner. Specifically, only training coupled with 10 Hz tACS over
64	the occipital cortex speeded up the learning process and amplified the performance
65	gain. Our findings demonstrate the causal role of alpha oscillations in VPL, and
66	provide insight into developing more effective and efficient remediation protocols for
67	clinical applications, e.g., amblyopia.
68	
69	Keywords: perceptual learning, non-invasive brain stimulation, tACS, alpha
70	oscillations, visual plasticity, orientation

72 Introduction

73	Repetitive visual experience or practice results in a dramatic and long-lasting
74	improvement in perceiving visual contents, which is referred to as visual perceptual
75	learning (VPL) (Maniglia & Seitz, 2018; Watanabe & Sasaki, 2015). VPL is usually
76	viewed as a manifestation of experience-dependent neural plasticity in human brain
77	(Lu et al., 2021). Numerous studies have been conducted to explore the neural
78	substrates of VPL. It has been suggested that VPL occurs at multiple loci in the brain,
79	from subcortical nuclei to high-level cortical areas involved in decision-making or
80	attention (Bi et al., 2014; Gold et al., 2008; Mayhew et al., 2012; Mukai et al., 2007;
81	Sanayei et al., 2018; Yu et al., 2016), and is manifested in various forms, such as
82	enhanced neural response (Furmanski et al., 2004; Hua et al., 2010), refined neural
83	representation (Chen et al., 2016; Jehee et al., 2012), sharpened tuning curve
84	(Schoups et al., 2001; Yang & Maunsell, 2004), channel reweighting from sensory
85	inputs to decision units (Chen et al., 2015; Dosher & Lu, 1998; Law & Gold, 2008;
86	Yin Yan <i>et al.</i> , 2014).
87	Neural oscillations, characterized by rhythmic changes in neural activity in a
88	wide range of frequencies, play a critical role in cognitive functioning (Buzsaki &
89	Draguhn, 2004; Thut et al., 2012). Aberrant neural oscillations might be associated
90	with some neurological and psychiatric disorders (Schnitzler & Gross, 2005).
91	However, the neural oscillatory mechanisms of VPL remain poorly understood and
92	controversial. To date, only sparse studies have explored the neural oscillatory
93	mechanisms of VPL, and results of these studies are not consistent. The focus of these
94	studies is whether alpha- and/or gamma-band oscillations are associated with VPL.
95	Human electroencephalogram (EEG) studies found that there was increased alpha

97	(Bays et al., 2015), perceptual grouping (Nikolaev et al., 2016), and orientation
98	categorization (Muller-Gass et al., 2017). Pre-training resting-state alpha power could
99	predict one's learning performance (Muller-Gass et al., 2017). On the other hand,
100	some studies showed that training induced an increase in gamma power (Gruber et al.,
101	2001; Gruber et al., 2002; La Rocca et al., 2020), or changes in both alpha and
102	gamma power (Hamame et al., 2011). In these studies, oscillatory neural activity was
103	recorded before and after training, but was not manipulated during training to
104	modulate VPL, which could not reveal the causal link between neural oscillations and
105	VPL.
106	Transcranial alternating current stimulation (tACS) is a neuromodulation
107	technique that can non-invasively alter brain excitability in a frequency-specific
108	manner by delivering weak alternating currents to the scalp (Kanai et al., 2008;
109	Kasten et al., 2019; Krause et al., 2019; Liu et al., 2018; Voroslakos et al., 2018). It is
110	a wide-used tool for establishing a causal link between neural oscillations and
111	cognition (Cabral-Calderin & Wilke, 2019; Johnson et al., 2020), across a broad range
112	of frequencies and tasks (Antal et al., 2008; Helfrich et al., 2014b; Kar & Krekelberg,
113	2014; Pogosyan et al., 2009; Reinhart & Nguyen, 2019; Y. Zhang et al., 2019).
114	However, tACS has not been applied to modulate VPL yet.
115	To this end, we stimulated human subjects' visual cortex by using tACS at a
116	given frequency (10 Hz, 20 Hz, or 40 Hz) while they were practicing an orientation
117	discrimination task subserved by early visual cortex (Bang et al., 2018; Jia et al.,
118	2020). We hypothesized that if neural oscillations of a given frequency band play an
119	important role in the orientation discrimination learning, then applying tACS at that
120	frequency band to the visual cortex will modulate the learning process and
121	performance improvement.

122 Materials and Methods

123 Subjects.

124	A total of 87 healthy subjects (58 females, 22.03 \pm 3.96 years) participated in
125	the present study. Subjects were assigned to one of five groups (Table 1): Group 1
126	received occipital tACS at 10 Hz (the 10 Hz occipital stimulation group), Group 2
127	received occipital tACS at 20 Hz (the 20 Hz occipital stimulation group), Group 3
128	received occipital tACS at 40 Hz (the 40 Hz occipital stimulation group), Group 4
129	received bilateral sensorimotor tACS at 10 Hz (the 10 Hz sensorimotor stimulation
130	group), and Group 5 received occipital sham stimulation (the sham occipital
131	stimulation group). The group sizes were determined by a power analysis ($\alpha = 0.05$,
132	two-tailed, power = 80%) based on our pilot study. A screening questionnaire was
133	administrated before starting the study for each subject. Subjects were included if they
134	met the following criteria: 1) were right-handed; 2) were aged between 18–40 years; 3)
135	had normal or corrected-to-normal vision. Subjects were excluded if they met the
136	following criteria: 1) had a history of neural surgery or epileptic seizures, any
137	psychiatric or neurological disorders; 2) had sleep disorders or a total sleep time less
138	than eight hours per night over the last two weeks; 3) were during the menstrual cycle
139	or pregnancy (Fertonani et al., 2011; He et al., 2019). The present study was approved
140	by the Ethics Committee of School of Psychological and Cognitive Sciences, Peking
141	University. Written consent was obtained from each subject prior to the beginning of
142	this study.
143	Apparatus and Stimulation protocol.

Visual stimuli were generated and controlled using MATLAB (version 7.0) and
Psychotoolbox-3 extensions (Brainard, 1997; Pelli, 1997) and were presented on a
19-inch Sony Trinitron color monitor (spatial resolution = 1600 × 1200 pixels, frame

147	rate = 85 Hz) with a grey background (mean luminance = 47.59 cd/m^2). The
148	experiments were run in a dimly lit room. The monitor was the only source of light in
149	the room. A chin-and-head rest was used to stabilize the head at a viewing distance of
150	65 cm. Subject's eye movements were monitored by an Eyelink 1000 plus
151	eye-tracking system (SR Research Ltd., Ontario, Canada) throughout the whole
152	experiment.
153	Electrical stimulation was delivered using the DC-STIMULATOR MC
154	(neuroConn GmbH, Ilmenau, Germany) through a pair of rubber electrodes of 5×5
155	cm ² . The electrodes inserted in two soaked sponges (0.9% saline solution) were
156	attached to the subjects' scalp using elastic bandages. A sinusoidal current with a
157	peak-to-peak intensity of 1.5 mA was administrated while subjects performed the
158	training task. Both the DC offset and the phase difference between the two stimulation
159	electrodes were set at zero. The impedance was constantly lower than 8 K Ω during
160	all stimulation sessions.
161	Visual stimulus and task.
162	Oriented Gabor patches (diameter = 1.25° ; spatial frequency = $3.0 \text{ cycle}^{\circ}$;
163	Michelson contrast = 0.5; standard deviation of Gaussian envelope = 0.42° ; random
164	spatial phase) were located 5° from fixation in the lower left quadrant of the visual
165	field. Gabor patches were spatially masked by noise using a pixel replacement method
166	at a given signal-to-noise (S/N) ratio (Shibata et al., 2017). In our study, the S/N ratio
167	was 75%, which meant that 25% of the pixels in the Gabor patch were replaced with
168	random noise. In each trial, a small fixation point was displayed for 500 ms firstly,
169	and then two Gabor patches with orientations of 26° and $26^{\circ} + \theta$ were presented
170	successively for 100 ms each and were separated by a 500 ms blank interval (Figure
171	1(A)). These two Gabor patches were presented in random order. Subjects were

172	instructed to make a two-alternative forced-choice (2AFC) judgment of the
173	orientation of the second Gabor patch relative to the first one (clockwise or
174	counter-clockwise) by pressing a key. The θ varied trial by trial and was adaptively
175	controlled by a QUEST staircase to estimate subjects' discrimination threshold at 75%
176	correct (Watson & Pelli, 1983). Subjects were asked to have a rest with their eyes
177	closed after each staircase. Feedback was not provided in all test and training
178	sessions.
179	Design.
180	A single-blind, sham-controlled, between-subject design was adopted to explore
181	the role of tACS in modulating the orientation discrimination learning. Subjects
182	underwent five daily training sessions of the orientation discrimination task, which
183	was preceded by a pre-training test (Pre) and was followed by two post-training tests .
184	One of the post-training tests was completed immediately after training, i.e., Post1,
185	and the other one (Post2) was conducted at least two months after Post1 (Figure 1(B)).
186	Each participant completed six QUEST staircases of 50 trials at Pre, Post1, and Post2,
187	and nine QUEST staircases during each training session.
188	First, to investigate which stimulation frequency is able to modulate the
189	orientation discrimination learning, we recruited three groups of subjects to take part
190	in this study, i.e., the 10 Hz, 20 Hz, and 40 Hz occipital stimulation groups. The
191	choice of stimulation frequency of tACS was based on the controversy of underlying
192	neural oscillatory mechanisms of VPL (Bays et al., 2015; Gruber et al., 2002;
193	Hamame et al., 2011) and the study that found visual plasticity could be induced by
194	20 Hz tACS (Kanai et al., 2010). Also, 10 Hz, 20 Hz, and 40 Hz are representative
195	frequencies of alpha band (8-12 Hz), beta band (13-30 Hz), and gamma band (above
196	30 Hz) (Helfrich et al., 2014a; Kanai et al., 2010; Nakazono et al., 2020; Struber et al.,

197	2014; Wach et al., 2013; Zaehle et al., 2010). Two electrodes were placed over
198	subjects' visual cortex and the vertex (i.e., O2 and Cz in the international 10-20 EEG
199	system), respectively (de Graaf et al., 2020; Fertonani et al., 2011; Hubel & Wiesel,
200	1968; Jehee et al., 2012; Jia et al., 2020) (Figure 1(C)). The stimulated hemisphere
201	was contralateral to the visual field where the Gabor patches were presented. Subjects
202	received electrical stimulation at a given frequency for about 27 minutes with a
203	ramp-up of 30 s during each training session.
204	Second , we asked whether the observed modulatory effects by the 10 Hz tACS $% \mathcal{A}$
205	(see Results) were due to potential indirect effects, such as placebo effect. To this end,
206	a fourth group of subjects were recruited to participate in our study, i.e., the sham
207	occipital stimulation group. The electrical stimulation parameters were the same as
208	those in the 10 Hz occipital stimulation group, except that subjects in the sham
209	occipital stimulation group received the 10 Hz tACS for 15 seconds with a ramp
210	up/down of 30 s at the beginning of each training session.
211	Finally, to exam whether the 10 Hz tACS modulated the orientation
212	discrimination learning in a stimulation location-specific manner, a fifth group of
213	subjects were recruited, i.e., the 10 Hz sensorimotor stimulation group. The
214	stimulation setting was similar to that in the 10 Hz occipital stimulation group, except
215	that two electrodes were positioned over the bilateral sensorimotor cortical regions
216	(Cappelletti et al., 2013; Cappelletti et al., 2015), i.e., C1 and C2.
217	Statistical analysis methods
218	For each test or training session, the estimated threshold was defined as the
219	geometric mean of thresholds from all QUEST staircases. Percent improvement,
220	which describes changes in performance after training, was calculated as (pre-training
221	threshold – post-training threshold)/pre-training threshold \times 100%. To illustrate

222	the threshold dynamics during the training course, a power function was used to fit
223	the learning curves of orientation discrimination across all test and training sessions
224	(Jeter et al., 2009; P. Zhang et al., 2018):
225	$Th(t) = \lambda \times (t)^{-\rho} + \alpha$
226	Where Th is the predicted orientation discrimination threshold, t is the number of
227	training sessions, λ is the initial threshold, ρ is the learning rate, and α denotes the
228	minimum threshold achieved after training. A nonlinear least-square method,
229	implemented in MATLAB (MathWorks, Natick, MA), was used to minimize the sum
230	of squared differences between model predictions and observed values.
231	Orientation discrimination thresholds were analyzed using a mixed-design
232	analysis of variance (ANOVA) with a between-subjects factor Group (occipital 10 Hz,
233	20 Hz, 40 Hz, sham, and sensorimotor 10 Hz) and a within-subjects factor Test (Pre,
234	Post1 and Post2). Learning rates and percent improvements were analyzed using
235	ANOVA with a between-subjects factor of Group. For multiple comparisons,
236	Benjamini-Hochberg method (BH) was used to control false discovery rate
237	(FDR)(Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001). For ANOVAs,
238	η_p^2 was computed as a measure of effect size. For t-tests, Cohen's d was computed as
239	a measure of effect size. Statistical analyses were conducted using R (R Core Team,
240	2020).
241	Results
242	Occipital tACS modulated orientation discrimination learning in a

242 Occipital tACS modulated orientation discrimination learning in a

243 frequency-specific manner

First, subjects stimulated by occipital tACS at 10 Hz, 20 Hz, and 40 Hz started

245 with comparable performance at Pre (*F*(2, 49) = 0.33, *p* = 0.72, $\eta_p^2 = 0.01$). As

246	shown in Figure 2 (A), subjects' orientation discrimination thresholds declined with
247	training for all the training groups. For each subject, the orientation discrimination
248	thresholds across all test and training sessions were fitted with a power function. A
249	one-way ANOVA with Group (10 Hz, 20 Hz, and 40 Hz) as a between-subjects factor
250	revealed that there were significant group differences in learning rate, i.e., the
251	estimated ρ -value of the power function ($F(2, 49) = 7.38, p = 0.002, \eta_p^2 = 0.23$).
252	Post-hoc analysis showed that the learning rate of the 10 Hz occipital stimulation
253	group was significantly greater than those of the other two groups (10 Hz vs. 20 Hz:
254	$t(32) = 3.37$, $p_{adj} = 0.004$, Cohen's d =0.98; 10 Hz vs. 40 Hz: $t(33) = 3.30$, $p_{adj} = 0.004$,
255	Cohen's $d = 1.09$), and there was no significant difference in learning rate between the
256	20 Hz occipital stimulation and 40 Hz occipital stimulation groups ($t(33) = -0.124$,
257	$p_{adj} = 0.90$) (Figure 2(B)). These results demonstrated that, relative to beta and gamma
258	frequencies, tACS at alpha frequency accelerated the learning process.
259	Then subjects' orientation discrimination thresholds were submitted to a
260	mixed-design ANOVA with Test (Pre and Post1) as a within-subjects factor and Group
261	(10 Hz, 20Hz, and 40 Hz) as a between-subjects factor to examine differences in
262	performance. We found a significant main effect of <i>Test</i> ($F(1, 49) = 83.48, p = 3.69 \times$
263	10^{-12} , $\eta_p^2 = 0.63$), and a significant interaction between <i>Test</i> and <i>Group</i> (<i>F</i> (2, 49) =
264	5.32, $p = 0.008$, $\eta_p^2 = 0.18$), but no significant main effect of <i>Group</i> (<i>F</i> (2, 49) = 0.46,
265	$p = 0.63$, $\eta_p^2 = 0.02$). Further analyses showed that the thresholds at Post1 were
266	lower than that those at Pre for all groups (all $ts < -3.78$, all $p_{adj}s < 0.002$, and all
267	Cohen's ds > 0.92 , by paired <i>t</i> -test), demonstrating significant learning effects
268	occurred in an unsupervised manner here because no feedback was provided during
269	learning (Loewenstein et al., 2021; Tsodyks & Gilbert, 2004; Weiss et al., 1993). At
270	Post1, the threshold in the 10 Hz occipital stimulation group was significantly lower

than those in the 20 Hz occipital stimulation group (t(32) = -2.58, $p_{adj} = 0.039$, Cohen's d = 0.87) and the 40 Hz occipital stimulation group (t(33) = -2.57, $p_{adj} = 0.039$, Cohen's d = 1.13). The threshold difference between the 20 Hz and 40 Hz occipital stimulation groups was not significant (t(33) = 0.05, p = 0.96) (Figure 2 (C)).

276 The above results suggested that there was greater performance improvement in 277 the 10 Hz occipital stimulation group. To confirm this, we performed a one-way 278 ANOVA on percent improvement. The statistical results showed that the differences 279 in percent improvement among the three stimulation groups s were significant (F(2,280 49) = 5.82, p = 0.005, $\eta_p^2 = 0.19$). Post-hoc analysis revealed that the percent 281 improvement in the 10 Hz occipital stimulation group was higher than those in the 20 282 Hz occipital stimulation group (t(32) = 2.96, $p_{adj} = 0.014$, Cohen's d = 1.00) and the 283 40 Hz occipital stimulation group (($t(33) = 2.97, p_{adj} = 0.014$, Cohen's d = 1.13), and 284 the difference between the 20 Hz and the 40 Hz occipital stimulation groups was not 285 significant (t(33) = 0.03, p = 0.98) (Figure 2 (D)). These results demonstrated that, 286 relative to beta and gamma frequencies, tACS at alpha frequency enabled subjects to 287 acquire a greater improvement in the learning task. 288 To examine whether the observed modulatory effects from the 10 Hz tACS were

289 due to possible indirect effects (e.g., placebo effect), one more group of subjects

290 received the sham occipital stimulation. Note that the learning effect in the sham

291 occipital stimulation group is presumably equivalent to the learning effect without

292 electrical stimulation. Compared with the sham occipital stimulation group, only the

293 10 Hz occipital stimulation group showed a faster learning rate (t(32) = 3.79, $p_{adj} =$

294 0.002, Cohen's d = 1.13), a lower threshold at Post1 (t(32) = -2.58, $p_{adj} = 0.02$,

295 Cohen's d = 1.06), and a greater improvement (t(32) = 3.48, $p_{adj} = 0.005$, Cohen's d =

1.24), and these beneficial effects were absent in the 20 Hz and 40 Hz occipital

297 stimulation groups (all ps > 0.90).

298	Previous studies have shown that the after-effects of tACS on behavioral
299	performance and neural activity are temporally short (Clancy et al., 2018; Kasten et
300	al., 2016; Neuling et al., 2013; Struber et al., 2015), while one remarkable
301	characteristics of VPL is the long-term persistence of learning effects after the
302	termination of training (Bi et al., 2014; Frank et al., 2020; P. Zhang et al., 2018). To
303	examine whether the facilitatory effects on the orientation discrimination learning by
304	the 10 Hz tACS is long-lasting, subjects in the 10 Hz occipital stimulation group and
305	the sham occipital stimulation group were retested at least two months after Post1 (i.e.,
306	Post2). For subjects in the 10 Hz occipital stimulation group, their thresholds at Post2
307	were not significantly different from those at Post1 ($t(16) = -0.37$, $p = 0.72$). Similarly,
308	there was no significant difference in threshold between Post1 and Post2 in the sham
309	occipital stimulation group ($t(16) = -5.2 \times 10^{-3}$, $p = 0.99$) (Figure 3 (A)). Notably,
310	some subjects (N = 9 and N = 12 in the 10 Hz occipital stimulation group and the
311	sham occipital stimulation group, respectively) were retested at least 14 months after
312	training, i.e., Post3. There was no significant difference in threshold between Post1
313	and Post3 (10 Hz: $t(8) = 1.51$, $p = 0.17$; sham: $t(11) = 0.76$, $p = 0.47$) (Figure 3 (B)).
314	Therefore, the modulatory effect of 10 Hz tACS on the orientation discrimination
315	learning was remarkably long-lasting.
316	10 Hz tACS modulated orientation discrimination learning in a location-specific
317	manner
318	To explore whether the 10 Hz tACS modulated the orientation discrimination
319	learning in a location-specific manner, one more group of subjects (i.e., the 10 Hz

320 sensorimotor stimulation group) were trained on the orientation discrimination task

321	while their bilateral sensorimotor regions were stimulated by the 10 Hz tACS. For the
322	three groups of subjects (the 10 Hz occipital stimulation group, the 10 Hz
323	sensorimotor stimulation group, and the sham occipital stimulation group), they had
324	about equal thresholds at Pre ($F(2, 49) = 0.12$, $p = 0.88$, $\eta_p^2 = 0.005$). Extensive
325	training reduced subjects' orientation discrimination thresholds gradually for all
326	groups (Figure 4(A)). Again, there were significant differences in learning rate among
327	the three groups ($F(2, 49) = 10.60, p = 1.49 \times 10^{-4}, \eta_p^2 = 0.30$). The learning rate of
328	the 10 Hz occipital stimulation group was greater than that of the 10 Hz sensorimotor
329	stimulation group ($t(32) = 4.21$, $p_{adj} = 3.26 \times 10^{-4}$, Cohen's d = 1.27), but the
330	difference in learning rate between the 10 Hz sensorimotor stimulation group and the
331	sham occipital stimulation group was not significant ($t(33) = -0.41$, $p = 0.68$) (Figure
332	4(B)). These results on learning rate demonstrated that the orientation discrimination
333	learning efficiency was not modulated by the 10 Hz tACS applied at sensorimotor
555	feating effetency was not modulated by the 10 Hz trees applied at sensormotor
334	areas.
334	areas.
334 335	areas. Regarding orientation discrimination thresholds, a 2 \times 3 mixed-design ANOVA
334 335 336	areas. Regarding orientation discrimination thresholds, a 2 \times 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of
334 335 336 337	areas. Regarding orientation discrimination thresholds, a 2 \times 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of <i>Group</i> (occipital, sensorimotor, and sham) showed that the main effect of <i>Test</i> (<i>F</i> (1,
334 335 336 337 338	areas. Regarding orientation discrimination thresholds, a 2 × 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of <i>Group</i> (occipital, sensorimotor, and sham) showed that the main effect of <i>Test</i> (<i>F</i> (1, 49) = 63.04, $p = 2.36 \times 10^{-10}$, $\eta_p^2 = 0.56$) and the interaction between <i>Test</i> and
334 335 336 337 338 339	areas. Regarding orientation discrimination thresholds, a 2 × 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of <i>Group</i> (occipital, sensorimotor, and sham) showed that the main effect of <i>Test</i> (<i>F</i> (1, 49) = 63.04, $p = 2.36 \times 10^{-10}$, $\eta_p^2 = 0.56$) and the interaction between <i>Test</i> and <i>Group</i> (<i>F</i> (2, 49) = 4.33, $p = 0.019$, $\eta_p^2 = 0.15$) were significant, but the main effect of
334 335 336 337 338 339 340	areas. Regarding orientation discrimination thresholds, a 2 × 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of <i>Group</i> (occipital, sensorimotor, and sham) showed that the main effect of <i>Test</i> (<i>F</i> (1, 49) = 63.04, $p = 2.36 \times 10^{-10}$, $\eta_p^2 = 0.56$) and the interaction between <i>Test</i> and <i>Group</i> (<i>F</i> (2, 49) = 4.33, $p = 0.019$, $\eta_p^2 = 0.15$) were significant, but the main effect of <i>Group</i> (<i>F</i> (2, 48) = 1.77, $p = 0.18$) was not. Paired <i>t</i> -test showed that the thresholds at
 334 335 336 337 338 339 340 341 	areas. Regarding orientation discrimination thresholds, a 2 × 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of <i>Group</i> (occipital, sensorimotor, and sham) showed that the main effect of <i>Test</i> (<i>F</i> (1, 49) = 63.04, $p = 2.36 \times 10^{-10}$, $\eta_p^2 = 0.56$) and the interaction between <i>Test</i> and <i>Group</i> (<i>F</i> (2, 49) = 4.33, $p = 0.019$, $\eta_p^2 = 0.15$) were significant, but the main effect of <i>Group</i> (<i>F</i> (2, 48) = 1.77, $p = 0.18$) was not. Paired <i>t</i> -test showed that the thresholds at Post1 were lower than those at Pre for all the three groups (all <i>t</i> s ≤-3.44, all p_{adj} s ≤
 334 335 336 337 338 339 340 341 342 	areas. Regarding orientation discrimination thresholds, a 2 × 3 mixed-design ANOVA with a within-subjects factor of <i>Test</i> (Pre and Post1) and a between-subjects factor of <i>Group</i> (occipital, sensorimotor, and sham) showed that the main effect of <i>Test</i> (<i>F</i> (1, 49) = 63.04, $p = 2.36 \times 10^{-10}$, $\eta_p^2 = 0.56$) and the interaction between <i>Test</i> and <i>Group</i> (<i>F</i> (2, 49) = 4.33, $p = 0.019$, $\eta_p^2 = 0.15$) were significant, but the main effect of <i>Group</i> (<i>F</i> (2, 48) = 1.77, $p = 0.18$) was not. Paired <i>t</i> -test showed that the thresholds at Post1 were lower than those at Pre for all the three groups (all <i>t</i> s ≤-3.44, all p_{adj} s ≤ 0.003, and all Cohen's ds ≥ 0.83). A simple main effect analysis revealed that, at

345 d = 1.64), but the threshold difference between the 10 Hz sensorimotor stimulation 346 group and the sham occipital stimulation group was not significant (t(33) = 1.43, p =347 0.16) (Figure 4 (C)). Accordingly, there were significant differences in percent improvement between the three groups ($F(2, 49) = 8.69, p = 5.88 \times 10^{-4}, \eta_p^2 = 0.15$). 348 349 Post-hoc analysis showed that the percent improvement in the 10 Hz occipital 350 stimulation group was higher than that in the 10 Hz sensorimotor stimulation group 351 $(t(33) = 4.13, p_{adj} = 0.0013$, Cohen's d = 1.38), while there was no significant 352 difference between the 10 Hz sensorimotor stimulation group and the sham occipital 353 stimulation group (t(33) = -0.25, p = 0.81) (Figure 4(D)). These results demonstrated 354 that the 10 Hz tACS delivered over sensorimotor areas did not result in more 355 performance improvements in the orientation discrimination learning. 356

357 **Discussion**

358	To better understand the neural oscillatory mechanisms underlying VPL, tACS
359	was administered while subjects were undertaking an orientation discrimination
360	learning task. Our study showed that, relative to sham stimulation, 10 Hz tACS
361	applied to visual cortex accelerated learning and led to greater improvement in task
362	performance. The facilitatory effects were absent when visual cortex was stimulated
363	by tACS at other frequencies (20 Hz and 40 Hz) or when other cortical areas
364	(sensorimotor cortical areas) were stimulated by 10 Hz tACS, indicating that tACS
365	modulated VPL in a frequency- and location-specific manner. To the best of our
366	knowledge, this is the first study demonstrating the effects of tACS on VPL. Our
367	results provide strong evidence of the causal role of occipital alpha band oscillations
368	in VPL, updating our knowledge on the role of alpha oscillations in neural plasticity.
369	Moreover, it is also the first study showing that the enhanced performance by
370	combining perceptual training and non-invasive brain stimulation could last at least
371	one year after training, which provides a promising and feasible way for clinical
372	applications.
373	Our finding of the causal role of occipital alpha oscillations in VPL is consistent
374	with previous human EEG studies across different visual learning tasks (Bays et al.,
375	2015; Muller-Gass et al., 2017; Nikolaev et al., 2016; Toosi et al., 2017), and is also
376	consistent with tactile perceptual learning studies (Brickwedde et al., 2019; Freyer et
377	al., 2013; Freyer et al., 2012). These EEG learning studies suggested that the alpha
378	power enhancement in parietal-occipital regions is a manifestation of the neural
379	mechanisms of perceptual learning. Furthermore, both the resting-state alpha power
380	before learning (Freyer et al., 2013; Muller-Gass et al., 2017) and the
381	learning-induced alpha power changes during task execution (Brickwedde et al., 2019;

382	Freyer et al., 2013) correlated with individual's learning outcomes, demonstrating a
383	close association between alpha oscillations and perceptual learning. Taken together,
384	all these studies point to a pivotal role of alpha oscillations in perceptual learning.
385	We note that our study is different from some previous studies in scientific
386	finding and method. First, several human EEG studies found that training induced
387	increases in gamma or beta band oscillations (Gruber et al., 2001; Gruber et al., 2002;
388	Hamame et al., 2011; La Rocca et al., 2020; Theves et al., 2020). Several factors
389	could explain this discrepancy. For instance, different stimuli and tasks, which
390	engaged distinctive processing mechanisms, were used in these learning studies
391	(Brunet & Fries, 2019; Gruber et al., 2002). Also, in these studies, EEG was recorded
392	before and after training, while tACS was administrated during training in our study.
393	Second, previous studies found that transcranial direct current stimulation (tDCS) and
394	transcranial random noise stimulation (tRNS) were able to modulate VPL (Cappelletti
395	et al., 2013; Contemori et al., 2019; Fertonani et al., 2011; Frangou et al., 2018;
396	Herpich et al., 2019; Van Meel et al., 2016). However, both tDCS and tRNS, with less
397	understood working mechanisms, cannot alter brain oscillations in a
398	frequency-specific manner, which limits our understanding of the neural oscillatory
399	mechanisms of VPL.
400	Previous studies on the biophysical mechanisms of tACS have already provided
401	strong support for the efficacy of tACS on altering neural oscillations. TACS applied
402	over the scalp can generate changes in intracerebral electric fields in non-human
403	primates (Johnson et al., 2020; Kar et al., 2017; Krause et al., 2019; Vieira et al.,
404	2020) and humans (Opitz et al., 2016; Voroslakos et al., 2018), thereby modifying
405	ongoing neural oscillations in the targeted brain region (Helfrich et al., 2014b; Kar et
406	al., 2017; Kasten et al., 2018; Vossen et al., 2015; Zaehle et al., 2010). The tACS

407	effects are usually manifested as increased neural spectral power and/or phase
408	synchronization (Helfrich et al., 2014b; Huang et al., 2021), which is confirmed by
409	our EEG experiment. In this experiment, we recorded subjects' resting-state EEG
410	signals for 10 minutes both before and after 25-min 10Hz tACS over O2, which is
411	roughly equivalent to the stimulation time in the main experiment. We analyzed 1-min
412	EEG signals before and after the stimulation from Oz, O2, POz, and PO4 (Kasten et
413	al., 2016). We found that subjects' resting-state alpha power after the tACS
414	stimulation was significantly higher than that before the stimulation. It is noteworthy
415	that, in our study, tACS at alpha frequency modulated VPL in a location-specific
416	manner. This ruled out possibly indirect effects, such as retinal stimulation,
417	transcutaneous stimulation of peripheral nerves, and placebo effects (Asamoah et al.,
418	2019; Liu et al., 2018; Turi et al., 2013). Taken together, these results suggest that
419	occipital tACS at 10 Hz entrained endogenous alpha oscillations in visual cortex and
420	thereby facilitated VPL causally.
421	The functional role of alpha band neural oscillations in visual perception,
422	attention, and other cognitive functions has been recognized for a long time. Rather
423	than only reflecting an idling state of the brain (Clayton et al., 2018; Sigala et al.,
424	2014), it functions to gate ongoing sensory information processing (Jensen &
425	Mazaheri, 2010; VanRullen, 2016). According to a dominant view about the function
426	of alpha oscillations - the inhibition hypothesis, alpha oscillations are assumed to
427	actively suppress processing of irrelevant sensory information and therefore direct
428	computational neural resources to task-relevant events of higher priority (Klimesch et
429	al., 2007). Specifically, alpha power is correlated with neural excitability negatively
430	(Lange et al., 2013; Romei et al., 2008), and higher alpha power is predictive of
431	decreased visual detection and discrimination performance (Ergenoglu et al., 2004;

432	Mathewson et al., 2014; Roberts et al., 2014; van Dijk et al., 2008; Zazio et al., 2020).
433	Since many studies have demonstrated that alpha tACS is able to increase ongoing
434	alpha power (Clayton et al., 2019; Helfrich et al., 2014b; Kasten et al., 2019;
435	Nakazono et al., 2020; Zaehle et al., 2010; Y. Zhang et al., 2019), the inhibition
436	hypothesis cannot explain our finding here straightforwardly. Notably, it has been
437	argued that alpha oscillations also reflect cortical feedback mechanisms in visual
438	cortex (Keller et al., 2020; Mejias et al., 2016; Michalareas et al., 2016; van
439	Kerkoerle et al., 2014). For example, using intracranial multi-array recording in
440	monkeys, researchers found that neural activity in primary visual area V1 was driven
441	by feedback signals in the alpha band from visual area V4 (Bastos et al., 2015; van
442	Kerkoerle et al., 2014). This interregional feedback projections from V4 to V1 was
443	also confirmed in human magnetoencephalography (MEG) study (Michalareas et al.,
444	2016). Recently, studies from several research groups proposed that VPL could be
445	implemented, at least partially, by cortical feedback connections that propagated
446	neural signals from higher to lower areas (Crist et al., 2001; Jia et al., 2020;
447	Moldakarimov et al., 2014; Mukai et al., 2007; Schafer et al., 2007; Y. Yan et al.,
448	2018). Under this framework, entrained alpha oscillations by 10 Hz tACS might boost
449	VPL by strengthening cortico-cortical feedback connections, which can be
450	investigated in the future
451	Our findings not only deepen our understanding of the neural mechanisms
452	underlying VPL, but also offer a promising guide for future clinical intervention to
453	impaired visual functions. In clinical practice, efficacy/effectiveness, efficiency, and
454	persistence are three of the most remarkable factors that constrain the application of
455	perceptual enhancement methods or techniques (Herpich et al., 2019; Rodan et al.,

456 2020). In our study, we found that applying tACS at 10 Hz over the visual cortex is

- 457 able to help observers obtain more benefits within a shorter time. What is more, the
- 458 modulatory effect of occipital 10 Hz tACS on visual performance was able to last for
- 459 a very long period. Therefore, our training and stimulation protocol can be used as a
- 460 potential treatment to help rehabilitate impaired visual functions in clinical
- 461 populations, such as, patients with neuro-ophthalmological disorders (Levi & Li,
- 462 2009).

463 **Reference**

- Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D., & Paulus, W. (2008). Comparatively weak
 after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in
 humans. *Brain Stimul*, 1(2), 97-105.
- 467 Asamoah, B., Khatoun, A., & Mc Laughlin, M. (2019). tACS motor system effects can be caused by
 468 transcutaneous stimulation of peripheral nerves. *Nat Commun*, 10(1), 266.
- Bang, J. W., Sasaki, Y., Watanabe, T., & Rahnev, D. (2018). Feature-Specific Awake Reactivation in
 Human V1 after Visual Training. *J Neurosci*, *38*(45), 9648-9657.
- Bastos, A. M., Litvak, V., Moran, R., Bosman, C. A., Fries, P., & Friston, K. J. (2015). A DCM study of
 spectral asymmetries in feedforward and feedback connections between visual areas V1 and
 V4 in the monkey. *Neuroimage*, *108*, 460-475.
- Bays, B. C., Visscher, K. M., Le Dantec, C. C., & Seitz, A. R. (2015). Alpha-band EEG activity in
 perceptual learning. *J Vis*, *15*(10), 1-12.
- 476 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful
 477 Approach to Multiple Testing. *J. R. Stat. Soc. B*, *57*(1), 289-300.
- 478 Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
 479 under dependency. *Ann. Statist.*, 29(4), 1165-1188.
- Bi, T., Chen, J., Zhou, T., He, Y., & Fang, F. (2014). Function and structure of human left fusiform
 cortex are closely associated with perceptual learning of faces. *Curr Biol*, 24(2), 222-227.
- 482 Brainard, D. H. (1997). The Psychophysics Toolbox. Spat Vis, 10(4), 433-436.
- Brickwedde, M., Kruger, M. C., & Dinse, H. R. (2019). Somatosensory alpha oscillations gate
 perceptual learning efficiency. *Nat Commun*, *10*(1), 263.
- Brunet, N. M., & Fries, P. (2019). Human visual cortical gamma reflects natural image structure.
 Neuroimage, 200, 635-643.
- Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. *Science*, 304(5679),
 1926-1929.
- 489 Cabral-Calderin, Y., & Wilke, M. (2019). Probing the Link Between Perception and Oscillations:
 490 Lessons from Transcranial Alternating Current Stimulation. *Neuroscientist*, 26(1), 57-73.
- Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., . . . Walsh, V. (2013).
 Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. *J Neurosci*, *33*(37), 14899-14907.
- Cappelletti, M., Pikkat, H., Upstill, E., Speekenbrink, M., & Walsh, V. (2015). Learning to integrate
 versus inhibiting information is modulated by age. *J Neurosci*, *35*(5), 2213-2225.
- Chen, N., Bi, T., Zhou, T., Li, S., Liu, Z., & Fang, F. (2015). Sharpened cortical tuning and enhanced
 cortico-cortical communication contribute to the long-term neural mechanisms of visual
 motion perceptual learning. *Neuroimage*, *115*, 17-29.
- Chen, N., Cai, P., Zhou, T., Thompson, B., & Fang, F. (2016). Perceptual learning modifies the
 functional specializations of visual cortical areas. *Proc Natl Acad Sci U S A*, 113(20),
 5724-5729.
- 502 Clancy, K. J., Baisley, S. K., Albizu, A., Kartvelishvili, N., Ding, M., & Li, W. (2018). Lasting
 503 connectivity increase and anxiety reduction via transcranial alternating current stimulation.
 504 Soc Cogn Affect Neurosci, 13(12), 1305-1316.
- 505 Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2018). The many characters of visual alpha

 Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2019). Electrical stimulation of alpha oscillations stabilizes performance on visual attention tasks. <i>J Exp Psychol Gen, 148</i>(2), 203-220. Contemori, G., Trotter, Y., Cottereau, B. R., & Maniglia, M. (2019). tRNS boosts perceptual learning in peripheral vision. <i>Neuropsychologia, 125</i>, 129-136. Crist, R. E., Li, W., & Gilbert, C. D. (2001). Learning to see: experience and attention in primary visual cortex. <i>Nat Neurosci, 4</i>(5), 519-525. de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci, 51</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, <i>95</i>(23), 13988-13993. Ergeneglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, <i>20</i>(3), 376-383. Fertonani, A., Piruli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci, 31</i>(43), 15416-15423. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watmabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol, 30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci, 6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol, 14</i>(7), 573-578. Gol	506	oscillations. Eur J Neurosci, 48(7), 2498-2508.
 Contemori, G., Trotter, Y., Cottereau, B. R., & Maniglia, M. (2019). (RNS boosts perceptual learning in peripheral vision. <i>Neuropsychologia</i>, <i>125</i>, 129-136. Crist, R. E., Li, W., & Gilbert, C. D. (2001). Learning to see: experience and attention in primary visual cortex. <i>Nat Neurosci</i>, <i>4</i>(5), 519-525. de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci</i>, <i>5</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, <i>95</i>(23), 13988-13993. Frgenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, <i>20</i>(3), 376-383. Fertonani, A., Piruli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Reincher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual corex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. <	507	Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2019). Electrical stimulation of alpha oscillations
 peripheral vision. <i>Neuropsychologia</i>, <i>125</i>, 129-136. Crist, R. E., Li, W., & Gilbert, C. D. (2001). Learning to see: experience and attention in primary visual cortex. <i>Nat Neurosci</i>, <i>4</i>(5), 519-525. de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci</i>, <i>51</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, <i>95</i>(23), 1398-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha frydm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, <i>20</i>(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(14), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. L., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during	508	stabilizes performance on visual attention tasks. J Exp Psychol Gen, 148(2), 203-220.
 Crist, R. E., Li, W., & Gilbert, C. D. (2001). Learning to see: experience and attention in primary visual cortex. <i>Nat Neurosci</i>, <i>4</i>(5), 519-525. de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci</i>, <i>5</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, <i>95</i>(23), 13988-13993. Frgenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, <i>20</i>(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Diase, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668.<td>509</td><td>Contemori, G., Trotter, Y., Cottereau, B. R., & Maniglia, M. (2019). tRNS boosts perceptual learning in</td>	509	Contemori, G., Trotter, Y., Cottereau, B. R., & Maniglia, M. (2019). tRNS boosts perceptual learning in
 cortex. <i>Nat Neurosci, 4</i>(5), 519-525. de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci, 51</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A, 95</i>(23), 13988-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res, 20</i>(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci, 31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife, 7,</i> e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol, 30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci, 6,</i> 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol,</i> 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol,</i> 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired	510	peripheral vision. Neuropsychologia, 125, 129-136.
 de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020). Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci, 51</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, 95(23), 1398-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, 20(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, 31(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, 7, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, 30(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, 6, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, 100(5), 2653-2668. Gruber, T., Kuille	511	Crist, R. E., Li, W., & Gilbert, C. D. (2001). Learning to see: experience and attention in primary visual
 Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. <i>Eur J Neurosci</i>, <i>51</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, <i>95</i>(23), 13988-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, <i>20</i>(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci</i>, <i>33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Kuller, M. M. (2001). Modulation of induced gamma band responses in a perc	512	cortex. Nat Neurosci, 4(5), 519-525.
 stimulus presentation. <i>Eur J Neurosci, 51</i>(11), 2299-2313. Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc. Natl Acad Sci U S A, 95</i>(23), 13988-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res, 20</i>(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci, 31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife, 7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol, 30</i>(15), 2955-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci, 33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci, 6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol, 14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol, 100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett, 316</i>(1), 29-32. Grub	513	de Graaf, T. A., Thomson, A., Janssens, S. E. W., van Bree, S., Ten Oever, S., & Sack, A. T. (2020).
 Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, <i>95</i>(23), 13988-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain Res</i>, <i>20</i>(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci</i>, <i>33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>Neurosci Lett</i>, <i>31</i>(61), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band r		
 noise reduction through channel reweighting. <i>Proc Natl Acad Sci U S A</i>, 95(23), 13988-13993. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain</i> <i>Res</i>, 20(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, 31(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, 7, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, 30(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, 6, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>Neurosci Lett</i>, 316(1), 29-32. Gruber, T., Kuller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning: telectrophysiological evidence for a two-stage process. <i>PLoS One</i>, 6(4), e19221.<td></td><td></td>		
 Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain</i> <i>Res</i>, 20(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2012). State-dependent perceptual learning. <i>J Neurosci</i>, <i>33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F.,		
 frythm of the EEG modulates visual detection performance in humans. <i>Brain Res Cogn Brain</i> <i>Res</i>, 20(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, 31(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, 7, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, 30(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Cononlly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(
 <i>Res</i>, 20(3), 376-383. Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci</i>, <i>31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci</i>, <i>33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurosci</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. <i>J Neurosci, 31</i>(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife, 7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol, 30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci, 33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci, 6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol, 14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol,</i> <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci, 14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci,</i> <i>37</i>(2), 109-118. 		
 perceptual learning. J Neurosci, 31(43), 15416-15423. Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, 7, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, 30(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. J <i>Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, 6, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J Neurophysiol, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neurosci Lett, 316(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. J Cogn Neurosci, 14(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. PLoS One, 6(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 Frangou, P., Correia, M., & Kourtzi, Z. (2018). GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, <i>7</i>, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, <i>30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J</i> <i>Neurosci</i>, <i>33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 learning-dependent plasticity mechanisms in the human brain. <i>eLife</i>, 7, e35854. Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, 30(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. J <i>Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, 6, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, 6(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 Frank, S. M., Qi, A., Ravasio, D., Sasaki, Y., Rosen, E. L., & Watanabe, T. (2020). Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol</i>, 30(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. J <i>Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, 6, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J Neurophysiol, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, 316(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. J Cogn Neurosci, 14(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, 6(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		-
 Occurs in Visual Perceptual Learning of Complex Natural Images. <i>Curr Biol, 30</i>(15), 2995-3000 e2993. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. <i>J Neurosci, 33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci, 6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol, 14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol, 100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci, Lett, 316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci, 14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci, 37</i>(2), 109-118. 		
 527 2995-3000 e2993. 528 Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. J <i>Neurosci, 33</i>(7), 2900-2907. 530 Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci, 6</i>, 144. 533 Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol, 14</i>(7), 573-578. 535 Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol,</i> <i>100</i>(5), 2653-2668. 538 Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett, 316</i>(1), 29-32. 540 Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci, 14</i>(5), 732-744. 542 Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. 545 He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci, 37</i>(2), 109-118. 		
 Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. J <i>Neurosci</i>, 33(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, 316(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, 14(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, 6(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 <i>Neurosci</i>, <i>33</i>(7), 2900-2907. Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., & Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 changes resting-state functional connectivity-implications for treatment of sensorimotor decline. <i>Front Hum Neurosci</i>, <i>6</i>, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, <i>14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 decline. <i>Front Hum Neurosci</i>, 6, 144. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, 316(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, 14(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, 6(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. <i>Curr Biol</i>, 14(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, 100(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, 316(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, 14(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, 6(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 visual cortex to simple patterns. <i>Curr Biol, 14</i>(7), 573-578. Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol,</i> <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett, 316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci, 14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci,</i> <i>37</i>(2), 109-118. 		
 Gold, J. I., Law, C. T., Connolly, P., & Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 evidence on an oculomotor decision variable during perceptual learning. <i>J Neurophysiol</i>, <i>100</i>(5), 2653-2668. Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett</i>, <i>316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 537 100(5), 2653-2668. 538 Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett, 316</i>(1), 29-32. 540 Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci, 14</i>(5), 732-744. 542 Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. 545 He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci, 37</i>(2), 109-118. 		
 Gruber, T., Keil, A., & Muller, M. M. (2001). Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett, 316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci, 14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci, 37</i>(2), 109-118. 		
 synchrony in a paired associate learning task in the human EEG. <i>Neurosci Lett, 316</i>(1), 29-32. Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci, 14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci, 37</i>(2), 109-118. 		
 Gruber, T., Muller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 perceptual learning task in the human EEG. <i>J Cogn Neurosci</i>, <i>14</i>(5), 732-744. Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One</i>, <i>6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, <i>37</i>(2), 109-118. 		
 Hamame, C. M., Cosmelli, D., Henriquez, R., & Aboitiz, F. (2011). Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci, 37</i>(2), 109-118. 		
 perceptual learning: electrophysiological evidence for a two-stage process. <i>PLoS One, 6</i>(4), e19221. He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci,</i> 37(2), 109-118. 		
 644 e19221. 645 He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 He, Q., Lin, B. R., Zhao, J., Shi, Y. Z., Yan, F. F., & Huang, C. B. (2019). No effects of anodal transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
 transcranial direct current stimulation on contrast sensitivity function. <i>Restor Neurol Neurosci</i>, 37(2), 109-118. 		
547 <i>37</i> (2), 109-118.		-
		· · · · · · · · · · · · · · · · · · ·
ото пеннен, к. г., кнеррег, п., топе, О., Suudei, D., касн, S., nettillälli, C. S., Eligei, A. К. (2014а).		
549 Selective modulation of interhemispheric functional connectivity by HD-tACS shapes		

550	perception. <i>PLoS Biol</i> , 12(12), e1002031.
551	Helfrich, R. F., Schneider, T. R., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S.
552	(2014b). Entrainment of brain oscillations by transcranial alternating current stimulation. Curr
553	<i>Biol</i> , 24(3), 333-339.
554	Herpich, F., Melnick, M. D., Agosta, S., Huxlin, K. R., Tadin, D., & Battelli, L. (2019). Boosting
555	Learning Efficacy with Noninvasive Brain Stimulation in Intact and Brain-Damaged Humans.
556	J Neurosci, 39(28), 5551-5561.
557	Hua, T., Bao, P., Huang, C. B., Wang, Z., Xu, J., Zhou, Y., & Lu, Z. L. (2010). Perceptual learning
558	improves contrast sensitivity of V1 neurons in cats. Curr Biol, 20(10), 887-894.
559	Huang, W. A., Stitt, I. M., Negahbani, E., Passey, D. J., Ahn, S., Davey, M., Frohlich, F. (2021).
560	Transcranial alternating current stimulation entrains alpha oscillations by preferential phase
561	synchronization of fast-spiking cortical neurons to stimulation waveform. Nat Commun, 12(1),
562	3151.
563	Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate
564	cortex. J Physiol, 195(1), 215-243.
565	Jehee, J. F., Ling, S., Swisher, J. D., van Bergen, R. S., & Tong, F. (2012). Perceptual learning
566	selectively refines orientation representations in early visual cortex. J Neurosci, 32(47),
567	16747-16753a.
568	Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating
569	by inhibition. Front Hum Neurosci, 4(186), 186.
570	Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines
571	specificity of perceptual learning. J Vis, 9(3), 1 1-13.
572	Jia, K., Zamboni, E., Kemper, V., Rua, C., Goncalves, N. R., Ng, A. K. T., Kourtzi, Z. (2020).
573	Recurrent Processing Drives Perceptual Plasticity. Curr Biol, 4177 - 4187.
574	Johnson, L., Alekseichuk, I., Krieg, J., Doyle, A., Yu, Y., Vitek, J., Opitz, A. (2020).
575	Dose-dependent effects of transcranial alternating current stimulation on spike timing in
576	awake nonhuman primates. Sci Adv, 6(36), eaaz2747.
577	Kanai, R., Chaieb, L., Antal, A., Walsh, V., & Paulus, W. (2008). Frequency-dependent electrical
578	stimulation of the visual cortex. Curr Biol, 18(23), 1839-1843.
579	Kanai, R., Paulus, W., & Walsh, V. (2010). Transcranial alternating current stimulation (tACS)
580	modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin
581	Neurophysiol, 121(9), 1551-1554.
582	Kar, K., Duijnhouwer, J., & Krekelberg, B. (2017). Transcranial Alternating Current Stimulation
583	Attenuates Neuronal Adaptation. J Neurosci, 37(9), 2325-2335.
584	Kar, K., & Krekelberg, B. (2014). Transcranial alternating current stimulation attenuates visual motion
585	adaptation. J Neurosci, 34(21), 7334-7340.
586	Kasten, F. H., Dowsett, J., & Herrmann, C. S. (2016). Sustained Aftereffect of alpha-tACS Lasts Up to
587	70 min after Stimulation. Front Hum Neurosci, 10, 245.
588	Kasten, F. H., Duecker, K., Maack, M. C., Meiser, A., & Herrmann, C. S. (2019). Integrating electric
589	field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat
590	Commun, 10(1), 5427.
591	Kasten, F. H., Maess, B., & Herrmann, C. S. (2018). Facilitated Event-Related Power Modulations
592	during Transcranial Alternating Current Stimulation (tACS) Revealed by Concurrent
593	tACS-MEG. eNeuro, 5(3).

- Keller, A. J., Roth, M. M., & Scanziani, M. (2020). Feedback generates a second receptive field in neurons of the visual cortex. *Nature*, 582(7813), 545-549.
- Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing
 hypothesis. *Brain Res Rev*, 53(1), 63-88.
- Krause, M. R., Vieira, P. G., Csorba, B. A., Pilly, P. K., & Pack, C. C. (2019). Transcranial alternating
 current stimulation entrains single-neuron activity in the primate brain. *Proc Natl Acad Sci U S A*, *116*(12), 5747-5755.
- La Rocca, D., Ciuciu, P., Engemann, D. A., & van Wassenhove, V. (2020). Emergence of beta and
 gamma networks following multisensory training. *Neuroimage*, 206, 116313.
- Lange, J., Oostenveld, R., & Fries, P. (2013). Reduced occipital alpha power indexes enhanced
 excitability rather than improved visual perception. *J Neurosci*, *33*(7), 3212-3220.
- Law, C.-T., & Gold, J. I. (2008). Neural correlates of perceptual learning in a sensory-motor, but not a
 sensory, cortical area. *Nat Neurosci*, 11(4), 505-513.
- Levi, D. M., & Li, R. W. (2009). Improving the performance of the amblyopic visual system. *Philos Trans R Soc Lond B Biol Sci*, 364(1515), 399-407.
- Liu, A., Voroslakos, M., Kronberg, G., Henin, S., Krause, M. R., Huang, Y., . . . Buzsaki, G. (2018).
 Immediate neurophysiological effects of transcranial electrical stimulation. *Nat Commun*, 9(1), 5092.
- Loewenstein, Y., Raviv, O., & Ahissar, M. (2021). Dissecting the Roles of Supervised and
 Unsupervised Learning in Perceptual Discrimination Judgments. *J Neurosci*, 41(4), 757-765.
- Lu, J., Luo, L., Wang, Q., Fang, F., & Chen, N. (2021). Cue-triggered activity replay in human early
 visual cortex. *Sci China Life Sci*, 64(1), 144-151.
- Maniglia, M., & Seitz, A. R. (2018). Towards a whole brain model of Perceptual Learning. *Curr Opin Behav Sci*, 20, 47-55.
- Mathewson, K. E., Beck, D. M., Ro, T., Maclin, E. L., Low, K. A., Fabiani, M., & Gratton, G. (2014).
 Dynamics of alpha control: preparatory suppression of posterior alpha oscillations by frontal
 modulators revealed with combined EEG and event-related optical signal. *J Cogn Neurosci*,
 26(10), 2400-2415.
- Mayhew, S. D., Li, S., & Kourtzi, Z. (2012). Learning acts on distinct processes for visual form
 perception in the human brain. *J Neurosci*, *32*(3), 775-786.
- Mejias, J. F., Murray, J. D., Kennedy, H., & Wang, X. J. (2016). Feedforward and feedback
 frequency-dependent interactions in a large-scale laminar network of the primate cortex. *Sci Adv*, 2(11), e1601335.
- Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J. M., Kennedy, H., & Fries, P. (2016). Alpha-Beta
 and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual
 Cortical Areas. *Neuron*, 89(2), 384-397.
- Moldakarimov, S., Bazhenov, M., & Sejnowski, T. J. (2014). Top-down inputs enhance orientation
 selectivity in neurons of the primary visual cortex during perceptual learning. *PLoS Comput Biol, 10*(8), e1003770.
- Mukai, I., Kim, D., Fukunaga, M., Japee, S., Marrett, S., & Ungerleider, L. G. (2007). Activations in
 visual and attention-related areas predict and correlate with the degree of perceptual learning. *J Neurosci*, 27(42), 11401-11411.
- Muller-Gass, A., Duncan, M., & Campbell, K. (2017). Brain states predict individual differences in
 perceptual learning. *Pers Individ Dif*, *118*, 29-38.

638	Nakazono, H., Ogata, K., Takeda, A., Yamada, E., Kimura, T., & Tobimatsu, S. (2020). Transcranial
639	alternating current stimulation of α but not β frequency sharpens multiple visual functions.
640	Brain Stimul, 13(2), 343-352.
641	Neuling, T., Rach, S., & Herrmann, C. S. (2013). Orchestrating neuronal networks: sustained
642	after-effects of transcranial alternating current stimulation depend upon brain states. Front
643	Hum Neurosci, 7, 161.
644	Nikolaev, A. R., Gepshtein, S., & van Leeuwen, C. (2016). Intermittent regime of brain activity at the
645	early, bias-guided stage of perceptual learning. J Vis, 16(14).
646	Opitz, A., Falchier, A., Yan, C. G., Yeagle, E. M., Linn, G. S., Megevand, P., Schroeder, C. E.
647	(2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric
648	stimulation in humans and nonhuman primates. Sci Rep, 6, 31236.
649	Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into
650	movies. Spat Vis, 10(4), 437-442.
651	Pogosyan, A., Gaynor, L. D., Eusebio, A., & Brown, P. (2009). Boosting cortical activity at Beta-band
652	frequencies slows movement in humans. Curr Biol, 19(19), 1637-1641.
653	R Core Team. (2020). R: A Language and Environment for Statistical Computing (Version 4.0.3).
654	Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
655	http://www.R-project.org/
656	Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing
657	rhythmic brain circuits. Nat Neurosci, 22(5), 820-827.
658	Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R., & McDonald, C. G. (2014). Prestimulus
659	oscillations in the alpha band of the EEG are modulated by the difficulty of feature
660	discrimination and predict activation of a sensory discrimination process. J Cogn Neurosci,
661	26(8), 1615-1628.
662	Rodan, A., Candela Marroquin, E., & Jara Garcia, L. C. (2020). An updated review about perceptual
663	learning as a treatment for amblyopia. J Optom.
664	Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous
665	fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human
666	visual areas. Cereb Cortex, 18(9), 2010-2018.
667	Sanayei, M., Chen, X., Chicharro, D., Distler, C., Panzeri, S., & Thiele, A. (2018). Perceptual learning
668	of fine contrast discrimination changes neuronal tuning and population coding in macaque V4.
669	<i>Nat Commun, 9</i> (1), 4238.
670	Schafer, R., Vasilaki, E., & Senn, W. (2007). Perceptual learning via modification of cortical top-down
671	signals. PLoS Comput Biol, 3(8), e165.
672	Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nat
673	Rev Neurosci, 6(4), 285-296.
674	Schoups, A., Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identification improves
675	orientation coding in V1 neurons. Nature, 412(6846), 549-553.
676	Shibata, K., Sasaki, Y., Bang, J. W., Walsh, E. G., Machizawa, M. G., Tamaki, M., Watanabe, T.
677	(2017). Overlearning hyperstabilizes a skill by rapidly making neurochemical processing
678	inhibitory-dominant. Nat Neurosci, 20(3), 470-475.
679	Sigala, R., Haufe, S., Roy, D., Dinse, H. R., & Ritter, P. (2014). The role of alpha-rhythm states in
680	perceptual learning: insights from experiments and computational models. Front Comput
681	Neurosci, 8, 36.

682	Struber, D., Rach, S., Neuling, T., & Herrmann, C. S. (2015). On the possible role of stimulation
683	duration for after-effects of transcranial alternating current stimulation. Front Cell Neurosci, 9,
684	311.
685	Struber, D., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Antiphasic
686	40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr, 27(1),
687	158-171.
688	Theves, S., Chan, J. S., Naumer, M. J., & Kaiser, J. (2020). Improving audio-visual temporal
689	perception through training enhances beta-band activity. Neuroimage, 206, 116312.
690	Thut, G., Miniussi, C., & Gross, J. (2012). The functional importance of rhythmic activity in the brain.
691	Curr Biol, 22(16), R658-663.
692	Toosi, T., E, K. T., & Esteky, H. (2017). Learning temporal context shapes prestimulus alpha
693	oscillations and improves visual discrimination performance. J Neurophysiol, 118(2),
694	771-777.
695	Tsodyks, M., & Gilbert, C. (2004). Neural networks and perceptual learning. Nature, 431(7010),
696	775-781.
697	Turi, Z., Ambrus, G. G., Janacsek, K., Emmert, K., Hahn, L., Paulus, W., & Antal, A. (2013). Both the
698	cutaneous sensation and phosphene perception are modulated in a frequency-specific manner
699	during transcranial alternating current stimulation. Restor Neurol Neurosci, 31(3), 275-285.
700	van Dijk, H., Schoffelen, J. M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in
701	the alpha band predicts visual discrimination ability. J Neurosci, 28(8), 1816-1823.
702	van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M. A., Poort, J., van der Togt, C., &
703	Roelfsema, P. R. (2014). Alpha and gamma oscillations characterize feedback and
704	feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A, 111(40),
705	14332-14341.
706	Van Meel, C., Daniels, N., de Beeck, H. O., & Baeck, A. (2016). Effect of tDCS on task relevant and
707	irrelevant perceptual learning of complex objects. J Vis, 16(6), 1-15.
708	VanRullen, R. (2016). Perceptual Cycles. Trends Cogn Sci, 20(10), 723-735.
709	Vieira, P. G., Krause, M. R., & Pack, C. C. (2020). tACS entrains neural activity while somatosensory
710	input is blocked. <i>PLoS Biol</i> , 18(10), e3000834.
711	Voroslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernandez-Ruiz, A., Berenyi,
712	A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and
713	humans. Nat Commun, 9(1), 483.
714	Vossen, A., Gross, J., & Thut, G. (2015). Alpha Power Increase After Transcranial Alternating Current
715	Stimulation at Alpha Frequency (α -tACS) Reflects Plastic Changes Rather Than Entrainment.
716	Brain Stimul, 8(3), 499-508.
717	Wach, C., Krause, V., Moliadze, V., Paulus, W., Schnitzler, A., & Pollok, B. (2013). Effects of 10 Hz
718	and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor
719	cortical excitability. Behav Brain Res, 241(0), 1-6.
720	Watanabe, T., & Sasaki, Y. (2015). Perceptual learning: toward a comprehensive theory. Annu Rev
721	Psychol, 66, 197-221.
722	Watson, A. B., & Pelli, D. G. (1983). QUEST: a Bayesian adaptive psychometric method. Percept
723	<i>Psychophys</i> , <i>33</i> (2), 113-120.
724	Weiss, Y., Edelman, S., & Fahle, M. (1993). Models of Perceptual Learning in Vernier Hyperacuity.
725	Neural Computation, 5(5), 695-718.
725	Neural Computation, 5(5), 695-718.

726	Yan, Y., Rasch, M. J., Chen, M., Xiang, X., Huang, M., Wu, S., & Li, W. (2014). Perceptual training
727	continuously refines neuronal population codes in primary visual cortex. Nat Neurosci, 17(10),
728	1380-1387.
729	Yan, Y., Zhaoping, L., & Li, W. (2018). Bottom-up saliency and top-down learning in the primary
730	visual cortex of monkeys. Proc Natl Acad Sci USA, 115(41), 10499-10504.
731	Yang, T., & Maunsell, J. H. (2004). The effect of perceptual learning on neuronal responses in monkey
732	visual area V4. J Neurosci, 24(7), 1617-1626.
733	Yu, Q., Zhang, P., Qiu, J., & Fang, F. (2016). Perceptual Learning of Contrast Detection in the Human
734	Lateral Geniculate Nucleus. Curr Biol, 26(23), 3176-3182.
735	Zaehle, T., Rach, S., & Herrmann, C. S. (2010). Transcranial alternating current stimulation enhances
736	individual alpha activity in human EEG. PLoS One, 5(11), e13766.
737	Zazio, A., Schreiber, M., Miniussi, C., & Bortoletto, M. (2020). Modelling the effects of ongoing alpha
738	activity on visual perception: The oscillation-based probability of response. Neurosci
739	Biobehav Rev, 112, 242-253.
740	Zhang, P., Hou, F., Yan, F. F., Xi, J., Lin, B. R., Zhao, J., Huang, C. B. (2018). High reward
741	enhances perceptual learning. J Vis, 18(8), 1-21.
742	Zhang, Y., Zhang, Y., Cai, P., Luo, H., & Fang, F. (2019). The causal role of alpha-oscillations in
743	feature binding. Proc Natl Acad Sci USA, 116(34), 17023-17028.
744	

746 Table

747

Table1 Demographic information of subjects

Group	Sample size	Female/Male	Mean age (SD)	Age range
Group 1	17	13/4	22.35 (5.24)	18-37
Group 2	17	11/6	21.47 (4.29)	18-34
Group 3	18	11/7	20.50 (2.07)	18-24
Group 4	18	12/6	23.83 (4.16)	19-37
Group 5	17	11/6	22.00 (2.98)	18-28

748

750 Figure Legends

751	Figure 1. Stimuli, experimental protocol, and electrical stimulation protocol. (A)
752	Schematic description of a 2AFC trial in a QUEST staircase for measuring orientation
753	discrimination thresholds. Subjects were instructed to make a judgment of the
754	orientation in the second interval relative to that in the first interval (clockwise or
755	counter-clockwise), while gazing at the central fixation point. There was no feedback
756	after each trial. (B) Experimental protocol. Subject underwent one pre-training test,
757	five daily training sessions, and two post-training tests. The pre-training test (Pre) and
758	post-training test 1 (Post1) and test 2 (Post2) took place on the days before,
759	immediately after, and two months after training. The tACS was concurrently
760	administrated during each training session. (C) Electrical stimulation protocol and
761	montage. TACS at different frequencies (10 Hz, 20 Hz, and 40 Hz) were applied over
762	different cortical regions. For occipital stimulation groups, stimulation electrodes
763	were positioned over the occipital cortex (O2) and the vertex (Cz), while for the
764	sensorimotor stimulation group, stimulation electrodes were positioned over the
765	sensorimotor regions of both hemispheres. The electrode positions were identified by
766	the international 10-20 EEG system. The red square and blue square denoted the
767	anodal electrode and cathodal electrode, respectively. These heads were generated by
768	FaceGen Modeller (version 3.4).

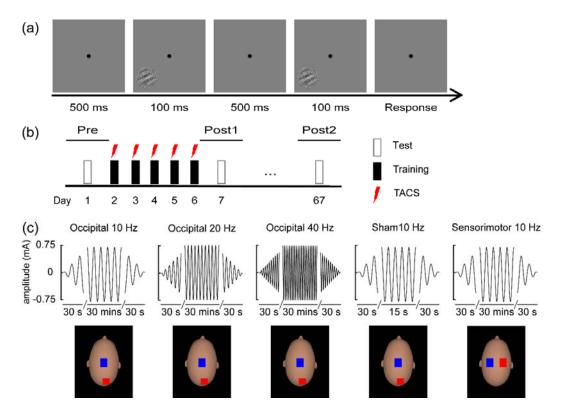
769

Figure 2. Results of the main experiment in which visual cortex was stimulated using
tACS at different frequencies. (A) Learning curves. Dots represent averaged
thresholds across subjects at different test and training days, and lines represent fitted
learning curves using a power function. (B) Learning rates. (C) Orientation
discrimination thresholds at Pre and Post1. (D) Percent improvements in orientation

discrimination performance at Post1, relative to Pre. *p < .05; **p < .01; ***p < .001.

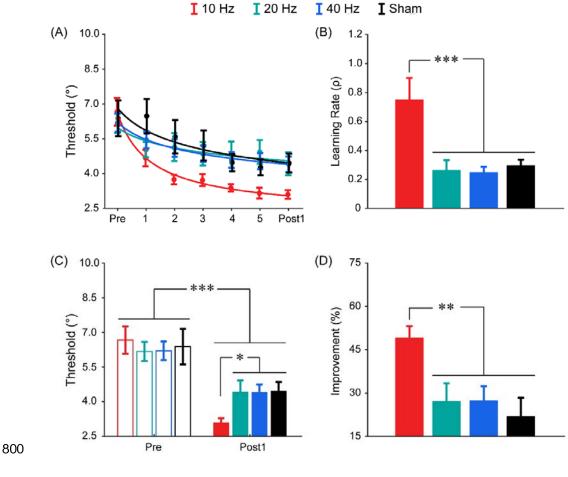
Error bars denote the standard error of the mean (SEM) across subjects.

777

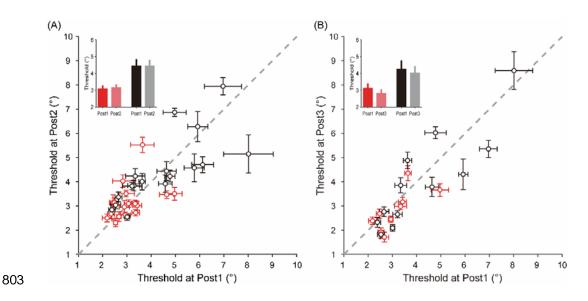

778 Figure 3. Retention of the learning effect. (A) Retest results two months after training 779 for subjects in the 10 Hz occipital stimulation group and the sham occipital 780 stimulation group. (B) Retest results 14 months after training for part of the subject 781 cohort. Each red dot and black dot represent a single subject in the 10 Hz occipital 782 stimulation group and the sham occipital stimulation group, respectively. The insets 783 depict the mean thresholds for the 10 Hz occipital stimulation group (red and pink 784 bars) and the sham occipital stimulation group (black and grey bars). Error bars 785 denote the standard error of the mean (SEM) across QUEST staircases or subjects.

786

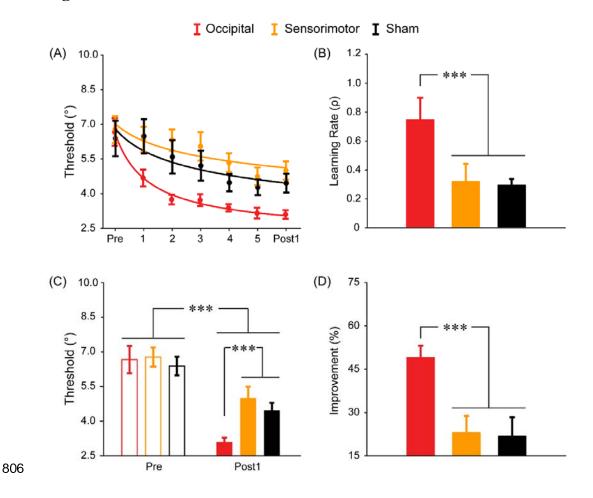
Figure 4. Results of the control experiment in which the 10 Hz tACS was applied to bilateral sensorimotor areas. (A) Learning curves. Dots represent averaged thresholds across subjects at different test and training days, and lines represent fitted learning curves using a power function. (B) Learning rates. (C) Orientation discrimination thresholds at Pre and Post1. (D) Percent improvements in orientation discrimination performance at Post1, relative to Pre . ***p < .001. Error bars denote the standard error of the mean (SEM) across subjects.


794

796 Figure 1



797 798



802 Figure 3

805 Figure 4

