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Abstract 

The plant microbiome is a rich biotic environment, comprising numerous taxa. The community 

structure of these colonizers is constrained by multiple factors, including host-microbe and 

microbe-microbe interactions, as well as the interplay between the two. While much can be 

learned from pairwise relationships between individual hosts and microbes, or individual microbes 

with themselves, the ensemble of interrelations between the host and microbial consortia may 

lead to different outcomes that are not easily predicted from the individual interactions. Their study 

can thus provide new insights into the complex relationship between plants and microbes. Of 

particular importance is how strain-specific such plant-microbe-microbe interactions are, and how 

they eventually affect plant health. Here, we test strain-level interactions in the phyllosphere 

between groups of co-existing commensal and pathogenic Pseudomonas among each other and 

with A. thaliana, by employing synthetic communities of genome-barcoded isolates. We found 

that commensal Pseudomonas prompted a host response leading to a selective inhibition of a 

specific pathogenic lineage, resulting in plant protection. The extent of plant protection, however, 

was dependent on plant genotype, indicating that these effects are host-mediated. There were 

similar genotype-specific effects on the microbe side, as we could pinpoint an individual 

Pseudomonas isolate as the predominant cause for this differential interaction. Collectively, our 

work highlights how within-species genetic differences on both the host and microbe side can 

have profound effects on host-microbe-microbe dynamics. The paradigm that we have 

established provides a platform for the study of host-dependent microbe-microbe competition and 

cooperation in the A. thaliana-Pseudomonas system.  
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Introduction 

Plants, like other complex organisms, host a diverse set of microbes. The assembly of 

these microbial communities is shaped both by host-microbe as well as microbe-microbe 

interactions. These interactions may be of any symbiotic type: mutualistic, commensalistic or 

parasitic, and are dictated by the balance of inhibition and facilitation of growth. As has been 

exemplified in many studies, interactions between organisms are not static, but rather a dynamic 

process that depends on the environment - both biotic [1,2] and abiotic [3,4] - as well as on 

evolutionary history [5,6]. 

Many aspects of the dynamic interactions between plants and microbes have been studied 

in considerable detail, not least because of their implications for agriculture and ecology. 

Colonization of the plant depends on the ability of microbes to grow on and in the host, but also 

on the antagonistic ability of the host to promote or restrict such microbial growth. In the case of 

pathogens, there is often a co-evolutionary arms race, in which plants evolve recognition and 

immune tools to restrict the growth of microbes, while microbes evolve evasion and an offensive 

arsenal to further populate the plant [7,8]. These co-evolutionary dynamics typically fuel the 

generation of genetic diversity within both host and microbe, and the dependence of microbial 

colonization and host health on intraspecific variation has been documented in numerous studies 

[5,9–11]. Nonetheless, the extent to which intraspecific host variation shapes overall microbial 

composition is minimal  [3,4], with the most dramatic effects seen for specific taxa that are 

recognized by the immune system [12,13]. Instead, other environmental factors have a much 

larger influence on the overall composition [3,4], including other resident microbes [1,14,15]. 

Taken together, this suggests that successful colonizers reflect compatibility to grow in the 

presence of both the host and other microbes, and that this compatibility depends on their genetic 

makeup.  

The colonizing microbes exert differential effects on host health - from harmful [16] to 

beneficial [17]. These effects are mainly related to microbial load, since overpopulation of the 

plant by microbes can negatively impact its health [9,18]. Nonetheless, the host has the genetic 

arsenal to control the growth of some microbes, thus avoiding negative outcomes [7]. This raises 

questions about the ability of the host plant to differentially recognize and respond to a consortium 
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of microbes with a range of functions, i.e. differentiating friend from foe in a complex assembly of 

microbial taxa. While there is a growing body of literature about host response to individual 

pathogens [19] and individual commensals [20], a more realistic scenario is the integrated host 

response to communities that include both diverse pathogens and diverse commensals.  

In the same way, the numerous constraints resulting from multiple host-microbe and 

microbe-microbe interrelations create a complex system of relationships, making extrapolation of 

rules from simplistic systems likely difficult. For example, overpopulation of the plant by one 

microbe can result in negative health impacts, but these might be mitigated in the presence of 

other microbes [17,21]. While studies of microbe-microbe interactions in planta have paved the 

way for important findings about their impact on the overall community [14,15], the effect of the 

host on such microbial interactions has often not been considered, despite the host being able to 

affect these via direct host-microbe interactions [22]. Hence, the high degree of 

interconnectedness at the host-microbe-microbe interface calls for holistic research of this 

system, rather than tackling individual components, to unravel dynamics that result from the 

multiple constraints. Such an approach can be conducted using synthetic communities, which 

establish causality and not only associations between microbe-microbe and plant-microbe 

interactions [23]. 

In a previous study, Karasov and colleagues [11] surveyed Pseudomonas populations 

from leaves of wild Arabidopsis thaliana plants in south-west Germany. Among these, one 

lineage, which was highly pathogenic in axenic infections, often dominated endophytic microbial 

communities of A. thaliana leaves. Nonetheless, this lineage was isolated from plants without any 

visible disease symptoms, suggesting that other factors, including co-colonizing microbes, were 

mitigating the pathogenic phenotype. This includes other Pseudomonas lineages, which did not 

appear to have any significant impacts on host health when tested individually [11]. 

Here, we took advantage of our collection of wild Pseudomonas isolates to investigate 

intraspecific host-microbe-microbe dynamics by infecting A. thaliana plants with synthetic 

Pseudomonas communities. Specifically, we examined interactions between pathogenic and 

commensal Pseudomonas with the host leaves and with themselves, and the linkage of these to 

the host health. We found that the host facilitated protective commensal-pathogen interactions, 

and revealed further complex interactions that could not be realized by studying host-microbe or 

microbe-microbe relationships individually. 
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Results 

Genome barcoding of Pseudomonas isolates and experimental design 

To test possible host-commensal-pathogen dynamics in local populations, we colonized six A. 

thaliana genotypes with synthetic bacterial communities composed of pathogenic and commensal 

Pseudomonas candidates. Pathogenicity classification was based on demonstrated pathogenic 

potential effects of different Pseudomonas lineages in the Karasov collection [11]. Only one 

lineage - which dominated local plant population - was associated with pathogenicity, both 

according to its negative impact on rosette weight and to visible disease symptoms [11]. This 

lineage was previously named “OTU5” (Operational Taxonomic Unit number 5) [11]. We 

henceforth call “ATUE5” (isolates sampled from Around TUEbingen, group 5) to all isolates that 

share a common 16S rDNA sequence in the V3-V4 region, previously associated with 

pathogenicity, and “non-ATUE5” to all other Pseudomonas from the Karasov collection [11]. We 

interchangeably use the terms pathogens and ATUE5, as well as commensals and non-ATUE5. 

We used host genotypes that originated from the same host populations from which the 

Pseudomonads were isolated - neary Tübingen, Germany (Figure 1A), aiming to reflect 

interactions between coexisting hosts and microbes. 

Overall, seven pathogenic Pseudomonas and seven commensal isolates were chosen, 

prioritizing those with the highest estimated abundance in the field (Figure 1B). The abundance 

was estimated by the number of similar isolates (defined as nucleotide sequence divergence less 

than 0.0001 in their core genome) sampled in the original survey. Thus, the chosen isolates act 

as representatives for other similar isolates. In total, all 14 Pseudomonas isolates were classified 

as belonging to four OTUs, following 16S rDNA clustering at 99% sequence identity. Because of 

the high relatedness of several of the isolates, we could not rely upon a single endogenous genetic 

marker to distinguish between isolates. Instead, we genome-barcoded each of the isolates. We 

employed the mini-Tn7 system [24] to insert a single-copy of a 22 bp long unique sequence, 

flanked by universal priming sites, into the chromosome of each isolate (Illustration in Figure 

S1A). We validated the sequence of all barcodes in the corresponding isolates using Sanger 

sequencing (Table S1), and confirmed barcode integration by barcode-specific PCR (Figure 

S2A). Furthermore, we confirmed that barcode-amplification yielded the expected products when 

PCR-amplified from DNA extracted from infected A. thaliana individuals (Figure S2B). While 

barcoding slightly impaired the growth rates of the isolates P3 and P4, the majority of barcoded 
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bacteria exhibited similar growth dynamics as the non-barcoded parental strains when tested in 

Lysogeny Broth (LB) medium (Figure S3).  

 
Figure 1. Study system. A. Location of original A. thaliana and Pseudomonas sampling sites around 

Tübingen (Germany). B. Taxonomic representation of the 14 Pseudomonas isolates used, and their 

respective abundance in the 1,524 strains of the Karasov collection  [11]. Isolates were binned according 

to similarity (divergence < 0.0001 in core genome). Taxonomic assignment is indicated for each ATUE 

group (corresponding to a specific OTU in [11]). ‘P’ - Pathogen candidate. ‘C’ - Commensal candidate. 

 

Next, we constructed three synthetic communities using the barcoded isolates: An 

exclusively pathogenic synthetic community, comprising the seven ATUE5 isolates (hereafter 

‘PathoCom’), an exclusively commensal synthetic community, comprising the seven non-ATUE5 

isolates (hereafter ‘CommenCom’), and a joint synthetic community comprising all 14 isolates - 

both pathogens and commensals (hereafter ‘MixedCom’). Isolates were mixed in an equimolar 

fashion, and their absolute starting concentration was identical in each synthetic community. 

Thus, the inoculum of the MixedCom with 14 isolates had twice the total number of bacterial cells 

as either the PathoCom or CommenCom inoculum.   

The community experiments were conducted in plants grown on soil in the presence of 

other microbes. Our decision to perform experiments on non-sterile soil stemmed from initial 
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observations that the infection outcomes of plants grown on soil were more consistent with the 

outcomes observed in the field than infections of axenically grown plants. Specifically, our initial 

isolation of the focal bacterial strains was done from plants in the field that were alive and not 

obviously diseased [11]. In the lab, axenic infections with these strains showed rapid and dramatic 

phenotypic effects on the plants, often killing the plants as early as three days-post-infection 

(Figure S4). In contrast, soil-grown plants displayed only mild disease symptoms and decreased 

size 12 dpi (Figure S4), phenotypes more consistent with those observed in the field.  

To more closely mimic natural infections, which likely occur through the air, we chose to 

infect plants by spraying with bacterial suspension, rather than direct leaf infiltration, as is common 

for testing of leaf pathogenic bacteria in A. thaliana. Twenty one days after sowing, we spray-

infected the leaves of soil-grown A. thaliana plants raised in growth chambers with the three 

synthetic communities, and with bacteria-free buffer (hereafter ‘Control’). Twelve days after 

infection (dpi), we sampled the fresh rosettes, weighed them and extracted DNA (see Methods). 

Subsequently, we coupled barcode-specific PCR and qPCR. We included an amplicon from an 

A. thaliana-specific genomic sequence in the qPCR assay, which allowed us to approximate the 

absolute abundance per isolate, i.e., the ratio of isolate genome copies to plant genome copies 

(Figure S1B).  
 

Host-genotype effects on composition of synthetic communities 

The six A. thaliana genotypes used in this study were originally sampled from the same 

geographic region (Figure 1A) - a maximum of 40 km apart. They were all from the area from 

which the Pseudomonas strains used were isolated [11], and they were also all from  the same 

host genetic group [25]. In accordance, we expected that host genotype would have little, if any 

effect on the composition of our synthetic communities of local Pseudomonas isolates. However, 

while not large, there was a significant effect of host genotype, explaining 5 to 12% of 

compositional variation in the different communities, as determined by permutational multivariate 

analysis of variance (PERMANOVA) with Bray–Curtis distances (Table 1). For comparison, the 

batch effect (between the different experiments) explained up to 26% of compositional variation. 

Analysis of similarities (ANOSIM) within each experiment indicated similar trends as 

PERMANOVA - with the genotype having a significant effect on isolate composition in each 

synthetic community (Table S2A). 
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Table 1. Permutational multivariate analysis of variance (PERMANOVA) based on Bray-Curtis distances, 

for compositions of the 14 barcoded bacteria in treated hosts. The analysis was constrained by the host 

genotype and the experiment batch (‘exp’) to estimate their effect on the explained variance. 

 
 

We then examined bacterial composition clustering according to host genotype, by 

applying multilevel pairwise comparison using adonis (pairwise adonis, based on Bray-Curtis 

distances). Some pairs of genotypes differed in their effects on all three communities (Table S2B), 

an observation that was supported by nonmetric multidimensional scaling (NMDS) ordination of 

bacterial composition in each treatment (Figure S5A). The cumulative load of all isolates was 

associated with the loading on the NMDS1 axis (Pearson's r > 0.99 and p-value < 2.2e-16, for all 

three communities), suggesting that a part of the compositional differences between host 

genotypes was due to absolute rather than relative abundance. In agreement, we observed 

differences in total bacterial load between the host genotypes, and the nature of the differences 

was treatment-dependent (Figure S5B). 

How do these different community compositions affect plant growth? 

Host-genotype dependent pathogenicity, growth promotion or protection 

PathoCom infection caused plants to grow less than control plants, during the 12 days of the 

experiment (Figure 2; Figure S6). In two out of the six host genotypes - Lu3-30 and TueWal-2 - 

Treatment Df Sum Sq Pseudo-F R2 Pr(>f) Variation source 
 5 4.83 4.67 0.1199 0.0005 Genotype 
 1 1.68 8.11 0.0417 0.0005 Exp 

PathoCom 5 1.08 1.04 0.0268 0.3973 Genotype:Exp 
 158 32.68 NA 0.8116 NA Residuals 
 169 40.27 NA 1.0000 NA Total 
 5 2.36 3.88 0.0839 0.0005 Genotype 
 1 7.32 60.19 0.2604 0.0005 Exp 

CommenCom 5 1.53 2.52 0.0545 0.0030 Genotype:Exp 
 139 16.89 NA 0.6012 NA Residuals 
 150 28.1 NA 1.0000 NA Total 
 5 2.17 1.99 0.0456 0.0020 Genotype 
 1 6.29 28.89 0.1324 0.0005 Exp 

MixedCom 5 2.03 1.86 0.0427 0.0020 Genotype:Exp 
 170 36.99 NA 0.7793 NA Residuals 
 181 47.47 NA 1.0000 NA Total 

 
In bold, statistically significant relationships (P  0.05). 
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weight decrease was milder, indicating a certain level of resistance to the PathoCom members 

(mean difference to control: Lu3-30 -29.1 mg [-59.3, -1.4], TueWal-2 -30.0 mg [-46.4, -13.4], Kus3-

1 -77.2 mg [96.4, 54.2], Schl-7 -93.1 mg [123.5, 67.7], Ey15-2 -92.5 mg [116.4, 66.0] and HE-1 -

53.9 mg [82.6, 27.0], with 95% confidence intervals in brackets). To validate that the effect of the 

PathoCom on plant weight was due to bacterial activity, and not merely a host response to the 

inoculum (e.g., PAMP-triggered immunity), we infected plants with heat-killed PathoCom. We 

found a minor weight decrease in three out of the six genotypes, but the overall contribution to 

weight reduction was small (Figure S7; heat-killed PathoCom accounts for 14% of the variation 

explained by the living PathoCom in the model shown).  

In contrast to PathoCom, infections with CommenCom led to a slight increase in fresh 

weight, suggesting plant growth promotion activity or alternatively protection from resident 

environmental pathogens (Figure S6A). This effect was independent on the host genotype 

(Figure S6B).  

Importantly, the negative growth effects of the PathoCom were greatly reduced in the 

MixedCom experiment. Plants infected with MixedCom grew to a similar extent as the control, 

with the exception of the genotype Ey15-2, which continued to suffer a substantial weight 

reduction when infected by the mixed community  (Figure 2; mean difference to Control = -48.5 

mg, [-74.8, -22.6] at 95% confidence interval). Nonetheless, this reduction was less than that 

caused on Ey15-2 by PathoCom. Hence, co-colonization of pathogenic Pseudomonas with 

commensals led to enhanced growth, while the magnitude was host-genotype dependent. 

These results support the role of ATUE5 strains as pathogenic, and provide additional 

evidence for protection against ATUE5 by commensal Pseudomonas strains that coexist with 

ATUE5 in nature. Next, we wanted to learn whether and how changes in bacterial abundance or 

shifts in Pseudomonas community composition led to differential impacts on growth of the infected 

plants.  
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Figure 2. Commensal Pseudomonas protect the plant in a host-dependent manner. Each of the six 

A. thaliana genotypes used in this study was treated with Control, PathoCom, CommenCom and 

MixedCom. Fresh rosette weight was measured 12 dpi. The top panel presents the raw data, the breaks in 

the black vertical lines denote the mean value of each group, and the vertical lines themselves indicate 

standard deviation. The lower panel presents the mean difference to control, inferred from bootstrap 

sampling [26][27], indicating the distribution of effect sizes that are compatible with the data. 95% 

confidence intervals are indicated by the black vertical bars. Shown here are the results of one experiment. 

A second experiment gave similar results. 

Differences in bacterial load and impact per a given load of pathogenic and commensal 

Pseudomonas  

We hypothesized that the total cumulative load of all barcoded isolates (i.e., regardless of the 

identity of the colonizing isolates) should be a significant explanatory variable for weight 

differences among treatments. We based this expectation on the association previously found 

between abundance in the field and pathogenicity for similar Pseudomonas isolates [11].  

Contrary to our hypothesis, we found that while the differences in plant weight between 

treatments were considerable, the bacterial loads of MixedCom and PathoCom were not 

significantly different from one another (Figure 3A). This result implies that plant weight is also a 

function of bacterial composition, and not load per se. In agreement with this inference, the load-

weight relationships were found to be treatment-dependent, indicating that weight can be better 

predicted by load within a treatment than among treatments (difference in expected log-scaled 

predictive density = -52.9 and in standard error = 9.4 when comparing the model weight ~ 
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treatment * log10(isolates load) + genotype + experiment + error to the same model without the 

treatment factor, using leave-one-out cross-validation; see Methods).  

 
Figure 3. Plants are more tolerant to commensals than pathogens. A. Density plot of log10(bacterial 

load) for the three synthetic communities. Vertical dashed lines indicate means, and the shaded areas 95% 

credible intervals of the fitted parameter, following the model log10(bacterial load) ~ treatment + genotype 

+ experiment + error. B. Correlation of log10(bacterial load) with rosette fresh weight. Shaded areas indicate 

95% confidence intervals of the correlation curve; Bacterial load was defined as the cumulative abundance 

of all barcoded isolates that constituted a synthetic community. n=170 for PathoCom, n=151 for 

CommenCom, and n=182 for MixedCom. 

 

Notably, we noticed that the regression slope of PathoCom was more negative than the 

regression slope of CommenCom, suggesting that ATUE5 isolates had a stronger negative 

impact on weight per bacterial cell than non-ATUE5 isolates (Figure 3B; Figure S8A; 

CommenCom mean effect difference to PathoCom: 12.0 mg [4.4,19.5], at 95% credible interval 

of the parameter log10(isolates load) * treatment). From the reciprocal angle, that of the host, it 

can be seen that plants were less tolerant to ATUE5 isolates than non-ATUE5 isolates. MixedCom 

presented a regression slope between the two exclusive synthetic communities, implying that the 

impact on plant growth resulted from both groups - ATUE5 and non-ATUE5 (MixedCom mean 

effect difference to PathoCom: 4.8 mg [-1.6,11.8], at 95% credible interval of the parameter 

log10(isolates load) * treatment). Lastly, we observed differential regression slopes between the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.04.08.438928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438928
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shalev Skriptchak et al. 
 

 

  

11 

host genotypes, particularly among Pathocom- and CommenCom-infected hosts, revealing 

differential tolerance levels to the same Pseudomonas isolates (Figure S8B-C).  

We have described two general differences between pathogenic and commensal 

Pseudomonas: (i) on average pathogens have a greater impact per a given load on plant growth, 

and (ii) they can reach higher titers in A. thaliana leaves. Together, this points to dual effects of 

pathogens on plant health. In order to explain how commensal non-ATUE5 isolates were able to 

mitigate the harmful impact of pathogenic ATUE5 in MixedCom, we next addressed the bacterial 

compositionality in MixedCom-infected hosts.  

Protection by commensal members and host-mediated pathogen suppression 

Given that (i) MixedCom-infected plants grew better than PathoCom-infected plants (Figure 1A; 

Figure S6A), (ii) there was no considerable difference in total load between PathoCom- and 

MixedCom-infected plants (Figure 3A), and (iii) pathogens were found to cause more damage 

per cell (Figure 3B; Figure S8A), we expected commensal members to dominate MixedCom.  

Consistent with our expectations, the composition of MixedCom was more similar to 

CommenCom than PathoCom (Figure 4A). We then analyzed the change in bacterial abundance 

due to the mixture of pathogens and commensals at the isolate level. We compared the absolute 

abundance of each isolate among the treatments: Pathogenic isolates were compared between 

PathoCom and MixedCom, and commensals between CommenCom and MixedCom. In general, 

the abundance of pathogens was significantly lower in MixedCom, while the abundance of 

commensals was either similar or slightly higher in MixedCom (Figure 4B). Thus, the mixture of 

pathogens and commensals led to pathogen suppression, while commensal load was largely 

unchanged in MixedCom compared to CommenCom. Thus, non-ATUE5 isolates appear to be 

more competitive in the MixedCom context than ATUE5 isolates. The abundance change of each 

isolate in the presence of additional community members was similar among the host genotypes, 

implying that commensal-pathogen interactions were majorly a general trait, possibly independent 

of the host (Figure S9, Table S3).  

We therefore tested for direct, host-independent interactions among isolates with an in 

vitro growth inhibition assay (Methods). Each of the 14 isolates was examined for growth inhibition 

against all other isolates, covering all possible combinations of binary interactions. In total, three 

strains out of the 14 had inhibitory activity; all were non-ATUE5 (Figure 4C). Specifically, C4 and  
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Figure 4. Differential inhibition patterns of pathogens by commensals in vitro and in planta A. 

Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distances between samples infected 

with the three synthetic communities, across two experiments. The abundance of all 14 barcoded isolates 

was measured in all communities, including PathoCom and CommenCom, which contained only 7 of the 

14 isolates, to account for potential cross contamination and to avoid technical bias. Oct=October, 

Aug=August. B. Abundance change of the 14 barcoded isolates in MixedCom when compared to their 

exclusive community, in infected plants (i.e. PathoCom for ATUE5, and CommenCom for non-ATUE5). 

Abundance mean difference was estimated with the model log10(isolate load) ~ treatment * experiment + 

error, for each individual strain. Thus, the treatment coefficient was estimated per isolate. Dots indicate the 

medians, and vertical lines 95% credible intervals of the fitted parameter. C. Taxonomic representation of 

the 14 barcoded isolates tested in vitro for directional interactions. Ring colors indicate the bacterial isolate 

classification, ATUE5 or non-ATUE5. Directional inhibitory interactions are indicated from yellow to black. 

D. Correlation network of relative abundances of all 14 barcoded isolates in MixedCom-infected plants. 

Strengths of negative and positive correlations are indicated from yellow to purple.  Boldness of lines is also 

indicating the strength of correlation, and only correlations > |±0.2| are shown. Node colors indicate the 

bacterial isolate classification, ATUE5 or non-ATUE5. E. in planta Abundance change of the seven ATUE5 

isolates in non-ATUE5 inclusive treatments, in comparison to PathoCom. Abundance mean difference was 

estimated with the model log10(isolate load) ~ treatment * experiment + error, for each individual strain. 
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Thus, the treatment coefficient was estimated per isolate. Dots indicate the medians, and vertical lines 95% 

credible intervals of the fitted parameter. ‘Combi’ - combination of the isolates C3,C4,C5 and C7. 

 

C5 showed the same inhibition pattern: Both inhibited all pathogenic isolates but P1, and both 

inhibited the same two commensals, C6 and, only weakly, C3. C3 inhibited a total of three ATUE5 

isolates: P5, P6 and P7. In summary, the in vitro assay provides evidence that among the tested 

Pseudomonas, direct inhibition was a trait unique to commensals, and susceptible bacteria were 

primarily pathogens. This supports the notion that ATUE5 and non-ATUE5 isolates have divergent 

competition mechanisms, or at least differ in the strength of the same mechanism.  

The in vitro results recapitulated the general trend of pathogen inhibition found among 

treatments in planta. Nevertheless, we observed major discrepancies between the two assays. 

First, P1 was not inhibited by any isolate in the host-free assay (Figure 4C), though it was the 

most inhibited member in planta, among the communities (Figure 4B). Second, no commensal 

isolate was inhibited in plana, among communities (Figure 4B), while two commensals - C3 and 

C6 - were inhibited in vitro (Figure 4C). Both could suggest an effect of the host on microbe-

microbe interactions. To explore such effects, we analysed all pairwise microbe-microbe 

abundance correlations within MixedCom-infected hosts. When we used absolute abundances, 

all pairwise correlations were positive, also in CommenCom and PathoCom (Figure S10A), 

consistent with there being a positive correlation between absolute abundance of individual 

isolates and total abundance of the entire community (Figure S11), i.e., no isolate was less 

abundant in highly colonized plants than in sparsely colonized plants. It indicates that there does 

not seem to be active killing of competitors in planta in the CommenCom, which is probably not 

surprising. With relative abundances, however, a clear pattern emerged, with a cluster of 

commensals that were positively correlated, possibly reflecting mutual growth promotion, and 

several commensal strains being negatively correlated with both P6 and C7, possibly reflecting 

unidirectional growth inhibition (Figure 4D). We did not observe the same correlations within 

CommenCom among commensals and within PathoCom among pathogens as we did for either 

subgroup in MixedCom, reflecting higher-order interactions (Figure S10B). 

The in planta patterns, measured in complex communities, did not fully recapitulate what 

we had observed in vitro, with pairwise interactions. We therefore investigated individual 

commensal isolates for their ability to suppress pathogens in planta, and also tested the 

entourage effect. We focused on the three commensals C3, C4 and C5 ,which had directly 

inhibited pathogens in vitro,  and C7, which had not shown any inhibition activity in vitro, as control. 
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We infected plants with mixtures of PathoCom and each of the four individual commensals, as 

well as PathoCom mixed with all four commensals. Since pathogen inhibition seemed to be 

independent of the host genotype, we arbitrarily chose HE-1. Regardless of the commensal 

isolate, only P1 was significantly suppressed in all commensal-including treatments (Figure 4E), 

with P2,P3 and P4 being substantially inhibited only by the mixture of all four commensals. 

Together with the lack of meaningful inhibitory difference between individual commensals, this 

indicates that pathogen inhibition was either a function of commensal dose, or a result of 

interaction among commensals.   

An important finding was that four commensal strains had much more similar inhibitory 

activity in planta than in vitro, and that the combined action was greater than the individual effects. 

Together, this suggested that the host contributes to the observed interactions between 

commensal and pathogenic Pseudomonas. To begin to investigate this possibility, we studied 

potential host immune responses with RNA sequencing. 

Defensive response elicited by non-ATUE5 inferred from host transcriptome changes 

For the RNA-seq experiment, we treated plants of the genotype Lu3-30 with the three synthetic 

communities, and also used a bacteria-free control treatment. We sampled the treated plants at 

three and four days after infection (dpi), thus increasing the ability to pinpoint differentially 

expressed genes (DEGs) between treatments that are not highly time-specific. Exploratory 

analysis indicated that the two time points behaved similarly, and they were combined for further 

in-depth analysis. 

We first looked at DEGs in a comparison between infected plants and control; with 

PathoCom, there were only 14 DEGs, with CommenCom 1,112 DEGs, and MixedCom 1,949 

DEGs, suggesting that the CommenCom isolates, which are also present in the MixedCom, 

elicited a host stronger response than the PathoCom members. Furthermore, the high number of 

DEGs in MixedCom - higher than both PathoCom and CommenCom together - suggest a 

synergistic response derived from inclusion of both PathoCom and CommenCom members. 

Alternatively, this could also be a consequence of the higher initial inoculum in the 14-member 

MixedCom than either the 7-member PathoCom or 7-member CommenCom, or a combination of 

the two effects (Figure 5A-B; Figure S12). 
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The genes induced by the MixedCom fell into two classes: Group 5 (Figure 5A-B) was also 

induced, albeit more weakly, by the CommenCom, but not induced by the PathoCom. This 

 
Figure 5. Only commensal members elicit a host-defensive response. A. Relative expression (RE) 

pattern of 2,727 differentially expressed genes (DEGs) found in at least one of the comparisons of 

CommenCom, PathoCom and MixedCom with control. DEGs were hierarchically clustered. B. Euler 
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diagram of DEGs in PathoCom-, CommenCom- and MixedCom-treated plants, compared with control 

(log2[FC] > |±1|; FDR < 0.05; two-tailed Student’s t-test followed by Benjamini-Hochberg correction). C. 

Overrepresented GO terms in upregulated DEG subsets: CommenCom and MixedCom intersection (189 

DEGs), CommenCom unique (630 DEGs) and MixedCom unique (1,370 DEGs). Only the top ten non-

redundant GO terms are presented; for the full lists of overrepresented GO terms and expression data, see 

Table S4 and Supplementary Data 1. D. Expression values of six defense marker-genes. Mean ± SEM. 

Groups sharing the same letter are not significantly different (Tukey-adjusted, P>0.05); n=4. 

 

group was overrepresented for non-redundant gene ontology (GO) categories linked to defense 

(Figure 5C) and most likely explains the protective effects of commensals in the MixedCom. 

Specifically, among the top ten enriched GO categories in the shared MixedCom and 

CommenCom set, eight relate to immune response or response to another organism (‘defense 

response’, ‘multi−organism process’, ‘immune response’, ‘response to stimulus’, ‘response to 

biotic stimulus’, ‘response to other organism’, ‘immune system process’, ‘response to 

stress’)(Figure 5C). 

Group 4 was only induced in MixedCom, either indicating synergism between commensals 

and pathogens, or being a consequence of the higher initial inoculum. This group included a small 

number of redundant GO categories indicative of defense, such ‘salicylic acid mediated signaling 

pathway’, ‘multi-organism process’, ‘response to other organism’ and ‘response to biotic stimulus’ 

(Table S4). Moreover, the MixedCom response cannot simply be explained by synergistic effects 

or commensals suppressing pathogen effects, since there was a prominent class, Group 2, which 

included genes that were induced in the CommenCom, but to a much lesser extent in the 

PathoCom or MixedCom. From their annotation, it was unclear how they can be linked to infection 

(Figure 5C). 

About 500 genes (Group 1) that were downregulated by all bacterial communities are 

unlikely to contain candidates for commensal protection (Figure 5A).  

Cumulatively, these results imply that the CommenCom members elicited a defensive 

response in the host regardless of PathoCom members, while the mixture of both led to additional 

responses. To better understand if selective suppression of ATUE5 in MixedCom infections may 

have resulted from the recognition of both non-ATUE5 and ATUE5 (reflected by a unique 

MixedCom set of DEGs) or solely non-ATUE5 (a set of DEGs shared by MixedCom and 

CommenCom), we examined the expression of key genes related to the salicylic acid (SA) 

pathway and downstream immune responses. Activation of the SA pathway was previously 
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related to increased fitness of A. thaliana in the presence of wild bacterial pathogens, a 

phenomenon which was attributed to an increased systemic acquired resistance (SAR) [28]. We 

observed a general trend of higher expression in MixedCom- and CommenCom-infected hosts 

for several such genes (Figure 5D). Examples are PR1 and PR5, marker genes for SAR and 

resistance execution. Therefore, according to the marker genes we tested, non-ATUE5 elicited a 

defensive response in the host, regardless of ATUE5 presence. 

We conclude that the expression profile of non-ATUE5 infected Lu3-30 plants suggests 

an increased defensive status, supporting our hypothesis regarding host-mediated ATUE5 

suppression. We note, however, that ATUE5 suppression was not associated with full plant 

protection (thus control-like weight levels) in all plant genotypes. One, Ey15-2, was only partially 

protected by MixedCom (Figure 2), despite levels of pathogen inhibition being not very different 

from other host genotypes (Figure S9).  

Lack of protection in the genotype Ey15-2 explained by a single pathogenic isolate 

The fact that Ey15-2 was only partially protected by MixedCom (Figure 2), manifest the 

importance of the host genotype in plant-microbe-microbe interactions, and reflecting dynamics 

between microbes and plants in wild populations. We wanted to reveal the cause for this 

differential interaction. 

Our first aim was to rank compositional variables in MixedCom according to their impact 

on plant weight, regardless of host genotype. Next, we asked whether any of the top-ranked 

variables could explain the lack of protection in Ey15-2. With Random Forest analysis, we 

estimated the weight-predictive power of all individual isolates in MixedCom, as well as three 

cumulative variables: Total bacterial abundance, total ATUE5 abundance, and total non-ATUE5 

abundance. We found that the best weight-predictive variable was the abundance of pathogenic 

isolate P6, followed by total bacterial load and total ATUE5 load - which were probably 

confounded by the abundance of P6 (Figure 6A). In agreement, P6 was the dominant ATUE5 in 

MixedCom (Figure 6B, Figure S13A). We thus hypothesized that the residual pathogenicity in 

MixedCom-infected Ey15-2 was caused by P6.  

Although P6 grew best in Ey15-2, the difference to most other genotypes was not 

significant (Figure S13B). However, P6 was particularly dominant in Ey15-2 (Figure 6B).  

Given that pathogen load in Ey15-2 was driven to a substantial extent by P6, we assumed 

that this isolate had a stronger impact on the weight of this genotype than in others. We 
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experimentally validated that removal of P6 restored protection, when Ey15-2 was infected with 

MixedCom (Figure 6C).  

 
Figure 6. The effect of the isolate P6 on weight in MixedCom-infected hosts, and particularly on the 

host Ey15-2.  A. Relative importance (mean decrease accuracy) of 20 examined variables in weight 

prediction of MixedCom-infected hosts, as determined by Random Forest analysis. The best predictor was 

abundance of isolate P6. ‘Total Bacterial’, ‘Total ATUE5’ and ‘Total non-ATU5’ are the cumulative 

abundances of the 14 isolates, 7 ATUE5 isolates, and 7 non-ATUE5 isolates, respectively. B. Abundance 

of P6 compared with the other 13 barcoded isolates in MixedCom-infected hosts, across the six A. thaliana 

genotypes used in this study. Dots indicate the medians, and vertical lines 95% credible intervals of the 

fitted parameter, following the model log10(isolate load) ~ isolate * experiment + error. Each genotype was 

analyzed individually, thus the model was utilized for each genotype separately. Shaded area denotes the 

95% credible intervals for the isolate P6. C. Fresh rosette weight of Ey15-2 plants treated with Control, 
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MixedCom and MixedCom without P6 (MixedCom ΔP6). Fresh rosette weight was measured 12 dpi. The 

top panel presents the raw data, with the breaks in the vertical black lines denoting the mean value of each 

group, and the vertical lines themselves indicating standard deviation. The lower panel presents the mean 

difference to control, plotted as bootstrap sampling [26,27], indicating the distribution of effect size that is 

compatible with the data. 95% confidence intervals are indicated by the black vertical bars. 

 

Collectively, these results reveal the outcome of direct host-microbe interactions in the 

context of multiple microbes. Furthermore, they illustrate how plant genotype affects colonization 

by microbes, and how this may lead to plant health outcomes.  

Discussion 

In this work, we aimed to understand how complex interactions between closely related 

Pseudomonas strains affect plant health, considering host-microbe, microbe-microbe and host-

microbe-microbe relationships. Not surprisingly, we found that genetics mattered at all levels: 

membership of Pseudomonas strain in commensal or pathogenic clade, genetic variation within 

each Pseudomonas clade, and genetic diversity among A. thaliana host strains. Commensal 

Pseudomonas can protect A. thaliana from the effects of pathogenic Pseudomonas by reducing 

their proliferation within the plant. However, although this was a general phenomenon, one A. 

thaliana genotype was only partially protected, and this was due to this genotype being particularly 

susceptible to a specific Pseudomonas pathogen. Together, this demonstrates how the host 

environment can affect microbe-microbe interactions.  

The importance of protective interactions for plant health has been demonstrated in both 

agricultural and wild contexts [1,21,29]. Our results reveal the extreme specificity of these 

interactions, with closely related pathogenic isolates interacting differently with protective strains  

We found that upon co-infection with a mixture of pathogens and commensals, pathogens were 

preferentially suppressed. Perhaps our most important finding was that different plant responses 

induced by commensals, pathogens and mixed communities. Specifically, commensals, but not 

pathogens induced transcriptome signatures of defense, and these changes further enhanced in 

the presence of pathogens. In addition, there were sets of genes that were no longer induced 

when plants were infected by the mixed community rather than only commensals, as well as sets 

of genes specifically induced only by the mixed community. This suggests not only that microbe-

microbe interactions alter the plant response, but also that these altered plant responses are 
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causal for the differential proliferation of commensals and pathogens in plants affected with mixed 

communities. These findings support the hypothesis that the complex interplay between the plant 

immune system and the microbiota goes beyond the individual plant-pathogen interactions, 

eventually leading to microbial homeostasis [30]. The exact mechanism behind the synergistic 

effect we describe must still be investigated, though known cases of host-dependent protective 

interactions provide plausible explanations. For example, early exposure to harmless rhizosphere 

microbes can prime the plant to suppress at a later time point a broad range of pathogens even 

in distal tissues, a phenomenon known as induced systemic resistance (ISR) [28]. 

Another strength of our study is that we used naturally co-occurring biological material, 

namely strains of A. thaliana host and Pseudomonas bacteria that had been isolated from a single 

geographic area. Our results help to explain why the Pseudomonas pathogens used here, which 

are lethal in mono-associations, seem to cause only limited disease in the field [11], namely their 

effects being modified by other microbes, including other Pseudomonas strains.  

A limitation of the current study was that we examined only a few commensal isolates, 

and tested them mostly in complex mixtures. A next logical step will be to test the protective 

effects of individual commensal Pseudomonas strains from the local Tübingen [11] collection, to 

explore (i) how common protection by commensal Pseudomonas is, (ii) how much it depends on 

the genotype of the pathogen, and (iii) what the genes are that support protection. 

We used pathogenic isolates that share over 99% of their 16S rDNA signature, and are 

highly similar in their core genome [11]. Nonetheless, we found functional differences, relating to 

both host-microbe and microbe-microbe interactions, exemplified by an individual pathogenic 

Pseudomonas isolate that both dominated the mixed synthetic communities, and that caused a 

lack of protection in one host genotype. In agreement, Karasov and colleagues [11] had already 

found that members of this clade of Pseudomonas differ substantially in their ability to cause 

disease in mono-associations.   

Friedman and colleagues [31] accurately predicted microbial community structures in the 

form of trios based on information about pairwise interactions. How easily, however, higher-order 

communities can be predicted from pairwise interactions, remains to be seen, although recent 

statistical advances are promising [32,33]. The genome-barcoding method we developed allows 

strain-level tracking, and thus can be implemented to understand multistrain community 

assembly. However, in its current format, it is limited to low-throughput studies, mainly due to the 

cumbersome cloning and transformation serial process. An alternative is presented by high-
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throughput experiments that combine whole-genome sequencing with statistical reconstitution of 

known haplotypes [34,35], and which could be employed to study the dynamics of more complex 

communities. A growing body of literature is revealing effects that can only be found by the 

ensemble of relationships. For example, in  inflammatory bowel disease [36] disease has been 

linked to changes in microbial community structure rather than to an individual microbe. Another 

example is provided by plant beneficial consortia, in which only microbial mixtures, but not any 

single strain triggered pathogen suppression [37,38]. 

Further advancements in understanding of the plant-microbe-microbe complex in the light 

of plant health can improve our agriculture practices, allowing the development of more 

sustainable plant protection methods [39–41].   

Methods 

Plant material 

The plant genotypes HE-1, Lu3-30, Kus3-1, Schl-7, Ey15-2 and Tue-Wal2 were used in this study, 

all originally collected from around Tuebingen, Germany. More details, including stock numbers, 

can be found in Table S5.  Seeds were sterilized by overnight incubation at −80°C, followed by 

ethanol washes (shake seeds for 5-15min in solution containing 75% EtOH and 0.5% Triton-X-

100, and then wash seeds with 95% EtOH and let them dry in a laminar flow hood). Seeds were 

stratified in the dark at 4°C for 6-8 days prior to planting on potting soil (CL T Topferde; 

www.einheitserde.de). Plants were grown in 60-pots trays (Herkuplast Kubern, Germany), in 

which compatible mesh-net pot baskets were inserted, to allow for subsequent relocation of the 

pots. All plants were grown in short days (8 h of light) at 23°C. Light was applied using Cool White 

Deluxe fluorescent bulbs, at 125 to 175 μmol m-2 s-1. Relative humidity was set to 65%.  

 

Barcoding Pseudomonas isolates 

Excluding the E. coli strains that were used for cloning, all 14 bacterial isolates used in this study 

were classified as Pseudomonas and collected from two locations around Tuebingen (Germany) 

by Karasov and colleagues [11]. Full list, including metadata can be found in Table S1. The 

procedure of genome-barcoding of the 14 bacterial isolates included random barcodes 

preparation, cloning the barcodes into pUC18R6KT-mini-Tn7T-Km plasmid and co-transformation 

of bacteria with the recombinant pUC18R6KT-mini-Tn7T-Km plasmid and pTNS2 helper plasmid 

(both plasmids from [24]). Preparation of barcodes and the flanking priming sites was done by 
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double stranding two overlapping single strand oligos: One that contains restriction sites, 

universal priming site, 16 random nucleotides and an overlapping region (Bar1), and another oligo 

that contains the reverse complement overlapping region, the second universal priming site and 

restriction sites (Bar2), as illustrated in Figure S14; Detailed oligo list in Table S6. The two 

overlapping single strand oligos were mixed in an equi-molar fashion (5ng each, 2μL in total), 

together with 0.2 μL Q5 high-fidelity DNA polymerase (New England Biolabs, Ipswich, MA, USA), 

1x Q5 5x reaction buffer and 225 μM dNTP in a total reaction volume of 20 μL. The mixture went 

through a double stranding reaction using a thermocycler (Bio-Rad Laboratories, Hercules, CA, 

USA), with the following conditions: 95°C for 40 s, 55°C for 60 s and elongation at 72°C for 3 min. 

The resulting product was cloned into pUC18R6KT-mini-Tn7T-Km plasmid, using the restriction 

enzymes XhoI and SacI and ligation with T4 DNA-Ligase (Thermo Fisher Scientific, USA). 

Standard restriction and ligation were conducted, as instructed by the manufacturer protocol. Pir1 

competent E. coli (Thermo Fisher Scientific, USA) cells were transformed with the ligation product, 

and subsequently plated on selective Lysogeny broth (LB) agar (1.75%) with 50 ng/mL 

Kanamycin and 100 ng/mL. Bacterial colonies were validated as successful transformants by 

PCR with the primers p1 and p2 that are specific for the foreign DNA (detailed oligo list in Table 

S6). Positive colonies were grown in LB overnight and then used for subsequent plasmid isolation 

(GeneJET Plasmid Miniprep Kit; Thermo Fisher Scientific, USA). About 150 pUC18R6KT-mini-

Tn7T-Km recombinant plasmids were stored at -4°C, each is expected to contain a unique 

barcode. Sanger sequencing was conducted on a subset of the plasmid library using the primer 

p1, to validate their barcodes sequence. 14 validated barcodes-inclusive plasmids were randomly 

selected for the barcoding of the 14 isolates, and these were used for co-transformation together 

with the plasmid pTNS2 to genome-barcode the selected 14 Pseudomonas isolates, as described 

in [24]. Briefly, Pseudomonas strains were grown overnight in LB, pelleted and washed with 

300mM sucrose solution to create electrocompetent cells, and were finally electroporated with the 

recombinant pUC18R6KT-mini-Tn7T-Km (barcodes inclusive) and pTNS2 in a ratio of 1:1. 

Transformed Pseudomonas isolates were grown on selective LB-agar media with 30 mg/mL 

Kanamycin, and colonies were validated by PCR with the primers p1 and p2 (detailed oligo list in 

Table S6; Gel electrophoresis results in Figure S2A). Positive colonies were grown in LB with 30 

mg/mL Kanamycin overnight, and one portion was stored at -80°C in 25% glycerol, while the other 

portion was used for DNA extraction (Puregene DNA extraction kit; Invitrogen, USA), followed by 

Sanger sequencing to validate the barcodes sequences (sequences detailed in Table S1).  
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Barcoded and WT isolates growth comparison assay 

To compare the growth of the 14 barcoded bacteria with their respective WT, both barcoded and 

WT isolates were grown overnight in Lysogeny broth (LB) and 10 mg/mL Nitrofurantoin (antibiotic 

in which all isolated Pseudomonas can grow), diluted 1:10 in the following morning and grown for 

3 additional hours until they entered log phase. Subsequently, bacteria were pelleted at 3500 g 

and resuspended in LB to a concentration of OD600 = 0.0025, in a 96-wells format plate with a 

transparent, flat bottom (Greiner Bio One, Austria). Finally, the plate was incubated in a plate 

reader at 28°C while shaking, for 10 hours (Robot Tecan Infinite M200; Tecan Life Sciences, 

Switzerland). OD600 was measured in one hour intervals.  

 

Synthetic communities infections and plant sampling  

All synthetic communities were prepared as followed: The relevant barcoded isolates were grown 

overnight in Lysogeny broth (LB) and 30 mg/mL Kanamycin, diluted 1:10 in the following morning 

and grown for 3 additional hours until they entered log phase, pelleted at 3500 g, resuspended in 

10 mM MgSO4 and pelleted again at 3500 g to wash residual LB, and resuspended again in 10 

mM MgSO4 to a concentration of OD600 = 0.2, creating a stock solution per isolate for subsequent 

mixtures. Next, the relevant barcoded isolates were mixed to a final solution with a concentration 

of OD600 = 0.0143 per isolate. Thus, the total concentration per synthetic community was OD600 = 

(0.0143 * isolates number), e.g. PathoCom and CommenCom which comprised 7 isolates had a 

total concentration of OD600 = ~0.1, and MixedCom which comprised 14 isolates had a total 

concentration of OD600 = ~0.2. The prepared volume for any synthetic community was calculated 

by the function: Final volume = number of plants to infect * 2.5ml. Control treatment was sterile 

10 mM MgSO4 solution. Heat-killed PathoCom was made by incubating a portion of the living 

PathoCom in 100°C for two hours. In Murashige and Skoog infections, PathoCom was diluted 

1:10, thus infections were done using O.D. 0.01. All solutions with synthetic communities were 

stored at 4°C overnight, and infections were conducted in the morning of the following day. 

Infections in the Murashige and Skoog (MS) sterile system were done as described by 

Karasov and colleagues [11]. In brief, 12-14 days old plants were infected by drip-inoculating 200 

μl of the corresponding treatment onto the whole rosette. 

The leaves of soil-grown plants were spray-infected, 21 days post sowing. Spraying was 

done with an airbrush (BADGER 250-1; Badger Air-Brush Co., USA), and each plant was sprayed 
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on both the abaxial and adaxial side for about 1.5 s each. Plants of the same treatment group 

were placed together in 60-pots trays (Herkuplast Kubern, Germany), in which compatible mesh-

net pot baskets were pre-inserted to allow for subsequent relocation of the pots. After the 

treatment, the transportable pots were reshuffled in new 60-pots trays to form a full randomized 

block design, thus each tray contained plants from all treatments, in equal amounts. The 

randomized trays were covered with a transparent lid to increase humidity (Bigger Greenhouse-

60x40cm; Growshop Greenbud, Germany). Four days post infection, two built-in openings in the 

lids were opened to allow for better air flow and to limit humidity. Eight days post infection, lids 

were removed. Twelve days post infection, the rosettes of all treated plants were detached using 

sterilized scalpel and tweezers, weighted, washed from epiphytes (sterile distilled water, 70% 

EtOH with 0.1% Triton X-100 and then again with sterile distilled water), dried using sterilized 

paper towels and sampled in 2ml screw cap tubes prefilled with Garnet sharp particles 1mm (Roth, 

Germany). Tubes with the sampled plants were flash freezed in liquid N2, and stored in -80°C. 

 

DNA extraction, barcodes PCR and qPCR 

Frozen sampled plants were used for DNA extraction suitable for metagenomics, using a protocol 

that was previously described by karasov and colleagues [11]. Briefly, the samples were 

subjected to bead-beating in the presence of 1.5% sodium dodecyl sulfate (SDS) and 1 mm garnet 

rocks, followed by SDS cleanup with 1/3 volume 5 M potassium acetate, and then SPRI beads.  

The resulting DNA was used for a two step PCR. The first PCR step amplified the genome-

integrated barcodes and added short overhangs, using the primer p3 and the primers p4-p9. The 

latter are different versions of one primer with frameshifting nucleotides, allowing for better 

Illumina clustering, and thus sequencing quality, following the method described by [42] (2013; 

Detailed oligo list in Table S6). Each primer frameshift version was used for a different PCR plate 

(i.e. 96 samples). The second step primed the overhangs to Illumina adapters for subsequent 

sequencing, using standard Illumina TruSeq primer sequences. Unique tagging of PCR samples 

was accomplished by using 96 indexing primers, combined with the six combinations of frameshift 

primers in the first PCR (as detailed in [42]), allowing demultiplexing of up to 576 samples in one 

Illumina lane. The first PCR was done in 25 μL reactions containing 0.125 μL TaqI DNA 

polymerase (Thermo Fisher Scientific, USA), 1x Taq1 10x reaction buffer, 0.08 μM each of 

forward and reverse primer, 225 μM dNTP and 1.5 μL of the template DNA. The first PCR was 

run for 94°C for 5 min followed by 10 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 1 min, and 
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a final 72°C for 5 min. 5 μL of the first PCR product was used in the second PCR with tagged 

primers including Illumina adapters, in 25 μL containing 0.25 μL Q5 high-fidelity DNA polymerase 

(New England Biolabs, USA), 1x Q5 5x reaction buffer, 0.08 μM forward and 0.16 μM of reverse 

(tagging) primer and 200 μM dNTP. The final PCR products were cleaned twice using SPRI beads 

in a 1:1 bead to sample ratio, and eluted in 15 μL. Samples were combined into one library in an 

equimolar fashion. Final libraries were cleaned twice using SPRI beads in a 0.6:1 bead to sample 

ratio to clean the primers from the product, and were finally eluted in half of their original volume. 

Samples were sequenced by a MiSeq instrument (Illumina), using a 50 bp single-end kit.  

In order to estimate the ratio of barcoded Pseudomonas to plant chromosomes, two qPCR 

reactions were conducted - one which is specific to the barcodes, and the other which is plant-

specific, targeting the gene GIGANTEA which is normally found in one copy. For barcodes-

specific qPCR, the primers p10 and p11 were used, and for plant-specific qPCR the primers p12 

and p13 (Table S6). qPCR reactions were done in 10 μL reactions containing x1 Maxima SYBR 

green qPCR master mix x2, 0.08 μM each of forward and reverse primer and 1 μL of template 

DNA. All qPCR reactions were run for 94°C for 2 min followed by 94°C for 15 s and 60°C for 1 

min in a BioRad CFX384 Real Time System (Biorad, USA) qPCR machine. Reactions were done 

in triplicates. 

 

In vitro directional suppression assay 

All 14 barcoded isolates in vitro pairwise interactions were tested following the method described 

in Helfrich et al. [43], while adjusting the conditions to better fit Pseudomonas. Briefly, the 14 

barcoded isolates were grown in LB with 30 mg/mL Kanamycin overnight, diluted 1:10 the 

following morning and regrown. One portion was taken from each isolate after 3 hours (when 

entering the log phase), diluted to a final concentration of OD600 = 0.001 in 15ml LB with 1% agar 

and immediately poured into a square plate to form a uniform layer containing the test strain. 

Another portion pelleted at 3500 g, washed from residual LB in 10 mM MgSO4, pelleted again at 

3500 g in 10 mM MgSO4 with half of the original volume. Roughly 1 μL of each strain was printed 

onto the solidified agar layer containing the putative sensitive strain. Inhibitory interactions were 

estimated after 1-2 days incubation at 28°C by documenting observable halos. The strength of 

inhibitions was assessed by the halo size as previously described [43]). 

 

RNA-sequencing  
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Plants from the genotype Lu3-30 were infected with Control, PathoCom, CommenCom and 

MixedCom as described below. Sampling was conducted three and four days post infection, two 

replicates per treatment in each time point, thus four samples per treatment in total. Plants were 

sampled using sterilized scalpel and tweezers and were immediately placed in 2ml screw cap 

tubes prefilled with Garnet sharp particles 1mm (Roth, Germany), flash freezed in liquid N2 and 

stored in -80°C. RNA extraction was conducted on the frozen samples as previously described 

[44]. Briefly, a guanidine hydrochloride buffer was added to grounded frozen and rosettes, 

followed by phase separation and sediments removal. Combined with 96% EtOH, the solution 

was loaded onto a plasmid DNA extraction column (QIAprep Spin Miniprep Kit; Qiagen), and went 

through several washes before elution of the RNA. mRNA enrichment and sequencing libraries 

were prepared as previously described [45]. Briefly, mRNA enrichment was done using NEBNext 

Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, USA), followed by heat 

fragmentation. Next, First strand synthesis (SuperScript II reverse transcriptase; Thermo Fisher 

Scientific, USA), and second strand synthesis (DNA polymerase I;  New England Biolabs, USA) 

were conducted, and subsequently end repair (T4 DNA polymerase, Klenow DNA polymerase 

and T4 Polynucleotide Kinase ;New England Biolabs, USA) and A-tailing  (Klenow Fragment; 

New England Biolabs, USA). Nextera-compatible universal adapters [46] were ligated to the 

product (T4 DNA ligase; New England Biolabs, USA), and i5 and i7 PCR amplification was done 

(Q5 polymerase; New England Biolabs, USA). Size selection and DNA purification were made 

using SPRI beads. Samples were sequenced by a HiSeq3000 instrument (Illumina), using a 150 

bp paired-end kit.  

 

Sampling locations map, phylogenetics and isolates abundance in the field 

Information about sampling locations of the six A. thaliana used in this study was retrieved from 

the 1001 genome project [25], and Pseudomonas sampling locations were retrieved from Karasov 

and colleagues [11]. The map was plotted using the “ggmap” function of the ggmap R package 

[47].  

Phylogenetic analysis of the 14 selected Pseudomonas isolates was done using their core 

genomes, as they were previously published [11]. Maximum-likelihood phylogenies were 

constructed with RAxML (v.0.6.0) using GTR+Gamma model [48], and visualization was done by 

iTOL [49]. The abundance in the field of the selected isolates was estimated by binning similar 

isolates using a threshold of divergence less than 0.0001 in the core genome. The mean number 
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of substitutions per site taken from the estimated branch length for the core-genome based 

phylogeny calculated by RAxML. Lastly, the number of binned isolates was divided by the total 

number of isolates surveyed by Karasov and colleagues [11]. 

 

Growth analysis of WT and barcoded isolates 

Growth of both WT and barcoded isolates was analyzed using the function 

“SummarizeGrowthByPlate” from the Growthcurver R package [50]. The change of barcoded 

isolates in comparison to their corresponding WT in growth rate, carrying capacity and area under 

the curve, was calculated by the model: Growth quantity ~ strain type (i.e. WT/barcoded). 

 

Plant weight analysis 

All rosette fresh weight analyses and visualizations were done using the function “dabest” of the 

dabestr R package [26,27]. 
 

Combining barcode PCR and qPCR results to estimate bacterial load per isolate 

All reads from barcode-PCR sequencing were mapped against a custom barcodes database 

(Table S1), and a count matrix of all 14 isolates for every plant sample was created. Samples with 

less than a total of 200 hits were discarded or resequenced (mean=15709.8). Counts were 

transformed to proportions by dividing the counts of each isolate in the total hits per sample, 

resulting in relative abundance matrix.  

qPCR results were analyzed using the software Bio-Rad CFX Manager with default 

parameters. Quantification cycle (Cq) values smaller than 32 were discarded, and barcoded 

bacterial load was determined by the equation 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙	𝑙𝑜𝑎𝑑	 = -./012(456789:	;<)

-./-12(>?>@ABC@	;<)
. The 

exponent bases (2.057 and 2.027) were adjusted according to primer efficiency - as determined 

by a calibration curve derived from a series of dilutions. The relative abundance matrix was 

factorized by bacterial load (relative abundance multiplied by bacterial load, per isolate) to 

manifest the ratio of bacterial to plant chromosomes per barcoded isolate. 

 

Regression analysis  

All posterior distributions of focal factors were estimated using the function “stan_glm” in the R 

package rstanarm ([51] or “lmBF” in the R package BayesFactor ([52]. In both functions, default 
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priors were used. In “stan_glm” default iteration number was used, and in “lmBF” 10,000 iterations 

were used. In all figures, the median, as well as 2.5% and 97.5% (95% credible intervals) of the 

posterior distribution were presented for each factor of interest. The exact model for every 

analysis is presented in the figure legend, as well as the selected references for comparison.  

To compare the effect of individual predictors in a model, the full model was compared to 

a different model, lacking the predictor of interest (e.g. genotype). The comparison was conducted 

by a leave-one-out cross validation, using the function “loo_compare” in the R package Loo [53]. 

This Bayesian-based model comparison provides an estimate for the importance of a predictor in 

explaining the data. Leave-one-out cross validation improves the estimate in comparison to the 

common Akaike information criterion (AIC) and deviance information criterion (DIC) [53]. 

 

Variance partitioning of microbial community composition 

NMDS analyses were conducted using the function “metaMDS” in the R package vegan [54], 

adjusting dissimilarity index to Bray-Curtis (method = “bray”), number of dimensions to 3 (k=3) 

and maximal iterations to 200 (trymax=200). Permutational multivariate analysis of variance 

(PERMANOVA) was conducted using the function “adonis”, and analysis of similarities (ANOSIM) 

was conducted using the function “anosim” in the R package vegan [54]. Both were adjusted to 

Bray-Curtis dissimilarity index (method = “bray”) and 2000 permutations (permutations = 2000).  

Multilevel pairwise comparison using adonis was conducted using the function “pairwise.adonis2” 

in the R package pairwiseAdonis [55]. 

 

Isolate-isolate interactions network 

All pairwise isolate-isolate Pearson correlations were calculated using the function “rcorr” in the 

R package Hmisc ([56], and visualization was done with Cytoscape 3.7.0 ([57].      

 

RNA-sequencing analysis 

Reads from RNA sequencing were mapped against the A. thaliana reference TAIR10 using STAR 

(v.2.6.0;  [58] with default parameters. Transcript counts matrix was done using featureCounts 

[59], while restricting counts to exons only (-t exon). Differential gene expression (DEG) analysis 

was conducted using DESeq2 (v.1.22.2; [60]), using the model ‘gene_expression ~ Treatment + 

Time_point’. Genes with average counts of less than five were excluded from the analysis. Zero 

counts were converted to one to allow for the log conversion in unexpressed genes. Genes with 
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log2FoldChange>|±1| and FDR<0.05 (two-tailed Student’s t-test followed by Benjamini-Hochberg 

correction) were defined as DEGs. Euler diagrams were created using the function “euler” in the 

R package eulerr [61]. Statistically overrepresented GO terms were identified using the BiNGO 

plugin for Cytoscape [62]. Summarization and the removal of redundant overrepresented GO 

terms was done with the web server REVIGO [63] to extract the main trends found in the long full 

output by BiNGO (full list in Table S4).  

 

Statistical analysis 

All statistical analyses were performed using the R environment version 3.5.1, unless mentioned 

otherwise. Sample sizes were not predetermined using statistical methods.  
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Figure S1. Illustration of (A) bacterial barcoding and (B) experimental design. 
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Figure S2. Validation of barcode integration and barcode-PCR specificity by agarose gel 

electrophoresis of PCR amplified products. A. Validation of barcode integration to chosen isolates. 

Lanes 1–10 used DNA from examined barcoded isolates, lane 11 is water (negative control), lane 12 is the 

pUC18R6KT-mini-Tn7T plasmid into which a barcode was cloned (positive control), and lanes 13-14 are 

replicates of the 14 pooled parental (wild-type, WT) isolates. B. Validation of barcode-PCR specificity. 

Lanes 1-2 used DNA from plants infected with the 14 barcoded bacteria, lane 3 from an uninfected plant, 

lane 4 pUC18R6KT-mini-Tn7T plasmid (positive control), and lane 5 is water (negative control). Both 

infected and uninfected plants were grown in non-sterile conditions; barcode-specific primer sets yielded 

expected product sizes of 522 bp. Lane M, DNA size marker. 500 bp marker indicated.  
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Figure S3. Comparison of growth characteristics between non-barcoded wild-type (WT) isolates and 

their barcoded derivatives. A. Growth curves of the 14 WT parents and their barcoded derivatives in 

Lysogeny broth (LB) over 10 hours, with OD600 recorded hourly. Mean ± SD, n=3. The change of barcoded 

isolates in comparison to their corresponding parents in growth rate (B), carrying capacity (C), and area 

under the curve  (D) is shown. All three growth parameters were derived from the original growth curves. 

Dotted line signifies the non-barcoded parental baseline for a given quantity. Mean ± 95% cdl, n=3. 
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Figure S4. Illustrative photos of control- and PathoCom-treated plants, grown in either MS-agar 

(sterile) or soil (unsterile). In both systems, the genotype Ey15-2 was used. For the MS-agar system, 

photos were taken 3-dpi, for the soil system 14-dpi. Sizes of plants are comparable within each system, but 

not between. Because images in the soil system were taken and parsed by pot automatically by a high-

throughput imaging pipeline, some plant images were cropped. 
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Table S2. A. Analysis of similarities (ANOSIM) based on Bray-Curtis distances for compositions of the 14 

barcoded bacteria in treated hosts. The analysis was constrained by the host genotype in each experiment 

batch (exp) to estimate its effect on the explained variance. B. Multilevel pairwise comparison of barcoded 

bacteria compositions for the different A. thaliana genotypes, using adonis based on Bray-Curtis distances. 

Data derived from one representative experiment (October). 

 
 

 

 

 

 

 
Treatment R2 Pr(>f) Experiment 
PathoCom 0.0630 0.0175 August 

 0.1792 0.0005 October 
CommenCom 0.0622 0.0615 August 

 0.1761 0.0005 October 
MixedCom 0.0538 0.0265 August 

 0.0951 0.0005 October 
 

In bold, statistically significant relationships (P  0.05). 

 
Treatment R2 Pr(>f) Genotype1 Genotype2 
PathoCom 0.1491 0.005 Ey15-2 HE-1 

 0.2561 0.001 Ey15-2 Lu3-30 
 0.1236 0.01 Ey15-2 Schl-7 
 0.0804 0.044 HE-1 Kus3-1 
 0.1678 0.001 HE-1 Lu3-30 
 0.1313 0.001 Kus3-1 Lu3-30 
 0.0757 0.049 Kus3-1 Schl-7 
 0.0865 0.002 Lu3-30 Schl-7 
 0.1986 0.001 Lu3-30 Tue-Wal-2 

CommenCom 0.0813 0.035 Ey15-2 Lu3-30 
 0.1285 0.028 Ey15-2 Tue-Wal-2 
 0.1330 0.004 HE-1 Lu3-30 
 0.2450 0.001 HE-1  
 0.2197 0.001 Kus3-1 Lu3-30 
 0.1305 0.005 Kus3-1 Schl-7 
 0.1709 0.007 Kus3-1  
 0.4401 0.001 Lu3-30  
 0.3788 0.001 Schl-7  

Mixedcom 0.0825 0.012 Ey15-2 Lu3-30 
 0.0818 0.01 Ey15-2  
 0.0673 0.027 HE-1  
 0.1660 0.001 Kus3-1 Lu3-30 
 0.2283 0.001 Lu3-30  

 
Only statistically significant comparisons are presented (P  0.05). 
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Figure S5. Comparison of composition and load of the 14 barcoded isolates on different A. thaliana 

genotypes. A. Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distances between six 

A. thaliana genotypes, in one representative experiment (October). Each synthetic community was 

analyzed separately. The abundance of all 14 barcoded isolates was considered, also among PathoCom 

and CommenCom to account for cross contaminations and technical distortions. Shapes denote the 

different genotypes, and bacterial load is indicated from blue to red. B. Isolate load of the six A. thaliana 

genotypes, among the three synthetic communities. Isolate load was defined as the cumulative abundance 

of all barcoded isolates that composed a synthetic community. Dots indicate the medians, and vertical lines 

95% credible intervals of the fitted parameter, following the model log10(isolates load) ~ genotype + 

experiment + error. 
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Figure S6. Effects of treatment and treatment-by-genotype on fresh rosette weight. Both effects were 

assessed using the model weight ~ treatment * genotype + experiment + error. A. Mean weight difference 

of plants infected with each of the three synthetic communities relative to control - i.e., the treatment 

coefficients. B. Mean treatment effect differences between the six A. thaliana genotypes used in this study 

- i.e., the treatment * genotype coefficients. Kus3-1 was randomly selected as a reference; dots indicate 

the medians, and vertical lines 95% credible intervals of the fitted parameter.  
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Figure S7. Fresh rosette weight of plants treated with Control, PathoCom or heat-killed PathoCom.  

Each of the six A. thaliana genotypes used in this study was treated with control, PathoCom and heat-killed 

PathoCom inoculum, and fresh rosette weight was measured 12 dpi. The top panel presents the raw data, 

the breaks in the vertical black lines denote the mean value of each group, and the vertical lines themselves 

indicate standard deviation. The lower panel presents the mean differences to control, plotted as bootstrap 

sampling [26,27], indicating the distribution of effect sizes that are compatible with the data. 95% confidence 

intervals are indicated by the black vertical bars. 
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Figure S8. Effect of total load on weight, per treatment and genotype. A. Mean slope difference of the 

three synthetic communities. The slope difference indicates the effect of the treatment on the correlation 

between weight and isolate load - i.e. treatment * log10(cumulative isolate load) - following the model weight 

~ treatment * log10(cumulative isolate load) + genotype + experiment + error. PathoCom was selected as a 

reference. Dots indicate the medians, and vertical lines 95% credible intervals of the fitted parameter. 

Related to Fig 3B. B. Correlation of log10(cumulative isolate load) with rosette fresh weight, for each of the 

genotypes within each of the three synthetic communities. Shaded areas indicate 95% confidence intervals 

of the correlation. Color codes in the bottom left box, on the right. C. Mean slope difference of the six A. 

thaliana genotypes used in this study. The slope difference indicates the effect of the genotype on the 

correlation between weight and isolate load - i.e. genotype * log10(cumulative isolate load) - following the 

model weight ~ genotype * log10(cumulative isolate load) + experiment + error. Each treatment was 

analyzed individually, thus the model was utilized for each treatment separately. Kus3-1 was randomly 

selected as a reference. Dots indicate the medians, and vertical lines 95% credible intervals of the fitted 

parameter. Related to panel B. n=170 for PathoCom, n=151 for CommenCom, and n=182 for MixedCom. 

n=77-94 for the six A. thaliana genotypes.  
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Figure S9. Effect of host genotype on abundance changes of the 14 barcoded isolates in MixedCom, 

when compared to their exclusive community (i.e., PathoCom for ATUE5 and CommenCom for non-

ATUE5). Abundance effect mean differences were estimated with the model log10(isolate load) ~ genotype 

* treatment * experiment + error for each individual strain. Thus, the genotype * treatment coefficient was 

estimated per each barcoded isolate. Dots indicate medians, and vertical lines 95% credible intervals of the 

fitted parameter. 
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Figure S10. Correlation networks of barcoded bacteria. A. Correlation networks of absolute abundance 

in PathoCom, CommenCom and MixedCom. B. Correlation networks of relative abundance in PathoCom 

and CommenCom. Strengths of negative and positive correlations are indicated from yellow to purple.  

Boldness of lines is related to the strength of correlation, and only correlations > |±0.2| are shown. Node 

colors indicate the isolate classification: ATUE5 or non-ATUE5. 
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Figure S11. Correlations between the absolute abundance of each isolate and the cumulative 

bacterial abundance in MixedCom. Each panel represents an individual isolate. Pearson correlation (R) 

and p-value (p) are stated at the top, and the matching linear equation at the bottom of each panel. Shaded 

areas indicate 95% confidence intervals of the correlation curve. 
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Figure S12. Comparison of PathoCom, CommonCom and MixedCom DEGs across treatments. The 

average z-score is presented for each sample. Downregulated and upregulated DEGs were analyzed 

separately. In brackets - the number of DEGs in each category. n=4. 
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Figure S13. The abundance of P6 in MixedCom-infected hosts. A. Abundance of P6 compared with the 

other 13 barcoded bacteria in MixedCom-infected hosts, for all host genotypes. Dots indicate the medians, 

and vertical lines 95% credible intervals of the fitted parameter, following the model log10(isolate load) ~ 

isolate * experiment + error. Shaded area denotes the 95% credible intervals of the isolate P6.  B. The 

abundance of P6 in MixedCom-infected hosts, compared between the six A. thaliana genotypes used. Dots 

indicate the medians, and vertical lines 95% credible intervals of the fitted parameter, following the model 

log10(isolate load) ~ genotype * experiment + error. Shaded area denotes the 95% credible intervals of the 

host genotype Ey15-2.   
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Figure S14. Illustration of barcodes design. Two single-stranded oligos were synthesized: ‘Bar1’ and 

‘Bar2’. N symbolizes random nucleotides.  

 

 

5’   GAATTCCTCGAGGTATCGCCTCCCTCGCGCCATCAGCCNNNNAANNNNTTNNNNTTNNNNATACATGACTGCTGTCGGCACAAGGGC  3’
3’   TGTACTGACGACAGCCGTGTTCCCGGACTCGCCCGACCGTTCCGCGTATCCTCGAGCCATGG  5’

ECoRi XhoI Optional priming site 1 Barcode Overlapping region

Overlapping region Optional priming site 2 SacI KpnI‘Bar1’ oligo

‘Bar2’ oligo
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