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Abstract15

The mouse has dichromatic color vision based on two different types of opsins: short (S)- and16

middle (M)-wavelength-sensitive opsins with peak sensitivity to ultraviolet (UV; 360 nm) and17

green light (508 nm), respectively. In the mouse retina, cone photoreceptors that predominantly18

express the S-opsin are more sensitive to contrasts and denser towards the ventral retina,19

preferentially sampling the upper part of the visual field. In contrast, the expression of the20

M-opsin gradually increases towards the dorsal retina that encodes the lower visual field. Such21

a distinctive retinal organization is assumed to arise from a selective pressure in evolution to22

efficiently encode the natural scenes. However, natural image statistics of UV light remain23

largely unexplored. Here we developed a multi-spectral camera to acquire high-quality UV24

and green images of the same natural scenes, and examined the optimality of the mouse retina25

to the image statistics. We found that the local contrast and the spatial correlation were both26

higher in UV than in green for images above the horizon, but lower in UV than in green for27

those below the horizon. This suggests that the dorsoventral functional division of the mouse28

retina is not optimal for maximizing the bandwidth of information transmission. Factors besides29

the coding efficiency, such as visual behavioral requirements, will thus need to be considered to30

fully explain the characteristic organization of the mouse retina.31
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Introduction32

Sensory systems have been considered to be adapted to the statistical properties of the33

environment through evolution [1]. Animals encounter different types of sensory signals34

depending on their natural habitats and lifestyles, and this can serve as an evolutionary driving35

force for each species to optimize its sensory systems for processing those signals that appear36

more frequently and are relevant for survival [2]. The optimality of the sensory processing has37

been broadly supported from an information theoretic viewpoint of coding efficiency [3, 4]. In38

particular, various physiological properties of sensory neurons can be successfully derived from39

learning efficient codes of natural images or natural sounds, such as separation of retinal outputs40

into ON and OFF channels [5], Gabor-like receptive fields of visual cortical neurons [6], and41

cochlear filter banks [7]. Such computational theories and statistical models are, however, often42

limited to generic features of the sensory processing, and fail to account for species-specific fine43

details partly due to a lack of proper data sets of natural sensory signals.44

In the past decade, the mouse has become a dominant model for studying the visual45

system mainly because of the wide availability of experimental tools [8]. Compared to other46

mammalian model animals such as cats and primates, however, the mouse vision has certain47

distinctive properties. For example, mice are dichromats as many other mammals are, but48

their retina expresses ultraviolet (UV)-sensitive short (S)-wavelength sensitive opsins and49

green-sensitive middle (M)-wavelength sensitive opsins [9–11]. While UV vision is common50

in amphibians, birds and insects, it has not been identified in mammals except for a few51

species including rodents [12–14]. Moreover, the mouse retina has no fovea but a prominent52

dorsoventral gradient in the expression pattern of the two opsins [10, 15–17]. A vast majority53

of the mouse cone photoreceptors (∼95%) co-express the two opsins but with a dominant54

expression of S- and M-opsins in the ventral and dorsal parts of the retina, respectively55

[9, 10, 18, 19]. This makes the upper visual field more sensitive to UV than green, and vice56

versa for the lower visual field [20]. It is natural to assume that this functional segregation of57

the mouse vision has evolved due to an adaptation to the natural light distribution as the sunlight58

is the major source of UV radiation. It remains unclear, though, how optimal the mouse visual59

system is to natural scene statistics per se.60
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While natural image statistics have been extensively studied thus far [1, 21], those outside61

the spectral domain of human vision remain to be fully explored [2, 18, 22–24]. Here we thus62

developed a multi-spectral camera system to sample high-quality images that spectrally match63

the mouse photopic vision, and analyzed the statistics of the UV and green image data sets to64

test the optimality of the sampling bias in the mouse retina along the dorsoventral axis [9, 10, 18,65

19]. We identified distinct statistical properties in the UV and green channels between the upper66

and lower visual field images; however, these image statistics were not necessarily consistent67

with what the efficient coding hypothesis would predict from the functional organization of the68

mouse retina.69

Materials and Methods70

All data and codes are available upon request.71

Multi-spectral camera72

Design73

We built a multi-spectral camera system based on a beam-splitting strategy [25, 26] to acquire74

images of the same scenes with ultraviolet (UV)- and green-transmitting channels that match75

the spectral sensitivity of the mouse photopic vision (Fig 1A) [9–11]. The light coming from76

a commercial camera lens (Nikon, AF Nikkor 50 mm f/1.8D) was collimated with a near-77

UV achromatic lens (effective focal length, 50 mm; Edmund Optics, 65-976) and split with78

a dichroic filter (409 nm; Edmund Optics, 34-725). The reflected light, on the one hand, passed79

through a UV-selective filter set (HOYA U-340 and short-pass filter at 550 nm; Edmund Optics,80

84-708) and formed the UV images focused on the first global-shutter camera (Imaging Source,81

DMK23UX174) with a near-UV achromatic lens (effective focal length, 50 mm; Edmund82

Optics, 65-976). The transmitted light, on the other hand, passed through a band-pass filter83

(500±40 nm; Edmund Optics, 65-743) and a lens (Edmund Optics, 65-976), and formed the84

green images sampled by the second camera (Imaging Source, DMK23UX174). To maximize85
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the dynamic range of the two camera sensors (used with the same settings), we attenuated86

the light intensity of the green channel using an absorptive neutral density (ND) filter (optical87

density: 1.0, 1.3, 1.5, 1.8, or 2.0) on a filter wheel (Thorlabs, LTFW6) because the sunlight has88

much higher power in green than in UV (Fig 1B). The optical components are all mounted with89

standard light-tight optomechanical components (Thorlabs, 1-inch diameter lens tubes).90

A recent study employed a similar design but with a fisheye lens to study the “mouse-view”91

images [22]. Our design has the following advantages over a panoramic camera design [22–24]92

to sample high-quality image patches suitable for image statistics analysis. First, we chose a93

small field of view (11.3 degrees horizontally and 7.3 degrees vertically; 0.006 degrees/pixel)94

to minimize image distortion, and a large field of depth (the smallest aperture size on the95

Nikon lens, f/22) to maximize areas in focus. This also allowed us to adjust camera settings96

(exposure length) to fully capture the dynamic range of individual scenes. Second, we chose a97

high-performance camera sensor (Sony, IMX174 complementary metal-oxide-semiconductor;98

CMOS) that has high quantum efficiency (∼ 30% at 365 nm; ∼ 75% at 510 nm), high dynamic99

range (73 dB; 12 bit depth), high pixel resolution (1920-by-1200 pixels), and linear response100

dynamics (Fig 1A, inset) [27–29].101

Spectral analysis102

The spectral sensitivity of the multi-spectral camera system (Fig 1B) was calculated by103

convolving the relative transmission spectra of the optics for each channel with the spectral104

sensitivity of the camera sensor (Sony, IMX174 CMOS) [29]. The relative transmission spectra105

were measured with a spectrometer (Thorlabs, CCS200/M; 200–1000 nm range) by taking the106

ratio of the spectra of a clear sunny sky (indirect sunlight) with and without passing through the107

camera optics.108

For a comparison, we modelled the spectral sensitivity of the mouse visual system by109

convolving the transmission spectra of the mouse eye [30] with the absorption spectra of the110

mouse cone photoreceptors (Fig 1B). We used a visual pigment template [31] with the center111

frequency at 360 nm and 508 nm to simulate the short (S)- and middle (M)-wavelength-sensitive112

opsins in the mouse retina, respectively [9–11].113
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Image acquisition114

In total, we collected 232 images of natural scenes without any artificial object in the suburbs115

of Lazio/Abruzzo regions in Italy from July 2020 to May 2021. All the images were acquired116

using a custom-code in Matlab (Image Acquisition Toolbox) without any image correction, such117

as gain, contrast, or gamma adjustment. The two cameras were set with the same parameter118

values adjusted to each scene, such as the exposure length, and a proper ND filter was chosen119

for the green channel so that virtually all the pixels were within the dynamic range of the120

camera sensors (see examples in S2 Fig). Thus, our image data sets have no underexposed121

pixels and only a negligible number of overexposed pixels (0.0011% of pixels in 2 UV images122

and 0.0007% of pixels in 6 Green images). This is critical because the presence of under- or123

over-exposed pixels will skew the image statistics.124

When acquiring images, the camera system was placed on the ground to follow the125

viewpoint of mice. The following meta-data were also recorded upon image acquisition: date,126

time, optical density of ND filter in the green channel, weather condition (sunny; cloudy),127

distance to target object (short, within a few meters; medium, within tens of meters; or128

long), presence/absence of specific objects (animals; plants; water), and camera elevation angle129

(looking up; horizontal; looking down). We also took a uniform image of a clear sunny sky130

(indirect sunlight) as a reference image for vignetting correction (see below Eq.(1)).131

All the images were taken under ample natural light during the day. Although we did not132

measure the exact illuminance Φ of the environment, we expect that the lighting condition was133

on the order of 103–105 lux (i.e., Φ = 107–109 photons/µm2/s). Assuming the mouse pupil134

diameter dpupil = 0.5 mm, the eye diameter deye = 4 mm, the transmittance of the eye optics135

T = 0.5, and the light collection area of a photoreceptor Aphotoreceptor = 0.5 µm2, the photon136

flux on individual photoreceptors can then be estimated as Φ·Apupil/Aretina·T ·Aphotoreceptor = 104–137

106 photons/photoreceptor/s, where Apupil = π (dpupil/2)
2 is the pupil area and Aretina =138

4π (deye/2)
2 /2 is the total area of the retina internally covering a half of the eye. Here we139

cannot then exclude a possible activation of rods in the mouse retina because they have similar140

absorption spectra to the M-opsin expressing cones (peak sensitivity at 498 and 508 nm,141

respectively) [9, 32] and may escape from saturation even at 107 R∗/rod/s [33]. However, the rod142
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system is likely optimized to work in the scotopic condition, and thus less affected by the natural143

image statistics in the photopic condition. In the mouse retina, rods are indeed distributed more144

densely (∼97% of all photoreceptors) and rather uniformly [34].145

Given the average cone density ρcone = 12,400 cells/mm2 [34], the sampling reso-146

lution (or the “pixel size”) of the mouse visual system is on the order of 0.25 degrees147

(= 180/
(√

ρcone · πdeye/2
)

for photopic vision), and can go as high as 0.05 degrees if rod148

photoreceptors are also involved (average density, 437,000 cells/mm2 [34]; or average diameter149

of 1.4 µm [35]). The spatial resolution of the acquired images (0.006 degrees/pixel) is thus good150

enough to cover the pixel size of the mouse vision.151

Image registration152

The raw images from the two cameras (12 bit depth saved in the 16 bit grayscale Portable153

Network Graphic format, 1920-by-1200 pixels each) were pre-processed to form a registered154

image in Matlab (Image Processing Toolbox). First, we corrected the optical vignetting by155

normalizing the pixel intensity of the raw image Iraw(x, y) for each channel by the ratio of156

the pixel and the maximum intensities of the reference image Iref(x, y):157

Icorrected(x, y) = Iraw(x, y) ·
max [Iref(x, y)]

Iref(x, y)
. (1)

We next applied a two-dimensional median filter (3-by-3 pixel size) to remove salt-and-pepper158

noise from the corrected images for each channel. Then we applied a projective transformation159

based on manually selected control points to register the UV image to the green image. Finally,160

we manually cropped the two images to select only those areas in focus. The cropped images161

resulted in the pixel size ranging from 341 to 1766 pixels (2.0–10.6 degrees) in the horizontal162

axis and from 341 to 1120 pixels (2.0–6.7 degrees) in the vertical axes (see examples in Fig 2).163

We never changed the image resolution.164
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Image analysis165

We analyzed the first- and second-order image statistics of the obtained natural scenes in166

UV and green channels because the retina is not sensitive to higher-order statistics [36, 37]167

(but see S4 Fig for higher-order statistics). Here we excluded a small set of the horizontal168

images (N = 15) from the analysis, and focused on the following two major image groups:169

1) looking-up images taken with a positive camera elevation angle (N = 100), presumably170

falling in the ventral retina and thus perceived in the upper part of an animal’s visual field;171

and 2) looking-down images with a negative camera elevation angle (N = 117) perceived172

in the lower visual field (i.e., the dorsal retina). To ensure the separation between the image173

categories, we calculated the relative light intensity along the horizontal and vertical axes of174

each image category (S1 Fig). Specifically, we first corrected the pixel values of each image175

with the exposure length and the ND filter attenuation, and then normalized them by the mean176

pixel intensity value of all images. For the population analysis, the images were then aligned177

to the center in horizontal axes for all images, while to the top edge, center, or bottom edge in178

vertical axes for the lower, horizontal, upper visual field image categories, respectively. For each179

image data set, we used a sign-test to compare the image statistics parameter values between180

the UV and green channels (Figs 3–6; significance level, 0.05). All image analysis was done in181

Matlab (Mathworks).182

Light intensity normalization183

The visual system adapts its sensitivity to the range of light intensities in each environment184

[38, 39]. We thus first normalized the pixel intensity of each UV and green image to have185

the intensity value ranging from zero to one (by subtracting the minimum value of the image,186

followed by the division by the maximum value), and then calculated the histogram (bin size,187

0.01) to compare the normalized intensity distributions of the UV and green images for the188

upper and lower visual fields (Fig 3A,B).189
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Local contrast190

To calculate the local statistical structure of the normalized intensity images (Fig 3C,D and191

S3 Fig), we used the second-derivative (Laplacian) of a two-dimensional Gaussian filter:192

LoG(x, y) =
1

πσ4

(
1− x2 + y2

2σ2

)
exp

[
−x2 + y2

2σ2

]
, (2)

with the standard deviation σ = 5, 10, 20, 40 pixels for the spatial range x, y ∈ [−3σ, 3σ]. Here193

we chose a rather arbitrary size of the filter width (0.18-–1.44 degrees) because natural image194

statistics are scale invariant (S3 Fig) [1, 21]. The local contrast distribution was then fitted to195

the two-parameter Weibull distribution:196

w(x) = βγ|x|γ−1 exp [−β|x|γ] , (3)

where x is the local contrast value, β > 0 is the scale parameter (width) of the distribution,197

and γ > 0 is the shape parameter (peakedness). In particular, larger β and smaller γ values198

indicate wider and more heavy-tailed distributions, respectively, hence higher contrast in the199

images. Sign-tests were used to compare these parameter values between UV and green images200

(Fig 3E–H).201

Achromatic and chromatic contrast202

To analyze the achromatic contrast of our image data sets (Fig 4), we calculated the root mean203

square (RMS) contrast C∗
RMS(x, y) for each channel of normalized intensity images [22]:204

C∗
RMS(x, y) =

σ∗(x, y)

µ∗(x, y)
, (4)

where µ∗(x, y) and σ∗(x, y) are the mean and standard deviation of a circular image patch205

(radius, 30 pixels) centered at location (x, y), respectively (S4 Fig, together with skewness and206

kurtosis as the third and fourth standardized moment, respectively, and entropy, −
∑

p log p,207

where p is the probability distribution of the pixel intensity of the image patch); and the208

asterisk “∗” is either “UV” or “Green” indicating the channel identity (Fig 4A,B). Chromatic209
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contrast C(x, y) was then defined as a difference of the RMS contrasts between the two channels210

(Fig 4C,D):211

C(x, y) = CUV
RMS(x, y)− CGreen

RMS (x, y). (5)

For quantification, we fitted the Weibull distribution (Eq.(3)) to the left (C < 0) and right212

(C > 0) sides of the chromatic contrast distributions separately (Fig 4E,F).213

Power spectral density214

The power spectral density of the normalized intensity image I(x, y) was computed with the215

fast Fourier transform (FFT; Fig 5):216

F (ωx, ωy) = FFT [I(x, y)] (6)

S(ωx, ωy) = F (ωx, ωy)F
∗(ωx, ωy), (7)

where the superscript ∗ denotes complex conjugate, and ωx and ωy represent the horizontal and217

vertical spacial frequency (ranging from -0.5 to 0.5 cycles/pixel), respectively. As the average218

power spectrum of natural images generally falls with a form 1/fα over the spatial frequency219

f with a slope α ∼ 2 [1, 40, 41], we fitted the power function b/ωa to S(ωx, 0) and S(0, ωy),220

where a and b indicate the slope and Y -intercept in the log-log space. We used a sign-test to221

compare these parameter values between UV and green channels (Fig 5I–P).222

Spatial autocorrelation223

Following the Wiener–Khinchin theorem, the spatial autocorrelation R(x, y) was computed224

with the inverse FFT of S(ωx, ωy) in Eq.(7):225

R(x, y) = IFFT [S(ωx, ωy)] , (8)

where x and y represent horizontal and vertical distances of the two pixel points in the226

target image, respectively (Fig 6). Sign-tests were used to compare the R(dh, dv) values at227

representative data points: [dh, dv] = [0, 50], [50, 0] (Fig 6I–L).228
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Results229

Multi-spectral camera for the mouse vision230

The mouse retina expresses short (S)- and middle (M)-wavelength sensitive opsins that are231

maximally sensitive to ultraviolet (UV; ∼360 nm) and green (∼508 nm) wavelengths of light,232

respectively [9–11]. Existing public databases of natural scenes contain a diverse set of images233

including both natural and artificial objects in both gray and color scales visible to humans [e.g.,234

42–45], but only a handful cover UV images [22–24]. To examine the natural image statistics of235

the mouse vision, especially for those of the upper and lower visual fields to test the optimality236

of the dorsoventral functional division of the mouse retina [9, 10, 18–20], we set out to build237

a multi-spectral camera system for acquiring images of the same scenes in both UV and green238

spectral domains (Fig 1).239

We first modelled the spectral sensitivity of the mouse dichromatic vision to determine the240

center wavelengths of the two channels. Because the lens and cornea absorb shorter wavelength241

light (e.g., UV rays) more than longer wavelength light, we corrected the absorption spectra242

of the mouse cone photoreceptors [31] with the transmission spectra of the whole eye optics243

[30]. This resulted in a slight shift of the center wavelengths to a longer wavelength by several244

nanometers: from ∼360 nm to ∼365 nm for the S-cone and from ∼508 nm to ∼512 nm for245

the M-cone (Fig 1B). Thus, the ocular transmittance had only minor effects on the spectral246

sensitivity of the mouse vision, reassuring its sensitivity to near-UV light [20, 46].247

We then designed a multi-spectral camera system accordingly using a beam-splitting248

strategy [Fig 1A; see Methods for specifications; 25, 26]. By convolving the measured249

transmission spectrum of the camera optics with the sensitivity spectrum of the camera250

sensors [29], we identified that our imaging device had the sensitivities to ∼368±10 nm and251

∼500±30 nm (center wavelength ± half-width at half maximum; HWHM) for the UV and252

green channels, respectively (Fig 1B). This confirms that the UV and green channels of our253

device were spectrally well isolated, and that the two channels largely matched to the spectral254

sensitivity of the mouse vision [9–11].255
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Ultraviolet and green image collection256

To collect images that mice would encounter in their natural habitats, we went out to natural257

fields and wild forests in the countryside and mountain area of Lazio/Abruzzo regions in Italy258

across different seasons. We placed the multi-spectral camera on the ground at about a height of259

the mouse eye, and acquired images of natural objects alone at various distances (e.g., clouds,260

trees, flowers, and animals), excluding any artificial objects. These images were taken with261

different camera angles in the presence of ample natural light (S1 Fig). The images were262

preprocessed to correct optical vignetting and remove salt-and-pepper noise, and cropped to263

exclude areas out of focus on the edges (see Methods for details). This led to a set of 232 pairs264

of UV and green images of various “mouse-view” natural scenes.265

Besides well-known facts that UV light is reflected well by open water and some plants266

[13, 14], we noticed several distinct features between the UV and green images (see examples267

in Fig 2). First, clouds often appeared dark and faint in the UV images than in the green ones.268

In some cases, even negative contrast was formed for the clouds in UV while positive contrast269

in green. Second, fine textures were more visible in the green images than in the UV ones. In270

particular, objects in the upper field UV images were often dark in a nearly uniform manner due271

to back-light, whereas fine details of the objects were nevertheless visible in the corresponding272

green images despite a high contrast against the sky. For the lower field images, in contrast,273

distinct brighter spots stood out in UV due to reflections of shiny leaves and cortices, while274

more shades and shadows were visible in green. These qualitative observations already suggest275

that the UV and green images have distinct statistical properties.276

Normalized intensity and contrast distributions of UV and green images277

To analyze the image statistics more formally, we first calculated the normalized intensity278

distribution of the UV and green channels for the upper and lower visual field images279

(Fig 3A,B). Because the visual system adapts its sensitivity to the range of light intensities280

in each environment [38, 39], we normalized the pixel intensity of each UV and green image281

to be within the range from zero to unity. We then found that, for the upper visual field images,282

the probability distributions of both UV and green intensity values were bimodal (Fig 3A). The283
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two peaks of the UV intensity distribution, however, were higher and more separated than those284

of the green intensity distribution, suggesting that luminance contrast is higher in UV than in285

green when animals look up. In contrast, the normalized intensity distributions of the lower286

field images were unimodal and skewed to the right for both color channels. The distribution287

was more strongly heavy-tailed for the green than for the UV images (Fig 3B), indicating higher288

contrast in green than in UV when animals look down.289

To better examine the contrast in the two different spectral domains, we calculated the290

local image contrast using the second derivative (Laplacian) of a two-dimensional Gaussian291

filter (Eq.(2) in Methods). This filter follows the antagonistic center-surround receptive fields292

of early visual neurons [e.g., retinal ganglion cells; 47, 48] that are sensitive to local contrast,293

and is commonly used for edge detection in computer vision [49–51]. Consistent with what294

was implicated by the intensity distributions (Fig 3A,B), we found that 1) the probability295

distribution of local contrast was generally wider for the upper visual field images than for296

the lower visual field images; and 2) the local contrast distribution was wider for the upper297

visual field UV images than for the corresponding green images (Fig 3C and S3A,C,E Fig),298

but narrower for the lower visual field UV images than for the green counterparts (Fig 3D299

and S3B,D,F Fig). To quantify these differences, we fitted a two-parameter Weibull function300

(Eq.(3) in Methods) to the local contrast distribution of each image in each channel [52, 53],301

where the first scale parameter (β) describes the width of the distribution, hence a larger value302

indicating higher contrast; and the second shape parameter (γ) relates to the peakedness, with303

a smaller value indicating a heavier tail and thus higher contrast in the image. For the images304

above the horizon, the UV channel had significantly smaller shape parameter values than the305

green channel (Fig 3G) with comparable scale parameter values (Fig 3E). In contrast, for the306

images below the horizon, the green channel had significantly larger scale parameter values than307

the UV channel (Fig 3F), with no difference in the shape parameter values (Fig 3H). Thus the308

image statistics showed distinct characteristics between the upper and lower visual field image309

data sets, with higher contrast in UV than in green for the upper visual field images, and vice310

versa for the lower visual field images.311
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Importantly, such differences in the local contrast distributions do not agree well with what312

the efficient coding hypothesis implies from the physiological and anatomical properties of313

the mouse retina [3, 4]. Solely from an information theoretic viewpoint, a narrower contrast314

distribution is better encoded with a more sensitive cone type to maximize its bandwidth [54].315

In the mouse retina, the functional S-cones are more sensitive to contrast than the functional M-316

cones [17–20, 46]; and the functional S-cones are denser towards the ventral part of the retina,317

preferentially sampling the upper part of the visual field, while the functional M-cones towards318

the dorsal retina, sampling the lower visual field [15, 16, 18]. Therefore, this particular retinal319

organization is optimal if the upper visual field images had lower contrast in UV than in green,320

and the lower visual field images had higher contrast in UV than in green. Our image analysis,321

however, showed the opposite trend in the “mouse-view” visual scenes (Fig 3).322

Achromatic and chromatic contrast of “mouse-view” images323

To examine achromatic and chromatic contrast of our image data sets, we next measured the324

root mean square (RMS) contrast (Eqs.(4) and (5) in Methods) that is commonly used in325

psychophysical studies [22]. We found that the achromatic RMS contrast (Eq.(4)) was higher in326

UV than in green channels, especially for the upper visual field images (Fig 4A,B). The upper327

visual field images then had an asymmetric chromatic contrast distribution (Eq.(5); Fig 4C),328

where pixels with higher contrast in UV than in green were more abundant than those with329

higher contrast in green than in UV (Fig 4E,F). In contrast, the chromatic contrast distribution330

was rather symmetric for the lower visual field images (Fig 4D), and it was overall wider than331

that for the upper visual field images (Fig 4E,F).332

This indicates that UV-green chromatic information exists across the visual field, even333

though the exact shape of the chromatic contrast distribution may depend on the image contents334

[22]. We indeed identified UV-green chromatic objects in both lower and upper visual field335

images (see examples in Fig 2 and S2 Fig) and thus cannot explain why the mouse retina has336

chromatic circuitry preferentially on the ventral side (upper visual field) [55–57]. In principle,337

mice could retrieve UV-green chromatic information across the visual field, given that 1)338

genuine S-cones and rods are distributed rather uniformly across the mouse retina [34]; 2) rods339
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have similar absorption spectra to M-cones (peak sensitivity at 498 and 508 nm, respectively;340

Fig 1B) [9, 32]; and 3) rods can escape from saturation even under photopic conditions341

[33]. Larger image datasets sampled under more diverse conditions are required to assess the342

optimality of the chromatic circuitry in the mouse retina, especially because the rod system343

plays a role not only in the color vision but also in the scotopic vision.344

Power spectrum and autocorrelation of UV and green images345

We next analyzed the second-order statistics of the acquired images. Specifically, we computed346

the power spectrum (Fig 5) and spatial autocorrelation that describes the relationship of the347

two pixel intensity values as a function of their relative locations in the images (Fig 6; see348

Methods for details). As expected [1, 21], the power spectra generally followed 1/ωa on the349

spatial frequency ω for both UV and green channels irrespective of the camera angles (in log-350

log axes; Fig 5A–H); and were higher for the vertical direction than for the horizontal direction351

(Fig 5A–H)—i.e., the spatial autocorrelation was elongated in the vertical direction (Fig 6A–D).352

There are, however, several distinct properties between the UV and green channels for the353

upper and lower visual field images. First, the slope of the power spectra a was larger for the354

lower visual field images than for the upper visual field images (Fig 5I–L); equivalently, the355

spatial autocorrelation was narrower for the lower visual field images (Fig 6E–H), indicating the356

presence of more fine textures in those images. Second, for the upper visual field images, the UV357

power spectra were higher than the green ones in both vertical and horizontal directions (e.g.,358

the Y -intercept b, indicating the log-power at the spatial frequency of 1 cycle/pixel; Fig 5M,N).359

In contrast, for the lower visual field images, the UV power spectra were lower with a larger360

slope than the green counterparts (Fig 5K,L,O,P). Equivalently, the spatial autocorrelation was361

wider in UV than in green for the upper visual field images, and vice versa for the lower visual362

field images (Fig 6E–H).363

Under an efficient coding hypothesis, a higher spatial autocorrelation implies that less cones364

are needed to faithfully encode the scenes [3, 4, 54]. One would then expect from the “mouse-365

view” image statistics that the functional S- and M-cones should be denser on the dorsal and366

ventral parts of the mouse retina, respectively, to achieve an optimal sampling. However, the367
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opposite is the case with the mouse retina [15, 16, 18], suggesting that the cone distribution bias368

in the mouse retina cannot be simply explained by the optimality principle from an information369

theoretic viewpoint.370

Discussion371

To study the natural image statistics for the mouse vision, here we collected a set of 232 “mouse-372

view” two-color images of various natural scenes across different seasons using a custom-373

made multi-spectral camera (Figs 1 and 2). We identified distinct image statistics properties374

for the two channels between the images above and below the horizon (Figs 3–6 and S4 Fig).375

Specifically, both the local contrast and the spatial autocorrelation were higher in UV than in376

green for the upper visual field images, while they were both lower in UV than in green for377

the lower visual field images. This disagrees with what the efficient coding hypothesis implies378

[3, 4] from the functional division of the mouse retina along the dorsoventral axis [15, 16, 18].379

We thus suggest that the given retinal organization in mice should have evolved not only to380

efficiently encode natural scenes from an information theoretic perspective, but likely to meet381

some other ethological demands in their specific visual environments [22].382

How faithful are our images to what mice actually see in their natural habitats? This is a383

critical question because image statistics depend on the quality and contents of the images. Our384

camera system was designed to collect high-quality UV-green images (Figs 1 and 2) comparable385

to the existing natural image datasets for human vision [42–45]. However, caveats include that386

1) the effects of the mouse eye optics were not considered in the image acquisition or analysis;387

2) no motion dynamics were considered; 3) images were taken under ample light during the day,388

while mice are nocturnal; and 4) our image datasets were still relatively small and did not cover389

the entire visual field for the mouse vision. It is a future challenge to address these questions,390

for example, by measuring the properties of the mouse eye optics, simulating images projected391

onto the mouse retina, and analyzing the statistics of these images.392
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“Mouse-view” natural image database393

We employed a beam-splitting strategy to simultaneously acquire UV and green images of394

the same scenes (Fig 1) because it has certain advantages over other hyper- or multi-spectral395

imaging techniques [25, 26]. First, a previous study used a hyperspectral scanning technique396

where a full spectrum of each point in space was measured by a spectrometer [18]. While the397

photoreceptor response could be better estimated by using its absorption spectra, the scanned398

images through a pinhole aperture inevitably had lower spatial and temporal resolutions than399

the snapshot images acquired with our device. Second, a camera array can be used for multi-400

spectral imaging with each camera equipped with appropriate filters and lenses [58]. This401

is easy to implement and will perform well for distant objects; however, because angular402

disparity becomes larger for objects at a shorter distance, one would have a difficulty in taking403

close-up images that small animals such as mice would normally encounter in their everyday404

lives. Finally, our single-lens-two-camera design is simple and cost-effective compared to other405

snapshot spectral imaging methods [26]. In particular, commercially available devices are often406

expensive and inflexible, hence not suitable for our application to collect images that spectrally407

match the mouse vision.408

There are several conceivable directions to expand the “mouse-view” natural image409

database. First, we could take high dynamic range images using a series of different exposure410

times. This works only for static objects, but can be useful to collect images at night during411

which nocturnal animals such as mice are most active. Second, we could take a movie to analyze412

the space-time statistics of natural scenes [22]. It would be interesting to miniaturize the device413

and mount it on an animal’s head to collect time-lapse images with more natural self-motion414

dynamics [59, 60]. Expanding our “mouse-view” natural image datasets will be critical to better415

understand the visual environment of mice and develop a theoretical explanation on species-416

specific and non-specific properties of the mouse visual system.417

Optimality of the mouse retina418

What selective pressures have driven the mouse retina to favour UV sensitivity over blue and419

evolve the dorsoventral gradient in the opsin expression? Our image analysis suggests that420

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.04.08.438953doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438953


Abballe and Asari 17

the coding efficiency alone with respect to the natural image statistics cannot fully explain421

the distinctive organization of the mouse retina (Figs 3–6). For example, we argued from an422

information theoretic viewpoint that, for equalizing the bandwidth within the system, high423

contrast images in the upper visual field (Fig 3C) should be encoded with less sensitive424

photoreceptors (M-cones), while low contrast images in the lower visual field (Fig 3D) with425

more sensitive photoreceptors (S-cones) [18]. In contrast, one could also argue from an426

ethological viewpoint that more sensitive S-cones should be driven more strongly by high427

contrast images in the upper visual field and thus better suited to process biologically relevant428

information, such as aerial predators [2, 22].429

To understand in what sense the moues retina’s organizations are optimal, one then needs to430

clarify visual ethological demands that are directly relevant for survival and reproduction. For431

example, fresh mouse urine reflects UV very well, and this has been suggested to serve as a con-432

specific visual cue for their territories and trails besides an olfactory cue [61]. The UV sensitivity433

can also be advantageous for the hunting behavior of mice because many nocturnal insects are434

attracted to UV light. Furthermore, increased UV sensitivity in the ventral retina may improve435

the detection of tiny dark spots in the sky, such as aerial predators [62]. Indeed, the S-opsin-436

dominant cones in mice have higher sensitivity to dark contrasts than the M-opsin-dominant437

ones [18], and turning the anatomical M-cones into the functional S-cone by co-expressing the438

S-opsin will dramatically increase the spatial resolution in the UV channel because the mouse439

retina has only a small fraction of the uniformly distributed genuine S-cones (∼5 %) compared440

to the co-expressing cones [∼95 %; 11, 16, 17, 63].441

These arguments, however, are difficult to generalize because each species has presumably442

taken its own strategy to increase the fitness in its natural habitat, leading to convergent and443

divergent evolution. On the one hand, UV sensitivity was identified in some mammals that live444

in a different visual environment than mice, including diurnal small animals such as the degu445

and gerbil [61, 64, 65] and even large animals such as the Arctic reindeer [66]. On the other446

hand, some species showing a similar behavioral pattern as mice do not have the dorsoventral447

division of the retinal function [12–14]. For example, even within the genus Mus, some species448

do not have the dorsoventral gradient of the S-opsin expression, and others completely lack the449
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S-cones [67]. It is even possible that the cone distribution bias may have nothing to do with450

the perception of the color vision, but may arise just because of the developmental processes.451

Indeed, the center of the human fovea is generally devoid of S-cones [68, 69], and there is a huge452

diversity in the ratio of M- and L-cones in the human retina across subjects with normal color453

vision [70, 71]. Behavioral tests across species will then be critical for validating the ethological454

arguments to better understand the structure and function of the visual system [2]. We expect455

that the “mouse-view” natural image datasets will contribute to designing such studies.456

Figure legends457

Fig 1: Multi-spectral camera system for the mouse vision458

(A) Schematic diagram of the camera optics. Incoming light was split into UV and Green459

channels by a dichroic mirror and further filtered to match the spectral sensitivity of the mouse460

visual system (see panel B). A neutral density filter with the optical density value from 1.0 to461

2.0 was used for the Green channel to maximize the dynamic range of the camera sensor to be462

used with the same parameter settings as the UV channel. The inset shows the pixel intensity463

values as a function of the exposure time (mean ± standard deviation; N=2,304,000 pixels),464

supporting the linearity of the camera sensor (Sony, IMX174 CMOS).465

(B) Relative spectral sensitivity of the camera system (UV channel, violet area; Green466

channel, green area). For comparison, the spectral sensitivity of the mouse rod and S- and M-467

cone photoreceptors [31] corrected with the transmission spectrum of the mouse eye optics [30]468

was shown in black, violet and green lines, respectively, as well as typical sunlight spectrum in469

gray.470

Fig 2: Representative images of the natural scenes in UV and green471

channels472

See S2 Fig for the UV-Green pixel intensity distribution of these example images.473
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(A) Upper visual field images taken with positive camera elevation angles (UV, Green, and474

pseudo-color merged images from left to right). These images typically contain trees and475

branches with sky backgrounds.476

(B) Lower visual field images taken with negative camera elevation angles, often containing477

a closer look of grasses and flowers.478

Fig 3: Light intensity and local contrast distributions of the “mouse-view”479

natural images480

(A,B) Normalized light intensity distributions of the upper (A) and lower (B) visual field481

images for UV (violet) and Green (green) channels (median and interquartile range).482

(C,D) Local contrast distributions computed with the Laplacian-of-Gaussian filter (σ = 10 in483

Eq.(2); see S3 Fig for contrast distributions computed with different σ values). The distribution484

of the UV channel is more strongly heavy-tailed than that of the Green channel for the upper485

visual field images (C), but the Green channel’s distribution is wider than the UV channel’s for486

the lower visual field images (D).487

(E–H) Scale (β; E,F) and shape (γ; G,H) parameters from the Weibull distribution fitted to488

each image (Eq.(3); see Methods for details). For the upper field images (E,G), the UV channel489

has significantly smaller γ (G) but comparable β (E) values than the Green channel. In contrast,490

for the lower field images (F,H), the Green channel has significantly larger β (F) but comparable491

γ (H) values than the UV channel. P -values are obtained from sign-tests.492

Fig 4: Achromatic and chromatic contrast of the “mouse-view” natural493

images494

(A,B) Root mean square (RMS) contrast of the upper (A) and lower (B) field images,495

computed independently for the UV (violet) and Green (green) channels of each image (local496
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patch size, 30 pixel radius; Eq.(4) in Methods). The UV channel has higher achromatic contrast,497

especially for the upper visual field images (median ± interquartile range).498

(C,D) Chromatic contrast distributions (median ± interquartile range) computed as a dif-499

ference of the RMS contrasts between the UV and Green channels (Eq.(5) in Methods). The500

distribution was asymmetric for the upper field images (C) but rather symmetric for the lower501

field images (D).502

(E,F) Scale (β; E) and shape (γ; F) parameters from the Weibull distribution (Eq.(3)) fitted to503

each side of the chromatic contrast distribution of each image. The box plot shows the median504

± interquartile range. The upper field images contain fewer pixels that have higher contrast in505

Green than in UV (rank-sum test: three stars “⋆ ⋆ ⋆” indicating p < 0.001; ⋆⋆, p < 0.01; and ⋆,506

p < 0.05).507

Fig 5: Power spectrum of the “mouse-view” natural images508

(A–D) The average power spectra of the upper (A,B) and lower (C,D) visual field images for509

the UV (A,C) and Green (B,D) channels.510

(E–H) The power spectra in the vertical (E,G) and horizontal (F,H) directions (median and511

interquartile range) for the upper (E,F) and lower (G,H) visual field images.512

(I–M) The slope (a; I–L) and Y -intercept (b; M–P) parameters of the power function b/ωa
513

in the log-log space fitted to the power spectra of each image in the vertical (I,K,M,O) and514

horizontal (J,L,N,P) directions. For the upper visual field images (I,J,M,N), the UV channel515

has significantly larger b (M,N) but comparable a (I,J) values than the Green channel. For the516

lower field images (K,L,O,P), in contrast, the Green channel has significantly larger b (O,P) and517

smaller a (K,L) values than the UV channel. P -values are obtained from sign-tests.518
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Fig 6: Spatial autocorrelation of the “mouse-view” natural images519

(A–D) The average spatial autocorrelation of the upper (A,B) and lower (C,D) visual field520

images for the UV (A,C) and Green (B,D) channels, respectively.521

(E–H) The spatial autocorrelation in the vertical (E,G) and horizontal (F,H) directions522

(median and interquartile range). The UV channel has a higher and wider spatial correlation523

for the upper visual field images (E,F), while the Green channel has a higher and wider spatial524

correlation for the lower visual field images (G,H).525

(I–L) Representative spatial correlation values of the pixels horizontally (I,K) or vertically526

(J,L) separated by 50 pixels for the upper (I,J) and lower (K,L) visual field images. P -values527

were obtained from sign-tests.528

Supporting information529

S1 Fig: Relative pixel intensities along horizontal and vertical axes530

Relative pixel intensities (median ± interquartile range; UV and green channels in violet and531

green, respectively) were computed along horizontal (A,C,E) and vertical (B,D,F) axes for three532

different image categories based on the camera angle: lower (A,B; N = 117), horizontal (C,D;533

N = 15), and upper (E,F; N = 100) visual field images. Pixel intensity did not change much534

horizontally but was generally lower in the lower field images (A,B) than in the upper field535

images (E,F). Discontinuity between the top edge of the lower field images (B, X-axis value536

of 0) and the bottom edge of the upper field images (F, X-axis value of 0) supports a good537

separation of the two image categories.538
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S2 Fig: UV-Green pixel intensity distributions of representative “mouse-539

view” images540

Each scatter plot shows the distribution of the UV-Green pixel values from the corresponding541

image shown in Fig 2 (A, upper visual field images; B, lower visual field images). Virtually542

all pixels were within the dynamic range of the camera sensor (Sony, IMX174 CMOS; 12-bit543

depth saved in a 16-bit format).544

S3 Fig: Local contrast distributions of the natural scenes are scale invariant545

Local contrast distributions computed with different Laplacian-of-Gaussian filter sizes (A,B,546

σ = 5; C,D, σ = 20; E,F, σ = 40; Eq.(2)) are shown in the same format as Fig 3C,D (σ = 10).547

The upper visual field images (A,C,D) generally showed higher contrast than the lower visual548

field images (B,D,F), especially for the UV channel (violet). The filter size (0.18–1.44 degrees)549

used in this study is smaller than the receptive field size of mouse retinal ganglion cells (3-550

13 degrees) [72, 73]. Given the scale invariance [1, 21], however, we expect that our analysis551

results should hold for larger filters as well [22].552

S4 Fig: Natural image statistics for “mouse-view” images have distinct553

spectral properties between upper and lower visual fields across different554

order statistics555

The first- to the fourth-order image statistics (mean, A, B; standard deviation, C, D; skewness,556

E, F; kurtosis, G, H) as well as entropy (I, J) were computed for local images patches (0.36557

degrees; UV, violet; Green, green). Joint (top) and marginal (bottom) probability distributions558

were then generated for the upper (A, C, E, G, I) and lower (B, D, F, H, J) visual field images.559
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Abballe and Asari Supplemetary Figure 2
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Abballe and Asari Supplemetary Figure 3
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Abballe and Asari Supplemetary Figure 4
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