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Abstract

We present Beyondcell (https://gitlab.com/bu_cnio/beyondcell/), a computational methodology for identifying tumour
cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific
treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic
clusters (TCs) within cellular populations. Additionally, Beyondcell determines therapeutic differences among cell
populations, and generates a prioritised ranking of the differential sensitivity drugs between chosen conditions to
guide drug selection. We performed Beyondcell analysis in four single-cell datasets to validate our score and to
demonstrate that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients.
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Background

Tumour heterogeneity (TH) refers to genetic and epigenetic differences of the same tumour type between patients,
between tumours in a single patient, and within the cells of a tumour. It contributes to the medical complexity of
cancer treatment and can lead to drug resistance, therapeutic failure and higher lethal outcome (1). TH is closely
related to tumour evolution which has been described as branching clonal evolution due to the accumulation of
somatic mutations (2). The heterogeneity of cancer cells, tumour evolution and clonal dynamics introduce significant
challenges in designing effective treatment strategies. Unfortunately, these issues are not satisfactorily addressed in
routine clinical practice as systematic efforts to consider inter-patient TH when choosing therapies are still limited,
while they are extremely rare for intra-TH (3, 4)
Single-cell RNA sequencing (scRNA-seq) has become an established technology to dissect TH at the transcriptional
level, revealing high-resolution cellular composition and dynamics and offering an unprecedented opportunity to
address TH therapeutically (5, 6, 7). For instance, scRNA-seq studies have been successfully employed to identify
novel cancer cell subpopulations (8), tumour biomarkers (9), drug resistance pathways and therapeutic targets (10).
In addition, large-scale projects focused on obtaining a comprehensive molecular and pharmacological
characterisation of the cancer cell lines have provided valuable datasets relating gene expression signatures with
drug response and treatment sensitivity. Some examples include the Cancer Cell Line Encyclopedia (CCLE) (11), the
Genomics of Drugs Sensitivity in Cancer (GDSC) (12), the Cancer Therapeutic Response Portal (CTRP) (13) and the
Drug Repurposing Hub/LINCS (14).
In this situation, it is reasonable to hypothesise that drugs (or drug combinations) capable of targeting TH at
single-cell resolution can be identified by integrating drug response profiles and scRNA-seq data. This would help to
address the tumour therapeutic complexity, revealing the impact of TH in response to drugs and the scope of tumour
cells whose therapeutic approach could be managed with approved drugs, clinical trials or drug repositioning
strategies. However, there are no current computational methodologies capable of relating single-cell gene
expression and high-throughput drug screening datasets to suggest knowledge-driven treatments. To address these
challenges we developed Beyondcell, a novel method for detecting tumour cell subpopulations with distinct drug
response in order to estimate the tumour therapeutic complexity and propose differential drugs to target cell
subpopulations, experimental conditions or phenotypes in scRNA-seq experiments. We have applied Beyondcell to
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four different studies, including both cell lines and patient-based single-cell data. Our analysis covers the detection of
TCs, as well as the visualization of results for clinical interpretation.

Methods

Beyondcell workflow and therapeutic clusters
An analysis with Beyondcell starts with a single-cell expression matrix and a collection of drug signatures: the drug
perturbation (PSC) and the drug sensitivity (SSC) collections containing 4690 and 819 signatures respectively (11, 12,
13, 14). PSC captures the transcriptional changes induced by a drug, while SSC contains signatures reflecting the
transcriptional status of sensitivity or resistance prior to drug treatment (Fig. 1a).
Our method calculates the Beyondcell Score (BCS) which estimates, for each cell in the preprocessed single-cell
expression matrix, the enrichment in every drug signature in the specified collections. The BCS ranges from 0 to 1
and measures the cell perturbation susceptibility (using the PSC) or the predicted sensitivity to a given drug (using the
SSC). The BCS can also evaluate the cells’ functional status using functional gene sets such as molecular pathways,
or cancer hallmarks. The calculated BCS matrix allows the determination of therapeutic clusters (TCs) within cellular
populations defined as ‘a set of cells that share a common response to a set of drugs’. In order to find potential TCs,
a clustering analysis is applied to the BCS matrix where cells are grouped by their differential response to the
selected drugs. For each drug, Beyondcell also calculates the switch point (SP), which reflects the homogeneity of
the drug response throughout the single-cell dataset (Fig. 1b). Thus, the most therapeutically homogeneous tumours
would be those in which each and every one of their cells responds in the same way to a certain drug, either with a
sensitivity (SP=0) or resistance (SP=1) response, while a heterogeneous response would be represented by
intermediate SPs. Then, the BCS matrix and the SP are used to generate a Uniform Manifold Approximation and
Projection (UMAP), enabling the visualisation of the TCs reflecting the homogeneity in the drug responses within
cellular populations, and to highlight in TCs drug response, experimental conditions, cell subtypes, biomarker
expression and cellular functional activity. Additionally, Beyondcell determines therapeutic differences among cell
populations and generates a prioritised ranking of the differential sensitivity drugs between chosen conditions to
guide drug selection (Supplementary Methods).

Data description
The Library of Integrated Network-based Cellular Signatures (LINCS, http://www.lincsproject.org) (14) is a catalogue
of gene expression data associated with cell lines exposed to a variety of perturbing agents, such as small molecules
(about 5500), FDA drugs (~1300) and shRNA silencing (22,119 genetic perturbagens). LINCS, based on L1000 high
throughput technology, is an extension of the Connectivity Map, which has been successfully used for drug
repositioning (15). From the ~20K small molecules tested in the LINCS L1000 dataset, only those with an identifiable
common drug name were selected. This reduced the number of drugs to 4690. In the CCLE (11) 28 drugs were
tested and the mRNA expression of 1037 cell lines were profiled using Affymetrix U133Plus2 arrays. The
gene-centric RMA-normalised mRNA expression data, the cell line information and the drug response data from
Cancer Cell Line Encyclopedia were downloaded from the CCLE data portal
(https://portals.broadinstitute.org/ccle/home). In the CTRP (13), 545 drugs (single or combination) were tested against
887 cell lines. We downloaded the drug response data of the CRTP 2.1 project from the CTD2 Data Portal
(https://ocg.cancer.gov/programs/ctd2/data-portal). The gene expression data used in order to obtain the CTRP
expression signatures were those of the CCLE. Of the 887 cell lines, 805 were present in the CCLE dataset. In the
GDSC data (12), 265 compounds corresponding to 250 different drugs were tested against 1074 cell lines. Cell lines
were profiled for gene expression using the Affymetrix Human Genome U219 array. Expression data were normalised
using RMA (16). Drug response data and preprocessed mRNA gene expression data were downloaded from the
GDSC web portal (http://www.cancerrxgene.org/downloads).

Signature generation
A gene expression signature is a general model for the representation of the transcriptional changes associated to a
given biological phenotype or perturbation. In this study we have considered two expression signature collections: the
PSC captures the transcriptional changes induced by a drug; while the SSC captures the sensitivity to the drug effect.
In both cases, these expression signatures are obtained from a differential expression analysis, although using
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different designs. Despite its different biological interpretations, both types of signature were represented as the two
gene sets formed by the N most up and down-regulated genes (the UP and DN genesets). Several N were tested
(50, 100, 250 and 500) and no significant disagreement was found between the top synergistic and antagonistic
interactions (data not shown). Thus, following (17), N was taken as 250.

Drug perturbation signature collection (PSC)
Drug-induced expression signatures were obtained from experiments in which the transcriptional state of the cell is
measured before and after treatment with the drug. This makes it possible to study the transcriptional effect of the
drug. In order to obtain consensus expression signatures for each drug, a differential expression analysis was
performed on control vs treated cells using limma (18). Full details of PSC signature collection are available at
Supplementary Methods.

Drug sensitivity signature collection (SSC)
Drug-induced expression signatures were obtained from pharmacogenomics experiments in which the
pharmacological response to a drug and the transcriptional state before treatment were considered. In order to obtain
the expression signature, a differential expression analysis against a measure of drug response was performed using
limma. The area under the curve (AUC) was used as the measure of drug response, as contrary to IC50, it can always
be estimated without extrapolation from the dose-response curve, and also because it has shown more accuracy in
the prediction of drug response (19). In all the projects considered, the tumour origin of the cell lines were considered
as confounding variables. In the CCLE the covariate was created by combining the Site.Primary and the Histology
information of the cell line. In the GDSC 2.0, the variable Site and in the CTRP, the ‘CCLE primary Site’ was used.
Further details of SSC signature collection are available at Supplementary Methods.

Functional Pathways
The Beyondcell package also includes a small collection of curated functional pathways obtained from the Molecular
Signatures Database (MSigDB). These are meant to give the user some insight about the cells’ viability and status.
These pathways are related to the regulation of the epithelial-mesenchymal transition (EMT), cell cycle, proliferation,
senescence and apoptosis. Furthermore, the package is able to accept external signatures in GMT format or as
ranked matrices.

Beyondcell score calculation
The Beyondcell score evaluates the activity of a signature of interest in a single-cell RNA-seq experiment. The
transcriptomics data needs to be pre-processed, meaning that proper cell-based quality control filters, as well as
normalisation, scaling and clustering of the data, should be applied prior to the analysis with Beyondcell. When
analysing a bidirectional gene signature (a signature with separate sets of up-regulated and down-regulated genes),
the Beyondcell score is independently obtained for each signature mode. The individual sum of the expression is
calculated and divided by the number of genes in the given signature that are present in the single-cell expression
matrix. The obtained raw scores are normalised and the individual up and down normalised scores are summed and
rescaled between 0 and 1. In cases where the gene signature is unidirectional, all steps remain the same, although
the rescaling will only be applied to one set of normalised scores.

Drug-background selection
In order to obtain TCs, the Beyondcell methodology can optionally generate a background score matrix. The
background score matrix allows the user to reduce the computation time. It aims to characterise the heterogeneity of
the drug responses in the whole dataset, by using a reduced collection of drugs that is able to capture the main
differences between individual cells. To generate this background selection, the drug specificity score (DSS) of the
whole PSC collection has been calculated and the first and last decile have been selected. Here, the rationale is the
following: for each drug, the DSS score quantifies the similarity between the induced expression patterns across cell
types. And while some drugs induce similar patterns across distinct cell types, the majority of them have different
effects across all of them (20).

Regression of unwanted sources of variation
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After obtaining the normalised and scaled Beyondcell scores, we observed that the normalisation step was not
sufficient to avoid the correlation between sample-level metrics (number of genes, number of UMIs or even cell cycle
status) and the calculated scores. To correct for this, we have implemented a regression function. bcRegressOut
removes the effect of all unwanted sources of variation from the scoring matrix in two steps: first, it imputes missing
data (if necessary) using a k-Nearest Neighbours (KNN) algorithm; second, it obtains the residuals derived from the
regression model via QR decomposition. The obtained residuals can then be used for the downstream dimensional
reduction steps.

Therapeutic clusters
The BCS matrix, including the computed scores for all drugs of interest, can be used as an input for a dimensionality
reduction and clustering analysis. In this step, cells are grouped by their differential response to the analysed drugs.
A Uniform Manifold Approximation and Projection (UMAP) allows the visualisation of the identified TCs. With this
analysis, cells can be classified into distinct TCs, which represent sets of cells sharing a common response to a
particular drug exposure.

Drug prioritisation
The bcRank function computes the BCS matrix statistics. In particular, it calculates the switch point, mean, median,
standard deviation, variance, minimum, maximum, proportion of NaN and residuals’ mean of each signature. We
recommend prioritising drugs taking into account both the switch point and the residuals. The Beyondcell package
includes the function bc4Squares, which helps to visualise this prioritisation. A 4 squares plot consists in a scatter plot
of the residuals' means (x axis) vs the switch points (y axis) of a specified cluster (either a TC or a group defined by
experimental condition or phenotype). The 4 quadrants are highlighted: the top left and bottom right corners contain
the drugs to which these cells are least/most sensitive, respectively. The centre quadrants show the drugs to which
the selected cells  are differentially insensitive or sensitive when compared to the other clusters.

Results

Reliability of the Beyondcell score and its application in cancer cell lines under drug exposure
We applied Beyondcell to the Ben-David et al. dataset (21) to demonstrate the reliability of the BCS and to validate its
usefulness for identifying drug-response cell subpopulations. This study dissects the genetic and transcriptional
heterogeneity within cancer cell lines, providing an scRNA-seq dataset that includes 7101 cells obtained from one
single-cell-derived clone from the MCF7 cell line (MCF7-AA) exposed to bortezomib. Cells were collected before and
after 12, 48 and 96 hours of drug exposure (t0, t12, t48 and t96) to study its antiproliferative effects. Also, a drug
screening of 321 anticancer compounds was performed to study drug response heterogeneity across 27 strains of
the MCF7 breast cancer cell line.
First, to demonstrate the reliability of the BCS, we computed BCS for each compound using SSC drug signatures to
the collected MCF7-AA cells at t0. We found that median BCS obtained with SSC signatures for cells at t0 correlate
significantly (R = -0.26, p < 1e-04) with MCF7-AA cell viability measures reported by Ben-David et al. after treatment,
demonstrating that BCS reflects drug sensitivity (Fig. 2a). When we employed PSC signatures, drugs were then
classified in three groups: chemotherapy, targeted therapy and others (including immunotherapy, hormone therapy
and photodynamic therapy). The BCS for targeted therapies showed a significant correlation with MCF7-AA cell
viability (R = -0.24, p = 8.4e-03) (Additional File 1: Fig. S1A) while the rest of the therapies were not found significant.
This could suggest that PSC signatures for targeted therapies reflect more accurately which cells are more likely to
respond than chemotherapy signatures.
Next, we were interested in evaluating Beyondcell’s ability to identify distinct drug-response cell subpopulations
before and after bortezomib exposure. Beyondcell’s analysis with the PSC collection clearly separates the cells into
discrete clusters, in contrast to the mixed cell groups found using transcriptional profiles. The resulting therapeutic
clusters not only separated bortezomib-treated and untreated cells but also retrieved drug exposure time-points. By
focusing on a PSC bortezomib expression signature, t12 and t48 cells reflected the perturbation status induced by
bortezomib in contrast to t0 cells. Interestingly, t96 cells reverted to a pre-perturbation status for the bortezomib
signature, highlighting the reversible inhibitory capacity of this proteasome inhibitor (22) (Fig. 2b). In particular, cells
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were more sensitive to bortezomib when combined with SNX-2112, an HSP90 inhibitor, than in treatment with
bortezomib alone, suggesting its role as a sensitiser to bortezomib treatment (Additional File 1: Fig. S1B).
In summary, in this study we validate the BCS as a measure of drug sensitivity, determining its significant correlation
with drug screening experimental data. In addition, we demonstrate Beyondcell’s utility to recapitulate drug response
in the MCF7 cancer cell line and propose single and drug combinations to sensitise the cells.

Analysis of BRAF inhibitor sensitive and resistant subpopulations in melanoma cells
Next, using data from a 451HLu human melanoma cell line treated with BRAF inhibitors (BRAFi), we evaluated
Beyondcell’s ability to identify drug-resistant cellular populations and to propose drug treatments (23). Beyondcell
analysis with SSC drug signatures recapitulated ‘parental’ and ‘BRAFi-resistant’ cell populations and identified 6
different therapeutic clusters shown in a Beyondcell UMAP plot where cells are coloured according to the treatment
condition or the Beyondcell therapeutic cluster. Therapeutic cluster 5 (TC5) included both parental and resistant cells.
A small fraction of the parental cells in TC5 (15%) expressed BRAFi-resistance markers like AXL, NRG1, DCT and
FGFR1 that are also expressed in BRAFi-resistant cells, showing that they were clonally selected from the parental
population contributing to the resistance (Fig. 2c; Additional File 1: Fig. S2).
Additionally, Beyondcell identified specific drugs to target TC5, BRAFi-resistant and parental cells. For instance, cells
in cluster 5 are differentially sensitive to dasatinib (SRCi) and unresponsive to dinaciclib (CDKi) and gemcitabine. On
the other hand, cells in the resistant condition are differentially sensitive to bardoxolone methyl (NF-kBi) and
unresponsive to AZD6482 (PIK3i) (Additional File 1: Fig. S3; Table S1). MEK inhibitors (MEKi) are shown to target
451HLu cells including pre-resistant clones (TC5). For instance, trametinib had positive Beyondcell scores in each
therapeutic cluster obtained for SSC drug signatures, showing a higher BCS score (higher sensitivity) in TC5, and
therefore, it could be proposed to target BRAFi-unresponsive cells. In fact, MEKi is a standard treatment in advanced
melanoma patients in combination with BRAFi (24) (Fig. 2d; Additional File 1: Fig. S4A). We observed that TC5 cells
were also grouped in expression UMAPs overlapping with the scRNA-seq expression cluster 2 (EC2), suggesting a
direct relationship between the drug response profiles and gene expression patterns (Additional File 1: Fig. S4B). In
order to identify novel genes involved in BRAFi-resistance, we performed a differential gene expression analysis for
TC5, revealing 572 significantly overexpressed genes (|log2(FC)| > 2, FDR < 0.05) (Table S2), including some known
BRAFi-resistance biomarkers (e.g. AXL and NRG1). In addition, vemurafenib and dabrafenib BCSs obtained using
SSC showed that TC5 had lower sensitivity to RAF inhibitors than the rest of the TCs, confirming that TC5 cells are
pre-resistant to BRAFi (Additional File 1: Fig. S4C). This validation demonstrates that Beyondcell is able to identify
therapeutic clusters that recapitulate drug effects on cells, propose drugs to target sensitive and resistant cells, and
identify drug-response biomarkers.

Beyondcell characterises single-cell variability in drug response in pan-cancer cell line data
We also applied Beyondcell to describe the therapeutic heterogeneity in 198 cell lines from 22 cancer types (25).
Using SSC drug signatures we found 5 TCs where 12 of 22 cancer types were overrepresented in at least one of
these TCs. TC0 was mostly constituted by cells from skin cancer (melanoma) and endometrial/uterine cancer cell
lines, while TC1 included cells from bladder, gallbladder and pancreatic cancer cell lines. TC3 was enriched in breast
and colon/colorectal cancer, while gliomas were exclusively located in TC2 together with kidney and thyroid cancer
(Additional File 1: Fig. S5; Table S3). TC4 was mainly constituted by two cell lines: the osteosarcoma (HOS) and
sarcoma (A204) cell lines . Interestingly, 11 out of 12 brain cancer cell lines clustered together in TC2 independently
of whether the lineage is astrocytoma or glioblastoma, with the exception of the single medulloblastoma cell line that
is located in TC0. These results suggest that the cell lines from these 12 cancer types that tend to cluster in the same
TCs have a common drug response.
In contrast, cancer types such as lung, gastric and ovarian among others showed high cellular therapeutic
heterogeneity. For instance, the four bile duct cancer cell lines are each grouped in a different TC showing different
drug response profiles despite belonging to the same cancer type (Additional File 1: Fig. S6A). Interestingly, lung
cancer cell lines are distributed between the TCs regardless of whether they are squamous or adenocarcinoma
subtype showing diverse drug response (Additional File 1: Fig. S6B). We also tested whether these lung cancer cell
lines expressing this distinct drug response pattern exhibit a unique pattern of mutations and genetic vulnerabilities.
For this, we used the CCLE mutation dataset as well as the Achilles dataset of genome-wide CRISPR knockout
screens to map known driver mutations in lung cancer (e.g. KRAS, EGFR, PI3KCA) and the genes identified as
essential for proliferation (26). These analyses showed that lung cancer cell lines did not cluster together, therefore,
TCs detected by Beyondcell are not driven by mutational and essentiality events (Additional File 1: Fig. S6C).
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We hypothesised that the heterogeneous therapeutic landscape observed in cancer cell lines could also be an
opportunity to infer drug repositioning strategies to target cell lines with different tissue origin or genetic background
but clustered together in Beyondcell by similar drug responses (27). For instance, most of the colon/colorectal cancer
cell lines were clustered in TC3 except cells from the NCIH747 colorectal cell line, which are mostly concentrated in
TC1 where bladder, gallbladder and pancreatic cancer cell lines are located (Additional File 1: Fig. S7). This suggests
that NCIH747 cell line could respond to tyrosine kinase inhibitors (TKIs) prescribed by Beyondcell for these tumour
types such as EGFRi and also to inhibitors to target members from MAPK pathway (MEK and SRC). Interestingly,
NCIH747 cell line has shown experimental sensitive response to selumetinib, a MEKi, this drug being the most
differential sensitive drug for TC1 and for bladder and pancreatic cancer in our results. These findings highlight
Beyondcell’s ability to propose drugs for repurposing, providing additional drug response information using
transcriptional data that could complement diagnostic information (i.e. tissue origin, stage, mutational status, etc) that
commonly guide cancer treatment.
Overall, global expression profiles clustered cells by cancer type, however, the TCs did not show such separation,
suggesting less variability in the drug response. More specifically, 172 of 198 cell lines were overrepresented in the
same TC, indicating that these cell lines had a lower cellular therapeutic heterogeneity than the rest of the cell lines (n
= 26), which were spread across the different TCs (Table S3). The high-grade serous ovarian cancer cell lines are a
clear example of high therapeutic heterogeneity, since cells from these cell lines are mostly distributed between TCs
(Additional File 1: Fig. S8). This observed differential drug sensitivity led by varying patterns of gene expression could
result from clonal dynamics and continuous genetic instability that translates into heterogeneity in cancer cell lines
(21).
Beyondcell results for SSC revealed 136 differential sensitivity drugs for TCs and 183 drugs in cancer type
comparison. In general, TC1 and TC4 showed higher sensitivity to EGFR and topoisomerase inhibitors respectively
while TC0 and TC3 both showed higher sensitivity to PLK and CDK inhibitors (Fig. 3a; Additional File 1: Fig. S9).
Using PSC 174 drugs showed differential sensitivity for TCs and 569 drugs in cancer type comparison (Table S4).
However, TCs did not form discrete clusters so we expect that changes in drug responses are subtle, with a lot of
commonalities. Beyondcell was also used to compute drug-response similarity correlation modules using BCS matrix
(Additional File 1: Fig. S10; Table S5). These correlation modules could be used to infer therapeutic mechanisms of
action (MoA) for those drugs with unknown targets.
Beyondcell predicts EGFRi as the most enriched drugs for TC1, but also, for bladder and gallbladder cancer. To
validate this result, we used a recently generated dataset of clinical compounds screened across 578 cell lines (27).
Differential drug vulnerability analysis showed increased sensitivity to EGFR inhibitors (Additional File 1: Fig. S11;
Table S6) for cell lines in TC1, while TC2 showed decreased sensitivity, confirming our results. Moreover, EGFR is
overexpressed in up to 74% of bladder cancer tissue specimens but has a relatively low expression in normal
urothelium suggesting that it could be a potential therapeutic target. In addition, EGFR is an independent predictor of
decreased survival and stage progression in bladder cancer (28).
Beyondcell calculates an SP for every drug, providing a measure of drug response homogeneity and sensitivity in
each cell line. For instance, cell line NCIH1568 (NSCLC, metastatic) presented higher drug response heterogeneity
than RERFLCAD1 (NSCLC, primary), evidencing a more variable drug-response behaviour in the metastatic cell line.
We found that 48% of cancer cell lines show >60% of drug homogeneity (SP = 0 or SP = 1) suggesting low cell
variability in drug response. A total of 88% of the cell lines have a median SP > 0.7, meaning that they contain a
greater number of insensitive than sensitive cells, and 17% of cell lines have a median SP > 0.9, indicating that none
of the cells would exhibit sensitivity against half of the therapeutic options (Additional File 1: Fig. S12; Table S7).
To explore the functional properties of the TCs, we correlated BCS and 12 expression programs known to be
recurrently heterogeneous within cancer cell lines (RHPs). Cells enriched in the epithelial senescence-associated
(EpiSen) program correlated (r > 0.6) with high sensitivity to EGFRi, in agreement with experimental validations
performed by Kinker and colleagues (Fig. 3b). The EMT program (EMT-II) presented higher activity in TC2 cells and
correlated with high sensitivity to PI3K and HMGCR inhibitors. In contrast, TC0 and TC3 cells correlated with low
EMT-II activity and high sensitivity to HDAC inhibitors, in agreement with previous studies (29, 30) (Additional File 1:
Fig. S13; Table S8). Interestingly, EMT-high TC2 — mostly represented by brain cancer cell lines — presents a more
undifferentiated transcriptional state in contrast to the rest of the therapeutic clusters (p = 8.3e-13) (30). TC2
differential expression analysis showed an up-regulated mesenchymal profile and enrichment of the EMT pathway
(Additional File 1: Fig. S14; Table S9), with Beyondcell results also showing a lower sensitivity to EGFRi (Table S4),
confirming previous results where undifferentiated cell lines showed decreased sensitivity to EGFRi (Table S10) (31).
This result shows that distinct cell functional states lead to different drug responses which are successfully detected
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by Beyondcell TCs. Overall, our study reveals the therapeutic landscape in multiple cancer cell lines, finding recurrent
patterns of drug heterogeneity shared by specific cancer types, cell lines, as well as their relationship with functional
status.

Beyondcell characterises single-cell variability in drug response in melanoma patients
We also employed our method to study more heterogeneous samples such as primary tumour samples. For this, we
used an scRNA-seq dataset from 16 melanoma patients treated with immune checkpoint inhibitors (ICIs) and 15
untreated patients. This prospective study aimed to detect transcriptional cell states related to responsiveness to ICIs
and identify a transcriptional ICI-resistance program expressed by malignant cells associated with T-cell exclusion
and immune evasion which predicts clinical responses to immunotherapy in melanoma patients (32). Beyondcell
revealed 7 TCs, where TC2 and TC5 mainly contained cells from the untreated patients Mel79 and Mel81
respectively, whereas TC4 and TC6 included ICI-resistant patients (Additional File 1: Fig. S15). Non-responder
patients were predicted by calculating the activation level of the ICI-resistance program with Beyondcell, thus tumour
cells showing high BCS would have low response to ICIs. As expected, TC4 and TC6 defined by ICI-resistant
patients showed high BCS values. TC5, which included the untreated patient Mel81, also had a high BCS so we
concluded that this patient could not respond to ICIs (Fig. 4a). Beyondcell showed that Mel81 would respond to
CDK-inhibitor (CDKi) drugs such as alvocidib, which has been proposed for use in combination with immunotherapy
to improve the response in ICI-resistant patients. Conversely, ICIs in monotherapy would be the preferred treatment
for Mel79 (Fig. 4b; Additional File 1: Fig. S16). This validation demonstrated that Beyondcell correctly identified
non-responders to ICIs, confirming that CDKi can be a therapeutic option to overcome ICI-resistance.

Discussion

Addressing TH is a critical factor for the design of effective treatments in cancer and a current challenge for precision
oncology (33). Consequently, there is a need for methodologies to detect tumour clone-specific drug sensitivities in
order to properly characterise drug responses in cancer and, more importantly, to prioritise those treatments that
could be clinically more effective for each patient. Here we aim to address this challenge by introducing Beyondcell,
the first method to define tumour cell subpopulations of differential drug response and propose cancer-specific
treatments using single-cell RNA-seq data. A key concept in Beyondcell is the “therapeutic cluster”, defined as a
group of cells sharing a common drug response, which aims to address tumour therapeutic heterogeneity. For this
purpose, Beyondcell uses a single-cell expression matrix and LINCS/CMap, GDSC, CCLE and CTRP drug-signature
collections to calculate the Beyondcell score, an indicator for each cell of its degree of sensitivity to a drug. Then, the
method also calculates the SP, a quantitative measure of the drug response homogeneity throughout the single-cell
dataset reflecting the cellular variability. Finally, Beyondcell makes it possible to uncover and visualise TCs, providing
a drug sensitivity ranking that prioritises the best hits to target TCs, cell subpopulations, experimental conditions or
phenotypes.
As a proof of concept, we applied Beyondcell in four independent datasets comprising cancer cell lines (21,23,25)
and patients (31). We observed that Beyondcell successfully identifies tumour subpopulations based on therapeutic
response, and can detect differential treatments amongst a range of experimental conditions or cell clusters. In
addition, Beyondcell recapitulates the biology of the datasets analysed and easily reveals sensitive, innate and
acquired drug-resistant cell subpopulations in cell lines under drug exposure. Furthermore, Beyondcell is able to
propose a possible treatment strategy to overcome such resistance and identifies drug-response markers (21,23).
We also successfully applied Beyondcell to characterise single-cell variability in drug response in a pan-cancer cell
line dataset, identifying cellular functional activities and associating them with common patterns of drug response
shared by specific cancer types and cell lines (25). In addition, Beyondcell allowed us to explore tumour
heterogeneity relating it to clinical drug response data to successfully predict responders and non-responders to
immunotherapy in melanoma patients (32). Overall, Beyondcell allows an in-depth exploration of the TH impact in
cancer therapeutics at the transcriptional level, addressing the variability of drug response in cancer cell lines and
patients.
Nevertheless, the therapeutic heterogeneity revealed in our analysis pinpoints where the integration of new
information is most needed. Other single-cell measurements, such as cell imaging, genetic and epigenetic state or
measuring gene expression at various time points could reveal differences in the drug responses of tumour cell
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populations (34). Our results also reinforce the importance of tumour evolution for cancer diagnosis and treatment.
Since tumour heterogeneity is related to the processes of clonal evolution, the identification of clonal populations, the
clonal dynamics under selective pressure and the potential for competitive release of drug-resistant tumour subclones
should be considered to prescribe more effective therapies (2). A key aspect here is to incorporate the cells’ genetic
states, including information on druggable mutations and tumour vulnerabilities that could be used to target
drug-tolerant cells in addition to considering the clonal evolution, in order to determine the best therapeutic
opportunities to prevent or overcome tumour resistance (35).
The tumour microenvironment represents an additional layer in cancer therapeutics. Immunoediting processes — that
is, the dynamic interactions between tumour cells and the immune system — drive tumour evolution and contribute to
therapeutic failure (36). Several single-cell studies have suggested targeting immune cells to overcome drug
resistance in some refractory tumours (37,38). Beyondcell application could be extended to the context of immune
cells as a therapeutic target in cancer to study its relationship with drug treatments (39). Further short-term
applications of Beyondcell would include its application to study the relationship between tumour spreading
behaviour, development of metastatic phenotypes (40) and Beyondcell adaptation to the cancer single-cell spatial
transcriptomics scenario (41).

Conclusions

In summary, understanding how TH leads drug response in patients will help to design precise therapeutic regimens
(single-agent, combination or sequential treatments) anticipating the appearance of relapse, managing drug
resistance mechanisms, delaying tumour growth or even inducing complete tumour regression. Therefore, there is an
urgent need to develop methodologies to directly address TH in the design of anticancer treatment regimens.
Beyondcell provides a valuable resource for better understanding of the biological and therapeutic impact of TH. Our
results highlight the utility of Beyondcell to reveal, from single-cell transcriptomics, the cellular heterogeneity in drug
response in cancer cell lines and patients, identifying resistant and sensitive cellular subpopulations and proposing
drugs to target them. Finally, Beyondcell has been implemented as an open-source software package that can be
easily combined with scRNA-seq gold-standard methodologies in custom automated analysis pipelines. Our software
is complementary to current single-cell analysis approaches, opening up a discovery space to support the design of
more effective lines of therapy.
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Figures

Figure 1. The Beyondcell workflow and Beyondell switch point. Beyondcell is a methodology for the identification
of drug vulnerabilities in scRNA-seq data. Using Beyondcell, we have identified the presence of therapeutic clusters
in our data, defined as sets of cells sharing a common behaviour towards a collection of drugs. (a) Given two inputs,
an scRNA-seq expression matrix and a drug signature collection — either the drug perturbation (PSC) or the drug
sensitivity (SSC) collections or a user-provided GMT file/ranked matrix — Beyondcell calculates a score (BCS) for
each drug-cell pair. The resulting BCS matrix is used to determine the presence of therapeutic clusters, which can be
visualised using a UMAP in Beyondcell. A sensitivity-based ranking can be obtained in order to prioritise the best hits.
(b) The scaled BCS ranges from 0 to 1 and measures the cell perturbation susceptibility (when using the PSC) or the
predicted sensitivity to a given drug (when using the SSC). The BCS can also be used to evaluate the cells’ functional
status if functional signatures are applied. Furthermore, a switch point (SP) is calculated for each analysed signature,
by determining the value in the 0 to 1 scale where cells switch from a down-regulated status to an up-regulated one.
Thus, the most therapeutically-homogeneous tumours would be those in which each and every one of their cells
responds with the same directionality to a certain drug, either towards sensitivity (SP = 0) or resistance (SP = 1),
while a heterogeneous response would be represented by intermediate SPs.

Figure 2. Reliability of the Beyondcell score and its application in cancer cell lines under drug exposure. (a)
Median BCS obtained with SSC signatures for cells at t0 correlate negatively (R = -0.26, p < 1e-04) with MCF7-AA
viability measures reported by Ben-David et al. (b) Using BCS obtained with PSC signatures, Beyondcell is capable of
clustering MCF7-AA cells treated with bortezomib (Ben-David et al.) into therapeutic clusters that overlap with
treatment times. Left: UMAP plot of the integrated Seurat object coloured by treatment time; Centre: UMAP plot of the
Beyondcell object also coloured by treatment time; Right: UMAP plot of the Beyondcell object coloured by bortezomib
BCS. Untreated cells (t0) are sensitive to bortezomib whereas cells undergoing treatment (t12 and t48) are
insensitive. After treatment during 72h followed by drug wash and 24h of recovery, cells at 96h (t96) restore their
sensitivity to this drug. (c) Beyondcell UMAP plot for the Ho et al. dataset and the SSC drug signatures. Top left: cells
coloured according to the treatment condition; Top right: cells coloured by Beyondcell’s therapeutic clusters; Bottom:
Beyondcell UMAP plot showing the summed expression of several BRAF inhibitor-resistant biomarkers (JUN,
WNT5A, PDGFRB, EGFR, NRG1, FGFR1 and AXL). (d) Histogram representing trametinib Beyondcell scores in
each therapeutic cluster.

Figure 3. Beyondcell characterises single-cell variability in drug response in pan-cancer cell line data. (a) The
heatmap depicts both the cluster and cancer-specific drugs with a heterogeneous sensitivity pattern found in Kinker
et al. Only drugs with a mechanism-of-action (MoA) annotation are shown. (b) We found EGFR inhibitors to be highly
correlated with the Epithelial Senescence, EMT III and p53-dependent senescence programs, while Tyrosine Kinase
inhibitors or Topoisomerase inhibitors were anticorrelated.

Figure 4. Beyondcell characterises single-cell variability in drug response in melanoma patients. (a) Using the
Jerby-Arnon dataset, we were able to recapitulate the melanoma cells’ resistance to immune checkpoint inhibitors
(ICI) at single-cell resolution. Left: therapeutic SSC clusters, each cell is coloured according to the cluster it belongs
to. Centre: UMAP representing Beyondcell’s predicted affinity to the functional ICI resistance signature. Higher scores
indicate a higher concordance between a cell transcriptome and the signature. Right: A violin plot of the normalised
ICI resistance score by therapeutic cluster. (b) Beyondcell proposes alvocidib as a therapeutic alternative to ICI cells.
Left: UMAP of alvocidib drug score (SSC collection), where higher scores indicate cells whose transcriptome is
concordant with alvocidib sensitivity. Right: A scatterplot of alvocidib drug score and ICI resistance score. Alvocidib
sensitivity positively correlates with immune resistance (R = 0.61, p < 0.01).
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