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Abstract

Biochemical systems consist of numerous elementary reactions governed by the law of
mass action. However, experimentally characterizing all the elementary reactions is
nearly impossible. Thus, over a century, their deterministic models that typically
contain rapid reversible bindings have been simplified with non-elementary reaction
functions (e.g., Michaelis-Menten and Morrison equations). Although the
non-elementary reaction functions are derived by applying the quasi-steady-state
approximation (QSSA) to deterministic systems, they have also been widely used to
derive propensities for stochastic simulations due to computational efficiency and
simplicity. However, the validity condition for this heuristic approach has not been
identified even for the reversible binding between molecules, such as protein-DNA,
enzyme-substrate, and receptor-ligand, which is the basis for living cells. Here, we find
that the non-elementary propensities based on the deterministic total QSSA can
accurately capture the stochastic dynamics of the reversible binding in general.
However, serious errors occur when reactant molecules with similar levels tightly bind,
unlike deterministic systems. In that case, the non-elementary propensities distort the
stochastic dynamics of a bistable switch in the cell cycle and an oscillator in the
circadian clock. Accordingly, we derive alternative non-elementary propensities with
the stochastic low-state QSSA, developed in this study. This provides a universally
valid framework for simplifying multiscale stochastic biochemical systems with rapid
reversible bindings, critical for efficient stochastic simulations of cell signaling and
gene regulation. To facilitate the framework, we provide a user-friendly open-source
computational package, ASSISTER, that automatically performs the present
framework.

Introduction 1

To understand the complex dynamics of numerous molecular interactions in living 2

cells, quantitative analysis using mathematical models is essential [1]. While 3

elementary reactions in living cells can be modeled by the law of mass action, 4

characterizing all their kinetics is challenging. Thus, over a century, the combined 5

effect of a set of elementary reactions such as rapid reversible bindings has been 6

described with non-elementary reaction functions (e.g., Michaelis-Menten and 7
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Morrison equations) to simplify deterministic models [2–7]. Since the early 2000s, 8

these deterministically driven non-elementary reaction functions have also been widely 9

used to derive propensity functions for stochastic simulations, which greatly reduces 10

the computational cost [8–33]. This heuristic approach for efficient stochastic 11

simulations was believed to be valid as long as the non-elementary reaction functions 12

are accurate in the deterministic sense. However, unfortunately, this was not the 13

case [33–40]. The reason for the discrepancy between the deterministic and stochastic 14

simulations has been recently identified for some cases [37–40], but not for all [41]. 15

Currently, guidelines for this popular but heuristic method for efficient stochastic 16

simulations with non-elementary propensity functions are absent. 17

The non-elementary reaction functions are mainly the result of the reduction of 18

deterministic models with the following reversible binding reactions: 19

A + B
kf−−⇀↽−−
kb

C. (1)

The reversible binding between molecules, such as enzyme-substrate, receptor-ligand, 20

and protein-DNA, is the first step for nearly all biological functions of living cells [42]. 21

However, rather than the reversible binding itself, its outcome is usually our major 22

interest. For instance, rather than the binding between a transcription factor and 23

DNA, we are interested in its outcome, the transcription. Furthermore, the 24

transcription factor binding to DNA takes at most one second while transcription 25

takes about 30 minutes in a mammalian gene [43], which causes stiffness in numerical 26

simulations [44]. 27

Fortunately, such rapid reversible binding reactions can be eliminated from models 28

using the property: the levels of the species (A, B, and C) regulated by the reversible 29

binding more quickly equilibriate to their quasi-steady-states (QSSs) compared with 30

the total levels of the bound and unbound species, which are not affected by the 31

reversible binding. In deterministic models, their quasi-steady-state approximations 32

(QSSAs), which are non-elementary reaction functions, can be obtained by finding the 33

steady-state solution of the associated differential equation in terms of the total 34

variables. Because the QSSAs are determined by the total variables, they are known 35

as the “total” QSSA (tQSSA). After replacing the variables that represent the levels of 36

A, B, and C with their tQSSAs, rapid reversible bindings have been successfully 37

eliminated from various deterministic models describing enzyme catalysis, gene 38

regulation, and cell cycle regulation [5–7,23,45–51]. Note that adopting the total 39

variables leads to timescale separation among variables, while the sole rapidity of the 40

reversible binding reactions does not guarantee timescale separation between the 41

original variables, A, B, and C [7] (see Discussion for details). 42

In stochastic models, the QSSAs for the numbers of A, B, and C are their 43

stationary average numbers (i.e., the first moment) conditioned on the total numbers 44

of the bound and unbound species for uni- or bi-molecular reactions [27–30] (see 45

S1 Appendix for details). These stochastic QSSAs can be obtained by finding the 46

steady-state solution of the chemical master equation (CME). However, unlike the 47

deterministic tQSSA, the stochastic QSSA has a complex form (Eq. (4)), which does 48

not provide any intuition, and importantly, increases computational cost. Thus, its 49

approximation has been derived with the deterministic tQSSA. This approximation, 50

often referred to as the stochastic tQSSA (stQSSA) [7, 31,38,39], leads to 51

non-elementary propensity functions for stochastic simulations using the Gillespie 52

algorithm [52]. In this way, the stochastic dynamics of various systems have been 53

accurately captured with low computational cost [7, 30–33,38,39,53,54]. However, a 54

recent study reported that the stQSSA can be inaccurate [41], which raises the 55

question of validity conditions for the stQSSA. 56
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Here, we identify the complete validity condition for using the stQSSA to simplify 57

stochastic models containing rapid reversible bindings. Specifically, we find that the 58

stQSSA is accurate for a wide range of conditions. However, when two species whose 59

molar ratio is ∼1:1 tightly bind, the stQSSA highly overestimates the number of 60

unbound species. In this case, using the stQSSA to simplify stochastic models distorts 61

the stochastic dynamics of the transcriptional repression, the transcriptional negative 62

feedback loop of the circadian clock, and the bistable switch for mitosis. Importantly, 63

by using the fact that the number of the unbound species is low due to the tight 64

binding when the stQSSA is inaccurate, we develop an alternative approach, 65

stochastic “low-state” QSSA (slQSSA). In this way, when reversible bindings are tight 66

and not tight, slQSSA and stQSSA can be used, respectively, which enables one to 67

obtain accurately reduced stochastic models for any case. This proposes a complete 68

and straightforward strategy for efficiently simulating multiscale stochastic 69

biochemical systems containing the fundamental elementary reaction, i.e., rapid 70

reversible binding. To facilitate this framework, we provide a user-friendly open-source 71

computational package, ASSISTER (Adaptive Simplification of StochastIc SystEm 72

with Reversible binding). 73

Results 74

stQSSA can overestimate the number of the unbound species 75

In the reversible binding reaction (Eq. (1)), the concentration of A, denoted by Ã, is 76

governed by the following ODE: 77

dÃ

dt
= −kfÃ · B̃ + kbC̃ = −kfÃ · (B̃T − ÃT + Ã) + kb(ÃT − Ã), (2)

where ÃT = Ã+ C̃ and B̃T = B̃ + C̃ are the total concentrations of the bound and 78

unbound species. By solving dÃ
dt

= 0 in terms of ÃT and B̃T, the tQSSA for Ã can be 79

obtained as follows: 80

Ãtq :=
1

2

{

(ÃT − B̃T − K̃d) +

√

(ÃT − B̃T − K̃d)2 + 4ÃTK̃d

}

, (3)

where the K̃d = kb/kf is the dissociation constant. Note that if the reversible binding 81

(Eq. (1)) is embedded in a larger system, there could be other reactions affecting the 82

dynamics of Ã and thus additional terms in Eq. (2). However, as long as the reversible 83

binding is fast (i.e., kf and kb are much larger than the other reaction rates), Ãtq is 84

still an accurate tQSSA for Ã. Similarly, by solving dB̃
dt

= 0 and dC̃
dt

= 0, the tQSSAs 85

for B̃ and C̃ can be obtained. These tQSSAs, also known as the Morrison 86

equations [6], are generally valid, unlike the Michaelis-Menten type equations which 87

are valid only when the enzyme concentration is negligible [7, 47,48,50]. Thus, the 88

tQSSAs have been used to simplify models containing not only interactions between 89

metabolites but also proteins whose concentrations are typically comparable [7]. 90

Unlike the deterministic QSSA (Eq. (3)), the stochastic QSSA, which is the 91

stationary average number conditioned on the total numbers of the bound and 92

unbound species, has a complex form [41,55,56]. For instance, the stochastic QSSA 93

for the number of A (〈A〉) can be expressed in terms of the dimensionless variables 94

and parameters, X = X̃Ω, where Ω is the volume of a system (e.g., A = ÃΩ, 95
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Kd = K̃dΩ) as follows (see Methods for details): 96

〈A〉 =
(

AT
∑

l=A0

lKl
d

l!(AT − l)!(BT −AT + l)!

)

·
(

AT
∑

l=A0

Kl
d

l!(AT − l)!(BT −AT + l)!

)−1

,

(4)
where A0 = max{0, AT −BT}. This complex form of the stochastic QSSA does not 97

provide any intuition and importantly increases computational cost. Thus, as an 98

alternative to the stochastic QSSA, its approximation, the stQSSA was derived with 99

the deterministic tQSSA [7,22–26,31]. Specifically, the stQSSA for A (Atq) can be 100

derived from Ãtq (Eq. (3)) after replacing the concentration-based variables and 101

parameters (X̃) with dimensionless variables and parameters (X) as follows: 102

〈A〉 ≈ Atq :=
1

2

{

(AT −BT −Kd) +
√

(AT −BT −Kd)2 + 4ATKd

}

. (5)

Similarly, the stQSSA for B and C (Btq and Ctq) can be obtained from their 103

deterministic tQSSAs as follows: 104

〈B〉 ≈ Btq :=
1

2

{

(BT −AT −Kd) +
√

(AT −BT −Kd)2 + 4ATKd

}

,

〈C〉 ≈ Ctq :=
1

2

{

(AT +BT +Kd)−
√

(AT −BT −Kd)
2
+ 4ATKd

}

.
(6)

To identify the validity conditions for these stQSSAs, we calculated the relative 105

error (RX :=
∣

∣

∣

Xtq−〈X〉
〈X〉

∣

∣

∣
, X = A, B, C) of the stQSSA (Xtq) to the stochastic QSSA 106

(〈X〉) (Fig 1a-1c). The errors are nearly zero in most of the parameter regions, which 107

explains why various stochastic models reduced with the stQSSA have been accurate 108

in most previous studies [7, 30–33,38,39,53,54]. However, the relative errors of the 109

unbound species (RA and RB) are high when AT ≈ BT. Specifically, the relative error 110

of the bound species (RC) is at most ∼0.2 but that of the unbound species (RA, RB) 111

can be ∼100. 112

To investigate why RA is high when AT ≈ BT, we derived the exact upper and 113

lower bounds for RA (see Methods for details): 114

FASA ≤ RA ≤ 2FASA, (7)

where FA is the Fano factor of A (i.e., Var(A)
〈A〉 ), and SA is the relative sensitivity of Atq 115

with respect to BT (i.e., 1
Atq

∣

∣

∣

dAtq

dBT

∣

∣

∣
). Furthermore, we proved that the Fano factor (FA) 116

is less than 1 (i.e., A has a sub-Poissonian stationary distribution; see S1 Appendix for 117

details). Therefore, RA, especially its upper bound, mainly depends on SA (Figs 1d, 118

1e, and S1) whose formula can be derived in the following simple form, unlike RA: 119

SA =
1

Atq

∣

∣

∣

∣

dAtq

dBT

∣

∣

∣

∣

=
1

√

(AT −BT −Kd)2 + 4ATKd

. (8)

Because SA attains the maximum value 1√
4ATKd

at BT = AT −Kd, SA has a large 120

maximum value when Kd ≪ 1 at AT = BT +Kd ≈ BT. This explains why RA, whose 121

upper bound is mainly determined by 2SA, is large when the binding is tight (Kd ≪ 1) 122

and the total numbers of the bound and unbound species are similar (AT ≈ BT) 123

(Fig 1d). In this case, the majority of A is bound with B, and thus A = 0 most of the 124

time (Fig 1f left). That is, A rarely becomes 1 by the weak unbinding reaction and 125

then immediately A becomes 0 by the strong binding reaction. As a result, the 126

probability that A = 1 is approximately 1% (i.e., 〈A〉 ≈ 0.01), but the stQSSA for A 127

(Atq) overestimates it as 10%, which is 10 times larger (Fig 1f right). Since A and B 128

are symmetric, the above analysis can be applied to B, analogously. 129
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Fig 1. stQSSA overestimates the number of the unbound species when their
molar ratio is ∼1:1 and binding is tight. (a-c) Heat maps of the relative errors (RX =
∣

∣

∣

Xtq−〈X〉

〈X〉

∣

∣

∣
) of the stQSSA (Xtq) to the stochastic QSSA (〈X〉) for X = A,B,C in the

reversible binding reaction (Eq. (1)). Color in the heat maps represents the maximum value
of RX calculated by varying Kd from 10

−4 to 10
2 for each total number of the bound and

unbound species (AT = A+ C and BT = B + C). RA and RB can be extremely large when
AT ≈ BT while RC is always small. (d) RA calculated over BT/AT between 0 and 2 (gray
arrow in a) for three fixed Kd values (10−4, 10−3 and 10

−2). RA becomes larger as BT/AT is
similar to 1 and the Kd becomes smaller (i.e., the binding becomes tighter). (e) RA mainly
depends on the relative sensitivity of Atq (i.e., 2SA), which can be derived in a simple form,
unlike RA (Eq. (8)). The maximum value of 2SA is given by 1√

ATKd

, which is achieved when

BT/AT is similar to 1 as in the case of RA. (f) A trajectory (left) and the stationary
probability distribution (right) of A for a parameter set where RA is large (green triangle in
d, AT = BT = 100, kf/Ω = 10

4s−1, kb = 1s−1), simulated using the Gillespie algorithm. Since
AT = BT and A binds with B tightly, A = 0 (i.e., every A is bound) most of the time, and it
rarely becomes 1 by the weak unbinding reaction (solid arrow) and immediately comes back
to 0 by the strong binding reaction (dotted arrow). As a result, when Kd = 10

−4, the
probability that A = 1 is ∼0.01, but the stQSSA for A overestimates it as ∼0.1, which is 10
times larger (i.e., a 10-fold error)

September 5, 2021 5/21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.04.08.438974doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438974


stQSSA can overestimate the transcriptional activity 130

We found that the stQSSA for the number of the unbound species is inaccurate if their 131

molar ratio is ∼1:1 and their binding is tight (Fig 1d-1f). Thus, we expected that in 132

such cases, using the stQSSA to eliminate a rapid reversible binding in a stochastic 133

model can distort its dynamics. To illustrate this, we constructed a simple gene 134

regulatory network where gene expressions are determined by a reversible binding 135

between transcription factors and genes (Fig 2a left, Table S1); DNA (D) and a 136

transcription factor (P) reversibly bind to form a complex (D:P). As P acts as a 137

repressor of MR transcription, the transcription rate of MR is proportional to the 138

number of the unbound DNA (D). On the other hand, as P acts as an activator of MA 139

transcription, the transcription rate of MA is proportional to the number of the bound 140

DNA (D:P ). Note that the number of unbound and bound DNA can be interpreted as 141

the number of unbound and bound DNA binding sites. In this model, because the 142

reversible binding reaction between D and P is much faster than the other reactions 143

(i.e., the production and the decay of MR and MA), the variables (D and D:P ) rapidly 144

reach their QSS. Thus, by replacing them with their stQSSAs (Dtq and D:Ptq), we can 145

obtain a reduced model (Fig 2a right, Table S2). The reduced model consists of only 146

the slow variables, MR and MA, because Dtq and D:Ptq are fully determined by the 147

conserved total number of the DNA (DT = D +D:P ) and the conserved total number 148

of the transcription factor (PT = P +D:P ), as illustrated in Table S2. This 149

elimination of the fast variables, which are the major source of computational cost, 150

greatly reduces the computation time of stochastic simulations [27–29]. 151

To test whether the reduced model accurately captures the dynamics of the full 152

model, we compared their stochastic simulations with the Gillespie algorithm (see 153

Tables S1 and S2 for propensity functions) [52]. When DT and PT are the same and 154

the binding between D and P is tight, MR simulated with the reduced model largely 155

exceeds MR simulated with the full model (Fig 2b top) because the stQSSA (Dtq) 156

overestimates the stochastic QSSA for the number of the unbound DNA (〈D〉) which 157

determines the transcription rate of MR (Fig 2a), as seen in Fig 1f. On the other hand, 158

when DT is not similar to PT (Fig 2c top) or the binding is weak (Fig 2d top), Dtq 159

accurately approximates 〈D〉 as seen in Fig 1d, and thus the reduced model accurately 160

captures the dynamics of MR in the full model. 161

Unlike MR (Fig 2b top), the stochastic dynamics of MA of the reduced model and 162

the full model are identical (Fig 2b-2d bottom) because the stQSSA for D:P (D:Ptq) 163

always accurately approximates the stochastic QSSA for the number of the bound 164

DNA (〈D:P 〉) which determines the transcription of MA (Fig 1c). Taken together, the 165

stQSSA can be used to describe transcriptional activation depending on bound DNA 166

under any conditions (Fig 2b-2d bottom). On the other hand, it needs to be 167

restrictively used to describe transcriptional repression depending on unbound DNA 168

(Fig 2b-2d top). 169

stQSSA can distort oscillatory dynamics 170

To illustrate how the stQSSA distorts the dynamics when the molar ratio between 171

tightly binding species is ∼1:1, we investigated the simple model where the molar ratio 172

is conserved (Fig 2). However, the total copy numbers of binding species and thus 173

their molar ratio can be varied (e.g., oscillate) in a living cell due to other reactions in 174

a larger system. This raises the question of whether the model reduction based on the 175

stQSSA is accurate or not if the molar ratio is temporarily ∼1:1. To investigate this, 176

we used a modified Kim-Forger model, which describes the transcriptional negative 177

feedback loop of the mammalian circadian clock [24,49,51]. In this model (Fig 3a top, 178

Table S3), free activator (A) promotes the transcription of mRNA (M), and the 179
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Fig 2. When DNA and a transcription factor bind tightly and their levels are
similar, the stQSSA overestimates the number of the unbound DNA. (a) Full
model diagram of a gene regulatory network containing a rapid reversible binding between
DNA (D) and a transcription factor (P) to form a complex (D:P) (left, Table S1). The
transcription rates of MR and MA are proportional to D and D:P , respectively. By replacing
D and D:P with their stQSSAs (Dtq and D:Ptq), we can obtain a reduced model which
consists of only slowly varing MR and MA (right, Table S2). (b-d) Trajectories of MR (top)
and MA (bottom) from the full model (red) and the reduced model (blue) simulated using
the Gillespie algorithm (see Tables S1 and S2 for propensity functions). The lines with
colored ranges and the histograms represent the mean ± standard deviation and the
stationary distribution of 104 trajectories, respectively. When DT and PT are the same
(DT = PT = 10) and the binding is tight (Kd = 10

−2), the MR trajectories simulated with
the reduced model largely exceed those simulated with the full model (b top) because Dtq

overestimates the stochastic QSSA for D (〈D〉). On the other hand, D:Ptq accurately
approximates the stochastic QSSA for D:P (〈D:P 〉), and thus the reduced model accurately
captures the dynamics of MA (b bottom). If DT is not similar to PT (DT = 15, PT = 10) (c)
or the binding is weak (Kd = 10) (d), Dtq and D:Ptq accurately approximate 〈D〉 and 〈D:P 〉,
respectively, so that the reduced model accurately captures the dynamics of both MR and
MA of the full model.

protein translated from M produces repressor (R) passing through several steps 180

(Pi, i = 1, 2, 3). Then R reversibly binds with A to form a complex (A:R) which no 181

longer promotes the transcription, and thus represses its own transcription. In this 182

model, the reversible binding between R and A is much faster than the other reactions 183

(i.e., production and decay). Thus, by replacing the fast variable A, which determines 184

the transcription rate of M, with its stQSSA (Atq), we can obtain a reduced model 185

(Fig 3a bottom, Table S4). The reduced model consists of only the slow variables, RT, 186

M and Pi, because Atq is fully determined by the conserved total number of the 187

activator (AT = A+A:R) and the slowly varying total number of the repressor 188

(RT = R+A:R), as illustrated in Table S4. 189
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Fig 3. stQSSA can distort the dynamics of a biological oscillator. (a) Full model
diagram of an oscillatory transcriptional negative feedback loop (top, Table S3). Unbound
activator (A) promotes the transcription of mRNA (M), and the protein translated from M
produces repressor (R) passing through several steps (Pi, i = 1, 2, 3). Then R binds with A
to form a complex (A:R) which is transcriptionally inactive, and thus represses its own
transcription. As the reversible binding between R and A is rapid, by replacing A with its
stQSSA (Atq), we can obtain a reduced model which consists of only slowly varying RT, M ,
and Pi (bottom, Table S4). (b-c) Oscillatory trajectories of M (green) and RT/AT (orange)
simulated with the full model (b top) and the reduced model (b bottom), using the Gillespie
algorithm (see Tables S3 and S4 for propensity functions). When R binds with A tightly
(Kd = 10

−4) both the full model and the reduced model show the oscillatory behaviors.
However, when the trajectory of RT/AT stays near 1 (dashed lines in b), Atq overestimates
the stochastic QSSA for A (〈A〉), and thus the transcription more frequently occurs in the
reduced model (b bottom) compared to the full model (b top). As a result, the reduced
model predicts a shorter period than the full model (c). (d-e) On the other hand, when the
degradation rate of R increases and thus the trajectory of RT/AT stays near 1 for a short time
(d; dashed lines), the reduced model accurately captures the dynamics of the full model (e).

In the model, because R tightly binds with A, when RT/AT ≈ 1, Atq overestimates 190

the stochastic QSSA for A (〈A〉) and thus the transcription rate of M. As a result, 191

when the trajectory of RT/AT reaches close to 1 (dashed lines in Fig 3b), the 192

transcription more frequently occurs in the reduced model (Fig 3b bottom) compared 193

to the full model (Fig 3b top). This overestimated transcriptional activity leads to the 194

shorter peak-to-peak periods of the reduced model compared to the full model 195

(Fig 3c). On the other hand, when the degradation rate of R increases and thus the 196

trajectory of RT/AT stays near 1 for an extremely short time (Fig 3d dashed lines), 197

the reduced model accurately captures the dynamics of the full model (Fig 3e). Taken 198

together, if ∼1:1 molar ratio between the tightly binding activator and repressor of the 199

transcriptional negative feedback loop persists for a considerable time, using the 200

stQSSA overestimates the transitional activity and thus the frequency of oscillation. 201

stQSSA can distort bistable dynamics 202

To investigate how the misuse of the stQSSA distorts the dynamics of a bistable 203

switch, we used a previously developed bistable switch model for the maturation 204

promoting factor, cyclin B/Cdc2, whose activation promotes mitosis (Fig 4a top, 205
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Table S5) [46,57]. In the model, the inactive form of cyclin B/Cdc2 (P) is converted to 206

an active form (M) by Cdc25 (D). Furthermore, as M activates D which converts P to 207

M, M promotes its own activation (i.e., form a positive feedback loop; see [46,57] for 208

details). The positive feedback loop is suppressed by Suc1 protein (B) as it binds with 209

M to form a complex (M:B) which no longer activates D. The total activated cyclin 210

B/Cdc2 (M and M:B) become P with the same constant rate. In this model, the 211

reversible binding between M and B is much faster than the other reactions. Thus, by 212

replacing the fast variable M with its stQSSA (Mtq) a reduced model can be derived 213

(Fig 4a bottom, Table S6). The reduced model consists of only the slow variables, MT 214

and P , because Mtq is fully determined by the conserved total number of Suc1 215

(BT = B +M :B) and the slowly varying total number of the activated cyclin B/Cdc2 216

(MT = M +M :B), as illustrated in Table S6. 217
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Fig 4. stQSSA can distort the dynamics of a bistable switch (a) Full model diagram
of a bistable switch for mitosis (top, Table S5). The inactive form of cyclin B/Cdc2 (P)
becomes an active form (M) by Cdc25 (D). In this process, M enhances its own activation by
activating D, and thus forms a positive feedback loop (see [46,57] for details). The positive
feedback loop is suppressed as Suc1 protein (B) binds with M to form a complex (M:B) which
does not activates D. The total activated cyclin B/Cdc2, M and M:B, becomes P with the
same constant rate. As the reversible binding between M and B is rapid, by replacing M with
its stQSSA (Mtq), we can obtain a reduced model which consists of only slowly varying MT

and P (bottom, Table S6). (b-c) Simulated trajectories (b) and the stationary distributions
(c) of MT from the full model and the reduced model using the Gillespie algorithm (see
Tables S5 and S6 for propensity functions). When M binds with B tightly (Kd = 10

−3), both
the full model and the reduced model show the bistable behaviors between the upper and
lower modes, which are separated by MT/BT = 1 (dashed line in b). However, because Mtq

overestimates the stochastic QSSA for M (〈M〉) when MT/BT is close to 1, the trajectory
from the reduced model is more attracted to the upper mode compared to the full model (b).
As a result, the bimodal distribution of MT from the reduced model is biased to the upper
mode (c). (d-e) On the other hand, when the binding between M and B becomes weak
(Kd = 10), Mtq accurately estimates 〈M〉, and thus the reduced model accurately captures
the dynamics of the full model, which no longer shows the bistable behavior.

When M and B tightly bind, both the full model and the reduced model show the 218

bistable behaviors (i.e., bimodal stationary distributions) of MT (Fig 4b). However, 219

the trajectory of the reduced model is more attracted to the upper mode of MT 220

compared to the full model (Fig 4b and 4c). This dynamics biased to the upper mode 221

occurs because Mtq overestimates the stochastic QSSA for M (〈M〉) near the 222
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MT/BT = 1 region (Fig 4b dashed line) which separates the upper and lower modes. 223

On the other hand, when the binding between M and B becomes weak, Mtq accurately 224

approximates the stochastic QSSA for M even when MT is similar to BT. Thus, the 225

reduced model accurately captures the dynamics of the full model, which no longer 226

shows bistable behavior (Fig 4d and 4e). Taken together, when the binding between 227

activated Cyclin B/Cdc2 and Suc1 protein is tight, which is essential to generate the 228

bistable switch, using the stQSSA overestimates the activation of Cyclin B/Cdc2 and 229

distorts the dynamics of the bistable switch. 230

An alternative approach when the stQSSA is not applicable 231

In the presence of a rapid and tight reversible binding between species whose molar 232

ratio is ∼1:1, the reduction of stochastic models with the stQSSA for the number of 233

the unbound species can cause errors (Figs 2b, 3c, and 4c). In such cases, due to the 234

tight binding, the two species tend to bind until no molecules of one species are left 235

(Fig 1f). Specifically, if AT ≤ BT (AT ≥ BT), the majority of the A (B) will be bound. 236

Thus, in the presence of tight binding, we can assume that the stationary distributions 237

of A or B are concentrated on 0 and 1. This low-state assumption allows us to derive 238

the simple approximation for the stochastic QSSA (〈A〉 in Eq. (4)) (see Methods for 239

details): 240

〈A〉 ≈ Alq =

{

(AT−BT+1)(AT−BT+BTKd)
AT−BT+BTKd+1 if AT ≥ BT,
ATKd

BT−AT+ATKd+1 if AT < BT.
(9)

We will refer to this approximation as the stochastic “low-state” QSSA (slQSSA). 241

Since this approximation relies on the property that the state space is restricted at the 242

low level, the stochastic QSSA with singular perturbation analysis introduced in [58] 243

could be used to derive an alternative approximation. 244

The accuracy of the slQSSA for A (Eq. (9)) is expected to increase when ATKd 245

decreases because ATKd is an approximated number of the unbound A. On the other 246

hand, the accuracy of the stQSSA for A decreases as ATKd decreases (Fig 1d). To 247

investigate this, we calculated the maximum relative error of Atq (RA =
∣

∣

∣

Atq−〈A〉
〈A〉

∣

∣

∣
) 248

and Alq (Rlq
A =

∣

∣

∣

Alq−〈A〉
〈A〉

∣

∣

∣
) to the stochastic QSSA for A (〈A〉) for each ATKd and Kd 249

(Fig 5a and 5b). As expected, when ATKd is low and high, the slQSSA and the 250

stQSSA are accurate, respectively. In particular, when ATKd < 10−1 and ATKd > 101, 251

Rlq
A and RA are less than 0.1 (i.e., the relative errors are less than 10%), respectively. 252

The parameters used in Figs 2b (triangle), 3b (circle), and 4b (square) are located 253

in the region where the stQSSA is inaccurate (Fig 5a) but the slQSSA is accurate 254

(Fig 5b). Therefore, with these parameters, the reduced models obtained by using the 255

slQSSAs accurately capture the dynamics of the full models for the simple gene 256

regulatory network (Fig 5c, Table S2), the transcriptional negative feedback loop 257

(Fig 5d, Table S4), and the bistable switch for mitosis (Fig 5e, Table S6), unlike the 258

stQSSA (Figs 2b, 3c, and 4c). Furthermore, by allowing A or B to reach more than 259

two states (e.g., 0, 1, and 2), more accurate slQSSAs can be derived (see Methods for 260

details). In particular, the relative errors of the slQSSAs derived by allowing the 3/4/5 261

states are less than 0.1 when ATKd is less than 2/5/10, respectively (Fig S2). 262

Consequently, for the error tolerance of 0.1, if ATKd < 101 and thus the stQSSA is 263

inaccurate, the slQSSA can be used to approximate the stochastic QSSA for A 264

(Fig 5f). Taken together, by using either stQSSA or slQSSA depending on ATKd, we 265

can always accurately reduce multiscale stochastic biochemical systems with rapid 266

reversible bindings. Of course, for a different error tolerance, we need a different 267

threshold of ATKd and the number of states for the slQSSA. To facilitate the 268

calculation of such change depending on the error tolerance, we have developed a 269
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Fig 5. slQSSA can be used to reduce multiscale stochastic biochemical systems
containing rapid reversible bindings when the stQSSA is not applicable. (a-b)

Heat maps of the relative errors (RA =

∣

∣

∣

Atq−〈A〉

〈A〉

∣

∣

∣
and Rlq

A =

∣

∣

∣

Alq−〈A〉

〈A〉

∣

∣

∣
) when the stQSSA

(Atq) and the two-state slQSSA (Alq) approximate the stochastic QSSA for A (〈A〉) in the
reversible binding reaction (Eq. (1)). Color represents the maximum value of RA and Rlq

A for
each ATKd and Kd when BT varies, and the dashed lines represent when those values are 0.1.
When ATKd are high and low, the stQSSA and the slQSSA are accurate, respectively. The
parameters used in Figs 2b (triangle), 3b (circle), and 4b (square) are located in the region
where the slQSSA (b), but not the stQSSA (a), is accurate (the circle is actually located
outside of the heat maps; ATKd = 5× 10

−4 and Kd = 10
−4). (c-e) As a result, the full

models are successfully reduced with the slQSSA (c-e) but not the stQSSA (Figs 2b, 3c, and
4c). See Tables S2, S4, and S6 for the propensity functions used for the simulations and
Fig S3 for a benchmark comparison with GillesPy2, one of the major, standard software
suites for stochastic simulation [59]. (f) The adaptive use of the stQSSA and the slQSSA to
approximate the stochastic QSSA for A when ATKd > 10

1 and otherwise, respectively,
guarantees the successful reduction of stochastic models containing rapid reversible bindings.
Note that when 10

−1 < ATKd < 10
1, the slQSSAs with more than two states need to be used

(see Fig S2 for details).
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user-friendly open-source computational package, ASSISTER (Fig 6). In particular, 270

the function Gillespie_Reduction in the package automatically constructs a reduced 271

model adaptively using the more accurate one between the two approximation 272

methods and performs accurate and efficient stochastic simulations (see S1 Appendix 273

for the manual). 274
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Fig 6. Schematic diagram for the computational package, ASSISTER. When

a stochastic model containing a rapid reversible binding (D + P
kf−−⇀↽−−
kb

D:P) and the

error tolerance (ǫ) are given as inputs, the auxiliary function QSSA_Threshold

determines the threshold of the total number of binding molecules, Dthres, and the
number of states for the slQSSA, L. When the DT = D +D:P is less (larger) than
Dthres, the L-state slQSSA (stQSSA) approximates the exact stochastic QSSA with a
relative error less than ǫ. Based on the relationship between Dthres and DT, the more
accurate one between the two models is adaptively chosen. In this way,
Gillespie_Reduction performs efficient and accurate stochastic simulations, yielding
the simulated trajectories as the final output. See the manual in S1 Appendix for a
more detailed description of the input and output.

Discussion 275

Reversible binding between molecules—for example, between DNA and a transcription 276

factor, a ligand and a receptor, and an enzyme and a substrate—is a fundamental 277

reaction for numerous biological functions [42]. As the reversible binding reactions 278

occur typically on a timescale of 1∼1000ms, which is much faster than the other 279

reactions (e.g., 30min for a mammalian mRNA transcription or a protein translation 280

and 10h for their typical lifetimes) [43], a system containing the rapid reversible 281

binding becomes a multi-timescale system. In such multi-timescale systems, the rapid 282

reversible binding prohibitively increases the computational cost of stochastic 283
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simulations. Accordingly, to accelerate stochastic simulations, various methods have 284

been developed [44,60]. In particular, the model reduction using the stQSSA has 285

successfully simplified various stochastic models in numerous studies [7, 30–33,38,39]. 286

Thus, it has been commonly believed that the stQSSA is generally accurate for any 287

conditions, until a recent counterexample was identified [41]. In this work, we 288

rigorously derived the validity conditions for using the stQSSA to reduce stochastic 289

models with a rapid reversible binding. Specifically, we showed that the relative error 290

of the stQSSA for the number of unbound species (RA) mainly depends on the relative 291

sensitivity of the stQSSA (SA, Eq. (8)), which attains maximum value 1√
4ATKd

at 292

AT = BT +Kd. This allowed us to find that the stQSSA for the number of the 293

unbound species is inaccurate if their molar ratio is ∼1:1 and their binding is tight 294

(Fig 1f). In that case, the stQSSA highly overestimates the number of the unbound 295

species. Therefore, the reduced models obtained by using the stQSSA distort the 296

dynamics of the gene regulatory model (Fig 2b), the transcriptional negative feedback 297

loop model for circadian rhythms (Fig 3c), and the bistable switch model for mitosis 298

(Fig 4c). 299

When the reversible binding reactions are sufficiently faster than the other 300

reactions, the deterministic tQSSA is known to be accurate [7, 48,50]. Indeed, for all 301

examples considered in our work (Figs 2b, 3b, and 4b), the deterministic simulations 302

with the tQSSA are accurate, unlike the stochastic simulations. This indicates that it 303

is risky to investigate the validity conditions of the stQSSA solely based on the validity 304

conditions of the deterministic tQSSA. Instead, the direct derivation of the relative 305

error of the stQSSA is needed, as demonstrated in this study (Eq. (7)). It would be 306

interesting in future work to perform such error analysis for more complex examples, 307

such as coupled enzymatic networks with multiple rapid reversible bindings [26,61,62]. 308

The rapid reversible reactions are typical conditions for model reductions using the 309

“partial-equilibrium approximation,” which confines species concentrations to the 310

equilibrium states. In general, this condition does not imply a timescale separation 311

between the variables (A, B, and C), limiting the application of the QSSA. However, 312

the rapid reversible binding guarantees that the total variables AT and BT always 313

evolve more slowly than the variables A, B, and C. Therefore, the QSSAs in terms of 314

the total variables can lead to accurate model reductions in both 315

deterministic [7, 47,48,50] and stochastic [27–30] regimes. In this work, we 316

investigated under which conditions the complex stochastic QSSA (Eq. (4)) can be 317

approximated by the corresponding simple deterministic QSSA (Eq. (5)), referred to 318

as the stQSSA. We found that such an approximation becomes inaccurate when two 319

species with similar levels tightly bind. Thus, we derived an alternative approximation 320

for the stochastic QSSA: slQSSA. Using the two approximations for the stochastic 321

QSSA, we developed the universally valid reduction framework for stochastic models 322

containing rapid reversible bindings. We also provided the user-friendly open-source 323

computational package, ASSISTER, for this framework. On the other hand, in the 324

absence of rapid reversible binding, one can reduce a model by assuming that ‘highly 325

reactive species’ are in their QSSs [58]. Interestingly, the reduced stochastic models 326

were often different from the heuristically reduced models obtained with the 327

deterministic QSSA. It would be interesting in future work to investigate when such 328

discrepancies occur. 329

While the deterministic tQSSA (Eq. (3)) was used to approximate the stochastic 330

QSSA for the number of reversibly binding species in this work, a simpler 331

deterministic QSSA referred to as the “standard” QSSA (sQSSA) is more widely used 332

to approximate the stochastic QSSA due to its simplicity [8–20,27,32]. For instance, 333
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the stochastic sQSSA for C in Eq. (1), which has the Michaelis-Menten type form 334

Csq =
ATB

B +Kd

, (10)

has been widely used as a propensity function for the Gillespie algorithm. Though this 335

sQSSA has been widely used, it is less accurate than the stQSSA (Eq. (5)) [38,39]. 336

This is why many examples showing the inaccuracy of the stochastic sQSSA have been 337

reported [33–40], whereas only one example showing the inaccuracy of the stQSSA has 338

been reported [41]. Note that while Eq. (10) is different from the typical 339

“Michaelis-Menten” equation, which uses the Michaelis-Menten constant instead of the 340

dissociation constant (Kd), they become nearly the same when the timescale of 341

reversible binding is faster than the catalytic reaction. Importantly, our work also 342

provides the validity condition for using the stochastic sQSSA (Eq. (10)). That is, 343

when BT +Kd ≫ AT, which is known as the low-enzyme concentration condition, 344

Csq ≈ Ctq [7], indicating that the Michaelis-Menten type sQSSA for the bounded 345

species (Eq. (10)) can be used to reduce models containing the rapid reversible binding. 346

Similarly, when BT +Kd ≫ AT, Asq = ATKd

B+Kd
could also be used. This is consistent 347

with the validity conditions for the stochastic sQSSA derived under the assumption of 348

either a low fluctuation level [32] or a low copy number [40]. Furthermore, the 349

“pre-factor” QSSA (pQSSA), which is more accurate than the sQSSA, has also been 350

used for stochastic simulations [63,64]. However, recent studies have shown that the 351

stQSSA is more accurate than the stochastic pQSSA (see [38,39] for details). 352

The accuracy of the stQSSA for the number of the unbound species depends on 353

both the molar ratio between reversibly binding species and the tightness of their 354

binding (Fig 1d). However, as the molar ratio typically varies in larger models 355

containing reversible binding, practically, the accuracy is mainly determined by the 356

tightness of binding. Specifically, for the relative error of the stQSSA to be less than 357

0.1, ATKd (≈ the number of the unbound A) should be larger than 10 (Fig 5a dashed 358

line). This ATKd value-based criteria explains the controversy about the accuracy of 359

the stQSSA in previous studies. That is, ATKd was less than 10 in a previous study 360

where the reduced model obtained by using the stQSSA was inaccurate [41]. On the 361

other hand, ATKd were much greater than 10 in all of the examples investigated in 362

previous studies reporting the accuracy of the stQSSA [7,33,38,39,53,54]. 363

Furthermore, the stQSSA always accurately approximates the stochastic QSSA for the 364

number of the bound species (Fig 1c). This explains why the stQSSA was accurate in 365

previous studies where the stQSSA was used to approximate the number of 366

enzyme-substrate complex [30–33]. 367

In real biological systems, the validity condition of the stQSSA (ATKd > 10) is not 368

always guaranteed. Specifically, the range of ATKd can span approximately from 10−3
369

to 1010 in human cells (Ω = 10−15 ∼ 10−14m3) since the protein-protein dissociation 370

constant (K̃d) is 10fM ∼ 1µM (i.e., 1012 ∼ 1020m−3), and the numbers of molecules 371

(AT) is 100 ∼ 104 [43, 65]. Moreover, in smaller cells like budding yeast 372

(Ω = 10−17 ∼ 10−16m3) or E. Coli (Ω = 10−19 ∼ 10−18m3) cells, the range of ATKd 373

can span from 10−7 to 108, which contains the region in which the stQSSA can be 374

extremely inaccurate. Accordingly, the slQSSA, which accurately approximates the 375

stochastic QSSA when ATKd is less than 10, is necessary. Specifically, the relative 376

error of the slQSSA, unlike that of the stQSSA (Fig 5a and 5b), decreases as ATKd 377

decreases because the slQSSA relies on the assumption that the stationary 378

distributions of the number of the unbound species (≈ ATKd) are concentrated on the 379

few lowest states. Taken together, by using the stQSSA and the slQSSA when the 380

ATKd value is greater and less than 10, respectively, one can always accurately 381

simplify stochastic models containing rapid reversible binding reactions to accelerate 382
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simulation and also facilitate stochastic analysis (Fig 5f). This can be facilitated by 383

the computational package, ASSISTER (Fig 6). 384

Methods 385

Exact bounds for the relative error of the stQSSA to the 386

stochastic QSSA 387

In this section, we derive the exact upper and lower bounds for RA =
∣

∣

∣

Atq−〈A〉
〈A〉

∣

∣

∣
(Eq. 388

(7)) where Atq and 〈A〉 are the stQSSA and the stochastic QSSA for A, respectively. 389

From the CME describing the reversible binding reaction (Eq. (1)), the following 390

steady-state moment equation can be derived: 391

〈kfA ·B/Ω〉 = 〈kbC〉, (11)

where 〈·〉 is the stationary expectation. Eq. (11) becomes 392

〈A · (BT −AT +A)〉 = Kd〈AT −A〉 by using the definitions AT = A+C, BT = B +C, 393

and Kd = kbΩ/kf. Since AT and BT are invariant under the reversible binding 394

reactions in Eq. (1), we obtain 〈A2〉 − (AT −BT −Kd)〈A〉 −ATKd = 0, and by using 395

the relation 〈A2〉 = Var(A) + 〈A〉2, we get the following quadratic equation: 396

〈A〉2 − (AT −BT −Kd)〈A〉 −ATKd + Var(A) = 0. (12)

The non-negative root of this quadratic equation becomes 〈A〉: 397

〈A〉 = 1

2

{

(AT −BT −Kd) +
√

(AT −BT −Kd)2 + 4ATKd − 4Var(A)
}

. (13)

By subtracting Eq. (13) from Eq. (5), we get

Atq − 〈A〉 (14)

=
1

2

{

√

(AT −BT −Kd)2 + 4ATKd −
√

(AT −BT −Kd)2 + 4ATKd − 4Var(A)
}

=
2Var(A)

√

(AT −BT −Kd)2 + 4ATKd +
√

(AT −BT −Kd)2 + 4ATKd − 4Var(A)
. (15)

Since 0 ≤ (AT −BT −Kd)
2 + 4ATKd − 4Var(A) ≤ (AT −BT −Kd)

2 + 4ATKd, we get 398

the bounds for Atq − 〈A〉 from Eq. (15): 399

Var(A)
√

(AT −BT −Kd)2 + 4ATKd

≤ Atq − 〈A〉 ≤ 2Var(A)
√

(AT −BT −Kd)2 + 4ATKd

. (16)

By dividing Eq. (16) by 〈A〉, we can get the bounds for the relative error,

RA =
∣

∣

∣

Atq−〈A〉
〈A〉

∣

∣

∣
as follows:

Var(A)

〈A〉
1

√

(AT −BT −Kd)2 + 4ATKd

≤ RA ≤ 2
Var(A)

〈A〉
1

√

(AT −BT −Kd)2 + 4ATKd

.

This can be re-expressed as FASA ≤ RA ≤ 2FASA (Eq. (7)) because Var(A)
〈A〉 is the 400

Fano factor of A (FA), and 1√
(AT−BT−Kd)2+4ATKd

is the relative sensitivity of Atq, i.e., 401

SA = 1
Atq

∣

∣

∣

dAtq

dBT

∣

∣

∣
. 402
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The relative sensitivity, SA, attains the maximum value 1√
4ATKd

when the term in 403

the square root of the denominator has the minimum value, i.e., BT = AT −Kd (Eq. 404

(8)). In particular, SA has a large maximum value when Kd ≪ 1 at 405

AT = BT +Kd ≈ BT. On the other hand, if AT ≪ BT, SA ≈ 0 because the majority 406

of A presents in the bound state regardless of BT (i.e.,
dAtq

dBT
≈ 0). When AT ≥ BT, 407

dAtq

dBT
≈ 1 because as BT decreases by one, approximately one A is released from the 408

complex. In this case, if AT ≫ BT, the majority of A are free and thus 409

1
Atq

≈ 1
AT−BT

≈ 0, leading to SA ≈ 0. However, if AT ≈ BT, the majority of A is 410

sequestered by B, Atq ≈ 0, leading to SA ≫ 1. When binding is weak (Kd ≫ 1), 411

SA ≈ 0 because the number of A, which is approximated by Atq, changes little as BT 412

changes (i.e.,
dAtq

dBT
≈ 0). Taken together, SA is large only when the binding reaction is 413

tight (Kd ≪ 1) and the binding species are present with 1:1 molar ratio (AT ≈ BT). 414

Since AT = ÃTΩ, BT = B̃TΩ, and Kd = K̃dΩ, SA = o(Ω−1) if the concentrations 415

remain constant. This implies that when the volume Ω goes to infinity (i.e., 416

thermodynamic limit), SA and thus RA become zero (i.e., the stochastic QSSA 417

becomes nearly identical to the deterministic QSSA (tQSSA)). On the other hand, as 418

Ω goes to zero (i.e., the volume of the system gets smaller), SA goes to infinity. 419

Derivation of the stochastic QSSA and the slQSSA 420

Here we derive the stochastic QSSA for A (〈A〉, Eq. (4)). Let p(l) be the probability 421

that A = l at its stationary distribution (i.e., the probability that A(∞) = l). Then 422

the following recurrence relation of p(l) can be obtained from the steady-state CME: 423

(l+1)(BT−AT+l+1)p(l+1)−l(BT−AT+l)p(l)+Kd(AT−l+1)p(l−1)−Kd(AT−l)p(l) = 0.
(17)

Let A0 = max{AT −BT, 0}. Since A0 is the lowest state that A can reach, p(l) = 0 for 424

l < A0. Then we can inductively prove that the following relation satisfies Eq. (17): 425

p(l +A0) =

{

π(l +A0)p(A0) for 0 ≤ l ≤ AT −A0,

0 otherwise,
(18)

where π(l) =
K

l−A0

d
min(AT,BT)!|AT−BT|!

l!(AT−l)!(BT−AT+l)! . Then, because
∑

p(l) = 1,

p(l) = π(l) ·
(

∑AT

l=A0
π(l)

)−1

if A0 ≤ l ≤ AT, and p(l) = 0 otherwise by Eq. (18).

Therefore, we can obtain the stationary average number of A (Eq. (4)) as

〈A〉 =
AT
∑

l=A0

lπ(l) ·
(

AT
∑

l=A0

π(l)

)−1

=

(

AT
∑

l=A0

lKl
d

l!(AT − l)!(BT −AT + l)!

)

·
(

AT
∑

l=A0

Kl
d

l!(AT − l)!(BT −AT + l)!

)−1

.

Next we derive the slQSSA, which is the approximation for Eq. (4). In the 426

presence of tight binding, we can assume that the stationary distributions of A and B 427

are concentrated on the states {0, 1} when AT < BT and AT ≥ BT, respectively. Since 428

when the distribution of B is concentrated on 0 and 1, the distribution of A is 429

concentrated on AT −BT and AT −BT + 1, we can simply say that the distribution of 430

A is concentrated on A0 and A0 + 1. Thus, by assuming that 431

p(l) = π(l) ·
(

∑AT

l=A0
π(l)

)−1

is approximately zero for l > A0 + 1 and 432
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∑AT

l=A0
π(l) ≈∑A0+1

l=A0
π(l), we can derive the two-state slQSSA for A (Eq. (9)) as 433

follows: 434

〈A〉 ≈
(

A0+1
∑

l=A0

lKl
d

l!(AT − l)!(BT −AT + l)!

)

·
(

A0+1
∑

l=A0

Kl
d

l!(AT − l)!(BT −AT + l)!

)−1

=











(AT −BT +BTKd) ·
(

1 + BTKd

AT−BT+1

)−1

if AT ≥ BT

ATKd

BT−AT+1

(

1 + ATKd

BT−AT+1

)−1

if AT < BT

=

{

(AT−BT+1)(AT−BT+BTKd)
AT−BT+BTKd+1 if AT ≥ BT

ATKd

BT−AT+ATKd+1 if AT < BT

.

In general, for any integer k ≥ 2, we can derive the k-state slQSSA as 435

Ak
lq :=

(

A0+k−1
∑

l=A0

lKl
d

l!(AT − l)!(BT −AT + l)!

)

·
(

A0+k−1
∑

l=A0

Kl
d

l!(AT − l)!(BT −AT + l)!

)−1

.

(19)

Computational package for universally valid reduction of 436

stochastic models containing rapid reversible binding reactions 437

We have developed a user-friendly computational package ASSISTER that contains 438

three main codes implemented in MATLAB (Fig 6): LQSSA, QSSA_Threshold, and 439

Gillespie_Reduction. LQSSA calculates the L-state slQSSA (Eq. (19)) for given AT, 440

BT, Kd, and L. QSSA_Threshold determines which of the stQSSA and the L-state 441

slQSSA ensures a smaller error than a tolerance ǫ for a given Kd value. This allows 442

the function Gillespie_Reduction to perform accurate stochastic simulations for any 443

values of the parameters with the adaptive choice of the valid approximation method 444

determined by using QSSA_Threshold (Fig 6). See S1 Appendix for details and the 445

manual. ASSISTER can be found at https://github.com/Mathbiomed/ASSISTER. 446

Supporting information 447

S1 Appendix. Supplementary Methods, Tables S1-S6, and Figs S1-S3. 448
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