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Abstract
Spatial transcriptomics is revolutionising the study of single-cell RNA and tissue-wide cell heterogeneity,
but few robust methods connecting spatially resolved cells to so-called marker genes from single-cell RNA
sequencing, which generate significant insight gleaned from spatial methods, exist. Here we present SMaSH,
a general computational framework for extracting key marker genes from single-cell RNA sequencing data
for spatial transcriptomics approaches. SMaSH extracts robust and biologically well-motivated marker genes,
which characterise the given data-set better than existing and limited computational approaches for global
marker gene calculation.

Introduction
Single-cell RNA sequencing (scRNA-seq) [1; 2] is advancing our understanding of gene expression at the
single-cell level in a variety of biological contexts. With scRNA-seq it is possible to study the multiplicity of
both whole and partial transcripts in hundreds of thousands (and even millions) of individual cells, but there
is no information on the location of different cell populations in tissue. Spatial transcriptomics addresses this
issue by resolving the locations of the whole or part of the sequenced transcriptome. This additional spatial
insight provides better context for studying the vast heterogeneity and interaction of different cellular states
throughout different organs and tissues, making the integration of spatial and scRNA-seq analysis vital for
gaining further insight to a variety of open problems in biomedical research. Several new rigorous analysis
frameworks [3; 4] which integrate spatial transcriptomics and scRNA-seq data in a statistically robust manner
have come online recently, and the merger of these technologies is gradually becoming standard practice in
single-cell transcriptomics.

Broadly speaking spatial transcriptomics can be classified in ‘whole transcriptome’ and ‘specific transcript’
protocols. Whole transcriptome technologies, such as 10X Visium, allow the entire transcriptome to be
resolved in tissue, but typically at the level of up to 10 cells per data point (a ‘spot’ on the Visium slice).
In contrast, protocols such as seqFISH (sequential Fluorescence In Situ Hybridization) [5], ISS (In Situ
Sequencing) [6], and MERFISH (Multiplexed Error-Robust FISH)1 [7] all aim to achieve this single-cell
spatial resolution but for a limited number of genes.

1This list is far from exhaustive.
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Given the rich abundance and heterogeneity of gene expression across tissues, these approaches will come into
their own only if the ‘right’ target genes can be accurately determined from the initial scRNA-seq data. Given
that spatial transcriptomics resolves tissue at the single-cell level, and reveals multiple cell types across tissue
compartments, it is important to select sets of genes which can be used to uncover both the global details of
the tissue sample of interest and the local details of specific cell types and cell sub-types present therein. The
challenge of selecting good markers is therefore complicated because it depends very much on the question
the analyser cares about.

The scRNA-seq genes with expression profiles that are too noisy and/or highly-expressed across the bulk of
the cell population will offer little to no insight from the tissue spatial analysis. Such expression patterns
would be expected from e.g. housekeeping genes expressed throughout the tissue or genes with ribosomal or
mitochondrial origins. At the same time, genes which have expression profiles which are too low will also
be poorly resolved in the tissue due to the experimental limitations of existing technology. We will refer to
genes which provide good global and local expression in spatially-resolved tissue sections, without being overly
expressed throughout the sample and therefore simply ‘noise’ (or indeed too lowly expressed for detection), as
marker genes. The exact list of marker genes for relevance to spatial transcriptomics depends on the problem
at hand: different markers will be relevant if we wish to understand the spatial differences between different
environments of the same cell type (e.g. tumour vs. healthy patient) or we wish to distinguish a broad class
of cell types in the same tissue environment. The interesting marker genes for spatial analysis must therefore
be inferred from a computational analysis of the corresponding scRNA-seq data which is general enough to
calculate different markers for different questions which could be posed from the same available tissue data.
At present, no such general automated approaches for selecting marker genes exist in the literature; only
methods which select global marker genes based on standard gene expression patterns in scRNA-seq data are
observed.

Current computational models [8; 9] for extracting marker genes from scRNA-seq data are limited in their
scope and not well-suited to applications within spatial transcriptomics. These approaches identify marker
genes based only on their expression profiles throughout the tissue of interest, leading to marker genes with
large global expressions. Such highly-expressed genes are ineffective at distinguishing different cell types in
the same tissue or different tissue environments for the same cell type because of their generic nature. We
also found that these tools did not generalise well across different data-sets, producing marker genes which
characterise some data-sets moderately well, but very poorly in other cases. Such markers are therefore not
capturing the important information describing the ground-truth annotations from which they were originally
determined for a large number of different biological scenarios. We also noted a lack of direct usability in
current approaches with respect to popular computational pipelines, such as ScanPy [10].

To address these shortcomings, we propose the SMaSH (Scalable Marker (gene) Signal Hunter) framework
(Figure 1), which identifies the key marker genes from scRNA-seq data for a variety of different problems to
suit the interests of the analysis. SMaSH is motivated by the use case of selecting important genes for design-
ing probes in upstream spatial transcriptomics experiments, such as in situ sequencing padlock probes. As
such techniques are now in the transcriptomics mainstream there should be a robust, scalable, standardised
approach to determining relevant markers. SMaSH has been designed for speed, so that it can suitably scale up
from relatively small scRNA-seq data-sets of several thousand cells, to multi-million cell atlases such as [11].
Such a need for fast and efficient marker gene identification will be vital as we move into the ‘big data’ realm
of computational single-cell biology. We also observe that SMaSH is able to identify robust marker genes for
main cell types in a particular data-set, but also for the variety of cellular states that these main cell types
can occupy (typically over 30). The few existing approaches to global marker selection are severely limited
in performance at this task. SMaSH has been fully-integrated into the ScanPy Python framework [10] based
on AnnData objects, which is one of the most popular platforms for scRNA-seq analysis to emerge in recent
years. We believe this integration gives SMaSH a further edge as an efficient, highly-deployable, general, and
user-friendly tool for robust marker gene extraction in an Python-based scRNA-seq analysis pipeline. To pro-
vide further enhancements to speed, SMaSH can be implemented in both computer-processing unit (CPU) and
graphics processing unit (GPU) ‘modes’, where the latter is relevant for analysing the ever-growing data-sets
under consideration in single-cell transcriptomics commonly spanning over 106 cells.
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SMaSH Framework
The SMaSH framework (Figure 1) is divided into four stages, beginning from the user-defined input AnnData [10]
object which contains the raw scRNA-seq counts in a matrix of dimensionality determined by the number of
barcoded cells and unique genes in the data-set. The user must also provide a vector of target outputs to map
each barcoded cell onto, with values corresponding to classes depending on the problem in question. These
can be, for example, a vector of annotations of each barcoded cell into a particular biological type, or the
tissue or organ of origin of the cell, and so on. SMaSH then extracts markers by analysing the counts and tar-
gets in a supervised machine learning classification task, where the most important markers map to the most
important features for classifying cells according to the user’s required targets. SMaSH is generic enough to
calculate markers for any classification problem posed, provided the above conventions are adopted by the user.
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Figure 1. The SMaSH framework. A) SMaSH works directly from the counts matrix, produced a dictionary
relating the user-defined classes of interest (e.g. cell type annotations) to top marker genes for each class
(default top 5). B) SMaSH first filters out noisy and general genes, before keeping the those which contribute
significantly to the final expression profile. These filtered genes are then ranked according to an ensemble
learning model or a deep neural network, generating a final list of most important marker genes for each
group or classification (e.g. different cell types) the user is interested in.
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Gene Filter

The input cell-gene counts are first optionally batch-corrected using Harmony [12], and general genes connected
to mitochondrial activity [13], ribosomal biogenesis [14], cell-surface protein regulation of the immune system,
and biological housekeeping are removed. Genes which are lowly and highly expressed are further filtered out,
so that only those which are expressed in greater than 30 % of the classes of interest and in less than 75 %
of cells with more than 50 % of the classes of interest are retained. This final filter guards against additional
batch-specific effects, such as a particular gene not being expressed uniformly across most various different
independent biological samples comprising the data-set of interest.

Inverse PCA

The filtered matrix of cells and genes is then dimensionally-reduced using principal component analysis
(PCA) [15] applied to each gene as a unique feature. The PCA is then inverted and the top 20 genes in
each principal component explaining up to 80 % of the overall variance in the data are retained. This ad-
ditional feature guards against genes which would add very little extra information about the variance of
expression profiles in the data and speeds up subsequent training of the model.

SMaSH Model

The remaining genes are then ranked according to one of four machine learning classification models imple-
mented in SMaSH: three ensemble learners (Random Forest (RF) [16], Balanced Random Forest (BRF) [17],
and XGBoost [18]) and a deep feedforward neural network (DNN) [19; 20]. Two different metrics are consid-
ered when ranking all genes in the problem according to how useful they are for classifying cells based on the
initial target vector: the Gini importance [21] for ranking genes using the ensemble learners, and the Shapley
value [22] for ranking genes with the neural network. The neural network model is used by default as it was
found to provide very robust general performance with a lung data-set which motivated these initial studies.
The neural network is a non-linear differentiable function and is therefore able to identify interesting non-
linear patterns in the data related to gene expression, without resorting to simple ranking procedures which
are linear, such as using correlation between genes. Our network is implemented with the Keras API [23],
and its architecture determined by Bayesian hyperparameter optimisation with a Tree-structured Parzen es-
timator [24] as implemented in the Hyperas framework [25]. The ensemble learners are implemented using
the extensive scikit-learn library.

Ranking and Heterogeneity

The final marker genes are calculated by ranking and sorting the genes according to their total Gini importance
or mean Shapley value, where the mean Shapley value is used by the default deep neural network. A set
of relevant markers is produced for each class provided by the user from the initial vector of targets, where
the top 5 markers per class are produced by default. A final heterogeneity check is conducted in the case
that multiple samples are considered in the analysis, to make sure that the marker genes selected are also
distributed uniformly in at least 70 % of the set of samples considered in the data. For this latter check the
user must ensure that sample information is provided as an observation in the original AnnData object.

Results
To evaluate the performance of SMaSH, we benchmarked it against two recent standalone computational al-
gorithms, scGeneFit [8] and RankCorr [9], which calculate marker genes from scRNA-seq data using linear
programming and gene-by-gene correlations respectively. Unlike SMaSH these algorithms determine relevant
‘global’ markers by considering the entire scRNA-seq counts matrix, and do not produce class-specific mark-
ers. We will demonstrate that, by using non-linear models to determine markers and class-specific marker
calculations based on user-defined input annotations per cell, a more appropriate set of marker genes with
improved classification of the bulk data can be achieved with SMaSH.

We compared RankCorr, scGeneFit, and each of the four models implemented within SMaSH across several
publicly available data-sets: Zeisel [26], a data-set based on CITE-seq technology [27], a mouse brain single-
nucleus RNA-sequenced data-set [4], a healthy foetal liver data-set [29], Paul15 stem cell data [28], and a
large lung cancer data-set. We also considered an extension of the foetal liver data-set covering skin and
kidney cells in addition to liver only when studying the performance of SMaSH on the problem of identifying
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Data-set Technology Cells Genes # Cell types Reference

Human lung cancer (broad) 10X scRNA-seq 54 574 18 612 7 N.A.

Human lung cancer (cell sub-types) 10X scRNA-seq 54 574 18 612 34 N.A.

Mouse brain (broad) Single nucleus RNA-seq 40 532 31 053 9 [4]

Mouse brain (cell sub-types) Single nucleus RNA-seq 40 532 31 053 31 [4]

Zeisel 10X scRNA-seq 3 005 4 000 7 [26]

CITE-seq CITE-seq 8 617 500 13 [27]

Paul15 MARS-seq 2 730 3 451 10 [28]

Human foetal liver 10X scRNA-seq 65 712 19 572 18 [29]

Human foetal organs 10X scRNA-seq 211 754 23 054 40 [29]

Table 1. Single-cell RNA-sequencing data-sets in this study. The different data-sets considered in
the benchmarking of SMaSH.

organ-specific marker genes. Returning to the task of benchmarking SMaSH, the mouse brain data-set was split
into two different sets of annotations, ‘broad’ and a higher-granularity where each broad cell type was further
subdivided, in order to further study the effect of the cell annotation granularity on each of these data-sets.
For the healthy foetal organ data-set, which spans the kidney, liver, femur, and yolk sack, we considered both
the complete scRNA-seq data spanning all of those organs and the 40 different published annotations, and also
separately the liver only where we applied our own set of cell annotations for that specific organ, corresponding
to 18 different cell types. This was done to further study how the different marker gene frameworks responded
to the same type of data but at different levels of complexity (18 distinct cell types vs. 40 in the full data-set).
This 40 cell type data-set is an example of a particularly large data-set and we shall demonstrate the com-
putational performance of SMaSH with respect to such a large ensemble of cells. These different data-sets use
a variety of scRNA-seq technologies and conditions and were selected to give a cross-section of performance
against both species and the cell size. The lung cancer data-set comprised non-small-cell lung cancer tissue,
the 5 mm of tissue surrounding the tumour, and healthy lung tissue from donors. Annotations on this final
data-set were performed using a combination of principal component analysis of the highly-variable genes for
dimensionality reduction and manifold learning via UMAP [30] for visualisation purposes. These data-sets
are summarised in Table 1. For the lung data annotations, as with mouse brain, there are two levels of
complexity: first we defined seven ‘broad’ cell types corresponding to myeloid cells, B cells, T cells, dendritic
cells, natural killer cells, mast cells, and epithelial cells. Each of these broad cell types, with the exception of
epithelial cells, was then split into additional cell sub-types, resulting in 34 distinct classes in the final analysis.
We will consider these two sets of annotations separately, again in order to study the performance of various
models on the same data but with respect to different levels of complexity in the target assignment of the cells.

Each data-set has the form of an scRNA-seq matrix of UMI counts, with each row corresponding to a uniquely
barcoded cell and each column a unique gene. There is also an associated vector of annotations for each cell
corresponding to the experimentally determined cell type.

Marker genes identifying broad cell types across different data-sets

In this first set of studies, we focused on the ‘broad’ cell types covering the broad human lung cancer, mouse
brain, Zeisel, CITE-seq, Paul15, and human foetal liver; cell type multiplicities vary between 7 and 18.
scGeneFit, RankCorr, and SMaSH separately calculated the most important 30 marker genes to classify cells
according to their ground-truth annotations in each data-set. For each framework and data-set, the top 30
markers were then used as the only features in a k-nearest neighbours classifier for at mapping each cell back
to its original annotation. The misclassification rates, M , and associated confusion matrices for recovering
the original ground-truth annotations were evaluated on each data-set and model. The average F1 score
was also calculated as the average harmonic mean of the precision and recall for each cell type classification,
which is a more indicative performance metric for multi-classification problems than the more widely-known
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Data-set scGeneFit RankCorr SMaSH (DNN) SMaSH (RF) SMaSH (BRF) SMaSH (XGBoost)

Human lung cancer (broad) (25.5, 0.74) (10.6, 0.89) (6.8, 0.93) (8.1, 0.92) (9.6, 0.90) (7.4, 0.93)

Mouse brain (broad) (32.3, 0.67) (8.6, 0.91) (0.4, 1.00) (0.7, 0.90), (4.2, 0.95) (0.7, 0.99)

Zeisel (9.8, 0.90) (7.3, 0.92) (7.4, 0.92) (5.2, 0.95) (5.6, 0.94) (3.4, 0.97)

CITE-seq (17.8, 0.81) (9.7, 0.89) (7.5, 0.92) (7.1, 0.92) (13.4, 0.88) (7.2, 0.92)

Paul15 (27.8, 0.70) (26.5, 0.73) (25.6, 0.73) (19.4, 0.79) (34.4, 0.66) (14.5, 0.85)

Human foetal liver (57.8, 0.40) (15.0, 0.85) (5.0, 0.95) (4.9, 0.95) (8.5, 0.92) (5.1, 0.95)

Table 2. Marker gene misclassification rates in broad cell types. The average misclassification
rates, M , in percent, and the weighted average F1 scores across all classes (cell types) for each data-set and
framework, including the four different models implemented in SMaSH. All metrics are summarised as (M , F1)
tuples. The top 2 performing models are indicated in bold red for each data-set. All SMaSH models outperform
existing approaches across all data-sets.

true-positive and false-negative rates. These performance metrics may be formally defined as:

M = 〈1− Ci

Pi
〉
i∈C

(1)

and

F1 = 〈 2
1
R + 1

P
〉
i∈C

, (2)

where Ci and Pi denote the number of correct predictions and total predictions of class i from the k-nearest
neighbours classifier respectively, Ri and Pi are the respective recall and precision of that classification, and
the 〈〉i∈C denotes averaging over all classes i belonging to the set of annotations C provided by the user. Lower
misclassification rates (tending to 0) and higher average F1 scores (tending to 1) indicate better performance
of a given model. The results are summarised in Table 2 for each framework and data-set.

We observe that the misclassification and general performance with SMaSH outperforms existing approaches
across all data-sets, particularly for larger data-sets like the lung and human foetal liver, where SMaSH offers
substantially lower misclassifications across all cell types. Thus, SMaSH scales very generally to marker gene
identification problems in both simple data-sets like Zeisel and in larger data-sets, which are fast becoming
the norm in single-cell biology. Confusion matrices of the true-positive (classification) rates for RankCorr,
scGeneFit and the neural network and XGBoost SMaSH models evaluated on the ground-truth 7 broad cell
types in the lung data are shown in Figure 2. We observe that, for both smaller and larger data-sets (e.g.
Zeisel vs. broad lung) the ensemble learning and deep neural network models in SMaSH perform similarly.
Performance of a given model varies with the data-set, and we would encourage all users to investigate several
of the models available in SMaSH for their use case, but we note that XGBoost performs particularly well across
all cases, and it the top two best performing models in 5/6 data-sets, and notably in the case of the mouse
brain data achieve sub-percent misclassification rates where the best current approach of RankCorr achieve a
7.7 % average misclassification.

The SMaSH implementation provides the most important marker genes for each class, based on their rank in
Gini importance or Shapley value. As a concrete example, in the case of the broad mouse brain data this
would correspond to unique markers per each of the 9 cell types. These cell types biologically map to Astro-
cytes (Astro), Microglia (Micro), Endothelial cell (Endo), Excitatory neuron (Ext), Inhibitory neuron (Inh),
Neuroblasts (Nb), Oligodendrocyte (Oligo), and Oligodendrocyte precursor (OPC), and a generic group of
low quality cells (LowQ). These top three markers, ordered for each cell type based on their Shapley value
computer by the deep neural network, are shown in Figure 3. In most cases, SMaSH is able to identify key
genes which are uniquely (or nearly uniquely) expressed in one particular cell type of interest relative to all
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Figure 2. Lung broad cell type confusion matrices. Confusion matrices for the top 30 marker genes
in the lung broad cell classification data-set, split by four different computational approaches to marker gene
extraction: scGeneFit (A), RankCorr (B), SMaSH using the deep neural network (C), and SMaSH using XGBoost
(D).
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others. The colour scale, corresponding to the mean logarithm of gene expression, is normalised to between 0
and 1.0, where dark brown indicates very high levels of gene expression. Three dark brown populations can
be uniquely generated for each cell type, indicating that highly and uniquely expressed genetic markers are
present. Such markers would be useful for exclusively tagging particular cell types in the design of protocols
for single-cell spatial resolution of mRNA e.g. the design of padlock probes for an in situ sequencing to use
an earlier example. SMaSH is the first such technology we know of which automates marker selection per class
in this fashion.

Marker genes identifying broad cell sub-types in lung cancer patients and mouse brain cells

One challenge in scRNA-seq gene identification is determining genes with the greatest statistical power for
distinguishing increasingly complex and granular cell-type identifications. In the lung data-set each of the
broad cell types can be further subclassified into several biologically distinct cell types. We repeated the
misclassification calculation for 6 of the 7 broad lung cell types which can be further sub-divided, separately
determining the top 30 markers for each of these 6 classification problems from the broad cell into its sub-
types. We also evaluated this as a single classification problem, directly calculating the top 30 markers for
classifying the entire lung data-set cells directly into their 34 lung cell sub-types. We evaluated SMaSH against
existing approaches for identifying relevant markers, finding substantial reduction in misclassification rate
compared to current methods. This was observed in both the ‘two-step’ approach of first classifying into the
broad cell types, and then sub-classifying them, and the ‘one-step’ approach of directly classifying cells into
the distinct 34 sub-types. We found that the misclassifcation rates for the ‘one-step’ problem were generally
higher than the ‘two-step’ across all models. This is not unexpected given the added complexity of performing
a 34-class problem directly and indicates that better marker gene extraction can be obtained by splitting the
cell classification problem into two or more sub-problems. Moreover, we found that the largest gains in the
‘two-step’ problem are provided by either a more non-linear model, the deep neural network, or XGBoost.
These comparisons are summarised in Table 3, where we also considered the same ‘one-step’ and ‘two-steps’
marker gene identification approach in the mouse brain data-set. Using SMaSH with a deep neural network
and feature rankings based on the mean Shapley value of each gene, or XGBoost with a Gini importance rank-
ing, greatly improved the ability to distinguish highly granular cell types. Both scGeneFit and RankCorr
performed worse at this task. For the more complex ‘one-step’ classification scGeneFit and RankCorr do
not perform well compared to any of the SMaSH models, and the neural network performs particularly well,
benefiting from its ability to model and learn gene expression trends in a non-linear fashion.

We also observe that SMaSH is still able to identify important marker genes which distinguish individual cell
sub-types even when they belong to the same broad classification, as demonstrated for e.g. the sub-types of
the mouse brain Inhibitory neuron broad types in Figure 4. For this Figure, the markers are calculated using
the deep neural network in the case of SMaSH (C). The usual dark brown regions of high gene expression,
now for a given cell sub-type, can be seen, and should be compared with the markers extracted from the
using scGeneFit (A) and RankCorr (B). It can be seen that SMaSH, in addition to determining markers with
lower misclassification rates, also produces markers which better represent each sub-type uniquely across the
data. These results further support that, for a variety of data-sets and cell annotation complexities, SMaSH
outperforms these current approaches in its ability to detect marker genes which almost uniquely capture
the features of a particular cell type in both lower granularity (broad) and higher granularity (cell sub-type)
annotation tasks.

Biological Interpretation of SMaSH

To investigate that SMaSH selects biologically versatile marker genes, we cross-checked the top markers per
cell type and cell sub-type calculated for the mouse brain data across relevant literature. Table 4 summarises
several example markers calculated with SMaSH for the broad cell types, their cell type and function, and
existing references in literature, confirming that SMaSH correctly learns biologically robust and interesting
lists of marker genes relevant to the underlying neurobiology. This list is far from exhaustive but the scope of
the marker gene functions demonstrates that markers with a variety of biological functionality can be selected
from a rich scRNA-seq data-set like the mouse brain.
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Figure 3. Marker genes for the broad mouse brain cell types. A) The mean (modulus) Shapley value
for the top 30 ranked marker genes across all broad cell types of the mouse brain, before additional filtering
and sorting, where the classification and marker extraction uses SMaSH’s deep neural network model. The
Shapley value measures the average impact of that particular gene on the model, and the different colours
indicate the different class contributions (where 0-8 label the 9 broad cell types of the mouse brain) which that
particular gene explains. B) Following checks for heterogeneity of sorted markers, the final three markers
for each class/broad cell type are shown, with the colour profile corresponding to the mean logarithm of
the gene expression scaled between 0 and 1. The pattern of uniquely matching specific markers to specific
cell types against all other cell types can be clearly seen as sets of three dark blocks (with maximal mean
logarithm of gene expression) for each cell type. Shortened cell type names correspond to Astrocyte (Astro),
Microglia (Micro), Endothelial cell (Endo), Excitatory neuron (Ext), Inhibitory neuron (Inh), Neuroblasts
(Nb), Oligodendrocyte (Oligo), Oligodendrocyte precursors (OPC), and low miscellaneous low quality cells
(LowQ).
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Figure 4. Marker genes for the mouse brain cell sub-types from the Inhibitory neuron broad
types. The mean logarithm of gene expression for mouse brain cell Inhibitory neuron cell sub-type markers.
A) the markers for scGeneFit; B) the markers for RankCorr; C) markers from SMaSH’s default deep neural
network model. Particularly in the case of SMaSH unique patterns can still be identified in this highly granular
cell-type identification problem, whereas approaches such as scGeneFit are not able to identify many markers
which uniquely resolve the sub-types present.
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Data-set scGeneFit RankCorr SMaSH (DNN) SMaSH (RF) SMaSH (BRF) SMaSH (XGBoost)

HLC dendritic cell sub-types (45.2, 0.53) (6.9, 0.93) (5.6, 0.94) (5.7, 0.94) (5.9, 0.94) (3.7, 0.96)

HLC myeloid cell sub-types (18.9, 0.80) (13.8, 0.86) (11.9, 0.87) (12.4, 0.87) (14.3, 0.85) (8.4, 0.91)

HLC T cell sub-types (25.6, 0.74) (21.6, 0.78) (20.0, 0.77) (16.2, 0.82) (20.8, 0.81) (19.7, 0.79)

HLC B cell sub-types (19.5, 0.79) (7.8, 0.91) (6.3, 0.93) (6.0, 0.93) (6.6, 0.92) (6.2, 0.93)

HLC Mast cell sub-types (1.8, 0.98) (2.9, 0.97) (1.9, 0.98) (2.0, 0.98) (2.0, 0.98) (2.3, 0.97)

HLC natural killer cell sub-types (14.3, 0.86) (14.7, 0.85) (12.6, 0.87) (11.4, 0.88) (18.1, 0.82) (11.8, 0.88)

HLC all cell sub-types (34.1, 0.65) (34.0, 0.67) (16.9, 0.82) (17.5, 0.82) (19.5, 0.80) (17.5, 0.82)

MB Inh cell sub-types (5.2, 0.95) (4.3, 0.96) (1.7, 0.98) (5.6, 0.94) (1.7, 0.98) (1.6, 0.98)

MB Ext cell sub-types (14.0, 0.86) (14.2, 0.86) (4.2, 0.96) (4.8, 0.95) (4.6, 0.95) (5.1, 0.95)

MB all cell sub-types (14.0, 0.86) (21.1, 0.78) (3.9, 0.96) (5.2, 0.94) (5.2, 0.95) (4.8, 0.95)

Table 3. Marker gene misclassification rates in cell types in the lung and mouse brain. The
average misclassification rates,M , in percent, and the weighted average F1 scores across all classes (cell types)
for each human lung cancer cell sub-type and framework, including the four different models implemented in
SMaSH. All metrics are summarised as (M , F1) tuples. The top 2 performing models are indicated in bold red
for each data-set. All SMaSH models outperform existing approaches across all data-sets. HLC: Human lung
cancer; MB: Mouse brain. Shortened mouse brain cell type names correspond to Excitatory neuron (Ext)
and Inhibitory neuron (Inh), where well-defined sub-types could be extracted.

Marker genes differentiating organs of origin in early foetal development

In this section we demonstrate how SMaSH can be readily applied to very general marker gene identification
problems in scRNA-seq. Thus far SMaSH has been implemented in problems for selecting marker genes to
distinguish different cell types, which has obvious utility in spatial transcriptomics. However, this same
procedure can be repeated in very general annotations and we illustrate this by taking a stratified sample of a
publicly available foetal organ data-set [29] and calculating marker genes which best distinguish three different
organs of origin: kidney, liver, and skin using those organs now as the relevant annotations for each cell. A
similar problem would be e.g. distinguishing a tumour environment from healthy cells. Such identification
problems are typically hindered by imbalanced data (e.g. many tumour samples but few healthy donors) and
in the foetal organ case there are significantly more liver cells than kidney or skin cells in the scRNA-seq
analysis [29]. In spite of these shortcomings, SMaSH is still able to identify statistically significant markers for
specific organs, where the markers in question uniquely (or nearly uniquely) describe the particular organ of
interest versus the other two in the classification problem (Figure 5). These markers were also confirmed to be
highly relevant to the particular organ of interest following a cross-check of their function in relevant biological
literature (Table 5). Given that an organ is a complex ensemble of many cell types, we may interpret an organ
marker as a marker gene uniquely relevant to the function of dominant cell types for the organ of interest.
For completeness we also benchmarked this problem against scGeneFit and RankCorr and find the lowest
misclassification rate are achieved by SMaSH, with similar performance between the four models (Table 6),
but with the best performance from the deep neural network and XGBoost, as observed in numerous other
scenarios.

Discussion
The SMaSH framework is a new methodology for determining marker genes from large scRNA-seq data-sets,
for both and specific and general to a user-defined cell classifications (e.g a few broad cell types vs. many
cell sub-types). This allows for more specific marker genes (e.g. markers for differentiating cell type A from
cell type B) to be calculated in an automated and statistically robust fashion. To our knowledge, no such
automated procedure exists for this purpose, so SMaSH was benchmarked against two recent approaches which
determine ‘global’ marker genes across entire scRNA-seq counts matrices. We find that SMaSH produces
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Cell type Marker gene Function Reference

Astro Slc1a2 Plays a role in neurodegeneration and synaptic plasticity and has been shown to as-
sociate with presenilin 1 in neurons and astrocytes, and has important implications in
maintenance of glutamate homeostasis and amyloid Aβ pathology.

[31]

Astro Wdr17 Has enhanced expression in the human brain, parathyroid gland, and pituitary gland.
Its function in the brain is not studied but its role in retinal disease is relatively more
studied.

[32]

Endo Bsg Expression is detectable in vascular endothelial cells within single cell RNA sequencing
data-sets derived from multiple tissues in healthy individuals.

[33]

Endo Rundc3b Enhanced cell type expression in endothelial cells is known, although its function in
relation to endothelial cells is not studied.

[32]

Ext Grin2b Disruption impairs differentiation in human neurons. [34]

Ext Nrg3 Promotes excitatory synapse formation on hippocampal interneurons [35]

Inh Meg3 Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate
ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway.

[36]

Inh Galntl6 This gene is a marker of neurons validated by ATAC-seq. [37]

Micro Inpp5d Selectively expressed in brain microglia and has been reported to be associated with
late-onset Alzheimer’s disease.

[38]

Micro Arhgap45 This gene was found to be a Alzheimer’s disease-specific core human microglial signature
gene.

[39]

Nb Igfbpl1 Known to be specifically expressed in neuroblast stages, and various neuroblast popu-
lations.

[40]

Nb C130071C03Rik Uncharacterised protein. [41]

OPC Tnr Can potentially promote OPC adhesion and differentiation. [42]

Oligo Plp1 An oligodendrocyte myelin-rich tetraspan membrane protein and aberration of the Plp1
gene is known to be responsible for dysmyelinating Pelizaeus-Merzbacher disease.

[43]

Oligo Prr5l Its mRNA expression were found in myelinating oligodendrocytes in the brain. [44]

Table 4. Marker gene functions for the broad mouse brain cells. Example markers genes across
different broad cell types identified by SMaSH, together with known biological functions in the literature. Short-
ened cell type names correspond to Astrocyte (Astro), Microglia (Micro), Endothelial cell (Endo), Excitatory
neuron (Ext), Inhibitory neuron (Inh), Neuroblasts (Nb), Oligodendrocyte (Oligo), and Oligodendrocyte
precursors (OPC).

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.438978doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.438978
http://creativecommons.org/licenses/by/4.0/


SMaSH: A scalable, general marker gene identification framework

K
idney

Liver
Skin

K
id

ne
y

Li
ve

r

Sk
in

RBP1

ID3

GPC3

CRABP2

WFDC2

HBA2

HBA1

ALB

APOA2

AC104389.1

COL1A1

COL1A2

COL3A1

DCN

LUM

20 40 60 80100

Fraction of cells
in group (%)

0.0 0.5 1.0

Mean scaled
expression in

group

Figure 5. SMaSH markers for foetal organ classification. SMaSH is able to select statistically significant
markers for a highly imbalanced problem of distinguishing organs of origin in foetal scRNA-seq. Here the deep
neural network, the usual default model, together with ranking based on Shapley values of genes, generates
the final list of markers.
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Organ Marker gene Function Reference

Kidney RBP1 Retinol binding protein (RBP) is a low molecular weight protein belonging to the
lipocalin super family and mainly synthesized in the liver. Its main function is to
transport retinol (vitamin A).

[45]

Kidney ID3 A functional ID3 influences susceptibility to kidney disease and prevents glomerular
injury by regulating local chemokine production and inflammatory cell recruitment.

[46]

Kidney GPC3 Plays a role in cell growth and differentiation. Mutations of the GPC3 gene are re-
sponsible for Simpson-Golabi-Behmel syndrome, which is characterized by anomalies
of postnatal overgrowth and an increased risk of developing pediatric malignancies,
mostly Wilms tumor. GPC3 is expressed in the fetal uteric bud and collecting system
in a time-specific manner. Human fetal tissue corroborates a developmental function in
the kidney as renal tissue from patients with congenital renal dysplasia has decreased
expression of GPC3.

[47]

Kidney CRABP2 CRABPs are low-molecular-weight, intracellular proteins that act on RA-induced tran-
scriptional activity, maintaining an adequate RA metabolism (RA - retinoic acid).
CRABP2 transports RA from the cytoplasm to the nucleus, promoting RAR ligation
and RXR heterodimer formation. Upregulation of CRABP2 has been reported in the
blastema of nephroblastomas during the investigation of genes related to nephrogenesis.

[48]

Kidney WFDC2 The WFDC2 gene encodes for a putative serine protease inhibitor that is upregulated in
human and mouse fibrotic kidneys and is elevated in the serum of patients with kidney
fibrosis.

Liver HBA2 Involved in oxygen transport from the lung to the various peripheral tissues. Deletion
leads to alpha thalassemias.

[49]

Liver HBA1 Involved in oxygen transport from the lung to the various peripheral tissues. Deletion
leads to alpha thalassemias.

[50]

Liver ALB Human serum albumin is synthesized exclusively by hepatocytes. Albumin is respon-
sible for about 70 % of plasma oncotic pressure. Human serum albumin may play an
important role in modulating innate immune responses to systemic inflammation and
sepsis.

[50]

Liver APOA2 APOA2, the second major HDL apolipoprotein. Moreover, studies in either human or
murine apoA-II transgenic mice. and apoA-II knockout mice, indicate that apoA-II is
involved in plasma clearance of triglyceride-rich lipoproteins; influences plasma levels of
free fatty acids, glucose, and insulin; and affects adipose mass, which suggests a role of
apoA-II in insulin sensitivity and fat homeostasis.

[51]

Liver AC104389.1 Long non-coding RNAs (lncRNAs) are emerging as critical biological mediators in the
normal functioning of the liver. Aberrant expression of lncRNAs is associated with
metabolic diseases, fibrosis, and malignancies involving the liver.

[52]

Skin COL1A1 Type I collagen is the major protein in bone, skin, tendon, ligament, sclera and cornea
tissues, blood vessels, and hollow organs.

[53]

Skin COL1A2 Type II collagen is found in articular cartilage. [53]

Skin COL3A1 Type III collagen is often associated with Type I collagen and is a major protein in skin,
vessels, intestine, and the uterus.

[53]

Skin DCN Decorin is a multifunctional proteoglycan involved in several biological processes, like
matrix organization. Decorin deficient matrix displays altered sulfate levels that affect
growth factors involved in wound healing.

[54]

Skin LUM A keratan sulfate small leucine-rich proteoglycan (SLRP) localized to the ECM, and
known to regulate collagen fibrillogenesis in connective tissues, e.g. cornea, tendon
and skin. LUM binds fibrillar collagens, and regulates collagen fibril thickness and
interfibrillar spacing, important for tissue integrity and corneal transparency.

[55]

Table 5. Marker gene functions for the classification of foetal organs. Example markers genes across
different foetal organs (skin, liver, kidney) identified by SMaSH, together with known biological functions in
the literature.
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Data-set scGeneFit RankCorr SMaSH (DNN) SMaSH (RF) SMaSH (BRF) SMaSH (XGBoost)

HFO skin vs. kidney vs. liver (13.9, 0.85) (5.2, 0.95) (1.1, 0.99) (1.4, 0.99) (1.8, 0.98) (1.2, 0.99)

Table 6. Marker gene misclassification rates in organs of origin in early foetal development. The
average misclassification rates,M , in percent, and the weighted average F1 scores across all classes (organs) in
early foetal organ data, including the four different models implemented in SMaSH. All metrics are summarised
as (M , F1) tuples. The top 2 performing models are indicated in bold red for each data-set. All SMaSH models
outperform existing approaches across all data-sets. HFO: Human foetal organs.

markers which better classify data-sets of a variety of sizes and complexities, yielding markers which, when
used to reconstruct the original annotations in each data-set, yield consistently lower misclassification rates.
Such markers are therefore better able to uniquely classify the expression profiles of different cell types across
these data-sets compared to the more global markers obtained in existing methods. This uniqueness applies
to data-sets of varying granularity, as demonstrated by running SMaSH on separate human lung and mouse
brain data-set in two modes: ‘broad’ cell classification of 7 different types for lung and 9 for mouse brain, and
cell sub-types from each broad cluster leading to 34 distinct classifications of the lung cells and 31 distinct
classifications for the mouse brain cells. Moreover, SMaSH is evaluated on data-sets with the variety of cells,
ranging from 103 to 105, evaluating the markers in minutes. This makes SMaSH computationally tractable
and scalable to high-throughput biological data-sets. SMaSH employs four different models which the user
can specify, and it is recommended that the user study each of these models for the specific use case, but in
general the performance of any model is substantially better than current approaches across most data-sets
considered. In particularly, the performance of the deep neural network and XGBoost are consistently excel-
lent in terms of yielding low marker gene misclassification rate in the data, high mean F1 score corresponding
to high precision and recall in the marker extraction, and selecting final markers which allow for the visible
distinction of cell types based on their mean gene expression profile. Therefore, combinations of these two
models are recommended for the general use case. Markers are ranked based on explainibility parameters
which capture the information gain which each gene adds to the supervised model which aims to classify
and reconstruct the user’s original annotation. In particular, we observe that ranking marker genes based
on Shapley values is effective for revealing the most explainable features in the neural network model, and
note that this measure explanability has yet to be explored in detail in applications of machine learning to
problems in computational biological and transcriptomics.

SMaSH is available as a fully-integrated algorithm with ScanPy, making use of the AnnData object structure,
common to many ‘big data’ analysis pipelines in single-cell computational biology. SmaSH is designed for
robust marker gene identification across different cell types, and is specifically aimed for users wishing to
identify marker genes relevant for wide varieties of different cell types which would be studied at the single
cell resolution using specific spatial transcriptomics technologies. A notable example is for in situ sequencing,
where 100-200 marker genes may be required for designing padlock probes which, when taken in combination,
will attempt to spatially resolve the location of transcriptomes for the identification of both broad cell types
and their cell sub-types in a variety of biological tissues and contexts. We summarise the SMaSH framework in
a publicly-accessible webpage (see pypi), including self-contained Jupyter notebooks where interested users
can see example implementations for several data-sets mentioned in this paper (see GitLab repository). These
materials demonstrate how, from an initial test data-set, a user may run SMaSH with any of its four models
and obtain high-performance marker results consistent with what is documented in this paper. Based on this,
we recommend SMaSH as a standard component to a downstream analysis pipeline of scRNA-seq data where
key genes much be extracted, particularly with applications to spatial transcriptomics or related techniques
in mind.

Conclusion
We propose SMaSH as a general-purpose computational technique for marker gene calculation in scRNA-
seq data-sets, motivated by the use-case for determining representative markers for spatial transcriptomics
experiments which are capable of resolving transcriptomes at the single-cell level. SMaSH is publicly available
and has been evaluated across several data-sets, covering human lung cancer, human foetal liver and related
organs, and the mouse brain. SMaSH provides both lower misclassification rates than existing approaches
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(scGeneFit and RankCorr have been considered in the benchmarking), which are limited in their scope for
determining cell type-specific marker genes, and markers which capture the general features of broad cell types
in the data as well as sub-types therein. This ability to determine both global and local marker genes makes
SMaSH a particularly attractive approach for determining genes for studying single cells in stereo. SMaSH is
able to determine marker genes for a variety of cell classification problems with varying complexity, and has
been evaluated on data with over 200 000 cells, which are becoming increasingly common in computational
single-cell biology. Substantial cross-validation with calculated markers from a public mouse brain data-sets
with relevant literature confirms that SMaSH identifies biologically viable markers, typically unique to cell types
of varying granularity which are becoming increasingly common as large data atlases come online. SmaSH is
fully-integrated with ScanPy, a popular framework for scRNA-seq computational pipelines and provides a
valuable tool for robust marker gene calculation in the increasingly large and complex data-sets emerging in
single-cell biology in a computationally efficient setting.
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