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Abstract: Health(span)-related gene clusters/modules were recently identified based on
knowledge about the cross-species genetic basis of health, to interpret transcriptomic
datasets describing health-related interventions. However, the cross-species comparison of
health-related observations reveals a lot of heterogeneity, not least due to widely varying
health(span) definitions and study designs, posing a challenge for the exploration of
conserved healthspan modules and, specifically, their transfer across species.

To improve the identification and exploration of conserved/transferable healthspan modules,
here we apply an established workflow based on gene co-expression network analyses
employing GEO/ArrayExpress data for human and animal models, and perform a
comprehensive meta-analysis of the resulting modules related to health(span), yielding a
small set of health(span) candidate genes, backed by the literature.

For each experiment, WGCNA (weighted gene correlation network analysis) was thus used
to infer modules of genes which correlate in their expression with a “health phenotype score”
and to determine the most-connected (hub) genes for each such module, and their
interactions. After mapping these hub genes to their human orthologs, 12 health(span)
genes were identified in at least two species (ACTN3, ANK1, MRPL18, MYL1, PAXIP1,
PPP1CA, SCN3B, SDCBP, SKIV2L, TUBG1, TYROBP,  WIPF1), for which enrichment
analysis by g:profiler finds an association with actin filament-based movement and
associated organelles as well as muscular structures.

We conclude that a meta-study of hub genes from co-expression network analyses for the
complex phenotype health(span), across multiple species, can yield molecular-mechanistic
insights and can direct experimentalists to further investigate the contribution of individual
genes and their interactions to health(span).

Introduction

Health and healthspan are gaining acceptance as central concepts in medicine, with a focus
on (multi-)morbidity, aiming to delay the onset of disease and dysfunction for as long as
possible. Health is difficult to describe and has different meanings to different people. Aging,
and the deterioration of health that comes with it, affects nearly all species. But tissues that
enable the systematic study of the underlying molecular processes are more easily available
for animal models, especially for invertebrates, coming with further advantages such as
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controlled genetics and environments, and a much shorter lifespan. Thus, aging and
healthspan are frequently studied in animal models.

To support aging research, many databases are now available (Tacutu et al., 2018). Gene
expression profiles across tissues of aging mice were already presented, e.g., by the
AGEMAP (Zahn et al., 2007) project in 2007 and recently by the Aging Atlas Consortium
(2020), but there is a lack of such data for healthspan. Adding the dimension of health may
amend the identification of molecular markers for aging and further support the identification
of health-modulatory compounds (Dönertaş et al., 2018).

An increasing number of transcriptomic data sets that can be used to compare young and
old individuals are available on public repositories. The concept to derive aging-associated
patterns from transcriptome repositories across species (de Magalhães et al., 2009) already
led to central elements of aging-related knowledge bases (Tacutu et al., 2012 and 2018).
Comprehensive analyses of transcriptome repositories were also expanded towards
diseases in the context of aging (van Dam et al., 2012). Yet, as for expression profiles per
se, there is a lack of gene expression co-regulation analyses across species with a focus on
health(span). A major challenge for polygenic phenotypes in general is the heterogeneity of
the underlying gene regulatory landscape (Kotlyar et al., 2019), impeding the use of
network-based methods for post-processing, i.e., smoothing, aggregating, and unifying,
transcriptomic results (Leiserson et al., 2013; Cowen et al., 2017). However, the power of the
cross-species derivation of conserved co-regulation modules is becoming apparent, see,
e.g., the CoCoCoNet database (Lee et al., 2020).

For prominent cellular characteristics of aging, such as cellular senescence, Avelar and
coworkers (2020) demonstrated how to integrate static data from public databases with
insights from gene co-expression (https://coxpresdb.jp/, Obayashi et al., 2019). Attempts
were also made to use known gene/protein interactions to describe age-induced expression
profiles (Faisal and Milenković, 2014). The integration of co-expression data, also across
species, could similarly be performed with GeneFriends (van Dam et al., 2015, for human
and mouse) for RNA-seq or, for microarray data also with MIM (Adler et al., 2009). The latter
also provides provenance information, i.e. the experimental context in which the correlation
was found, to plan follow-up experiments.

We recently proposed an operational definition of health (Fuellen et al., 2019) and suggested
that it may be applied across species. We then collected data on molecular contributions to
health (Möller et al., 2020), with a focus on genetics. With the support of GeneMania (Franz
et al., 2018) and the associated tool AutoAnnotate (Kucera et al., 2016) we then constructed
a map of network modules by clustering a functional interaction network of the genes
implicated in health. Naturally, aging and health are complex phenotypes for which we still
lack the means to single-out and investigate the contribution of individual genes. Any
detailed analysis is therefore expected to dissect a list of health-associated genes into gene
sets that, in turn, can be understood as parts of the whole (that is health), and these parts
are distributed across diseases & dysfunctions, tissues & organs, and species. The idea of
identifying health-associated molecular patterns is at the root of molecular health research.
Our efforts strived for a consensus across the species barrier of worm (Caenorhabditis
elegans) and humans and we investigated the transfer of findings from worm as a short-lived
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animal model of health to humans. A consensus in network modules of worm and human
was thus determined (Möller et al., 2020), but it was small in relation to the much larger
functional interaction networks that were the starting point for each species. However,
functional interaction databases, upon which GeneMania is based, are woefully incomplete.
Also, these databases do not usually consider the specific biological context of an
interaction, but instead merge interaction data from very heterogeneous sets of experiments
(Magger et al., 2012; Kotlyar et al., 2019).

To harness the power of diverse transcriptomic experiments in the context of health(span),
here we present a WGCNA-based meta-study for the exploration and characterization of
health(span) related modules. WGCNA co-expression analyses have recently been used in
aging research (Li et al., 2019) to identify differences in old vs young and gene expression
asymmetries in the brain that develop over time. In our study we integrated a very diverse
set of health(span) expression data across species from many different tissues. We
manually derived a scoring for all the transcriptome samples we consider, based on a score
combining quantitative and qualitative factors that the authors of the experiments provided
and refer to it as their “health phenotype score”. WGCNA was found to be a competitive tool
to find network modules reflecting such kinds of scores (van Dam et al., 2017). Across
tissues (or cell lines) and multiple species, this allows the filtering for health-associated
modules generated by the WGCNA correlation analysis and thus, the meta-study of
health-associated most-connected genes (hubs) and of their interactions, as presented here.
We also collected the evidence for the implication of these genes in health(span) from the
literature.

Methods

All sets of transcriptomics experiments in the Gene Expression Omnibus (GEO, Clough and
Barrett, 2016) and ArrayExpress (Athar et al., 2019) databases that mention “healthspan” in
the title or the description were included, if they featured more than 6 samples and a
scale-free network could be derived from their correlation matrix (for the latter, see below).
Experiments performed on C. elegans were added when these were alternatively annotated
with the term “health”, to increase the number of datasets for the worm, since ‘healthspan
and "Caenorhabditis elegans"’ only finds the single entry E-GEOD-54853. We did not include
non-worm experiments with “health” in the title or the description, since the number of
matches (specifically for human) turned out to be excessively large.
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Figure 1: Workflow to determine cross-species consensus gene correlation networks, and subsequent
analyses. WGCNA is applied independently for each selected experiment in ArrayExpress/GEO, defining
modules and gene interactions. Gene interactions are filtered by experiment-specific thresholds. For each
module, hub genes are retrieved and those with an ortholog found as a hub gene in another species are reported
in Table 2. For each module, Table 3 lists the genes that correlate the most with its “eigengene”, i.e. that best
represent the module’s expression pattern across samples.

Each experiment’s metadata was inspected to manually derive a score designed to reflect
the health status of the individual(s) from which the sample(s) were taken, unless such a
score was already given. This “health phenotype score” was manually tailored for each
experiment by a custom formula that takes the experiment’s factor annotation as an input
and thus consistently annotates each sample. This can be inspected in the
‘Data_parameters’ folder (see Availability). Log-transformation of expression levels was
performed if not already performed for the data we retrieved. Table 1 describes the
experimental data and metadata which form the input to the following analyses.

Table 1: List of ArrayExpress/GEO files used as input in our study. This table provides an overview of the
transcriptomics experiments that were retrieved for this study. Each experiment was processed by a regular
WGCNA workflow with unsigned correlation. Interactions were collected for the 30 most connected (hub) genes
in each module. The column Modules lists the number of modules found for the experiment that feature an
eigengene that correlates (with P<0.05) with the samples’ health phenotype score. Within each module, only
interactions with an adjacency value above the 95th percentile of an experiment were considered. The rightmost
column lists the number of different hub genes that are paired in any of these interactions. Numbers in
parentheses give the number of genes/interactions that could be mapped to ortholog genes in the human; for
human data, the number of orthologs in worm are shown. For an interaction, both of the paired genes need to
have orthologs assigned; otherwise they were not considered for the count.

Gr
ou
p

Accessio
n
(Technol
ogy)

Description number of (with orthologs)

Analysed
treatment-groups

Samples1

[total / per
group]

Modules Interacti
ons

Genes

H
E
A
L
T
H
S

E-GEOD
-19102
(array)

i) high-fat diet +
100mg/kg SRT1720, ii)
high-fat diet + 30mg/kg
SRT1720, iii) high-fat
diet, iv) standard
AIN-93G diet

An activator of Sirt1, SRT1720,
extends healthspan and lifespan
in diet-induced obese mice;
samples: liver tissue from strain
C57BL/6J

12/3 10 324
(182)

28 (20)
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P
A
N

M
O
U
S
E

E-GEOD
-34773
(array)

i) PGC-1a skeletal
muscle specific knockout,
ii) PGC-1a skeletal
muscle specific knockout
+ CR, iii) WT, iv) WT +
CR

PGC-1a is a transcriptional
coactivator that regulates
mitochondrial function and is
induced by CR; PGC-1a
mediates mitochondrial, but not
metabolic, changes during
calorie restriction (Finley et al.,
2012)

26/6-7 12 0 (0) 0 (0)

E-GEOD
-40936
(array)

i) ad libitum diet, muscle
tissue, ii) ad libitum diet +
0.1% w/w metformin,
muscle tissue, iii) 40%
calorically restricted diet,
muscle tissue, iv) ad
libitum diet, liver tissue,
v) ad libitum diet + 0.1%
w/w metformin, liver
tissue, vi) 40% calorically
restricted diet, liver tissue

Chronic treatment with low dose
of metformin (0.1% w/w in diet)
starting at one year of age
extends health and lifespan in
male mice, while a higher dose
(1% w/w) was toxic

30/5 1 434 (0) 29 (23)

E-GEOD
-49000
(array)

i) standard diet, muscle
tissue, ii) standard diet
liver tissue, iii) standard
diet + SRT2104, muscle
tissue, iv) standard diet +
SRT2104, liver tissue, v)
40% Caloric restriction,
muscle tissue, vi) 40%
Caloric restriction, liver
tissue

SRT2104, a synthetic small
molecule activator of SIRT1,
extends survival of male mice
on a standard diet and
preserves bone and muscle
mass
(Mercken et al., 2014)

30/5 no modules
found

E-GEOD
-54853
(RNA-se
q)

i) 10 g/kg
D-Glucoseamine, ii)
untreated

D-Glucoseamine mimics a
ketogenic diet and extends
lifespan of aging C57BL/6 mice

12/6 1 435 (0) 30 (19)

E-GEOD
-55272
(array)

i) WT, 5 months, liver
tissue, ii) WT, 24 months,
liver tissue, iii) WT, 5
months, muscle tissue,
iv) WT, 24 months,
muscle tissue, v) WT, 5
months, adipose tissue,
vi) WT, 24 months,
adipose tissue, vii)
Myc+/- , 5 months, liver
tissue, viii) Myc+/- , 24
months, liver tissue, ix)
Myc+/- , 5 months,
muscle tissue, x) Myc+/-
24 months, muscle
tissue, xi) Myc+/- , 5
months, adipose tissue,
xii) Myc+/- , 24 months,
adipose tissue

The pleiotropic transcription
factor MYC is a proto-oncogene
and Myc+/- heterozygous mice
have extended lifespan and
improved healthspan

36/3 6 567
(377)

79 (64)

E-MTAB-
6578
(RNA-se
q)

female heart tissue: i) 10
weeks, HGPS-/- mutants,
ii) 10 weeks, HGPS-/-;
NAT10-/- double mutants,
iii) 10 weeks, NAT10-/-
mutants, iv) 10 weeks,
HGPS-/- mutants + 100
mg/kg remodelin, v) 104

Targeting NAT10 enhances
healthspan and lifespan in a
mouse model of human
accelerated aging syndrome
(Hutchinson-Gilford progeria
syndrome)

12/2 1 0 (0) 0 (0)
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weeks, WT, vi) 10 weeks,
WT

R
A
T

E-GEOD
-38062
(array)

i) fed ad libitum, ii) fed
40% CR

Muscle specimens of rats
following a calorie restriction
(40%) diet vs ad libitum fed rats;
age: from 2-27 months
(Mercken et al., 2013)

10/5 8 467
(81)

57 (24)

H
U
M
A
N

E-GEOD
-38012
(array)

i) middle-aged humans
under CR diet, ii)
middle-aged humans
under western diet

Skeletal muscle specimens of
humans following a calorie
restriction diet vs humans
following a Western diet

25/10-15 2 405
(324)

28 (25)

E-GEOD
-66236
(array)

i) adipocytes proliferating
in culture, ii) adipocytes
in gamma-irradiation
induced senescence

Difference between senescent
and non-senescent cells in order
to develop senolytic drugs

16/8 1 435
(276)

30 (24)

H
E
A
L
T
H

W
O
R
M

E-GEOD
-8696
(array)

i) 4 µM, ii) 20 µM, & iii)
500 µM hemin

To understand heme
homeostasis, genes
transcriptionally regulated by
heme should be identified
(Rajagopal et al., 2008)

9/3 4 22 (0) 20 (7)

E-GEOD
-9246
(array)

i) slr-2(ku297) mutants,
ii) WT

Transcription profiling of C.
elegans slr-2 (C2H2 Zn-finger
protein) mutants at L1 stage

6/3 1 434
(104)

29 (14)

E-GEOD
-9301
(array)

i) 99% O2 (oxidative
stress), ii) 99% O2 +
skn-1 RNAi,  iii) untreated

C. elegans treated with oxidative
stress in absence and presence
of the transcription factor
SKN-1, which is involved in
response to oxidative stress

11/3-4 no modules
found

E-GEOD
-21531
(array)

i) unc-32; glp-1 double
mutants (excess
proliferation), ii) unc-32
mutants

Analysis of germ cell
proliferation in
unc-32(e189);glp-1(oz112gf)
double mutants (excess germ
cell proliferation) compared to
unc-32(e189) mutants as control
(Waters et al., 2010)

8/4 no modules
found

E-GEOD
-30505
(array)

i) L3, WT, EV, ii) L3, WT,
ash-2 RNAi, iii) L3,
glp-1(e2141ts) mutants,
EV, iv) L3, glp-1(e2141ts)
mutants, ash-2 RNAi, v)
day 8, WT, EV, vi) day 8,
WT, ash-2 RNAi, vii) day
8, glp-1(e2141ts)
mutants, EV, viii) day 8,
glp-1(e2141ts) mutants,
ash-2 RNAi

The ASH-2 trithorax complex
trimethylates histone H3 at
lysine 4 (H3K4); ash-2
knock-down increases lifespan
in a germline dependent
manner. ash-2 knock-down was
compared in young and old as
well as in WT and germline
deficient (glp-1) mutants
(Greer et al., 2010)

23/2-3 4 854
(146)

60 (20)

E-GEOD
-32031
(array)

i) nhr-23 RNAi, ii)
untreated

Inhibition of nhr-32, important for
growth and molting, in L2 larvae

6/3 1 124 (2) 27 (5)

E-GEOD
-32339
(array)

i) L3 WT, ii) L3 nep-1
mutants, iii) adult WT, iv)
adult nep-1 mutants

Comparison between wild-type
and nep-1 (homologue of
human ECE1
(endothelin-converting enzyme
1) mutant strain

10/2-3 3 867
(173)

57 (25)
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E-GEOD
-35939
(array)

embryonic touch-receptor
cells with i) mutant
Huntingtin (128Q) vs
normal Huntingtin (19Q),
ii) normal Huntingtin
(19Q) vs GFP only

Comparison of purified touch
receptor neurons expressing
mutant Huntingtin N-terminal
fragment (expanded
polyGlutamine) with normal
Huntingtin N-terminal fragment

12/6 no modules
found

E-GEOD
-36494
(RNA-se
q)

i) WT, ii) WT + TAP
(tobacco acid
pyrophosphatase), iii)
rde-10 mutant, iv) rde-10
mutant + TAP, v) rde-11
mutant, vi) rde-11 mutant
+ TAP)

The RDE-10/RDE-11 complex
triggers RNAi induced mRNA
degradation by association with
target mRNA in C. elegans
(Yang et al., 2012)

12/2 no modules
found

E-GEOD
-38877
(array)

centrifuged at i) 1g, ii) 5g,
iii) 10g, iv) 15g

Worms spun in centrifuge at
elevated g values

18/3-9 no modules
found

E-GEOD
-40459
(array)

i) rsd-2 (yp10) mutants,
25 °C, late generation, ii)
rsd-2 (yp10) mutants, 25
°C, early generation, iii)
rsd-2 (pk3307) mutants,
25°C, late generation, iv)
rsd-2 (pk3307) mutants,
25°C, early generation, v)
rsd-6 (pk3300) mutants,
25°C, late generation, vi)
rsd-6 (pk3300) mutants,
25°C, early generation,vii
) rsd-2 (yp10) mutants,
20 °C, late generation,
viii) rsd-2 (yp10) mutants,
20 °C, early generation,
ix) rsd-2 (pk3307)
mutants, 20°C, late
generation, x) rsd-2
(pk3307) mutants, 20°C,
early generation, xi) rsd-6
(pk3300) mutants, 20°C,
late generation, xii) rsd-6
(pk3300) mutants, 20°C,
early generation

Effects of transgeneration aging
studied in early and late
generation rsd-2 and rsd-6
mutants at the restrictive
temperature of 25°C and the
permissive temperature of 20°C

36/3 no modules
found

E-GEOD
-42192
(array)

i) fed with E.coli OP50 for
3 days or ii) 10 days, iii)
fed with Lactobacillus
rhamnosus CNCM I-3690
for 3 days or iv) 10 days,
v) fed with Lactobacillus
rhamnosus CNCM I-4317
for 3 days or vi) 10 days

The lactic acid bacteria
Lactobacillus rhamnosus
(CNCM I-3690) increase worm’s
lifespan by antioxidative actions

18/3 2 868
(71)

58 (15)

E-GEOD
-43864
(array)

i) nhr-114 RNAi, ii)
glp-1(q224ts) mutants, iii)
WT untreated, iv) WT +
tryptophan

The nuclear receptor
nhr-114/HNF4 protects germline
stem cells from dietary
metabolites. The downregulation
of nhr-114 results in germline
defects and sterility, which
depends on tryptophan. Sterile
glp-1 mutants are used for
comparison. animals

12/3 9 1287
(263)

73 (31)

E-GEOD
-46051
(RNA-se

i) day 1, ii) day 1 + 100
nM rotenone, iii) day 5,
iv) day 5 + 100 nM
rotenone, v) day 10, vi)

Deep sequencing of
endogenous mRNA from
Caenorhabditis elegans in the
presence and absence of

22/2-3 21 3123
(474)

264 (74)
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q) day 10 + 100 nM
rotenone, vii) day 20, viii)
day 20 + 100 nM
rotenone

rotenone at 4 different time
points (Schmeisser et al., 2013)

E-GEOD
-51502
(array)

i) genetically activated
beta-catenin, ii) WT

Use of an activated beta-catenin
to identify Wnt/beta-catenin
pathway target genes (Jackson
et al., 2014)

6/3 3 1302
(112)

86 (27)

E-GEOD
-52340
(array)

i) WT, ii) rsks-1 mutants,
iii) daf-2 mutants, iv)
daf-2;rsks-1 double
mutants, v)
daf-16;daf-2;rsks-1 triple
mutants

Synergistic lifespan extension in
daf-2;rsks-1 double mutants
requires DAF-16 and the
germline was identified as  the
key tissue for this synergistic
longevity (Chen et al., 2013)

47/9-10 no modules
found

E-GEOD
-54853
(RNA-se
q)

i) 100 µM
D-Glucosamine, ii)
untreated

D-Glucosamine extends C.
elegans lifespan by impairing
glucose metabolism to activate
AMP-activated protein kinase

12/6 2 870 (0) 60 (20)

E-GEOD
-57739
(RNA-se
q)

i) WT + standard food
(OP50), ii) WT + S.
aureus, iii) hlh-30
mutants + OP50, iv)
hlh-30 mutants + S.
aureus

HLH-30/TFEB is a transcription
factor in the host response to
infections and regulates the
transcription of cytoprotective
and antimicrobial genes (Visvikis
et al., 2014)

8/2 685
(55)

90 (28)

E-GEOD
-85342
(array)

i) 5-fluorouracil, ii) DMSO Treatment with 5-fluorouracil
inhibits growth of P. aeruginosa
and reduces pyoverdine
biosynthesis

6/3 no modules
found

E-MEXP-
479
(array)

i) fed with standard food
for 12h or ii) 24h, iii) fed
with Drechmeria
coniospora for 12h or iv)
24h

Exposure to the fungal pathogen
Drechmeria coniospora for 12
and 24 hours (Pujol et al., 2008)

64/16 no modules
found

E-MTAB-
1333
(array)

pash-1(mj100) mutants at
restrictive temperature
(25 °C) for i) 0, ii) 6, iii) 12
or iv) 24 hours,
pash-1(mj100);
pash-1::gfp mutants at 25
°C for v) 0, vi) 6, vii) 12 or
viii) 24 hours

Reversible inactivation of
miRNA synthesis via
DGCR8/pash-1 conditional
mutants (Lehrbach et al., 2012)

24/3 6 1715
(440)

119 (58)

E-MEXP-
1808
(array)

i) strain DR1350, ii) strain
DR1350 + dauer
pheromone, iii) WT N2,
iv) WT N2 + dauer
pheromone

Wild type isolates treated with
dauer larva-inducing pheromone
(Harvey et al., 2009)

12/3 no modules
found

E-MEXP-
1810
(array)

i) strain RIL-14, ii) strain
RIL-14 + dauer
pheromone, iii) strain
RIL-17, iv) strain RIL-17
+ dauer pheromone

Wild type isolates treated with
dauer larva-inducing pheromone

12/3 6 261
(108)

65 (37)

1 total: total samples in this experiment; per group: samples per treatment-group (biological replicates)
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RNA-seq data re-analysis

Gene expression levels were typically not available for the RNA-seq data. Therefore, the
RNA-seq datasets were all reanalyzed based on the raw data by the following protocol. All
target RNA-seq datasets were retrieved from the European Nucleotide Archive (Leinonen et
al., 2011), and the corresponding FASTQ files were filtered for Illumina adapters, phage PhiX
sequences and quality (Phred score over 25) using BBTools version 38.49 (Bushnell et al.,
2017). Gene expression was then quantified for each RNA-seq run. To this end, the filtered
outputs were mapped against the corresponding target genomes from the Ensembl
database release 98 (Yates et al., 2019), using the STAR program version 2.7.3a (Dobin et
al., 2013). This program also enabled us to assign uniquely mapped reads to individual
genes from the short read alignments. Finally, the mapped read counts were normalized as
transcripts per million (Li et al., 2010).

Network analysis

For each experiment, gene interactions are derived from their pairwise Pearson-correlation
of gene expression across samples with the WGCNA (Langfelder and Horvath, 2008; Zhao
et al., 2010) R package. The WGCNA analysis was performed for undirected interactions.
Parameters were set as instructed by the WGCNA standard protocol, as follows. For every
experiment the cutHeight was manually set to remove outliers and the exponent/power was
manually determined to ensure that the network is a scale-free network (see below). An
experiment is skipped if that is not possible and then marked with “no modules found” in
Table 1. For RNA-seq, prior to the removal of outliers, low-count genes were removed by a
manual setting of the parameter cutHeight so that the separation of the samples reflects their
phenotypes and could no longer be improved, based on the clustering of the genes by
expression data with the R function hclust as performed as part of the WGCNA protocol.

In an attempt to make the correlation networks of different experiments more similar to each
other with respect to the number of connections that may be expected for each gene, we
adhered to the WGCNA protocol that proposes to apply an experiment-specific exponent to
the correlation coefficients (WGCNA calls it “power”, which it is, but not in the context of the
power law mentioned below) to strengthen the differences in the correlation data. Therefore,
this power is chosen, for each experiment, just large enough so that in the derived
correlation network, the fraction of genes that have k-many interactions with other genes is
proportional to  k-𝛄 with 𝛄 being a small positive parameter. Networks with that property are
called scale-free; the parameter 𝛄 describes how quickly this fraction gets smaller when the
number of connections increases. Genes with a high number of connections are rare in
scale-free networks, but they exist, and these “hub” genes are considered highly influential
on the expression levels of genes in that module. Further, we filtered for modules that are
associated with the health(span) phenotype (see next paragraph), and the hub genes are
likely to also have a strong effect on this phenotype.

Only network modules whose WGCNA eigengene correlated with the “phenotypic health
score” (p-value < 0.05) were retained further. Then, the 30 genes (see the WGCNA tutorial
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/)
most connected in a module according to the WGCNA softConnectivity function were
considered for subsequent consensus analyses, and called “hub” genes hereafter. Besides
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the modules, output of the WGCNA workflow is the topological overlap matrix with a
quantitative description (termed adjacency) of all interactions between any pair of genes of
an experiment. For each experiment, we determined a threshold at the 95% quantile of all
the adjacency values. Only gene interactions with an adjacency above that experiment-wide
threshold contribute to our analysis of interactions of genes in the health-associated
modules. For the 30 hub genes, all pairwise interactions above that experiment-wide 95%
quantile were thus exported. These interactions were then subjected to a pan-module search
for consensus genes and consensus interactions, also across species by considering
orthologs, presented in Tables 2 and 4. Orthologs were determined based on Ensembl
version 101 (Yates et al., 2019).

Further, for each health-associated module, the 30 genes correlating the strongest with the
module’s eigengene (reflecting average module behavior, also called “module membership”
in WGCNA) were retrieved. Those found in at least two species are presented in Table 3.
The correlation is taken in relation to the eigengene, and not in relation to the health
phenotype score. Either would be fine for a ranking of the hub genes within a module, and
the ranking is expected to be identical for the genes most central to a module. However, our
particular interest was to abstract from the phenotypes of the experiment and thus utilize the
WGCNA-performed modularization to influence the ranking. This is assumed to be
particularly useful for experiments with multiple health-associated modules, each of which
we expect to focus on a different aspect of health and for which hence also the genes should
be ranked differently, to help analyzing that particular module most appropriately, and without
any particularities pertaining to the health phenotype score. Multiple probesets describing
the same gene, or its splice variants, were not distinguished and mapped to the same
human gene, resulting in genes interacting with themselves. Such self-interactions were
removed.

Network figures

The network figures were created with the R igraph package. A spring-embedding layout
was chosen for the plots and manually refined. Figure 2 shows an overview on all hub genes
from Table 2, their direct interactions and genes found in any species that connect to at least
two hub genes. Additionally, Figures 2a-d in the Supplement were prepared separately for
each species, i.e. they show only interactions from modules that WGCNA identified for an
experiment based on samples from that species. Input to these supplement figures are the
hub genes from Table 2 and all genes that are reachable from the hub genes which are no
more than two transitions away. All interactions between the selected (reachable) genes
were also added. The resulting graphs were simplified with the igraph minimum spanning
tree implementation that maintains the connectivity of the graph but removes all redundant
paths between genes. The spanning tree retains the stronger of two alternative paths
between genes. A gene connected to a hub gene with a low adjacency value will thus lose
that direct link if it is correlating strongly with another gene that has a strong correlation with
that hub gene. Hub genes were determined from within WGCNA considering all interactions,
not only the ones above the 95th percentile. Hub genes that are strongly connected for
experiments in one species may not be equally dominating in another species. This and the
competitive effect on directly connected hub genes (one cross-species, the other only
observed for one species) imposed by the spanning tree give the impression that the
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cross-species consensus hub genes are marginalized in Supplemental Figures 2a-d, albeit
these graphs are seeded from the consensus hub genes and their interactions.

Results

We analysed all experiments listed in Table 1 with WGCNA. This analysis provided a
modularization by an expression-based clustering of genes and allowed to describe the
association of each module with the “health phenotype score”. WGCNA also quantified the
strength of gene correlations and determined hub genes for each module. We identified 12
genes (Table 2) that are among the 30 hub genes in health(span)-associated modules from
at least two species. In total (Supplemental Table 1), 658 different genes were found among
these top-30 hub genes of all modules as determined by WGCNA. An interaction network of
the genes from Table 1, based on correlation of gene expression, is presented in Figure 2.

Table 2: Hub genes in health-associated WGCNA network modules, found in at least two species.
Orthologs were mapped to the human gene name using Ensembl. The human gene names also correspond to
the names in mouse and rat, whereas the names of the orthologs in worms based on the Ensembl database are
given in brackets.

Gene
human
(worm)

Human Rat Description in context of Healthspan

Mouse Worm

ACTN3
(atn-1)

x x Expressed in muscle, known marker for healthspan and athletes’
muscle phenotypes (Pickering and Kiely, 2018). Localized to Z-discs,
anchoring to actin filaments.

ANK1
(unc-44)

x x Ankyrin 1 (ANK1) is associated genetically with Diabetes type 2
(Spracklen et al., 2020), spherocytosis (Qin et al., 2020) and
epigenetically with neurological diseases, likely triggered by ApoE
with effect on TNFalpha and Akt (Morris et al., 2018).

MRPL18
(mrpl-18)

x x The mitochondrial ribosomal protein L18 (MRPL18) is involved in the
cytosolic stress response and promotes the translation of Hsp70
(Zhang et al., 2015)

MYL1
(mlc-6 &
mlc-5)

x x MYL1 encodes the myosin light chain 1 expressed in fast-twitch
skeletal muscle fibers (Stuart et al., 2016). Human ageing is
associated with lower MYL1 content and higher MYL3 content
(Cobley et al., 2016).

PAXIP1
(pis-1)

x x The PAX interacting protein 1 (PAXIP1) contributes to DNA repair
and correlates with breast cancer staging (De Gregoriis et al., 2017).

PPP1CA
(C06A1.
3 & 26
others)

x x PPP1CA is one of three catalytic subunits of the serine/threonine
specific protein phosphatase 1 (PP1), which is  known to be involved
in the regulation of glycogen metabolism, cell division, muscle
contractility and protein synthesis (Ceuleman and Bollen, 2004).
PPP1CA itself is linked to diverse tumor entities (Castro et al., 2007,
Sun et al., 2019) and is involved in ERK/MAPK signaling (Sun et al.,
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2019), TGFβ signaling (Korrodi-Gregório et al., 2014), Ras signaling
and Ras-induced senescence (Ruiz et al., 2008), spermatogenesis
(Silva et al., 2014) as well as in tau hyperphosphorylation leading to
Alzheimer’s disease (Banzhaf-Strathmann et al. 2014).

SCN3B
(-)

x x The sodium voltage-gated channel beta subunit 3 (SCN3B) controls
electrolytes and contributes to the pacemaking in the heart and has
an effect on intracellular trafficking (Ishikawa et al., 2012). It also
suppresses senescence and apoptosis via its interaction with p53
and thus, is considered to be an oncogenic factor (Li et al., 2020).

SDCBP
(lin-10)

x x Syntenin-1 (formerly Syndecan(SDC)-binding protein) regulates
autophagy (Rajesh et al., 2011) and together with Syndecan
contributes to exosome formation (Baietti et al., 2012) also in cancer
cells (Fares et al., 2017).

SKIV2L
(skih-2)

x x The Ski2-like RNA helicase (SKIV2L) is part of the Super killer (SKI)
complex and involved in mRNA degradation, DNA-RNA hybrid
control, and telomere stability (Herrera-Moyano et al., 2020). SKIV2L
is also known to contribute to inflammatory bowel disease (Vardi et
al., 2018) and macular degeneration (Shuai et al., 2017).
Furthermore, SKIV2L features antiviral capacities and plays a role in
innate immunity (Schott and Garcia-Blanco, 2020) associated with
RNA exosomes (Eckard et al., 2014).

TUBG1
(-)

x x TUBG1 encodes the tubulin gamma 1 protein, which, when mutated,
can lead to brain malformations (Alvarado-Kristensson, 2018) with
clinical features such as motor and intellectual disabilities and
epilepsy. Moreover, TUBG1 is involved in tumor diseases, as shown
for breast cancer (Blanco et al., 2015), lung cancer (Maounis et al.,
2012) and medulloblastomas (Caracciolo et al., 2010).

TYROBP
(-)

x x The transmembrane immune signaling adaptor TYROBP is
considered to be involved in Alzheimer’s disease (Ma et al., 2015;
Pottier et al., 2016) and as a target of TERC in inflammatory
processes (Liu et al., 2019). In addition, TYROBP is suggested as a
prognostic marker for gastric cancer and renal cell carcinoma (Wu et
al., 2020; Jiang et al., 2020).

WIPF1
(wip-1)

x x The WAS/WASL interacting protein family member 1 (WIPF1)
regulates actin, phagocytosis, and neurotransmission and is among
the top-3 genes upregulated by caloric restriction in the
hypothalamus of wild-type mice (Stranahan et al., 2012).
Furthermore, overexpression of WIPF1, triggered by BRAF-mutation
activated MAP kinase pathway, promotes aggressiveness of thyroid
cancer and thus acts like an oncoprotein (Zhang et al., 2017). Its
oncoprotein character was also described for pancreatic
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adenocarcinoma (Pan et al., 2018) as well as breast cancer, glioma
and colorectal cancer (Staub et al., 2009).

Table 3: Genes correlating the strongest with the module’s eigengene (quantifying module membership)
in at least two species. Genes in this table are among the top-30 of the module membership and found in
experiments of at least two species. The gene name is marked in bold if that gene was listed as a hub gene in
Table 2. The column “Consensus Correlation” flags “positive” (or “negative”) to refer to an observed positive (or
negative) correlation with the “health phenotype score” when the gene is upregulated. “mixed” indicates that the
experiments did not yield a consensus direction of correlation. Supplement Table 1 extends this list to all genes
that appear in the top 30 of modules of two or more experiments. The “#Experiments” column indicates the
number of experiments with a module for which the gene was identified as a member.

Gene Consensus
Correlation

#Experiment
s

Human Mouse Rat Worm

AC068831.7 vps-33.2 negative 2 negative negative

ADAM10 sup-17 mixed 2 negative positive

APBB1IP mig-10 mixed 2 negative positive

CEBPB cebp-1 mixed 2 negative positive

CREBBP cbp-1 negative 3 negative negative

EIF3F eif-3.F positive 2 positive positive

INTS12 F53H1.4 mixed 2 negative positive

KPNA3 ima-3 mixed 2 negative positive

MEX3C mex-3 negative 2 negative negative

MRPL19 mrpl-19 mixed 2 positive negative

MYL1 mlc-6 positive 2 positive positive

PAXIP1 pis-1 positive 2 positive positive

PCNX2 B0511.12 negative 2 negative negative

PPP1CA C06A1.3 mixed 4 positive mixed

PPP1CB gsp-1 positive 2 positive positive

PPP2R3C - negative 2 negative negative

RAB2A unc-108 negative 2 negative negative

RAB31 - negative 2 negative negative

RPL29 rpl-29 positive 2 positive positive

RTN2 - mixed 2 positive negative

RYR1 unc-68 positive 2 positive positive

SCN3B - positive 2 positive positive

SIX4 ceh-32 negative 2 negative negative

SNRPD1 snr-3 negative 2 negative negative
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TMEM70 F32D8.5 mixed 2 positive negative

TUBG1 - mixed 2 positive negative

WIPF1 wip-1 negative 3 negative negative

ZC3H15 F27D4.4 negative 2 negative negative

SQSTM1 sqst-1 negative 3 negative negative negative

Figure 2: Cross-species conserved hub genes observed in health(span)-associated WGCNA modules,
and genes that connect these hub genes. Connections are interactions taken from the WGCNA adjacency
matrix if the adjacency is above the 95th percentile of all interactions of that experiment and if for that experiment
the interaction is in a health(span)-associated module. The only direct interaction between hub genes is between
MYL1 and ACTN3.

To prioritize the cross-species hub genes of Table 2, we also looked at the module
membership of all genes for each module. The genes most correlating with the module’s
eigengene are reported and, analogous to Table 2, the genes that are found in multiple
species were determined and listed in Table 3. This table further indicates whether a gene’s
change in expression is positively or negatively correlated with the eigengene of the
WGCNA module to which it belongs, which in turn may be positively or negatively correlated
with the health(span) phenotype. Supplement Table 1 shows the raw data that were used to
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construct Table 3. To allow for a direct comparison of the genes’ correlation with
health(span), not quantitatively but in terms of direction (that is, up- or downregulation in
relation to the health phenotype score), Table 3 presents a gene’s inverted direction if the
gene’s module is already negatively correlated with the health(span) phenotype. The
“Consensus Correlation” presents the direction that all experiments are in agreement with or
“mixed” if the experiments differ in terms of their correlation with the health phenotype score.
This information can be calculated for all genes, which we consider to help interpreting a
module. For each module, the data for the 30 genes correlating the strongest with the
module’s eigengene are therefore provided in the supplement (Supplement Table 1).

Figure 3: Gene set enrichment analysis of cross-species hub genes for health(span) with g:profiler. Input
are genes from Table 2 that are observed in healthspan-associated modules of multiple species. Terms with a
low coverage of genes are not suitable to describe the selection as a whole but may still direct the interpretation
of parts of the network where these genes are connected.

The intersection of Tables 2 (hub genes) and 3 (genes correlating with the health phenotype
score) points to a subset of genes that are considered both influential and directly associated
with health, i.e. MYL1, PAXIP1, PPP1CA, SCN3B, TUBG1 and WIPF1. The enrichment by
g:profiler for the genes of Table 2 are shown in Figure 3. Supplement Figure 1a shows an
enrichment analysis for the intersection of Tables 2 and 3 which is matching closely the
enrichments in Figure 3, except that it does not feature the terms associated with muscle.
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Supplement Figure 1b shows the enrichment for all genes in Table 3. The latter is the least
robust since the enriched terms do not cover a large fraction of the genes as for the other
enrichment analyses.

Discussion

Method

The onset of this investigation were all experiments in GEO/ArrayExpress that mention
“healthspan” in their description (or “health” or “healthspan” in case of worm). For each
experiment, from the descriptions that are provided for the samples in the database, a
“health phenotype score” was derived. A gene expression correlation analysis with WGCNA
yielded a gene coexpression network for each experiment as a set of modules of genes that
correlate with the health(span) phenotype. We were interested in genes that are most
connected, i.e. hub genes, for each module, and in their interactions as described by the
WGCNA network. The correlation of genes with the module eigengene (Table 3), to predict a
positive or negative association with health in the molecular context of that module, was only
of secondary interest to us.

In this analysis, we focussed on common observations across two or more species and a
variety of health-related phenotypes, including the reaction to drugs that extend healthspan
(Table 1). The first steps of our analysis with WGCNA identified modules directly from the
expression data, i.e. without inspecting a phenotype; the selection of
health(span)-associated modules was performed in a later step. The WGCNA protocol was
directly derived from the WGCNA tutorial.

The selection of genes, based on strong connectivity, from modules selected in such a way
shall hence be considered robust even if the mapping of the multi-factorial sample
descriptions to a single factor, that is, the health phenotype score describing the health-effect
observed in samples, may allow for plausible alternatives. This is another reason, besides
the need for abstraction to compare experiments, why we consider it advantageous to
compare the module’s genes against the module’s eigengene, which is derived solely by an
inspection of the expression data, and not against the health phenotype score (as done in
Table 3). The manual intervention to derive the health phenotype score was solely needed to
filter for health(span) associated modules (Table 3).

To filter for gene interactions, we decided to filter for the strongest 5% of adjacencies from
each experiment, further constrained to modules that are associated with the health(span)
phenotype score; see the Methods section for details. This experiment-dependent threshold
reflects that experiments differ in the number of samples and subgroups and hence in the
contrasts to separate genes by their correlations.

The authors of WGCNA suggested that their software can be used to perform network
meta-studies from multiple microarray experiments in a single WGCNA setup (Langfelder et
al., 2013). But they clearly stated that the same module needs to be robust across
experiments to directly perform WGCNA on a single joint matrix based on all expression
data. For the very diverse set of experiments contributing to our analysis and their polygenic
phenotype this is not necessarily expected to be the case, i.e. experiments may have their
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true healthspan-associated module in different sections of the transcriptome. Indeed, we did
not observe any interactions to have orthologs across species. The setup presented here is
pragmatic and robust, i.e. individual experiments can be removed without affecting the gene
interactions determined for another experiment. Of major concern for us was that hub genes
are expected to show a measurable effect on health(span) only under the conditions of those
ArrayExpress/GEO experiments in which they are differentially expressed. To follow this
work up with wet lab confirmations, it is hence essential to provide provenance information
on how the change to the hub gene’s expression was induced, i.e. a pointer to the
ArrayExpress/GEO experiment. In a joint matrix across many experiments this information
would be more difficult to retrieve, which suggests not to conduct the integration of
experiments directly within a single WCGNA analysis.

Furthermore, for integrating interaction data from multiple experiments, the authors of
WGCNA suggested to weigh the interactions from each experiment to derive a single joint
adjacency matrix and they suggested to apply a threshold on that single matrix to derive a
network. Because of the heterogeneity of our experiments, we cannot tell which experiment
would be more informative for health(span), compared to another, and thus could not adjust
weights accordingly. By treating all experiments individually, and the null hypothesis that all
experiments have the same fraction of true interactions that shall be identified by the
respective highest adjacency values, we could use an experiment-tailored  threshold for
filtering the interactions. Therefore, we used the 95th percentile of correlation values in the
adjacency matrix, for each experiment, to adapt the selection of the interactions to be
forwarded to describe a meta-study consensus (see Figures 1 and 2). These gene
interactions may be trusted and they thus could be reassembled into a larger integrated
meta-study network to reflect the molecular neighborhoods of hub genes, which we
presented as Figure 2 (cross-species) and Supplement Figures 2a-d (for multiple modules of
the respective same species). The comparison of findings across species further
strengthens the confidence in the WGCNA results. Thus, we identified conserved candidate
regulators of health(span).

An important technical concern lies with the interpretation of gene expression correlation
data for RNA-seq experiments, which have an intrinsic high noise-level for low-abundant
genes. We have recently shown (Struckmann et al., 2020) that even for array data (that are
less noisy for low-abundant genes), also the low-abundant genes have a measurable effect
on a ranking of genes by Pearson correlation, and this is likely also the case for module
calculations as performed here. This concern has to be borne in mind in the following
interpretation of the modules in terms of biological functionality.

Cross-species hub genes and their interactions

Most of the hub genes identified by our analysis (Table 2) have been described in a
health(span)-context before. The gene set enrichment analysis with g:profiler describes the
molecular roles of the cross-species hub genes (Table 2) as specifically associated with a)
features of the muscle and b) actin filament-based organelles and movement (Figure 3). The
worm is a model species also for muscle development because of striking similarities of its
muscles to mammalian muscle tissue (Christian and Benian, 2020), and movement
(locomotion) is an important phenotype in all species towards operationalizing health by
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quantification (Fuellen et al. 2019). For human, rat and mouse in Table 1, there are
experiments for which samples were selectively taken from muscle tissue, but not so for the
worm, which is routinely sequenced as a whole. Upon closer inspection of the enrichment
results of Figure 3, we found that “actin filament-based movement” refers to a wide spectrum
of processes, i.e. genes that support actin polymerisation (WIPF1), the motor protein myosin
(MYL1) or the transition of endosomes into exosomes for intercellular communication
(SDCBP).

The number of experiments of vertebrates and invertebrates is balanced. Apart from a lack
of tissue specificity, the experiments for the worm differ from rodents and humans, in that
experiments for the worm may comprise samples from different larval stages. This may ease
the task to find strong correlations between genes, but specificity for aging-associated
processes is likely reduced.

Inspecting the distribution of hub genes by species, we found no more than five of the 12
hub genes in worm, cf. Supplement Figure 2b, and four in human, cf. Supplement Figure 2a.
The only conserved direct interaction between consensus hub genes was observed between
MYL1 and ACTN3 (Figure 2). However, interactions were found multiple times for
experiments of the same species, namely ABRA with VRK2, AQP11 with GSTA2 and CYLD
with PCNX2 for the worm. These three interactions are shown in Supplement Figure 2b and
the VRK2 gene remains directly connected with the PPP1CA hub gene also after the
minimum-spanning-tree-based edge removal. VRK2 is described to have downstream
effects on the consensus hub gene PPP1CA (Cossa et al., 2020) via GSK3beta (Lee et al.,
2016). Its genetic variants are associated with a series of neurological diseases and viral
infection, but also with healthspan associated sleep patterns (Dashti et al., 2019). The
interactions conserved in multiple species are not confirmed in STRING (Szklarczyk et al.,
2021) for the human, but for the worm, the consensus hub gene PPP1CA (C06A1.3) links to
VRK2 (tag-191).

By interpreting the enrichments in Supplement Figure 3 we can gain more insight into how
the genes we discovered may be involved in health. An example is the enrichment referring
to the TYROBP pathway described in wikipathways and to the GO term Leukocyte activation
(Supplement Figure 3a). Genes connecting  MYL1 and SKIV2L are involved in muscular
structures (Supplement Figure 3b). Tubulins (e.g. TUBG1) are known to bind to PP1, of
which PPP1CA is a subunit and together these proteins regulate histone acetylation (Ding et
al., 2008), which is reflected by the genes connecting PPP1CA and TUBG1 (Supplement
Figure 3c). Further, enhanced histone acetylation is associated with extended health and
lifespan in worm (Zhang et al., 2009).

The highly connected genes selected in this study differ from the list we recently published
(Möller et al., 2020). This WGCNA-based study does not refer to prior knowledge about
genetic contributions and does not perform a factor analysis to directly associate genes with
a health(span) phenotype. Instead, our focus here is the network-centric interpretation of
correlations within gene co-expression clusters, i.e. WCGNA modules. It is the module as a
whole that correlates in its expression with health, not necessarily the individual genes. Table
3 lists genes within the clusters that are most representative for the features/characteristics
of the cluster in question, i.e. that have the highest degree of module membership by
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WGCNA definition, and in the table, there are marks (by boldface) for the subset of genes
that are also hub genes. Of the cross-species hub genes in Table 2, six are also listed in
Table 3. Others are “near misses”, e.g. Table 3 does not list the consensus hub gene
MRPL18 but MRPL19. And besides the consensus hub gene PPP1CA, other PP1 subunits
like PPP1CB and PPP2R3C are found in two species (Table 3). PPP1CB was also found as
a hub gene, but only for the worm.

In Table 3, we report SQSTM1 as the only gene that is associated with health in three
species. That gene was long suggested to be aging- and health-related (Bitto et al., 2014;
Sánchez-Martıń and Komatsu, 2018), also for human, even though it was only found
associated in the analyses of the animal experiments in this study. Its transcript is negatively
correlated with health, but SQSTM1 overexpression is known to extend healthspan in worm
(Kumsta et al., 2019), which may be suggestive for a protective upregulation effect.

Overall, our meta-analysis of a very diverse set of transcriptomics experiments successfully
identified genes which, for the most part, were already established to be closely associated
with health(span), and together they have a strong and meaningful GO term enrichment. The
enrichment of muscle-related genes can be credited to our focus on health(span)
experiments, and our study found many “actin filament-based movement” genes (Figure 3)
that provide the cellular infrastructure not just for movement, but also for signalling and cell
division, which may be triggered/blocked whenever cells start to feel unwell. If so, then it
may be possible to detect many healthspan genes solely by inspecting cellular data. This
hypothesis may be confirmed by an extension of our setup to a larger set of cellular
transcriptomics data sets for which samples vary in their genetic or environmental exposure
to stress factors.

This study provided a cross-species meta-study of gene interactions for health(span)-related
datasets in ArrayExpress/GEO. It focused on a co-expression network analysis and
subsequently on derived hub genes, instead of a focus on those genes that correlate the
most with the healthspan phenotype score. This approach shall allow for an abstraction from
the experiment at hand and permit a search for common mediators of an effect. The
proposed consensus hub genes were plausible in their implication into health(span). Their
interactions could be confirmed in STRING, or were found consistent with gene set
enrichment analyses and they may support the interpretation of joint or epistatic effects
between pairs of haplotypes in healthspan GWAS or linkage analyses. The protocol as
provided with WGCNA is very transparent so that findings can be traced back to the
experiments that are backing them, to serve as a template for further investigations in the
wet lab.
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Availability

Our implementation is available online at
https://bitbucket.org/ibima/healthspantranscriptomicsnetworks/.
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Supplement

Figures

Supplement Figure 1a: g:profiler gene set enrichment analysis of genes listed jointly in Tables 2 and 3.

Supplement Figure 1b: g:profiler gene set enrichment analysis of genes listed in Table 3.
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Supplement Figure 2a: Gene interactions observed in human. The genes MYL1, PPP1CA, SKIV2L and
TUBG1 are hub genes in WGCNA-defined modules from multiple species (cf. Figure 1, here shown in red). This
graph was created iteratively with the red genes as a seed, then adding all the gene-gene interactions from
WGCNA in human experiments originating from  these red genes, and then transitively adding all the interacting
genes of those. The resulting graph is highly interconnected before applying the minimum spanning tree
algorithm. The genes interacting with hub genes across species (in red) then appear marginalized by the three
human-only hub genes ANXA2, APEX2, LRRC20 and MGST1, given that the minimum spanning tree shows only
the strongest correlations. ANXA2 is well described for a wide array of disease, i.e. cancer but also pulmonary
fibrosis, and on a molecular level chimes in with vesicle fusion. APEX2 is a nuclease required for lymphocyte
proliferation. LRRC20 is not yet described but known to interact with the also mostly undescribed TOM1 that
once more is thought to be involved in intracellular trafficking and the E3 SUMO-protein ligase ZBED1. MGST1 is
an enzyme located at the ER and mitochondria, a transferase of glutathione, an antioxidant.
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Supplement Figure 2b: Gene interactions observed in worm. The figure was prepared analogously to
Supplement Figure 2a from gene interactions observed in the worm. Gene names were mapped to human
orthologs for an easier comparison between species.
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Supplement Figure 2c: Gene interactions observed in rat.

Supplement Figure 2d: Gene interactions observed in mouse.
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Supplement Figure 3a: g:Profiler GSEA on genes connecting hub genes TYROBP and SDCBP.
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Supplement Figure 3b: g:Profiler GSEA on genes connecting hub genes MYL1 and SKIV2L.
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Supplement Figure 3c: g:Profiler GSEA on genes connecting hub genes TUBG1 and PPP1CA.
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Tables
Supplement Table 1: Genes correlating with eigengene representation (module membership) of those
modules that are correlating with the health score. The table lists all genes that appear in at least two
experiments among the top 30 and a P value below 0.05. If the expression of the gene correlates positively with
the health score then the gene is tagged as positive. The columns “cor” and “P val” list the values as determined
by WGCNA. A negative correlation with a positive tag indicates that eigengene of the module is negatively
correlated with the health score.

Gene          health    cor   P val      Experiment module
0610006I08Rik  negative  0.907 4.64e-05   E-GEOD-19102 darkmagenta
0610006I08Rik  negative  0.942 4.57e-06   E-GEOD-19102 skyblue3
2010107E04Rik  positive  0.951 6.24e-19   E-GEOD-55272 black
2010107E04Rik  positive -0.947 2.10e-18   E-GEOD-55272 magenta

ABAT  positive  0.988 2.21e-18   E-GEOD-30505 blue
ABAT  positive -0.980 1.42e-12   E-GEOD-42192 turquoise
ABCG1  negative -0.900 6.76e-05   E-GEOD-19102 sienna2
ABCG1  negative  0.974 1.68e-23   E-GEOD-55272 red
ABRA  negative  0.996 4.41e-12   E-GEOD-43864 brown
ABRA  negative  0.989 2.90e-06   E-GEOD-57739 turquoise
ABRA  positive -0.968 1.12e-14    E-MTAB-1333 blue

abu-14  positive  0.993 5.68e-21   E-GEOD-30505 turquoise
abu-14  positive  0.999 7.55e-07    E-GEOD-9246 turquoise

AC068831.7  negative -0.868 2.48e-04   E-GEOD-19102 yellow3
AC068831.7  negative  0.986 1.28e-18    E-MTAB-1333 turquoise
AC106774.4  negative -0.873 2.13e-04    E-MEXP-1810 plum1
AC106774.4  negative  0.938 6.73e-06    E-MEXP-1810 royalblue

ADAM10  negative -0.871 7.20e-09   E-GEOD-34773 greenyellow
ADAM10  positive  0.998 4.87e-13   E-GEOD-43864 turquoise
AGO1  negative -0.995 2.14e-09   E-GEOD-32339 blue
AGO1  negative -0.879 1.53e-08    E-MTAB-1333 black
ain-1  negative  0.921 4.24e-04    E-GEOD-8696 cyan
ain-1  negative  0.965 2.56e-05    E-GEOD-8696 royalblue

APBB1IP  positive  0.987 2.78e-09 E-GEOD-54853-CEL yellow
APBB1IP  negative  0.970 1.68e-07    E-MTA-B6578 blue
AQP11  positive  0.997 2.57e-24   E-GEOD-30505 blue
AQP11  negative  0.951 1.98e-06    E-MEXP-1810 brown
ARMC1  positive -0.850 3.97e-08   E-GEOD-34773 darkgrey
ARMC1  positive  0.874 5.48e-09   E-GEOD-34773 greenyellow
asns-2  negative -0.993 7.01e-05   E-GEOD-51502 black
asns-2  positive  0.984 8.21e-09 EGEOD54853-CEL brown

ATP6V1B2  negative  0.978 4.00e-08   E-GEOD-43864 paleturquoise
ATP6V1B2  negative  0.967 2.76e-07   E-GEOD-43864 paleturquoise
ATP6V1B2  positive  0.999 2.07e-06    E-GEOD-9246 turquoise

B2M  negative  0.927 1.03e-11   E-GEOD-34773 lightyellow
B2M  negative  0.922 2.13e-11   E-GEOD-34773 lightyellow
B2M  negative  0.975 6.82e-08      EMTAB6578 blue

C02E7.6  positive  0.993 4.20e-21   E-GEOD-30505 turquoise
C02E7.6  positive  0.990 9.63e-10   E-GEOD-43864 yellow
C09B9.2  negative  0.990 2.56e-06   E-GEOD-57739 turquoise
C09B9.2  positive  0.989 1.36e-19    E-MTAB-1333 yellow
C26F1.1  positive  0.989 1.13e-09   E-GEOD-43864 yellow
C26F1.1  negative  0.982 4.60e-04   E-GEOD-51502 turquoise
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C46F2.1  negative -0.869 2.45e-04    E-MEXP-1810           plum1
C46F2.1  negative  0.921 2.15e-05    E-MEXP-1810 royalblue
C46G7.1  positive -0.979 1.62e-12   E-GEOD-42192 turquoise
C46G7.1  negative  0.928 8.98e-04   E-GEOD-57739 darkgreen

CAD  negative -0.875 1.93e-04    E-MEXP-1810 plum1
CAD  negative  0.902 6.02e-05    E-MEXP-1810 royalblue

CD151  negative  0.934 8.51e-06   E-GEOD-19102 darkmagenta
CD151  negative -0.905 2.28e-10   E-GEOD-34773 tan
CEBPB  positive  0.940 1.65e-04   E-GEOD-38062 salmon
CEBPB  negative  0.812 5.27e-08   E-GEOD-40936 grey
CLIC5  negative  0.842 6.00e-04   E-GEOD-19102 green3
CLIC5  negative -0.883 2.42e-09   E-GEOD-34773 greenyellow
comp-1  negative  0.991 2.09e-06   E-GEOD-57739 turquoise
comp-1  positive  0.991 9.50e-21    E-MTAB-1333 yellow
COX15  positive -0.890 1.19e-09   E-GEOD-34773 darkgrey
COX15  positive -0.879 3.61e-09   E-GEOD-34773 darkgrey
COX15  positive  0.923 1.79e-11   E-GEOD-34773 greenyellow
cpg-2  negative -0.994 5.19e-09   E-GEOD-32339 blue
cpg-2  positive  0.961 3.76e-05    E-GEOD-8696 red
CRB1  negative -0.958 1.85e-04   E-GEOD-57739 darkorange
CRB1  positive  0.989 1.48e-09 EGEOD54853-CEL yellow

CREBBP  negative  0.953 1.96e-05   E-GEOD-32339 pink
CREBBP  negative  0.937 1.75e-12   E-GEOD-34773 red
CREBBP  negative  0.958 4.89e-05    E-GEOD-8696 purple
D2062.7  positive -0.969 4.07e-11   E-GEOD-42192 blue
D2062.7  positive  0.985 1.99e-18    E-MTAB-1333 yellow

DCP2  negative  0.928 1.74e-10   E-GEOD-30505 black
DCP2  negative -0.997 2.13e-10   E-GEOD-32339 blue
DDX4  positive -0.998 3.10e-13   E-GEOD-43864 blue
DDX4  negative -0.877 1.77e-04    E-MEXP-1810 lightcyan

DEPDC1B  negative  0.915 9.48e-10   E-GEOD-30505 black
DEPDC1B  positive -0.934 2.28e-04    E-GEOD-8696 cyan
dnj-3  positive  0.940 5.49e-06   E-GEOD-43864 royalblue
dnj-3  negative  0.924 1.05e-03   E-GEOD-57739 darkgreen
dnj-3  negative  0.974 9.23e-16    E-MTAB-1333 brown
DRG1  negative  0.993 6.92e-05   E-GEOD-51502 turquoise
DRG1  negative  0.925 1.64e-05    E-MEXP-1810 brown

EEF1B2  negative -0.866 2.71e-04   E-GEOD-19102 deeppink
EEF1B2  positive  0.948 1.93e-13   E-GEOD-34773 green
egg-2  positive -0.998 8.73e-14   E-GEOD-43864 blue
egg-2  positive -0.998 2.95e-13   E-GEOD-43864 blue
egg-2  positive  0.964 2.85e-05    E-GEOD-8696 red
EIF3F  positive -0.929 7.24e-12   E-GEOD-34773 purple
EIF3F  positive  0.999 9.64e-07    E-GEOD-9246 turquoise
EMC3  negative -0.915 5.49e-04   E-GEOD-38062 darkgreen
EMC3  negative  0.954 6.54e-05   E-GEOD-38062 plum1

F45D3.4  positive  0.935 8.05e-06    E-MEXP-1810 darkmagenta
F45D3.4  positive -0.917 2.69e-05    E-MEXP-1810 royalblue
F55A3.2  positive  0.867 2.62e-04    E-MEXP-1810 darkmagenta
F55A3.2  positive  0.876 1.89e-04    E-MEXP-1810 darkolivegreen
FBLN7  negative  0.877 1.83e-04   E-GEOD-19102 green3
FBLN7  negative  0.909 1.37e-10   E-GEOD-34773 magenta
fkb-7  positive -0.995 4.39e-05   E-GEOD-51502 turquoise
fkb-7  positive  0.965 1.05e-04   E-GEOD-57739 sienna3

36

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 10, 2021. ; https://doi.org/10.1101/2021.04.08.439030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439030
http://creativecommons.org/licenses/by/4.0/


flp-15  positive  0.959 8.29e-07    E-MEXP-1810           plum1
flp-15  positive  0.914 3.14e-05    E-MEXP-1810 plum1
flp-15  positive -0.898 7.43e-05    E-MEXP-1810 royalblue
GMFG  negative  0.892 9.67e-05   E-GEOD-19102 darkmagenta
GMFG  negative  0.984 6.89e-27   E-GEOD-55272 red
GNG10  negative  0.927 1.40e-05   E-GEOD-19102 darkmagenta
GNG10  positive  0.959 3.66e-20   E-GEOD-55272 yellow
GPR142  negative  0.990 7.71e-10   E-GEOD-43864 lightgreen
GPR142  negative  0.979 3.46e-08   E-GEOD-43864 lightgreen
GPR142  negative  0.925 3.56e-04    E-GEOD-8696 cyan
grl-7  positive  0.992 4.32e-20   E-GEOD-30505 turquoise
grl-7  positive  0.993 1.22e-10   E-GEOD-43864 yellow
grl-7  positive  0.991 3.61e-10   E-GEOD-43864 yellow
grl-7  positive  0.991 3.91e-10   E-GEOD-43864 yellow
GSTA2  positive  0.992 3.59e-20   E-GEOD-30505 blue
GSTA2  negative  0.976 6.93e-06    E-GEOD-8696 purple
GSTA2  negative  0.953 1.73e-06    E-MEXP-1810 brown
H2-D1  negative  0.951 9.09e-14   E-GEOD-34773 lightyellow
H2-D1  negative  0.948 1.95e-13   E-GEOD-34773 lightyellow
H2-D1  negative  0.941 9.01e-13   E-GEOD-34773 lightyellow
H2-D1  negative  0.894 7.30e-10   E-GEOD-34773 lightyellow
H2-D1  negative  0.974 9.03e-08      EMTAB6578 blue

H42K12.3  positive  0.992 2.23e-20   E-GEOD-30505 turquoise
H42K12.3  positive  0.988 2.15e-04   E-GEOD-51502 blue

HACL1  positive  0.881 1.55e-04    E-MEXP-1810 plum1
HACL1  positive -0.963 5.25e-07    E-MEXP-1810 royalblue
HACL1  positive -0.908 4.46e-05    E-MEXP-1810 royalblue
HSDL2  positive  0.940 5.23e-04   E-GEOD-57739 darkorange
HSDL2  positive  0.949 2.39e-06    E-MEXP-1810 lightcyan
IHH  negative  0.933 2.34e-04    E-GEOD-8696 cyan
IHH  positive  0.999 2.32e-06    E-GEOD-9246 turquoise

INTS12  negative -0.845 5.42e-04   E-GEOD-19102 yellow3
INTS12  positive -0.980 2.32e-08   E-GEOD-43864 paleturquoise
K08C9.2  negative  0.997 8.50e-13   E-GEOD-43864 brown
K08C9.2  positive  0.986 1.88e-18    E-MTAB-1333 yellow
KPNA3  negative  0.932 4.18e-12   E-GEOD-34773 red
KPNA3  positive  0.999 2.92e-06    E-GEOD-9246 turquoise
let-2  positive  0.992 1.36e-20   E-GEOD-30505 blue
let-2  positive -0.979 1.83e-12   E-GEOD-42192 turquoise
LIAS  positive -0.921 2.67e-11   E-GEOD-34773 black
LIAS  positive  0.880 3.27e-09   E-GEOD-34773 tan

LIN28A  positive -0.998 1.06e-13   E-GEOD-43864 blue
LIN28A  positive -0.998 2.15e-13   E-GEOD-43864 blue
LIN28A  negative -0.877 1.78e-04    E-MEXP-1810 darkolivegreen
MARCKS  negative  0.967 3.10e-07   E-GEOD-19102 blue
MARCKS  negative  0.918 4.08e-11   E-GEOD-34773 magenta
MEX3C  negative -0.994 7.28e-09   E-GEOD-32339 blue
MEX3C  negative  0.948 6.71e-13   E-GEOD-38012 yellow
mig-6  positive -0.978 2.21e-12   E-GEOD-42192 turquoise
mig-6  positive  0.984 8.04e-09 EGEOD54853-CEL yellow
MRAS  positive  0.989 5.85e-19   E-GEOD-30505 blue
MRAS  positive -0.965 3.01e-14    E-MTAB-1333 blue

MRPL13  positive -0.886 1.74e-09   E-GEOD-34773 darkgrey
MRPL13  positive -0.878 3.75e-09   E-GEOD-34773 darkgrey
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MRPL13  positive  0.867 9.86e-09   E-GEOD-34773     greenyellow
MRPL19  positive -0.869 8.64e-09   E-GEOD-34773 darkgrey
MRPL19  negative  0.951 1.96e-06    E-MEXP-1810 brown
MRPL30  negative  0.888 1.13e-04   E-GEOD-19102 skyblue3
MRPL30  positive  0.939 2.45e-17   E-GEOD-55272 black
MTPAP  negative -0.992 3.65e-20   E-GEOD-30505 blue
MTPAP  negative -0.995 2.69e-09   E-GEOD-32339 blue
Myeov2  positive  0.931 1.71e-16   E-GEOD-55272 black
Myeov2  positive -0.976 5.77e-24   E-GEOD-55272 magenta
MYL1  positive -0.996 3.24e-25   E-GEOD-38012 turquoise
MYL1  positive  0.985 1.49e-06   E-GEOD-38062 tan
MYL7  negative  0.895 8.28e-05   E-GEOD-19102 skyblue3
MYL7  negative  0.901 6.40e-05 EGEOD54853-MMU darkturquoise

NDUFS1  positive  0.862 3.07e-04   E-GEOD-19102 coral1
NDUFS1  positive  0.877 1.77e-04   E-GEOD-19102 lightsteelblue1
NR1H2  positive  0.983 1.22e-08   E-GEOD-43864 darkorange
NR1H2  negative -0.909 1.75e-03   E-GEOD-57739 sienna3
NR1H2  positive  0.883 1.42e-04    E-MEXP-1810 darkolivegreen
NR1H2  positive  0.851 4.51e-04    E-MEXP-1810 darkolivegreen
NR1H2  positive  0.894 3.95e-09    E-MTAB-1333 black
NRBP1  negative  0.855 2.64e-08   E-GEOD-34773 darkgrey
NRBP1  negative  0.969 4.13e-22   E-GEOD-55272 pink
Pabpc1  positive -0.887 1.21e-04   E-GEOD-19102 darkmagenta
Pabpc1  negative  0.969 2.22e-07      EMTAB6578 blue
PAXIP1  positive  0.890 1.03e-04   E-GEOD-19102 deeppink
PAXIP1  positive  0.998 2.67e-13   E-GEOD-43864 turquoise
PCNX2  negative  0.962 7.78e-14    E-MTAB-1333 blue
PCNX2  negative  0.907 4.66e-05 EGEOD54853-MMU darkturquoise
PDCD6  negative -0.959 8.71e-07   E-GEOD-43864 royalblue
PDCD6  negative  0.928 6.50e-11    E-MTAB-1333 green
PFAS  positive -0.858 2.13e-08   E-GEOD-34773 darkgrey
PFAS  positive  0.941 8.58e-13   E-GEOD-34773 greenyellow
PPIA  positive -0.975 6.83e-12   E-GEOD-42192 blue
PPIA  negative  0.918 2.52e-05    E-MEXP-1810 royalblue
PPIC  negative  0.981 1.67e-08   E-GEOD-19102 blue
PPIC  negative  0.981 1.97e-08   E-GEOD-19102 blue
PPIC  negative  0.917 4.55e-11   E-GEOD-34773 magenta

PPP1CA  positive  0.987 2.48e-04   E-GEOD-51502 black
PPP1CA  negative  0.991 1.68e-06   E-GEOD-57739 turquoise
PPP1CA  positive  0.993 2.02e-14   E-GEOD-66236 turquoise
PPP1CA  positive  0.989 9.26e-20    E-MTAB-1333 yellow
PPP1CB  positive -0.979 4.67e-06   E-GEOD-38062 turquoise
PPP1CB  positive  0.999 1.18e-06    E-GEOD-9246 turquoise
PPP2R3C  negative  0.944 1.38e-12   E-GEOD-38012 yellow
PPP2R3C  negative  0.966 1.31e-21   E-GEOD-55272 pink
pqn-32  positive  0.993 3.79e-21   E-GEOD-30505 turquoise
pqn-32  positive  0.993 1.60e-10   E-GEOD-43864 yellow
pqn-32  positive  0.989 1.27e-09   E-GEOD-43864 yellow
PSMD4  positive  0.932 9.87e-06   E-GEOD-19102 lightpink2
PSMD4  negative  0.848 4.59e-08   E-GEOD-34773 darkgrey
ptp-2  negative -0.937 7.07e-06    E-MEXP-1810 plum1
ptp-2  negative  0.932 1.03e-05    E-MEXP-1810 royalblue
PUM1  negative -0.995 3.07e-09   E-GEOD-32339 blue
PUM1  negative -0.995 3.51e-09   E-GEOD-32339 blue
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PUM1  positive  0.986 9.40e-07    E-GEOD-8696             red
R3HDML  negative -0.898 7.34e-05    E-MEXP-1810 plum1
R3HDML  negative  0.928 1.33e-05    E-MEXP-1810 royalblue
R3HDML  negative  0.916 2.80e-05    E-MEXP-1810 royalblue
RAB2A  negative  0.965 6.41e-06   E-GEOD-32339 pink

    RAB2A  negative  0.960 2.47e-20   E-GEOD-55272 pink
RAB31  negative  0.952 1.77e-06   E-GEOD-19102 blue
RAB31  negative  0.971 1.37e-05   E-GEOD-38062 turquoise
RAD17  negative  0.994 5.90e-09   E-GEOD-32339 turquoise
RAD17  negative  0.982 1.90e-17    E-MTAB-1333 turquoise
RGL1  negative  0.956 1.25e-06   E-GEOD-19102 blue
RGL1  positive -0.687 2.76e-05   E-GEOD-40936 grey
RMDN3  positive -0.971 2.12e-11   E-GEOD-42192 blue
RMDN3  negative  0.999 3.97e-14   E-GEOD-43864 brown
RMDN3  negative  0.996 4.43e-12   E-GEOD-43864 brown
RMDN3  positive  0.967 2.03e-05    E-GEOD-8696 red
RPL11  positive  0.929 7.00e-12   E-GEOD-34773 green
RPL11  positive  0.963 7.42e-21   E-GEOD-55272 yellow
RPL13A  positive  0.936 2.43e-12   E-GEOD-34773 green
RPL13A  positive -0.959 1.11e-14   E-GEOD-34773 purple
RPL23A  positive  0.934 3.34e-12   E-GEOD-34773 green
RPL23A  positive  0.929 7.50e-12   E-GEOD-34773 green
RPL23A  positive -0.966 1.56e-15   E-GEOD-34773 purple
RPL23A  positive -0.939 1.26e-12   E-GEOD-34773 purple
RPL23A  positive -0.934 3.44e-12   E-GEOD-34773 purple
RPL27  positive  0.930 6.54e-12   E-GEOD-34773 green
RPL27  positive -0.963 4.04e-15   E-GEOD-34773 purple
Rpl27a  positive  0.935 2.52e-12   E-GEOD-34773 green
Rpl27a  positive  0.965 2.64e-21   E-GEOD-55272 yellow
RPL29  positive  0.940 1.09e-12   E-GEOD-34773 green
RPL29  positive  0.976 7.35e-06   E-GEOD-38062 tan
RPS12  positive  0.942 7.63e-13   E-GEOD-34773 green
RPS12  positive -0.926 1.28e-11   E-GEOD-34773 purple
RPS21  positive  0.954 4.18e-14   E-GEOD-34773 green
RPS21  positive  0.937 1.87e-12   E-GEOD-34773 green
RPS21  positive -0.923 1.82e-11   E-GEOD-34773 purple
Rps25  positive  0.960 1.00e-14   E-GEOD-34773 green
Rps25  positive -0.927 1.02e-11   E-GEOD-34773 purple
Rps29  positive  0.935 2.90e-12   E-GEOD-34773 green
Rps29  positive -0.954 4.47e-14   E-GEOD-34773 purple
RPS7  negative -0.905 5.22e-05   E-GEOD-19102 deeppink
RPS7  positive -0.923 1.92e-11   E-GEOD-34773 purple
RTN2  negative  0.861 1.66e-08   E-GEOD-34773 darkgrey
RTN2  positive -0.995 2.44e-24   E-GEOD-38012 turquoise
RYR1  positive  0.883 1.43e-04   E-GEOD-19102 sienna2
RYR1  positive -0.994 2.21e-23   E-GEOD-38012 turquoise
SCN3B  positive -0.879 1.67e-04   E-GEOD-19102 green3
SCN3B  positive -0.956 5.85e-05   E-GEOD-38062 yellowgreen
SFT2D2  negative -0.929 2.73e-16   E-GEOD-55272 black
SFT2D2  negative  0.975 8.14e-24   E-GEOD-55272 magenta
sgo-1  positive -0.998 1.68e-13   E-GEOD-43864 blue
sgo-1  negative  0.985 3.18e-18    E-MTAB-1333 turquoise
SIK1B  negative  0.992 1.18e-06   E-GEOD-57739 turquoise
SIK1B  positive  0.989 1.13e-19    E-MTAB-1333 yellow
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SIX4  negative  0.954 1.74e-12   E-GEOD-30505             red
SIX4  negative -0.871 7.31e-09   E-GEOD-34773 greenyellow
SKP1  negative  0.995 2.19e-09   E-GEOD-32339 turquoise
SKP1  negative  0.940 9.01e-12    E-MTAB-1333 green
SKP1  negative  0.924 1.21e-10    E-MTAB-1333 green

SLC16A9  positive  0.989 1.02e-18   E-GEOD-30505 blue
SLC16A9  negative -0.911 3.81e-05    E-MEXP-1810 darkmagenta
SLC7A11  negative  0.960 1.19e-13    E-MTAB-1333 blue
SLC7A11  positive  0.987 2.50e-09 EGEOD54853-CEL brown
smz-2  positive -0.970 3.19e-11   E-GEOD-42192 blue
smz-2  positive  0.988 2.18e-19    E-MTAB-1333 yellow
SNRPD1  negative -0.875 1.91e-04   E-GEOD-19102 lightsteelblue1
SNRPD1  negative  0.954 6.08e-13    E-MTAB-1333 brown
somi-1  positive  0.917 2.74e-05    E-MEXP-1810 plum1
somi-1  positive  0.993 1.50e-10 EGEOD54853-CEL yellow
spe-38  negative -0.976 6.37e-08   E-GEOD-43864 darkorange
spe-38  negative  0.992 2.98e-10   E-GEOD-43864 lightgreen
SQSTM1  negative  0.959 1.07e-14   E-GEOD-34773 black
SQSTM1  negative  0.924 3.74e-04   E-GEOD-38062 yellowgreen
SQSTM1  positive  0.885 1.29e-04    E-MEXP-1810 lightcyan
sss-2  positive -0.970 3.11e-11   E-GEOD-42192 blue
sss-2  positive  0.990 5.42e-20    E-MTAB-1333 yellow

T14G11.1  negative -0.955 2.26e-04   E-GEOD-57739 darkorange
T14G11.1  negative -0.909 7.81e-10    E-MTAB-1333 black
T19D12.2  negative  0.979 6.61e-04   E-GEOD-51502 turquoise
T19D12.2  positive -0.892 9.42e-05    E-MEXP-1810 royalblue
T22B3.3  negative  0.998 3.30e-08   E-GEOD-57739 turquoise
T22B3.3  positive  0.989 1.42e-19    E-MTAB-1333 yellow
T28B11.1  positive -0.928 1.39e-05    E-MEXP-1810 brown
T28B11.1  negative  0.964 3.65e-14    E-MTAB-1333 blue
T28H11.7  positive -0.981 8.69e-13   E-GEOD-42192 blue
T28H11.7  positive  0.987 4.02e-19    E-MTAB-1333 yellow

TGIF2  negative  0.964 7.01e-06   E-GEOD-32339 pink
TGIF2  positive  0.883 1.08e-08    E-MTAB-1333 black
TMEM70  positive -0.913 8.24e-11   E-GEOD-34773 darkgrey
TMEM70  negative  0.952 1.87e-06    E-MEXP-1810 brown
TNNI2  positive  0.905 5.22e-05    E-MEXP-1810 plum1
TNNI2  positive  0.870 2.34e-04    E-MEXP-1810 plum1
TNNI2  positive  0.992 3.43e-10 EGEOD54853-CEL brown
TOMM70  positive -0.917 2.70e-05   E-GEOD-19102 darkmagenta
TOMM70  positive  0.879 1.65e-04   E-GEOD-19102 deeppink
TUBG1  negative  0.948 1.03e-04   E-GEOD-38062 plum1
TUBG1  positive  0.987 1.43e-12   E-GEOD-66236 turquoise
UBE2E1  negative -0.989 7.37e-19   E-GEOD-30505 blue
UBE2E1  negative -0.993 8.90e-09   E-GEOD-32339 blue
UGT3A1  positive -0.979 1.55e-12   E-GEOD-42192 turquoise
UGT3A1  positive  0.935 6.68e-04   E-GEOD-57739 sienna3

UTY  negative  0.986 2.97e-04   E-GEOD-51502 turquoise
UTY  positive  0.985 6.35e-09 EGEOD54853-CEL yellow

VAMP3  negative -0.912 9.32e-11   E-GEOD-34773 greenyellow
VAMP3  negative -0.885 1.96e-09   E-GEOD-34773 tan
VRK2  positive -0.972 1.70e-11   E-GEOD-42192 blue
VRK2  negative -0.935 8.29e-06   E-GEOD-43864 darkorange
VRK2  negative  0.996 1.77e-07   E-GEOD-57739 turquoise

40

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 10, 2021. ; https://doi.org/10.1101/2021.04.08.439030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439030
http://creativecommons.org/licenses/by/4.0/


VRK2  negative  0.993 9.81e-07   E-GEOD-57739       turquoise
VRK2  negative  0.982 2.26e-17    E-MTAB-1333 turquoise
VRK2  positive  0.990 3.87e-20    E-MTAB-1333 yellow
VRK2  positive  0.989 1.44e-19    E-MTAB-1333 yellow
VRK2  positive  0.986 1.55e-18    E-MTAB-1333 yellow

W03G11.4  positive  0.993 1.43e-10   E-GEOD-43864 yellow
W03G11.4  positive  0.990 8.23e-10   E-GEOD-43864 yellow
W03G11.4  positive  0.998 3.84e-06    E-GEOD-9246 turquoise
W03G11.4  positive  0.990 6.47e-10 EGEOD54853-CEL yellow

WDR47  negative -0.993 6.36e-05   E-GEOD-51502 black
WDR47  positive  0.947 2.94e-06    E-MEXP-1810 darkmagenta
WIPF1  negative  0.954 1.55e-06   E-GEOD-19102 blue
WIPF1  negative  0.919 3.60e-11   E-GEOD-34773 magenta
WIPF1  negative  0.962 6.73e-14    E-MTAB-1333 blue

Y42H9AR.4  negative  0.942 2.15e-11   E-GEOD-30505 black
Y42H9AR.4  negative -0.996 1.78e-09   E-GEOD-32339 blue

ZC3H15  negative  0.982 1.56e-08   E-GEOD-43864 midnightblue
ZC3H15  negative -0.978 7.07e-25   E-GEOD-55272 yellow
ZFP36  negative -0.994 4.29e-09   E-GEOD-32339 blue
ZFP36  negative -0.994 4.60e-09   E-GEOD-32339 blue
ZFP36  positive  0.971 1.33e-05    E-GEOD-8696 red
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