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Abstract 9 

Perceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural 10 

evidence that confidence evaluation differs from perceptual decision-making, disentangling these two 11 

processes remains a challenge at the neural level. Here we examined the electrical brain activity of human 12 

participants in a protracted perceptual decision-making task where observers tend to commit to perceptual 13 

decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision 14 

commitments were revealed by patterns of spectral power overlying motor cortex, followed by an 15 

attenuation of the neural representation of perceptual decision evidence. A distinct neural representation 16 

was associated with the computation of confidence, with sources localised in the superior parietal and 17 

orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural 18 

resources were recruited even after observers committed to their perceptual decisions, and thus delineate 19 

an integral neural circuit for evaluating perceptual decision confidence. [148 words] 20 

Introduction 21 

Whilst perception typically feels effortless and automatic, it requires probabilistic inference to resolve the 22 

uncertain causes of essentially ambiguous sensory input (Helmholtz, 1856). Human observers are capable of 23 

discriminating which perceptual decisions are more likely to be correct using subjective feelings of 24 

confidence (Pollack and Decker, 1958). These feelings of perceptual confidence have been associated with 25 

metacognitive processes (Fleming and Daw, 2017) that enable self-monitoring for learning (Veenman, 26 

Wilhelm, & Beishuizen, 2004) and communication (Bahrami et al., 2012; Frith, 2012). We are only just 27 

beginning to uncover the complex functional role of metacognition in human behaviour, and outline the 28 

computational and neural processes that enable metacognition. The study of perceptual confidence offers 29 

promising insight into metacognition, because one can use our detailed knowledge of perceptual processes 30 

to isolate factors which affect the computation of perceptual confidence. 31 

At the computational level, perceptual decisions are described by sequential sampling processes (Vickers, 32 

1970; Ratcliff, 1978), in which noisy samples of evidence are accumulated over time, until there is sufficient 33 
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evidence to commit to a decision. The most relevant information for evaluating perceptual confidence is the 34 

quantity and quality of evidence used to make the perceptual decision (Vickers, 1979; Kepecs et al., 2008; 35 

Moreno-Bote, 2010). At the neural level, perceptual confidence could therefore follow a strictly serial circuit: 36 

Relying only on information computed by perceptual processes, with any additional processes contributing 37 

only to transform this information for building the confidence response required by the task. Indeed, 38 

confidence (or a non-human primate proxy for confidence) can be reliably predicted from the firing rates of 39 

neurons coding the perceptual decision itself (Kiani and Shadlen, 2009), suggesting that confidence may be a 40 

direct by-product of perceptual processing. However, a large body of behavioural studies suggest that the 41 

computation of confidence is not strictly serial. Confidence can integrate additional evidence after the 42 

observer commits to their perceptual decision (Baranski and Petrusic, 1994; Pleskac and Busemeyer, 2010), 43 

and while this continued evidence accumulation could incorporate only perceptual information, it implies 44 

that confidence evaluation does not directly follow from perceptual decision commitment (and therefore 45 

involves at least partially dissociable neural processes). 46 

There is also evidence that perceptual confidence can rely on separate (non-perceptual) sources of 47 

information, such as decision time (Kiani, Corthell, and Shadlen, 2014) and attentional cues (Denison et al., 48 

2018). This suggests that the processes involved in the computation of perceptual confidence may not be 49 

reduced to the same processes as for the perceptual decision. Higher-order theories of metacognition 50 

propose a framework in which specialised metacognitive resources could be recruited for computing 51 

confidence across all forms of decision-making (a general metacognitive mechanism). Indeed, there is some 52 

evidence that confidence precision is correlated across different cognitive tasks (such as memory and 53 

perception; Mazancieux et al., 2018), suggesting a common source of noise affecting the computation of 54 

confidence across tasks (on top of the sensory noise; Bang, Shekhar, and Rahnev, 2019; Shekhar and Rahnev, 55 

2020).  56 

It is reasonable to expect that a general metacognitive mechanism relies on processing in higher order brain 57 

regions. Several experiments have linked modulations in confidence with activity in a variety of subregions 58 

of the prefrontal cortex (including the orbitofrontal cortex, Masset et al., 2020, Lak et al., 2014; right 59 

frontopolar cortex, Yokoyama et al., 2010; rostro-lateral prefrontal cortex, Fleming et al., 2012, Geurts et al., 60 

2021; inferior frontal sulcus, medial frontal sulcus and medial frontal gyrus, Cortese et al., 2016; see also 61 

Vaccaro and Fleming, 2018, for a meta-analysis). Moreover, disrupting the processing in subregions of the 62 

prefrontal cortex (Rounis et al., 2010; Lak et al., 2014; Fleming et al., 2014) tends to impair (though not 63 

obliterate) the ability to appropriately adjust behavioural confidence responses, whilst leaving perceptual 64 

decision accuracy largely unaffected (though these results can be difficult to replicate, Bor et al., 2017; 65 

Lapate et al., 2020, and may not generalise to metacognition for memory; Fleming et al., 2014). A challenge 66 

in this literature is in specifically relating the neural processing to the computation of confidence, as opposed 67 

to transforming confidence into a behavioural response, or a downstream effect of confidence, such as the 68 

positive valence (and sometimes reward expectation) accompanying correct decisions. Moreover, 69 

identifying how these neural mechanisms could be separable from the underlying perceptual processes is 70 
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important for understanding the computational architecture of metacognition. 71 

One promising avenue of research for separating the mechanisms of metacognition from perceptual 72 

processes has been to utilise tasks where the observer may integrate additional evidence for confidence 73 

after they have committed to their perceptual decision (Murphy et al., 2015; Fleming et al., 2018), which 74 

presumably relies on processing independent of the perceptual decision. These studies show that post-75 

decisional changes in confidence magnitude correlate with signals from the posterior medial frontal cortex. 76 

However, these signals could reflect processes occurring downstream of confidence, such as an emotional 77 

response to the error signal, which has been shown to drive medial frontal activity more strongly than 78 

decision accuracy (Gehring and Willoughby, 2002). Further research is therefore required to link neural 79 

processes specifically with the computation of perceptual confidence. 80 

In this experiment we aim to identify the neural processes specifically contributing to the computation of 81 

confidence, in a paradigm in which these processes can be delineated from those of perceptual decision-82 

making. We exploit a protracted decision-making task in which the evidence presented to the observer can 83 

be carefully controlled. On each trial, the observer is presented with a sequence of visual stimuli, oriented 84 

Gabor patches, which offer a specific amount of evidence towards the perceptual decision. The orientations 85 

are sampled from one of two overlapping circular Gaussian distributions, and the observer is asked to 86 

categorise which distribution the orientations were sampled from. We manipulate the amount of evidence 87 

presented such that the observer tends to covertly commit to their perceptual decision before evidence 88 

presentation has finished, whilst continuing to monitor ongoing evidence for assessing their confidence 89 

(Balsdon et al., 2020). These covert decisions are evident from behaviour and computational modelling, and 90 

we show similarities between the neural processes of decision-making across conditions of immediate and 91 

delayed response execution. 92 

To examine the computation of confidence, we compare human behaviour to an optimal observer who 93 

perfectly accumulates all the presented evidence for perceptual decisions and confidence evaluation. The 94 

optimal observer must accurately encode the stimulus orientation, the decision update relevant for the 95 

categorisation, and add this to the accumulated evidence for making the perceptual decision. We uncover 96 

dynamic neural representations of these variables using model-based electroencephalography (EEG), and 97 

examine how the precision of these representations fluctuate with behavioural precision. We find two 98 

distinct representations of the accumulated evidence. The first one reflects the internal evidence used to 99 

make perceptual decisions. The second representation reflects the internal evidence used to make 100 

confidence evaluations (separably from the perceptual evidence), and is localised to the superior parietal 101 

and orbitofrontal cortices. Whilst the perceptual representation is attenuated following covert decisions, the 102 

confidence representation continues to reflect evidence accumulation. This is consistent with a neural circuit 103 

that can be recruited for confidence evaluation independently of perceptual processes, providing empirical 104 

evidence for the theoretical dissociation between perception and confidence. 105 
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Results 106 

Preview 107 

We present analyses to address two key hypotheses in this experiment: First, that observers are 108 

prematurely committing to their perceptual decisions whilst continuing to monitor additional evidence for 109 

evaluating their confidence. And second, that there are separable neural signatures of the evaluation of 110 

confidence during perceptual decision-making. To address the first hypothesis, we use a combination of 111 

behavioural analyses and computational modelling, and in addition, show that the EEG signatures of 112 

response preparation are triggered from the time of decision commitment, even when this occurs seconds 113 

prior to the response cue. To address the second hypothesis, we use the stimulus evoked responses in EEG to 114 

trace the representation of the presented evidence throughout each trial. We show that these neural 115 

representations of the optimal accumulated decision evidence are less precise when the observers’ 116 

behavioural responses were also less precise relative to optimal. We use this to isolate clusters of activity 117 

that specifically reflect the internal evidence used for observers’ confidence evaluations beyond the 118 

presented evidence. We then localise the sources of this activity, and relate these processes back to 119 

observers’ eventual confidence ratings. 120 

The computational architecture of perceptual confidence  121 

Human observers (N = 20) performed two versions of the task whilst EEG was recorded. Across the two 122 

tasks, 100 predefined sequences of oriented Gabors were repeated for each observer, with stimuli presented 123 

as described in Figure 1a. In the Free task, the sequence continued until observers entered their perceptual 124 

decision (Figure 1b), indicating which category (Figure 1d) they thought the orientations were sampled 125 

from. Observers were instructed to enter their response as soon as they ‘felt ready’, on three repeats of each 126 

predefined sequence (300 trials in total). In the Replay task (Figure 1c), observers were shown a specific 127 

number of samples and could only enter their response after the response cue. After entering their 128 

perceptual decision, they made a confidence evaluation, how confident they were that their perceptual 129 

decision was correct, on a 4-point scale. Importantly, the number of samples shown in the Replay task was 130 

manipulated relative to the Free task, in three intermixed conditions: in the Less condition, they were shown 131 

two fewer than the minimum they had chosen to respond to over the three repeats of that predefined 132 

sequence in the Free task; in the Same condition they were shown the median number of samples; and in the 133 

More condition, four more than the maximum. The variability across repeats in the Free task means that in 134 

the More condition, observers were show at least four additional stimuli, but often more than that. There is 135 

an optimal way to perform this task, in the sense of maximising perceptual decision accuracy across trials. 136 

The optimal computation takes as decision evidence the log probability of each orientation given the 137 

category distributions (Figure 1d) and accumulates the difference in this evidence for each category (Figure 138 

1e, Drugowitsch et al., 2016). We refer to the accumulated difference in log probabilities as the optimal 139 

presented evidence, L. Human observers may have a suboptimal representation of this evidence, L*, and we 140 

estimate the contribution of different types of suboptimalites (specifically, inference noise, and a temporal 141 
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integration bias) with the help of a computational model (full details in Methods and Supplementary Note 142 

1). 143 

 144 

Figure 1. Procedure. a) Stimulus presentation: stimuli were presented at an average rate of 3 Hz, but with 145 

variable onset and offset (𝒗𝒔 ∈ [𝟖𝟑, 𝟏𝟑𝟑] ms, 𝒗𝒔𝒔 +  𝒗𝒆𝒔−𝟏 ≥ 𝟐𝟏𝟔 ms; see Methods). Stimuli were presented 146 

within a circular annulus which acted as a colour guide for the category distributions. The colour guide and the 147 

fixation point were present throughout the trial. b) Free task: on each trial observers were presented with a 148 

sequence of oriented Gabors, which continued until the observer entered their response (or 40 samples were 149 

shown). 100 sequences were predefined and repeated three times. c) Replay task: The observer was presented 150 

with a specific number of samples and could only enter their response after the cue (fixation changing to red). 151 

The number of samples (x) was determined relative to the number the observer chose to respond to on that 152 

same sequence in the Free task (p). There were three intermixed conditions, Less (x = pmin – 2; where pmin is the 153 

minimum p of the three repeats), Same (x = pmed; where pmed is the median p) and More (x = pmax + 4; where pmax 154 

is the maximum p of the three repeats of that predefined sequence). d) Categories were defined by circular 155 

Gaussian distributions over the orientations, with means -45° (𝝍𝟏, blue) and 45° (𝝍𝟐, orange), and 156 

concentration 𝜿 = 𝟎. 𝟓. The distributions overlapped such that an orientation of 45° was most likely drawn 157 

from the orange distribution but could also be drawn from the blue distribution with lower likelihood. e) The 158 

optimal observer accumulates the difference in the evidence for each category, which is defined as the log 159 

probability of the sample orientation (𝜽) given the distributions. The perceptual decision is determined by the 160 

sign of the accumulated evidence, where the evidence accumulated across more samples better differentiates 161 

the true categories (example evidence traces are coloured by the true category).  162 

Based on our previous findings (Balsdon et al., 2020) we expected observers to prematurely commit to 163 

perceptual decisions in the More condition, whilst continuing to monitor sensory evidence for evaluating 164 

their confidence. Replicating these previous results (Balsdon et al., 2020), we found that perceptual decision 165 

sensitivity (d’) was significantly decreased with just two fewer stimuli in the Less condition compared to 166 

those same (pmin) trials in the Free task (Wilcoxon sign rank Z = 3.88, p < 0.001, Bonferroni corrected for 167 

three comparisons, Figure 1a), but four additional stimuli (Figure 1b) in the More condition resulted in 168 

only a small but not significant increase compared to the pmax trials in the Free task (Z = -1.53, p = 0.13, 169 
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uncorrected). There was also no significant difference for the Same condition (Z = 1.21, p = 0.23, 170 

uncorrected; Figure 2a). 171 

This lack of substantial increase in performance in the More condition could be the result of either a 172 

performance ceiling effect or a premature commitment to the perceptual decision. The former explanation 173 

reflects a limitation of the perceptual evidence accumulation process, whereas the latter refers to an active 174 

mechanism that ignores the final sensory evidence. We compared these two hypotheses using a 175 

computational modelling approach (Balsdon et al., 2020; see Methods). Specifically, we compared a model 176 

in which performance in the More condition is limited by the suboptimalities evident from the Same and the 177 

Less conditions (inference noise, and temporal integration bias, see Methods and Supplementary Note 1), 178 

to a model in which performance could be impacted by a covert bound at which point observers commit to a 179 

decision irrespective of additional evidence. Cross-validated model comparison provided significant 180 

evidence that observers were implementing a covert bound (mean relative increase in model log-likelihood 181 

= 0.048, bootstrapped p = 0.001, Figure 2c). The winning model provided a good description of the data (red 182 

open markers in Figure 2a, and individual participants in Figure 2e).  183 

In contrast to what we found for the perceptual decision, there was no evidence that observers were 184 

implementing a covert bound on confidence: Implementing the same bound as the perceptual decision did 185 

not improve the fit (relative improvement with bound = -0.007, bootstrapped p = 0.11, uncorrected) and an 186 

independent bound actually significantly reduced the fit compared to continued accumulation (relative 187 

improvement = -0.014, p = 0.022, Bonferroni corrected for two comparisons; Figure 2c). We obtained 188 

further distinctions between perceptual and confidence processes through computational modelling: 189 

additional noise was required to explain the confidence ratings, along with a separate temporal bias. The 190 

best description of both perceptual and confidence responses was provided by a partially dissociated 191 

computational architecture (full details in Supplementary Note 1), where perceptual and confidence 192 

decisions are based on the same noisy representation of the sensory evidence, but confidence accumulation 193 

incurs additional noise and can continue after the completion of perceptual decision processes (Figure 2d, 194 

and the predictions of this model for individual participants are show in Figure 2e). These computational 195 

differences between perceptual decisions and confidence evaluations suggest deviations between the 196 

internal evidence on which observers base their perceptual and confidence decisions (see Supplementary 197 

Note 2 for model simulations). 198 

These modelling results are supported by an analysis using general linear models to examine the 199 

relationship between the optimal presented evidence, L, and observers’ behaviour in the perceptual decision 200 

and confidence evaluation. As stated above, L is the evidence that which maximises the probability of a 201 

correct response: the accumulated difference in the log probabilities of the presented orientations given the 202 

category distribution (Figure 1e). First, we find the presented evidence accumulated over all samples does 203 

explain substantial variance in observers’ perceptual decisions (average 𝛽= 0.77, t(19) = 6.48, p < 0.001), 204 

and confidence evaluations (with the evidence signed by the perceptual response; 𝛽= 0.24, t(19) = 6.46, p < 205 

0.001). This suggests that the internal evidence that observers were using to make their responses, L*, 206 
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correlated significantly with the optimal evidence L (as has been found previously; Drugowitsch et al., 2016). 207 

Second, the total accumulated evidence in the More condition was not a significantly better predictor of the 208 

observers’ perceptual decisions than the evidence up to four samples prior to the response (average 209 

difference in 𝛽 = 0.034, t(19) = 1.63, p = 0.12), while for the Same and Less conditions the total accumulated 210 

evidence was a significantly better predictor (Less: t(19) = 4.99, p < 0.001; Same: t(19) = 3.11, p = 0.006; 211 

causing a significant interaction between condition and sample accumulated to F(2,38) = 10.348, p = 0.001, 212 

Bonferroni corrected for three comparisons, Figure 2f, top). This supports the finding from model 213 

comparison and behaviour that observers implemented a covert bound on perceptual evidence 214 

accumulation. And finally, this interaction was not present when examining how the presented evidence 215 

affected confidence evaluations (F(2,38) = 3.124, p = 0.09, uncorrected, Figure 2f, bottom). Rather, the 216 

accumulated evidence up to the final sample in the More condition was a significantly better predictor of 217 

confidence than the evidence accumulated to four samples from the response (average difference in 𝛽 = 218 

0.26, t(19) = 5.33, p < 0.001), supporting the prediction from the computational model analysis that 219 

observers integrated all the presented evidence for evaluating confidence. 220 

 221 

Figure 2. Behaviour and computational modelling. a) Proportion correct in each condition of the Replay 222 

task, relative to the Free task (orange horizontal lines). Individual data are shown in scattered points, error 223 

bars show 95% between- (thin) and 95% within- (thick) subject confidence intervals. Open red markers show 224 

the model prediction. b) Distributions of the number of samples per trial in the Free task, and Replay task 225 

conditions (over all observers).c) Difference in log-likelihood of the models utilising a covert bound relative to 226 

the models with no covert bound. On the left, the model fitting perceptual decisions only. The middle bar shows 227 

the difference in log-likelihood of the fit to confidence ratings with identical perceptual and confidence bounds. 228 

The right bar shows the difference in log-likelihood of the fit to confidence ratings of the model with an 229 

independent bound for confidence evidence accumulation. Error bars show 95% between-subject confidence 230 

intervals. d) The computational architecture of perceptual and confidence decisions, based on model 231 
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comparison. Perceptual and confidence decisions accumulate the same noisy perceptual evidence, but 232 

confidence is affected by additional noise (𝜀𝑐) and a separate temporal bias (𝛼𝑐). This partial dissociation 233 

allows Type-II accumulation to continue after the observer has committed to a perceptual decision. e) Predicted 234 

proportion correct compared to actual proportion correct for each observer, based on the fitted model 235 

parameters of the final computational model. The left panel shows proportion correct split by condition, and the 236 

right, split by confidence rating. f) Regression coefficients from the GLM analysis showing the relationship 237 

between the optimal evidence L, and observers’ perceptual (top) and confidence (bottom) responses for trials 238 

split by condition. The right set of bars show the same analysis but with evidence accumulated up to four 239 

samples from the response cue. 240 

EEG signatures of premature perceptual decision commitment 241 

The analysis of behaviour and computational modelling so far has suggested that observers were committing 242 

to their perceptual decisions early in the More condition and ignoring the additional evidence for their 243 

perceptual decision. We questioned the extent of this covert decision commitment, that is, whether 244 

observers were going as far as to plan their motor response before the response cue. We examined the 245 

neural signatures of the planning and execution of motor responses using a linear discriminant analysis of 246 

the spectral power of band-limited EEG oscillations (see Methods). Initial analysis suggested the spectral 247 

power in the 8 to 32 Hz frequency range (the ‘alpha’ and ‘beta’ bands) could be used to classify perceptual 248 

decisions based on lateralised differences over motor cortex (Supplementary Note 5). A classifier was 249 

trained to discriminate observers’ perceptual decisions at each time-point in a four second window around 250 

the response in the Free task (3 seconds prior to 1 second after). This classifier was then tested across time 251 

in each condition of the Replay task, to trace the progression of perceptual decision-making in comparison to 252 

the Free task (where decisions are directly followed by response execution). If covert decisions lead to early 253 

motor response preparation, we would expect asymmetries in cross-classification performance on trials 254 

where the observer was likely to have covertly committed to a decision (in the More condition) compared to 255 

those trials in which they were unlikely to have committed to their decision (in the Less condition). Indeed, 256 

there were opposite asymmetries in the cross-classification of the Less and the More conditions (Figure 3a). 257 

Statistical comparison revealed substantial clusters of significant differences (Figure 3b): Training around -258 

0.78 to 0.44 s from the time of the response in the Free task led to significantly better accuracy testing in the 259 

More condition than in the Less condition, prior to when the response was entered (for the cluster testing at 260 

-2.5 to -1.6 s Zave = 2.04, pcluster = 0.002; testing at -1.5 to -1 s, Zave = 1.95, pcluster = 0.01; testing at -0.8 to -0.3, 261 

Zave = 2.32, pcluster < 0.001). This pattern of findings suggests that observers were not only committing to their 262 

perceptual decision early, but already preparing their motor response. 263 

As an exploratory analysis, we took the strength of the classifier prediction trained and tested at the time of 264 

the response as a trial-wise measure of the decision variable used by the participant to enter a response. We 265 

reasoned that the amount of evidence in favour of the decision could influence the assiduity with which 266 

observers enter their response. We found that the optimal evidence L, accumulated over all samples, could 267 

predict the strength of the classifier prediction at response time (mean 𝛽 = 0.11, t(19) = 3.89, p < 0.001; 268 
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Figure 3c). For the Same and Less conditions, the weight on the accumulated evidence appeared to decrease 269 

as evidence was accumulated to samples further prior from the response. But, in the More condition, the 270 

evidence accumulated up to four samples prior to the response still predicted the strength of the classifier 271 

prediction (t(19) = 3.81, p = 0.001). This difference between conditions over samples is evidenced by a 272 

significant interaction based on a repeated measures ANOVA (F(8,152) = 2.429, p = 0.05, after Bonferroni 273 

correction for three comparisons). Leading up to the response, the accumulated evidence becomes 274 

increasingly predictive of the strength of the classifier prediction, except in the More condition, where this 275 

prediction is already accurate up to four samples prior to the response: After committing to a perceptual 276 

decision, the observer’s perceptual response is no longer influenced by additional evidence. 277 

 278 

Representations of decision evidence in EEG signals 279 

Our main goal was to isolate the neural signatures of the computation of confidence. Observers’ behaviour 280 

varied with the optimal evidence L presented to them, but the internal evidence on which they based their 281 

perceptual decisions and confidence evaluations, L*, clearly deviated from L. In other words, the observers’ 282 

behavioural performance was not optimal. To identify the neural computations underlying human 283 

behaviour, we therefore began by isolating the neural signals which correlate with L. We then isolated where 284 

and when deviations in the neural representation of L covary with deviations in L* - the internal evidence 285 

reflected in observers’ behaviour.  286 

To perform this task the optimal observer must encode the orientation of the stimulus, estimate the decision 287 

update based on the categories, and add this to the accumulated evidence for discriminating between the 288 

categories (Wyart et al., 2012; Wyart et al., 2015). We examined the neural representation of these optimal 289 

variables using a regression analysis with the EEG signals (evoked response, bandpass filtered between 1 290 

and 8 Hz, see Methods). At each time point, we used the relationship between the pattern of neural activity 291 

Figure 3. EEG signatures of premature perceptual 

decisions. a) Classifier AUC training at each time-point 

in the Free task and testing across time in the Less 

(top), Same (middle), and More (bottom) conditions of 

the Replay task. Black contours encircle regions where 

the mean is 3.1 standard deviations from chance (0.5; 

99% confidence). b) Difference in AUC between the 

More and Less conditions. Cluster corrected significant 

differences are highlighted. c) The relationship between 

the evidence accumulated up to n samples prior to the 

response cue and the strength of the neural signature of 

response execution in each condition. Error bars show 

95% within- (thick) and between-subject (thin) 

confidence intervals. 
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and the encoding variables on 90% of the data to predict the encoding variables on the remaining 10% of the 292 

data (10-fold cross validation). The precision of the neural representation was calculated as the correlation 293 

between the predicted encoding variable and actual encoding variable in the held-out data, across all 10 294 

folds (see Methods). Figure 4a shows the time course of the precision of the neural representation of 295 

stimulus orientation, momentary decision update, and accumulated evidence (L), locked to stimulus onset. 296 

The precision of the representations of these variables showed distinct time courses and relied on distinct 297 

patterns of EEG activity over scalp topography (Figure 4b). There was a transient representation of stimulus 298 

orientation localised over occipital electrodes. The representation of the momentary decision update was 299 

maintained for a longer duration, initially supported by occipital electrodes, then increasingly localised over 300 

central-parietal electrodes. The representation of the accumulated evidence was sustained even longer and 301 

relied on both frontal and occipital electrodes.  302 

The internal evidence on which observers base their response, L*, can differ from the optimal evidence, L. 303 

When the eventual behavioural response differs from that predicted by L, L* is likely to be more different 304 

from L. A neural representation of L that reflects L* (that is, reflecting the underlying processing responsible 305 

for behaviour) should also be less precise for samples in these trials. For each variable, we estimated the 306 

representation precision separately for epochs leading to behavioural responses that differed from the 307 

optimal response (based on L), and responses that matched those of the optimal observer (Replay task 308 

epochs only; Figure 4c; Supplementary Note 3). For perceptual decisions, the optimal observer responds 309 

with the correct category. For confidence evaluations, the optimal observer gives high confidence on trials 310 

with greater than the median evidence (over all trials) for their perceptual response. The precision of the 311 

representation of stimulus orientation did not significantly vary based on whether behaviour matched the 312 

optimal response. The representation precision of the momentary decision update showed a significant 313 

effect for the perceptual decision from 380 to 468 ms (Favg(1,19) = 7.97, pcluster = 0.008) and a significant 314 

interaction between perceptual and confidence responses from 396 to 468 ms (Favg(1,19) = 6.66, pcluster = 315 

0.022) and from 716 to 856 ms (Favg(1,19) = 10.75, pcluster < 0.001). The largest effects were seen in the 316 

representation precision of the accumulated evidence. Representation precision was significantly reduced in 317 

epochs leading to non-optimal perceptual decisions from 108 ms post stimulus onset to the end of the epoch 318 

(Favg(1,19) = 13.65, pcluster <0.001). In addition, there was a significant interaction with confidence from 696 319 

to 836 ms (Favg(1,19) = 8.72, pcluster = 0.005). The precision of the EEG representations therefore showed 320 

distinct associations with behaviour. 321 

The presence of a covert bound implies that, after the observer commits to a decision, they no longer 322 

incorporate additional evidence for that decision. We should therefore see significant decreases in the 323 

precision of representations that specifically contribute to perceptual evidence accumulation. Indeed, the 324 

precision of the early representation of accumulated evidence was significantly attenuated for the last four 325 

samples of the More condition (in which observers were likely to have already committed to a decision), 326 

compared to the last four samples of the Less condition (where observers were unlikely to have committed 327 

to a decision; from the start of the epoch to 424 ms, Figure 4d; tavg(19) = -5.19, pcluster<0.001). These 328 
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differences in representation precision were not present for the encoding of stimulus orientation, nor the 329 

decision update, suggesting that these processes may reflect input to perceptual evidence accumulation, but 330 

not the accumulation process itself. As a control analysis, this decreased precision was not evident in a 331 

comparison of the first four samples (Supplementary Note 6), suggesting this effect on the representation 332 

of accumulated evidence is specific to those samples likely to have occurred after perceptual decision 333 

commitment, as opposed to those samples in More condition trials per se. Together, these comparisons 334 

suggest that different aspects of these evolving EEG representations of decision variables are related to the 335 

neural processes for perception and confidence. 336 

 337 

Figure 4. Representation of decision variables. a) Representation precision (Fischer transformed correlation 338 

coefficient, z) of stimulus orientation (blue, left), momentary decision update (green, middle), and accumulated 339 

decision evidence (purple, right). The encoded variables are shown in the insets (the accumulated evidence is 340 

the cumulative sum of the momentary evidence signed by the response, only one example sequence is shown). 341 

Shaded regions show 95% between-subject confidence intervals. b) Relative electrode representation precision 342 

over three characteristic time windows (100 – 200 ms, left; 400 – 600 ms, middle; and 600 – 800 ms, right).  c) 343 

Representation precision for epochs leading to optimal and suboptimal perceptual (T1) and confidence (T2) 344 

responses. Lighter lines show perceptual decisions that match the optimal response, dashed lines show 345 

suboptimal confidence ratings. Dashed red horizontal lines show significant interactions between perceptual 346 

and confidence suboptimality. The light red horizontal line shows the significant effect of suboptimal perception 347 

and the dark red horizontal line shows the significant effect of suboptimal confidence. Shaded regions show 348 

95% within-subject confidence intervals. d) Difference in decoding precision between the More and the Less 349 

conditions for epochs corresponding to the last four samples of the trial. The purple horizontal line shows the 350 

significant difference in decoding of accumulated evidence. 351 
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Neural processes for confidence 352 

The analysis above shows that the EEG representation of accumulated evidence reflected greater differences 353 

from the optimal presented evidence L in trials where behaviour does not match the optimal response. This 354 

suggests that the corresponding neural signals reflect more closely L* (the internal evidence actually used by 355 

observers to decide) than L. To isolate the neural signals which reflect L*, we assume that L* approximates L 356 

with normally distributed errors, and that these errors have larger variance on trials leading to responses 357 

that do not match the optimal evidence L (a similar approach as in Van Bergen et al., 2015). We used 358 

multivariate Bayesian scan statistics (Neill, 2011; Neill, 2019) to cluster signals in space (electrode location) 359 

and time where the variance from L in the neural representation corresponded to deviations in L*, based on 360 

behaviour. The statistic tested whether the variability in the neural representation was related to L* to a 361 

greater extent than could be explained by measurement noise alone (see Supplementary Note 7 for further 362 

details). In this way, the statistic isolates signals more closely related to L* than can be explained by L, taking 363 

into account the noise affecting our measurement of these neural signals.  364 

For perceptual decision-making, signals related to L* were initially clustered over posterior electrodes, 365 

becoming dispersed over more anterior electrodes late in the epoch (Figure 5a, top). For confidence, we 366 

found two co-temporal clusters in posterior and anterior electrodes emerging from 668 ms to 824 ms from 367 

stimulus onset (Figure 5a, bottom). In Figure 5a we highlight an early posterior cluster of signals strongly 368 

related to L* for perceptual decisions, that was not diagnostic of confidence evaluations (in fact the evidence 369 

was in favour of the null hypothesis; summed log likelihood ratio = -1176). We obtained cluster-wide 370 

representations of L from the signals in this early posterior cluster and the two confidence related clusters. 371 

The precision of these representations is shown in Figure 5b, left. That the information from these clusters 372 

is not redundant is evident from the fact that combining the clusters improves the representation precision 373 

(Figure 5b). For simplicity, we combined the two confidence clusters for further analysis. Similar to the 374 

previous analysis (Figure 4d), the representation precision of the early posterior cluster was attenuated for 375 

the last four samples of the More condition. But, the representation precision of the confidence cluster was 376 

maintained (a repeated measures ANOVA revealed a significant interaction between cluster and condition 377 

for decoding precision in the last four samples, F(1,19) = 32.00, p = 0.001, Bonferroni corrected for three 378 

comparisons). These results are consistent with dissociable stages of neural processing for confidence 379 

evaluation and perceptual decision-making, and support the computational modelling in suggesting a partial 380 

dissociation between the internal evidence used for making perceptual decisions and confidence 381 

evaluations. 382 

We used the representation from the confidence cluster as an estimate of the internal evidence on which 383 

observers base their confidence ratings. We then took the difference from L in the estimate of L* from the 384 

cluster representation as an estimate of the single-sample inference error. This estimate of the single-sample 385 

inference error was significantly correlated with the single-sample inference error estimated from the 386 

computational model of confidence ratings (t(19) = 5.12, p  < 0.001), and this correlation was significantly 387 

greater than the correlation with the error estimated from the model of perceptual decisions alone (t(19) = 388 
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2.62, p = 0.017; see Supplementary Note 8). This suggests that this cluster representation is indeed 389 

reflecting activity specific to the computation of confidence. 390 

We asked what processes were responsible for driving variability in the internal evidence for confidence 391 

beyond what could be explained by the evidence presented to the observer. We selected ‘Noise Min’ and 392 

‘Noise Max’ epochs as the top and bottom quartile of epochs sorted by the estimate of the inference error 393 

from the cluster representation, and examined the source-localised EEG activity across these epochs. The 394 

presented sensory evidence was similar across Noise Min and Noise Max epochs (see Supplementary Note 395 

8), but the additional variability in the Noise Max epochs pushes the represented evidence further from the 396 

mean, and should therefore correspond to a greater absolute normalised signal. We estimated the sources of 397 

activity in the Noise Min and Noise Max epochs using a template brain (see Methods) and tested for 398 

differences in the rectified normalised current density in ROIs defined based on the previous literature 399 

(Figure 5c; Graziano, Parra, and Sigman, 2015; Gherman and Philiastides, 2018; Herding et al., 2019, see 400 

Supplementary Note 9). As expected, Noise Max epochs showed a greater increase in current density 401 

power over time. Significant differences first emerged in the superior parietal cortex (Figure 5d; 276 - 304 402 

ms; tavg(19) = 2.37, pcluster = 0.016, re-emerging at 596 – 748 ms; tavg(19) = 2.53, pcluster = 0.016; and  912 ms; 403 

tavg(19) = 2.50, pcluster = 0.014), and then in the orbitofrontal cortex (OFC; 516 – 556 ms; tavg(19) = 2.30, pcluster 404 

= 0.022, re-emerging at 660 – 772 ms; tavg(19) = 2.79, pcluster = 0.032, and 824 – 1000 ms; tavg(19) = 2.60, 405 

pcluster = 0.022). No differences in the rostral middle frontal cortex nor lateral occipital cortex survived cluster 406 

correction. 407 

Whilst the activity localised to the superior parietal cortex reflected stimulus driven computations (the 408 

consecutive peaks correspond temporally to the response to subsequent stimuli), the activity localised to the 409 

orbitofrontal cortex was more indicative of an accumulation process across samples (a smoother increase in 410 

signal over time). As an exploratory analysis, we tested whether the activity localised to the orbitofrontal 411 

cortex could predict observers’ confidence ratings, presumably by accumulating evidence for evaluating 412 

confidence up to the observers’ perceptual decision response. Indeed, the activity localised to the 413 

orbitofrontal cortex predicted observers’ confidence ratings, based on the predictions of a generalised linear 414 

model with 90/10 cross validation: the standardised regression coefficients increased up to and continued 415 

after the perceptual decision response (Figure 5e, a significant cluster was located from -300 to 520 ms 416 

around the time of the response; tave(19) = 3.46, cluster-corrected p < 0.001).  417 
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 418 

Figure 5. Clusters of behaviourally relevant representations and their sources. a) Log likelihood ratio 419 

(LLR) of the data given the hypothesis that decoding precision varies with behavioural suboptimalities, against 420 

the null hypothesis that decoding precision varies only with measurement noise. Perceptual (Type-I) behaviour 421 

is shown on top and confidence (Type-II) behaviour is shown on the bottom. Clusters where the log posterior 422 

odds ratio outweighed the prior are circled, only the bold area of the perceptual cluster was further analysed. 423 

Time series (left) show the maximum LLR of electrodes laterally, with frontal polar electrodes at the top 424 

descending to occipital electrodes at the bottom. Scalp maps (right) show the summed LLR over the indicated 425 

time windows. b) Left: representation precision (z) training and testing on signals within the clusters. Colours 426 

correspond to the circles in a), with the dark green bar showing the combined decoding precision of the 427 

anterior and posterior confidence clusters, and the black bar showing the combined representation precision of 428 

all clusters. Right: Representation precision of the last four samples in the Less and the More conditions for the 429 

combined confidence representation and the perceptual representation. Error bars show 95% within-subject 430 

confidence intervals. c) ROIs (defined by mindBoggle coordinates; Klein et al., 2017): lateral occipital cortex 431 

(blue); superior parietal cortex (green); orbitofrontal cortex (orange); and rostral middle frontal cortex (red). 432 

d) ROI time series for Noise Max (black) and Noise Min (coloured) epochs, taking the average rectified 433 
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normalised current density (z) across participants. Shaded regions show 95% within-subject confidence 434 

intervals, red horizontal lines indicate cluster corrected significant differences. Standardised within-subject 435 

differences are traced above the x-axis, with the shaded region marking z = 0 to z = 1.96 (95% confidence).e) 436 

Standardised regression weight (t-statistic) of the GLM comparing observers’ confidence ratings to those 437 

predicted from the activity localised to the orbitofrontal cortex. The shaded region shows the 95% between 438 

subject confidence interval, and the red horizontal line marks the time-window showing cluster-corrected 439 

significant differences from 0. 440 

Discussion 441 

We examined the dynamic neural signals associated with the accumulation of evidence for evaluating 442 

confidence in perceptual decisions. Observers were required to integrate evidence over multiple samples 443 

provided by a sequence of visual stimuli. When observers were unable to control the amount of evidence 444 

they were exposed to, they employed a covert decision bound, committing to perceptual decisions when 445 

they had enough evidence, even if stimulus presentation continued. We had previously shown evidence for 446 

this premature decision commitment based on behaviour and computational modelling (Balsdon, Wyart and 447 

Mamassian, 2020). We replicated these results here, and further examined the neural signatures of covert 448 

decision making. We found that the distribution of spectral power associated with the preparation and 449 

execution of motor responses in the Free task (where the response is entered as soon as the decision is 450 

made) could be used to accurately predict responses in the More condition of the Replay task over 1 s prior 451 

to when the response was entered, and with significantly greater sensitivity than in the Less condition 452 

(when observers were unlikely to have committed to a decision early). This suggests that covert decisions 453 

could trigger the motor preparation for pressing the response key. Moreover, the strength of the eventual 454 

motor response signal could be predicted by earlier decision evidence in the More condition, as if observers 455 

are maintaining some representation of the decision evidence whilst waiting to press the response key. 456 

Based on the evoked representation of accumulated evidence, perceptual decision accuracy relied on a flow 457 

of information processing from early occipital and parietal signals, which then spread through to anterior 458 

electrodes. When observers committed to perceptual decisions prematurely, only the early part of the 459 

representation of accumulated evidence was attenuated. This selective dampening of the representation of 460 

accumulated evidence following premature decision commitment delineates which computations are 461 

devoted solely to the perceptual decision process, and which computations reflect the input to the decision 462 

process: The representations of stimulus orientation and decision update (Wyart et al., 2012; Wyart et al., 463 

2015; Weiss et al., 2021), which are necessary input for the perceptual decision, did not substantially change 464 

after committing to a perceptual decision. This initial perceptual processing stage likely remained important 465 

for the continued accumulation of evidence for evaluating confidence (even after the completion of 466 

perceptual decision processes), though it could also be that these processes are automatically triggered by 467 

stimulus onset irrespective of whether the evidence is being accumulated for decision-making. 468 

Confidence should increase with increasing evidence for the perceptual decision. It is therefore unsurprising 469 
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that the neural correlates of confidence magnitude have found similar EEG markers as those related to the 470 

accumulation of the underlying perceptual decision evidence: the P300 (Gherman and Philiastides, 2015; 471 

Desender et al., 2016; Desender et al., 2019; Zakrzewski et al., 2019; Rausch et al., 2020); and Central 472 

Parietal Positivity (CPP; Boldt et al., 2019; Herding et al., 2019, indeed we show a similar effect in 473 

Supplementary Note 4). The analysis presented in this manuscript targeted confidence precision rather 474 

than confidence magnitude, by assessing confidence relative to an optimal observer who gives high 475 

confidence ratings on trials where the evidence in favour of the perceptual choice is greater than the median 476 

across trials. We isolated part of the neural representation of accumulated evidence where imprecision 477 

relative to the optimal presented evidence predicted greater deviations from optimal in the internal 478 

representation of evidence used for confidence evaluation implied from behaviour. The internal evidence 479 

predicted from this neural representation was also more strongly related to the evidence for confidence than 480 

the evidence used for perceptual decisions based on the computational model fit to describe behaviour.  481 

We analysed the sources of activity more closely representing the internal evidence on which the confidence 482 

evaluation was based than the optimal presented evidence. Activity localised to the Superior Parietal and 483 

Orbitofrontal cortices was found to track this internal evidence for confidence throughout decision-making. 484 

This is not at odds with the previous literature: The difference in superior parietal cortex could be linked 485 

with findings from electrophysiology that suggest that confidence is based on information coded in parietal 486 

cortex, where the underlying perceptual decision evidence is integrated (Kiani et al., 2009; Rutishauser et al., 487 

2018; though at least a subset of these neurons reflect bounded accumulation, which is in contrast with the 488 

continued confidence accumulation described in this experiment; Kiani, Hanks, and Shadlen, 2007). Early 489 

electrophysiological investigation into the function of the orbitofrontal cortex revealed neural coding 490 

associated with stimulus value (Thorpe, Rolls, and Maddison, 1983), which has since been linked with a 491 

confidence-modulated signal of outcome-expectation (Kepecs et al., 2008; and in human fMRI; Rolls, 492 

Grabenhorst, and Deco, 2010) and recently, shown to be domain-general (single OFC neurons were 493 

associated with confidence in both olfactory and auditory tasks; Masset et al., 2020). The source localisation 494 

analysis therefore connects previous findings, indicating confidence feeds off an evidence accumulation 495 

process, culminating in higher-order brain areas that appear to function for guiding outcome-driven 496 

behaviour based on decision certainty. 497 

These neural signatures of confidence evidence encoding were present throughout the process of making a 498 

perceptual decision. This is in line with more recent evidence suggesting that confidence could be computed 499 

online, alongside perceptual evidence accumulation (Zizlsperger et al., 2014; Gherman and Philiastides, 500 

2015; Balsdon et al., 2020), as opposed to assessing the evidence in favour of the perceptual decision only 501 

after committing to that decision. Computational model comparison supported this interpretation, showing 502 

the best description of confidence behaviour was an accumulation process that was partially dissociable 503 

from perceptual evidence accumulation (Supplementary Note 1; replicating our previous analysis, Balsdon 504 

et al., 2020). This partial dissociation mediates the ongoing debate between single-channel (for example, 505 

Maniscalco and Lau, 2016) and dual-channel (for example, Charles, King, and Deheane 2014) models, as it 506 
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constrains confidence by perceptual suboptimalities, at the same time as allowing additional processing to 507 

independently shape confidence. The combination of this partial dissociation and online monitoring could 508 

allow for metacognitive control of perceptual evidence accumulation, to flexibly balance perceptual accuracy 509 

against temporal efficiency, by bounding perceptual evidence accumulation according to contemporaneous 510 

confidence. 511 

Using this protocol, we were able to delineate two distinct representations of accumulated evidence which 512 

correspond to perceptual decision-making and confidence evaluations. These neural representations were 513 

partially dissociable in that the perceptual representation neglected additional evidence following 514 

premature decision commitment whilst the confidence representation continued to track the updated 515 

evidence independently of decision commitment. This partial dissociation validates the predictions of the 516 

computational model and provides a framework for the cognitive architecture underlying the distinction 517 

between perception and confidence. That the neural resources involved in the confidence representation can 518 

be recruited independently of perceptual processes implies a specific neural circuit for the computation of 519 

confidence, a necessary feature of a general metacognitive mechanism flexibly employed to monitor the 520 

validity of any cognitive process. 521 

Methods 522 

Participants 523 

A total of 20 participants were recruited from the local cognitive science mailing list (RISC) and by word of 524 

mouth. No participant met the pre-registered 525 

(https://osf.io/346pe/?view_only=ddbc092996f34438964cf45a239498bb) exclusion criteria of chance-526 

level performance or excessive EEG noise. Written informed consent was provided prior to commencing the 527 

experiment. Participants were required to have normal or corrected to normal vision. Ethical approval was 528 

granted by the INSERM ethics committee (ID RCB: 2017-A01778-45 Protocol C15-98). 529 

Materials 530 

Stimuli were presented on a 24” BenQ LCD monitor running at 60 Hz with resolution 1920x1080 pixels and 531 

mean luminance 45 cd/m2. Stimulus generation and presentation was controlled by MATLAB (Mathworks) 532 

and the Psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007), run on a Dell Precision 533 

M4800 Laptop. Observers viewed the monitor from a distance of 57 cm, with their head supported by a chin 534 

rest. EEG data were collected using a 64-electrode BioSemi ActiveTwo system, run on a dedicated mac laptop 535 

(Apple Inc.), with a sample rate of 512 Hz. Data were recorded within a shielded room. 536 

Stimuli 537 

Stimuli were oriented Gabor patches displayed at 70% contrast, subtending 4 dva and with spatial frequency 538 

2 cyc/deg. On each trial a sequence of stimuli was presented, at an average rate of 3 Hz, with the stimulus 539 

presented at full 70% contrast for a variable duration between 50 and 83 ms, with a sudden onset, followed 540 

by an offset ramp over two flips, where the stimulus contrast decreased by 50% and 75% before complete 541 
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offset. Stimulus onset timing was jittered within the stimulus presentation interval such that the timing of 542 

stimulus onset was irregular but with at least 216 ms between stimuli. These timings and stimulus examples 543 

are shown in Figure 1a.  544 

On each trial the orientations of the presented Gabors were drawn from one of two circular Gaussian (Von 545 

Mises) distributions centred on +/- 45° from vertical (henceforth referred to as the ‘orange’ and ‘blue’ 546 

distributions respectively), with concentration κ = 0.5 (shown in Figure 1d). Stimuli were displayed within 547 

an annular ‘colour-guide’ where the colour of the annulus corresponds to the probability of the orientation 548 

under each distribution, using the red and blue RGB channels to represent the probabilities of each 549 

orientation under each distribution. Stimuli were presented in the centre of the screen, with a black central 550 

fixation point to guide observers’ gaze. 551 

Procedure 552 

The task was a modified version of the weather prediction task (Knowlton et al., 1996; Drugowitsch et al., 553 

2016). Throughout the experiment, the observer’s perceptual task was to categorise which distribution the 554 

stimulus orientations were sampled from. They were instructed to press the ‘d’ key with their left hand (of a 555 

standard querty keyboard) for the blue distribution and the ‘k’ key with their right hand for the orange 556 

distribution. There were two variants of the task: The Free task and the Replay task. The trials were 557 

composed of three repetitions of 100 predefined sequences of up to 40 samples (50 trials from each 558 

distribution) for each observer (300 trials per task). 559 

In the ‘Free’ task, observers were continually shown samples (up to 40) until they entered their response. 560 

They were instructed to enter their response as soon as they ‘feel ready’ to make a decision, with emphasis 561 

on both accuracy (they should make their decision when they feel they have a good chance of being correct) 562 

and on time (they shouldn’t take too long to complete each trial). A graphical description of this task is 563 

shown in Figure 1b. 564 

After completing the Free task, observers then completed the Replay task. In this task they were shown a 565 

specific number of samples and could only enter their response after the sequence finished, signalled by the 566 

fixation point turning red. The number of samples was determined based on the number observers chose to 567 

respond to in the Free task. There were three intermixed conditions: In the Less condition observers were 568 

shown two fewer samples than the minimum they had chosen to respond to on that predefined sequence in 569 

the Free task; In the Same condition observers were shown the median number of samples from that 570 

predefined sequence; in the More condition observers were shown four additional samples compared to the 571 

maximum number they chose to respond to on that sequence in the Free task. After entering their 572 

perceptual (Type-I) response, observers were cued to give a confidence rating (Type-II decision). The 573 

confidence rating was given on a 4-point scale where 1 represents very low confidence that the perceptual 574 

decision was correct, and 4, certainty that the perceptual decision was correct. The rating was entered by 575 

pressing the ‘space bar’ when a presented dial reached the desired rating.  The dial was composed of a black 576 

line which was rotated clockwise to each of 4 equidistant angles (marked 1 - 4) around a half circle, at a rate 577 
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of 1.33 Hz. The dial started at a random confidence level on each trial and continued updating until a rating 578 

was chosen. A graphical description of this task is shown in Figure 1c. 579 

Prior to commencing the experimental trials, participants were given the opportunity to practice the 580 

experiment and ask questions. They first performed 20 trials of a fixed number of samples with only the 581 

perceptual decision, with feedback after each response as to the true category. They then practiced the 582 

Replay task with the confidence rating (and an arbitrary number of samples). Finally, they practiced the Free 583 

task, before commencing the experiment with the Free task. 584 

Analysis 585 

Behaviour 586 

Perceptual (Type-I) decisions were evaluated relative to the category the orientations were actually drawn 587 

from. Performance is presented as proportion correct, whilst statistical analyses were performed on 588 

sensitivity (d’). Sensitivity was calculated based on the proportion of hits (responding “Category A” when 589 

category A was presented) and false alarms (responding “Category A” when category B was presented). 590 

Confidence was evaluated relative to an optimal observer who gives high confidence when the log-likelihood 591 

of the chosen category, based on the presented orientations, is above the median across trials, and low 592 

confidence on trials with less than the median log-likelihood. More broadly, confidence should increase with 593 

increasing evidence in favour of the perceptual decision, see Supplementary Note 3. A General Linear 594 

Model was used to validate the influence of the optimal presented evidence on perceptual decisions and 595 

confidence evaluations. The accumulated evidence up to the final sample and four samples before the 596 

response was used as a regressor for the perceptual decision assuming a binomial distribution with a probit 597 

link function. A comparable analysis was performed for confidence by binarizing confidence ratings into Low 598 

(ratings of 1 or 2) and High (ratings of 3 or 4) and taking the evidence signed by the perceptual decision. 599 

Computational modelling 600 

Computational modelling followed the same procedure as Balsdon, Wyart, and Mamassian (2020). The 601 

model parametrically describes suboptimalities relative to the Bayesian optimal observer. The Bayesian 602 

optimal observer knows the category means, 𝜇1 =  −
𝜋

4
, 𝜇2 =  

𝜋

4
, and the concentration, 𝜅 = 0.5, and takes the 603 

probability of the orientation 𝜃𝑛 (at sample n) given each category 𝜓  (𝜓 = 1 or 𝜓 = 2) 604 

 
𝑝(𝜃𝑛  | 𝜓) =  

𝑒𝜅 cos (2(𝜃𝑛−𝜇𝜓))

𝜋𝐼0(𝜅)
 

(1) 

where 𝐼0(∙) is the modified Bessel function of order 0. The optimal observer then chooses the category 605 

𝜓 with the greatest posterior probability over all samples for that trial, T (T varies from trial to trial). Given a 606 

uniform category prior, 𝑝(𝜓) ∝
1

2
 , and perfect anticorrelation in 𝑝(𝜃𝑛  | 𝜓) over the categories, the log 607 

posterior is proportional to the sum of the difference in the log-likelihood for each category (ℓ𝑛 =  ℓ𝑛,1 −608 

 ℓ𝑛,2) 609 
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𝐿 =  ∑ ℓ𝑛

𝑇

𝑛=1

 
(2) 

where: 610 

 ℓ𝑛,𝜓 = log 𝑝(𝜃𝑛  |𝜓) = 𝜅 cos (2(𝜃𝑛 −  𝜇𝜓)) + 𝑐𝑜𝑛𝑠𝑡. (3) 

Such that the Bayesian optimal decision is 1 if 𝑧 > 0 and 2 if 𝑧 ≤ 0.  611 

The suboptimal observer suffers inaccuracies in the representation of each evidence sample, captured by 612 

additive independent identically distributed (i.i.d) noise, 𝜀𝑛. The noise is Gaussian distributed with zero 613 

mean, and the degree of variability parameterised by 𝜎, the standard deviation  614 

 𝜀𝑛  ~ 𝑁(0, 𝜎2) (4) 

The evidence over samples is also imperfectly accumulated, incurring primacy or recency biases 615 

parameterised by 𝛼, the weight on the current accumulated evidence compared to the new sample (𝛼 > 1 616 

creates a primacy effect). By the end of the trial, the weight on each sample n is equal to 617 

 𝑣𝑛 =  𝛼𝑇−𝑛 (5) 

where T is the eventual total samples on that trial and 𝑛 ∈ [1, 𝑇].  618 

In the Free task the observer responds when accumulated evidence reaches a bound, Λ. The optimal 619 

observer sets a constant bound on proportion correct over sequence length, which is an exponential function 620 

on the average evidence over the samples accumulated. The human observer can set the scale, b, and the rate 621 

of decline, 𝜆, of the bound suboptimally, resulting in 622 

 Λ𝑛+ = 𝑛 × (𝑎 + 𝑏𝑒−
𝑛
𝜆 ) (6) 

for the positive decision bound (the negative bound, Λ𝑛− =  −Λ𝑛+). The likelihood 𝑓(𝑛) of responding at 623 

sample n was estimated by computing the frequencies, over 1000 samples from 𝜀𝑛 (Monte Carlo simulation), 624 

of first times where the following inequality is verified 625 

 
| ∑(ℓ𝑛 +  𝜀𝑛) ∙ 𝑣𝑛

𝑁

𝑛=1

 | >  Λ𝑛  
(7) 

The response time, relative to reaching the decision bound, is delayed by non-decision time for executing the 626 

motor response, which is described by a Gaussian distribution of mean, 𝜇𝑈 , and variance, 𝜎𝑈
2. 627 

Model fitting 628 

Parameters were optimised to minimise the negative log-likelihood of the observer making response r on 629 

sample n on each trial for each participant using Bayesian Adaptive Direct Search (Acerbi and Ma, 2017). The 630 

log-likelihoods were estimated using Monte Carlo Simulation, with the sensitivity of this approach being 631 

addressed in previous work (Balsdon et al., 2020). The full model was simplified using a knock-out 632 

procedure based on Bayesian Model Selection (Rigoux et al., 2014) to fix the bias (exceedance probability = 633 
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0.93) and lapse (exceedance probability >0.99) parameters (not described above, see Supplementary Note 634 

1). 635 

In the Replay task, confidence ratings were fit using the same model described above, but with additional 636 

criteria determining confidence ratings, described by three bounds on the confidence evidence, 637 

parameterised in the same manner as the decision bound. These models were then used to simulate the 638 

internal evidence of each observer from sample to sample, and the error compared to the optimal evidence 639 

(uncorrupted by suboptimalities, see Supplementary Note 2). 640 

EEG pre-processing 641 

EEG data were pre-processed using the PREP processing pipeline (Bigdely-Shamlo, et al., 2015), 642 

implemented in EEGlab (v2019.0, Delorme & Makeig, 2004) in MATLAB (R2019a, Mathworks). This includes 643 

line noise removal (notch filter at 50 Hz and harmonics) and re-referencing (robust average re-reference on 644 

data detrended at 1 Hz). The data were then filtered to frequencies between 0.5 and 80 Hz, and down-645 

sampled to 256 Hz. Large epochs were taken locked to each stimulus (-500 to 1500 ms) and each response (-646 

5000 to 1500 ms). Independent Components Analysis was used to remove artefacts caused by blinks and 647 

excessive muscle movement identified using labels with a probability greater than 0.35 from the ICLabel 648 

project classifier (Swartz Centre for Computational Neuroscience).  649 

Response classification analysis 650 

The power spectrum across frequency tapers from 1 to 64 Hz with 25% spectral smoothing was resolved 651 

using wavelet convolution implemented in FieldTrip (Oostenveld et al., 2011). The epochs were then clipped 652 

at -3 to 1 s around the time of entering the perceptual response.  Linear discriminant analysis was 653 

performed to classify perceptual responses, using 10-fold cross validation, separately on each taper at each 654 

time-point. An analysis of the frequencies contributing to accurate classification at the time of the response 655 

revealed significant contributions from 8 to 26 Hz (Supplementary Note 4). We therefore continued by 656 

using the power averaged across these frequency bands to train and test the classifier. Classifier accuracy 657 

was assessed using the area under the receiver operating characteristic curve (AUC). At the single-trial level, 658 

the probability of the response based on the classifier was computed from the relative normalised Euclidean 659 

distance of the trial features from the response category means in classifier decision space. 660 

Encoding Variable Regression 661 

We used a linear regression analysis to examine the EEG correlates of different aspects of the decision 662 

evidence (encoding variables) in epochs locked to stimulus onset. Regularised ridge regression (ridge 𝜆 = 1) 663 

was used to predict the encoding variables based on EEG data, over 10-fold cross validation. The precision of 664 

the representation of each encoding variable was computed within each observer by taking the Fisher 665 

transform of the correlation coefficient (Pearson’s r) between the encoded variable and predicted variable. 666 

To maximise representation precision, the data were bandpass filtered (1 – 8 Hz) and decomposed into real 667 

and imaginary parts using a Hilbert Transform (Supplementary Note 5). For each time point, the data from 668 

all electrodes were used to predict the encoded variable. The temporal generalisation of decoding weights 669 

was examined by training at one time point and testing at another. The contribution of information from 670 
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signals at each electrode was examined by training and testing on the signals at each electrode at each time 671 

point (further details in Supplementary Note 5).  672 

Behaviourally relevant signals were isolated by comparing representation precision at each time point and 673 

electrode for epochs leading to optimal perceptual and confidence responses, compared to responses that 674 

did not match the optimal observer. Cluster modelling was used to isolate contiguous signals where the log 675 

posterior odds were in favour of the alternative hypothesis that the representation systematically deviated 676 

further from the optimal presented evidence than what could be explained by measurement noise alone 677 

(Supplementary Note 6). New regression weights were then calculated on signals from the entire cluster 678 

and representation errors calculated as the difference of the predicted variable from the expected value 679 

given the representation.  680 

Source Localisation 681 

Identifying the clusters of signals associated with confidence processes offers relatively poor spatial and 682 

temporal (given the bandpass filter; de Cheveigné, and Nelken, 2019) resolution for identifying the source of 683 

confidence computations. Source localisation was therefore performed, using Brainstorm (Tadel et al., 684 

2011). The forward model was computed using OpenMEEG (Gramfort et al., 2010; Kybic et al., 2005) and the 685 

ICBM152 anatomy (Fonov et al., 2011; 2009). Two conditions were compared, Noise Min and Noise Max, 686 

which corresponded to quartiles of epochs sorted by representation error in the confidence clusters (see 687 

Supplementary Note 7 for more details). Cortical current source density was estimated from the average 688 

epochs using orientation-constrained minimum norm imaging (Baillet, Mosher, and Leahy, 2001). ROIs in 689 

the Lateral Occipital, Superior Parietal, Rostral Middle Frontal (including dlPFC), Medial Orbitofrontal, and 690 

rostral Anterior Cingulate Cortex, were defined using MindBoggle coordinates (Klein et al., 2017). Statistical 691 

comparisons were performed on the bilateral ROI time series (using cluster correction and a minimum 692 

duration of 20 ms), computed over separate conditions on rectified normalised subject averages (low-pass 693 

filtered at 40 Hz). 694 

To predict confidence magnitude from the activity localised to the orbitofrontal cortex, we recovered to 695 

current density from 20 subregions (approximately equal parcellations) of the orbitofrontal cortex in epochs 696 

locked to the time of the response. A general linear model (assuming a normal distribution with identity 697 

link) was used to predict the observers’ confidence ratings on held-out data (90/10 cross-fold) from the 698 

neural activity at each time-point leading to the response. The prediction was quantified as the standardised 699 

regression weight from a new general linear model comparing the predicted and actual confidence ratings 700 

across all folds.  701 
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