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Highlights
- Single protocol, high quality RNA-seq dataset contains 1035 samples from Escherichia

coli covering a wide range of growth conditions
- Machine learning identifies 117 regulatory modules that capture the majority of known

regulatory interactions
- Resulting knowledge base combines expression levels and module activities to enable

regulon discovery and empower novel experimental design
- Standard workflows provided to enable application of knowledge base to new user data
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Graphical Abstract

Summary
Transcriptomic data is accumulating rapidly; thus, development of scalable methods for

extracting knowledge from this data is critical. We assembled a top-down transcriptional
regulatory network for Escherichia coli from a 1035-sample, single-protocol, high-quality
RNA-seq compendium. The compendium contains diverse growth conditions, including: 4
temperatures; 9 media; 39 supplements, including antibiotics; and 76 unique gene knockouts.
Using unsupervised machine learning, we extracted 117 regulatory modules that account for
86% of known regulatory network interactions. We also identified two novel regulons. After
expanding the compendium with 1675 publicly available samples, we extracted similar modules,
highlighting the method’s scalability and stability. We provide workflows to enable analysis of
new user data against this knowledge base, and demonstrate its utility for experimental design.
This work provides a blueprint for top-down regulatory network elucidation across organisms
using existing data, without any prior annotation and using existing data.
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Introduction
Over the past decade, RNA sequencing (RNA-seq) has emerged as an efficient,

high-throughput method to determine the expression state of a cell population. Large RNA-seq
datasets (ENCODE Project Consortium, 2012; GTEx Consortium, 2015; Leader et al., 2018;
Sastry et al., 2019; Ziemann et al., 2019) have enabled the development and application of
machine learning methods to advance our understanding of expression and transcriptional
regulation (Avsec et al., 2021; Kelley et al., 2018; Kwon et al., 2020; Sastry et al., 2019; Zhang
et al., 2019; Zrimec et al., 2020). As datasets continue to grow, analytic methods must keep
pace to convert this data to biological knowledge. In particular, top-down elucidation of a
transcriptional regulatory network (TRN) directly from RNA-seq data would address a pressing
need.

Independent component analysis (ICA) (Comon, 1994) is a signal processing algorithm
that outperforms other methods for the extraction of biologically meaningful regulatory modules
from gene expression data (Saelens et al., 2018). Application of this method to
publicly-available prokaryotic expression data has consistently recovered TRN modules across
organisms (Chauhan et al., 2021; Poudel et al., 2020; Rajput et al., 2022; Rychel et al., 2020;
Sastry et al., 2019; Yoo et al., 2022). ICA’s effectiveness results from its ability to identify
independent groups of genes that vary consistently across samples, regardless of group size or
overlapping membership. As a result, a complete top-down TRN extraction is dependent upon
an input dataset with sufficient scale and diversity in conditions to activate a broad range of
regulatory signals.

Large RNA-seq datasets compiled from multiple sources can be subject to batch effects
that confound analysis. Mitigating these effects remains an important goal and an active area of
research (Liu and Markatou; Zhang et al., 2020). Single-protocol, high-quality, curated RNA-seq
datasets provide an alternative to batch effect correction by obviating them entirely. However,
amassing the quantity of data necessary to perform systems-level inference is a challenge.

To simultaneously address these issues, we assembled PRECISE-1K, a 1035-sample,
single-protocol RNA-seq dataset for the key model organism Escherichia coli K-12 MG1655.
The thousand-sample-scale Precision RNA-seq Expression Compendium for Independent
Signal Extraction contains 38% of all publicly-available high-quality RNA-seq data for E. coli
K-12 and includes a broad range of growth conditions. Here, we present a multi-scale analysis
of PRECISE-1K. Specifically, we: (1) describe genome-wide gene expression patterns across
conditions; (2) use ICA to extract a top-down TRN comprising 117 independently modulated
groups of genes (iModulons); (3) describe systems-level transcriptome properties; (4) discover
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novel regulons for two putative transcription factors; (5) propose a promoter sequence basis for
two regulatory modules; (6) add 1675 high-quality publicly available K-12 samples to
PRECISE-1K and extract similar regulatory modules; and (7) demonstrate a workflow for
systems-level transcriptome analysis of external data using our top-down TRN. This example
workflow, along with all analyses presented here, are available for use at our GitHub repository,
https://github.com/SBRG/precise1k. Our TRN, along with those for the other organisms
mentioned above, can be explored at iModulonDB.org (Rychel et al., 2021). The PRECISE-1K
compendium and the top-down TRN derived from it comprise a multi-scale transcriptomic
knowledge base. The analyses enabled by this knowledge base highlight its potential to play a
key role in multi-omic systems-level investigations of this critical model organism for cellular
biology, pathogenicity, and synthetic biology. Moreover, our knowledge base provides a useful
resource for informing novel experimental designs. Ultimately, PRECISE-1K and iModulons
combine to provide a blueprint for top-down TRN extraction across organisms without
dependence on prior annotation.

Results

PRECISE-1K is a large, single-protocol, and high-quality
RNA-seq compendium

We constructed PRECISE-1K to enable a multi-scale analysis of the E. coli K-12
MG1655 TRN (Supplemental Figure 1). PRECISE-1K is a large, high-fidelity expression
compendium consisting of 1035 RNA-seq samples generated by a single research group using
a standardized experimental and data processing protocol (see Methods). The samples come
from 45 distinct projects. PRECISE-1K constitutes a nearly 4-fold increase in size from the
278-sample PRECISE (Sastry et al., 2019) (Figure 1A). Replicates are tightly correlated, with a
median Pearson’s r of 0.99 (Figure 1C).

PRECISE-1K comprises a wide range of growth conditions, including: 5 strains; 4
temperatures, 5 pHs, 9 base media, 18 carbon sources, 38 supplements, 76 unique gene
knockouts, 421 evolved samples, and 87 fed-batch cultures (Figure 1B). PRECISE-1K features
projects involving: adaptation to new growth conditions (Anand et al., 2019, 2020; Chen et al.,
2021; Du et al., 2020; McCloskey et al., 2018); expression of heterologous (Tan et al., 2020)
and orthologous (Sandberg et al., 2020) genes; and a genome-reduced strain (Hirokawa et al.,
2013). PRECISE-1K thus represents a broad range of conditions under which changes in the
composition of the E. coli transcriptome may be studied.

Principal component analysis (PCA) of PRECISE-1K reveals minimal batch effects. The
first two principal components of the dataset capture 26.8% of the overall variance
(Supplemental Figure 3). The samples do not cluster notably by the RNA-seq library preparer,
indicating an absence of a commonly observed batch effect (Zhang et al., 2020). Any larger
separation between samples in principal component space is explained by differences between
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project growth conditions. Projects that use diverse growth media (e.g. two-component system
project (Choudhary et al., 2020) and antibiotic/media project (Sastry et al., 2020)) and projects
that significantly alter the genome (minicoli, a genome-reduced E. coli strain) account for
sample distinction in principal component space.

PRECISE-1K highlights global and environment-specific gene
expression patterns
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Figure 1: PRECISE-1K reveals expression trends in the E. coli transcriptome. A) The growth in
single-protocol transcriptomics samples contained in the PRECISE to PRECISE-1K databases. B)
Summary of selected conditions for PRECISE-1K samples. For a full breakdown, see Supplemental
Figure 2. C) Histogram of Pearson’s r for both all replicate pairs and all non-replicate pairs. Samples
included in PRECISE-1K are required to have replicate correlations of at least 0.95. D-G) Breakdown of
gene expression and expression variance by category. in core = core E. coli genome based on
pangenomic analysis (Norsigian et al., 2020); proteomics = proteomics data available (Heckmann et al.,
2018; Schmidt et al., 2016); y-ome = poorly-annotated genes (Ghatak et al., 2019); in iMod = appears in
at least 1 iModulon. H) Breakdown of gene expression by COG category across PRECISE-1K. I)
Histogram of the number of differentially expressed genes (DEGs) computed between condition pairs
within the same project. GSH = glutathione, Met = methionine.

PRECISE-1K provides a high-level view of absolute expression and expression variance
across the E. coli genome. Interrogating these systems-level expression patterns reveals the
hallmarks of the transcriptome.

Genes in the core genome (i.e. genes shared across all E. coli strains, as defined by
pangenomic analysis (Norsigian et al., 2020)) are significantly more expressed than non-core
genes (P=2.6E-105, Mann-Whitney U test, m=356, n=3901) (Figure 1D). The core genome also
exhibits significantly less variation in expression (P=1.0E-15). 43% (152/356) of core genome
genes are in the clusters of orthologous genes (COG) category “Translation, ribosomal structure
and biogenesis,” accounting for 62% (152/244) of all genes in that COG category. Indeed, this
COG category has the highest median expression across PRECISE-1K (Figure 1H). Taken
together, these results underscore the importance of maintaining consistently high expression
levels for these genes across a wide range of growth conditions.

Additionally, genes for which proteomics data is available (Heckmann et al., 2020;
Schmidt et al., 2016) have significantly higher expression (P=1.2E-150, m=2031, n=2226),
consistent with a known bias towards higher-expressed genes amongst proteomics samples
(Figure 1E). We also compared the expression of poorly-annotated genes (referred to as the
“y-ome” in E. coli (Ghatak et al., 2019)) to genes with more complete annotation. y-ome genes
have significantly lower expression (P=1.0E-75, m=1473, n=2784) than non-y-genes,
highlighting the lack of transcription in standard laboratory conditions as a potential reason for
these genes’ relative lack of annotation (Figure 1F).

We performed differential gene expression analysis within each member project for all
projects in the PRECISE-1K compendium. A median of 471 differentially expressed genes
(DEGs) were found across all pairwise within-project comparisons (Figure 1I). Many
comparisons produced close to 0 DEGs - for example, comparison of a qseF deletion to a
wild-type control after six hours of batch culture yielded only six DEGs. Other in-project
comparisons yielded far more DEGs. For example, the comparison between wild-type growth in
minimal media and deletion of two-component system (TCS) response regulator baeR with
ethanol supplementation yielded 1868 DEGs.
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Top-down regulatory modules capture transcriptome allocation
and the transcriptional regulatory network

Figure 2: PRECISE-1K has 201 iModulons that represent a range of cellular processes. A) A breakdown
of PRECISE-1K iModulons by their annotation category: ‘Regulatory’ denotes significant enrichment of
one or more known regulators; ‘Technical’ includes a single gene or technical artifact iModulon; ‘Genomic’
includes iModulons related to known genomic interventions (i.e., knockouts or segmental amplifications
due to adaptive laboratory evolution); and ‘Biological’ includes iModulons containing genes of related
function without significant regulator enrichment, or pointing to potential new regulons. Pie chart denotes
iModulon annotation categories by percentage of variance explained. Gray wedge indicates variance
unexplained by iModulons. B) Breakdown of iModulons based on system annotation. ALE = adaptive
laboratory evolution. C) Breakdown of iModulons based on functional annotation. D) Top 15 iModulons
ranked by % of variance explained. Color code matches panel C. E) Comparison of regulators and
regulatory interactions recovered by PRECISE-1K and available in RegulonDB. All = all evidence levels;
Strong = only strong evidence interactions per RegulonDB; P1K+ = all interactions for which the
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corresponding regulator is captured by PRECISE-1K. F) Histogram of regulon size for regulators captured
or not captured by at least one iModulon. G) Summary of precision and recall for 117 regulatory
iModulons with RegulonDB regulons as reference. H) Histogram of differential iModulon activities (DIMAs)
for same condition comparisons as Figure 2I. I) Comparison of number of DEGs and DIMAs for the same
condition pairs. The best fit curve is shown in red.

We used the signal extraction machine learning algorithm independent component
analysis (ICA) to identify 201 independently modulated groups of genes (iModulons) from
PRECISE-1K. iModulons are quantitative representations of regulatory modules that contain a
regulator’s target genes and quantify its activity level in each sample. The 201 iModulons
extracted from PRECISE-1K reconstruct 83% of the total variance in the dataset. 117 of these
iModulons are classified as Regulatory, as they are significantly enriched in genes belonging to
a known regulon (Figure 2A; see Supplemental Data for a full summary of all 201 iModulons
including regulator enrichment statistics). These Regulatory iModulons explain 56% of the total
variance in PRECISE-1K. 36 genomic iModulons that capture known genetic alterations (e.g.
gene knockouts) and 17 biological iModulons (comprised of genes with shared function but
lacking significant regulon enrichment) account for another 19% of the variance. 9
uncharacterized iModulons account for just 6% of the variance in the dataset. Altogether, 94%
of the variance captured by iModulons can be explained by either regulatory, genomic, or
biological phenomena.

iModulons extracted from PRECISE-1K reconstruct a significant fraction of the total
regulatory interactions available in RegulonDB (Santos-Zavaleta et al., 2019), the premier
database for curated and validated regulatory network information for E. coli. 32% of all known
regulatory molecules (and 48% with strong evidence) are captured by regulatory iModulons
(Figure 2E). Moreover, 23% of all specific regulatory interactions (33% of strong-evidence
interactions) are reconstituted in iModulons. iModulons are known to capture regulatory signals
by identifying the most strongly-regulated genes in a regulon based on promoter sequence (Qiu
et al., 2022). This likely accounts for the relatively lower precision and recall enrichment
statistics observed for larger iModulons that capture more global regulators (Figure 2G). Thus,
considering a regulatory iModulon as a biomarker for all of its regulator’s interactions reveals
that iModulons in fact reconstitute 80% of all known regulatory interactions (86% when
considering only strong evidence). Importantly, iModulons preferentially capture the signals of
larger regulons (Figure 2F), increasing their utility in describing transcriptome state across
growth conditions.

58% of genes (2485/4257) are members of at least one iModulon. These genes have
higher expression variation than genes not present in any iModulons (P=1.2E-219,
Mann-Whitney U test, m=2485, n=1772). However, median expression itself does not depend
significantly on membership (P=0.28) (Figure 1G). Thus, iModulon membership is not restricted
to higher-expressed genes. Indeed, 56% (823/1473) of y-ome genes - demonstrated above to
be significantly less expressed - are members of at least one iModulon, highlighting the potential
for iModulons to uncover putative functions for these uncharacterized genes. The median
iModulon consists of 10 genes, though many iModulons are much larger, such as global stress
responses RpoS (122 genes) and SoxS (117) (Supplemental Figure 4A). 35% of genes in an
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iModulon (879/2485) are members of 2 or more iModulons, with 2 genes (ynfM and bhsA)
appearing in 7 each (Supplemental Figure 4B). These characteristics highlight iModulons’
ability to capture overlapping regulatory modules of varying scale.

80 metabolism and 50 stress response iModulons account for 32% and 30% of the
variance in PRECISE-1K, respectively (Figure 2B). This breakdown reveals that, in aggregate
across PRECISE-1K growth conditions, E. coli allocates transcriptome nearly equally to these
two critical functions, emphasizing a “fear-greed” tradeoff. Interestingly, the numbers of
iModulons for these two functions differ considerably; the cell thus has a tendency towards more
diversified regulation for metabolic capabilities and more centralized control for stress
responses. Indeed, just two iModulons - RpoS and ppGpp, major stress response regulators -
account for 6% of the variance in the dataset (Figure 2C).

iModulons capturing the signals of global regulators (regulators with more than 25
regulatory targets) account for large proportions of the overall variance in the dataset.
Flagella-related regulators FlhDC and FliA in combination explain over 5% of the expression
variance, while anaerobic growth regulators FNR and ArcA combine to explain over 3% of the
variance (Figure 2D). These insights highlight the ability of global regulators to mobilize
large-scale transcriptomic responses. Indeed, these regulators (along with iron regulator Fur)
are responsible for variance between wild-type control samples run across projects, despite
overall tight correlation between those samples (Supplemental Figure 5).

Regulatory modules enable systems-level analysis of
transcriptome states

Because iModulons include an explicit representation of regulator activity levels, they
enable differential iModulon activity (DIMA) analysis. DIMA analysis allows for a systems-level
comparison of transcriptome states by reducing hundreds or thousands of DEGs to a median of
just 28 iModulons (Figure 2H). On average, a comparison between any two conditions in
PRECISE-1K yields almost twenty times fewer differentially-activated iModulons than DEGs
(Figure 2I). DEGs scale quadratically with DIMAs, highlighting the particular usefulness of DIMA
analysis for systems-level transcriptional analysis.

iModulon activities reflect the overall activity state of a transcriptional regulator across
environmental conditions in PRECISE-1K. A stimulon is a higher-level regulatory network
composed of multiple regulons that respond to a particular stimulus (Supplemental Figure 1).
While iModulons, by definition, include independently modulated groups of genes, in many
instances these independent groups of genes are regulated in response to similar
environmental stimuli, thus forming a stimulon. Two-component systems (TCS) - composed of a
membrane-bound sensor and a cytoplasmic response regulator - enable the cell to sense and
respond to important extracellular signals. iModulons derived from PRECISE-1K capture the
response signal for 15 of 27 known TCS response regulators, providing insight into the cell’s
regulatory response to critical stimuli such as nitrogen, inorganic phosphate, and alkali metals.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2021.04.08.439047doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439047
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additionally, iModulons can be clustered based on their activities to reveal stimulons. For
example, one cluster captures the joint regulation of flagella formation by transcription factor
complex FlhDC and sigma factor FliA (σ28) (Supplemental Figure 6). Six iron-related
iModulons, five anaerobiosis-related iModulons, and four amino acid-related iModulons also
group together in this activity-based fashion. Thus, iModulons in combination can shed light on
broad transcriptome patterns and the hierarchy in the transcriptional regulatory network.

PRECISE-1K enables regulon discovery
Functional annotation for putative TFs remains elusive (Gao et al., 2018). However,

iModulons are a powerful tool for the discovery and analysis of new regulons. PRECISE
elucidated the regulons for three previously uncharacterized TFs (YieP, YiaJ/PlaR, and
YdhB/AdnB), and expanded the regulons of three known TFs (MetJ, CysB, and KdgR) (Sastry
et al., 2019). Many of these regulatory interactions were confirmed through DNA-binding profiles
(Rodionova et al., 2020a, 2020b; Sastry et al., 2019). Furthermore, three novel regulons were
predicted from iModulons derived from a microarray dataset (Sastry et al., 2021a). iModulons
from PRECISE-1K recapitulate these previous results and reveal two new potential regulons.

The putative YgeV regulon contains 13 genes, of which 7 are putatively involved in
nucleotide transport and metabolism (Figure 3A). YgeV is predicted to be a
Sigma54-dependent transcriptional regulator, and Sigma54-dependent promoters were
previously identified upstream of the xdhABC and ygeWXY operons, which are in the YgeV
iModulon (Reitzer and Schneider, 2001). Although the iModulon does not contain the gene
ygeV, ygeV is divergently transcribed from ygeWXY. A prior study (DeLisa et al., 2001) found
that expression of ygfT was reduced in a YgeV mutant strain. Since ygfT is in the YgeV
iModulon, this indicates that YgeV may serve as an activator for the genes in its iModulon. The
activity of the YgeV iModulon rarely deviates from the reference condition; however, it is most
active when knockouts of TCS response regulators BaeR or CpxR are exposed to ethanol
(Figure 3B). Therefore, we predict that the TF YgeV responds (either directly or indirectly) to
ethanol to activate genes related to purine catabolism, and is repressed by TCS BaeRS and
CpxAR.

The putative YmfT regulon contains 15 genes, including ymfT itself. It contains 12 of the
23 genes in the e14 prophage (Mehta et al., 2004) (Figure 3C). The putative YmfT iModulon is
most active in strains lacking the ferric uptake regulator Fur, or in strains challenged by oxidative
stress through hydrogen peroxide (Figure 3D). Absence of Fur leads to overproduction of iron
uptake proteins, oxidative damage, and, subsequently, mutagenesis (Touati et al., 1995).
Therefore, we predict that YmfT responds to oxidative stress to alter the expression of the e14
prophage.

These examples illustrate the potential for iModulons to predict new regulons and
identify optimal conditions to study their activities. Supplemental Table 2 lists all regulons that
have been identified or modified using PRECISE-1K and its associated iModulons.
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Figure 3: iModulons predict and stratify regulons. A) iModulon gene weights for the putative YgeV
iModulon vs. genome position. B) Activity of the YgeV iModulon in different media conditions. Each
colored bar is the mean of two biological replicates (shown as individual black points). C) iModulon gene
weights for the putative YmfT iModulon vs. genome position. D) Activity of the YmfT iModulon in different
media conditions. Each colored bar is the mean of two biological replicates (shown as individual black
points). E) Activity tradeoff between Crp-1 and Crp-2 iModulons. Colored points from samples involving
partial and total CRP deletions. F) Histogram of CRP binding site locations for Crp-1 and Crp-2
iModulons. TSS = transcription start site of transcription unit for each gene. Data from RegulonDB. G)
Simulated binding curve for CRP Class I and Class II promoters. Each point indicates a particular CRP
concentration. Binding modeled as 10x tighter at Class II vs Class I promoters.

iModulons capture promoter-level mechanisms of Crp regulation
ICA discovers independent sub-groups of genes within global regulons that exhibit

distinct regulatory dynamics. For example, previous work has shown how the Fur-1 and Fur-2
iModulon activities (both of which are in the Fur regulon) vary with iron availability (Sastry et al.,
2020). Here, we demonstrate that iModulons reflect biochemical mechanisms of TF binding by
examining the relationship between two iModulons - Crp-1 and Crp-2 - that capture parts of the
CRP regulon. CRP contains multiple RNA polymerase-interacting domains (Ar1-3) (Lawson et
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al., 2004) that facilitate its binding to Class I and Class II promoters. Class I promoters
canonically involve binding centered 61.5 base pairs upstream of the transcription start site, and
Class II are centered 41.5 base pairs upstream (Busby and Ebright, 1999).

The activities of the Crp-1 and Crp-2 iModulons across all PRECISE-1K conditions form
a distinct nonlinear relationship (Figure 3E). As expected, low activities of both iModulons
correspond with deletion of CRP, which is known to activate most of the genes in the two
iModulons. Deletion of the Ar2 binding domain - implicated in Class II regulation - results in
some Crp-1 activity but no Crp-2 activity (orange dot in Figure 3E). CRP binding sites for genes
unique to Crp-1 are broadly distributed around the canonical Class I binding location, while
Crp-2-specific genes have CRP binding sites more consistently at the Class II location (Figure
3F). A steady-state biophysical model with 10-fold different binding affinities for Class I and
Class II binding sites yields a similar binding site occupancy relationship as that between the
Crp iModulon activities (Figure 3G). From this evidence, we propose that the Crp-1 and Crp-2
iModulons correspond to Crp regulatory activity at Class I and Class II promoter genes,
respectively. This analysis highlights the capability of PRECISE-1K iModulons to capture
regulatory dynamics within a single regulon.

Expanded dataset highlights regulatory modules’ robustness and
PRECISE-1K’s quality

To further expand our dataset, we sourced all publicly-available RNA-seq data for E. coli
strain K-12 from NCBI’s Sequence Read Archive (SRA) (Leinonen et al., 2011). From 3,230
K-12 samples, our processing and quality control pipeline yielded 1,675 high-quality K-12
expression profiles. In combination with PRECISE-1K, these data created the K-12 dataset, a
high-quality transcriptomics dataset consisting of 2,710 expression profiles (Figure 4A). These
profiles come from 134 different projects, including 15 K-12 substrains and 9 distinct
temperatures and pHs (Figure 4B). ICA decomposition of the K-12 dataset yields 194
iModulons.

The distribution of iModulons by category – both in number and by explained variance –
is broadly similar to that of PRECISE-1K. Regulatory iModulons account for 64% of the total
number, and 57% of the total variance in the dataset (Figure 4C). Percentages of variance
explained by metabolic (37%) and stress (25%) iModulons indicate that the K-12 dataset is
relatively biased towards metabolic changes compared with PRECISE-1K (Figure 4D).
Coverage of known regulatory network interactions increases only minutely as compared with
PRECISE-1K alone, despite the more than doubling of the dataset’s size (Figure 4E). Indeed,
89% of K-12’s explained variance comes from iModulons already identified in either PRECISE
or PRECISE-1K. In contrast, 45% of explained variance from PRECISE-1K comes from
iModulons not present in PRECISE (Figure 4F). iModulons can also explain a slightly larger
fraction of variance in PRECISE-1K than in the K-12 dataset. Taken together, these results
suggest that PRECISE-1K has sufficient scale and condition variety to represent the E. coli
TRN, and further large-scale additions of data may provide diminishing returns.
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Figure 4: Adding public K-12 data to PRECISE-1K highlights PRECISE-1K’s stability. K-12 is a combined
dataset composed of PRECISE-1K (1035 samples) plus all publicly-available high-quality RNA-seq data
for E. coli K-12 (1675 samples). A) The accumulation of high-quality RNA-seq data for K-12 over time. B)
Summary of selected conditions for K-12 samples. Gray indicates samples for which the public metadata
did not specify the relevant variable. C) K-12 iModulons by their annotation category (see Figure 2A
legend). Pie chart denotes iModulon annotation categories by percentage of variance explained. The 194
annotated iModulons together explain 81% of the variance. Gray wedge indicates variance unexplained
by iModulons. D) Same as C but based on specific system annotation. E) Comparison of regulators and
regulatory interactions recovered by K-12 and available in RegulonDB. All = all evidence levels; Strong =
only strong evidence interactions per RegulonDB; K-12+ = all interactions for which the corresponding
regulator is captured by the K-12 dataset. F) Comparison of iModulons from three RNA-seq datasets:
PRECISE (Sastry et al., 2019); PRECISE-1K (this paper); and K-12. Explained variance is within each
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dataset. Each small rectangle represents an iModulon for the corresponding dataset, ordered left to right
in descending order of explained variance. Lines link iModulons with Spearman’s correlation coefficient
greater than 0.25. Green = correlated set of iModulons exists across all 3 datasets; blue = correlated set
of iModulons only exists in PRECISE/PRECISE-1K; red = correlated set for PRECISE-1K/K-12 only; gray
= iModulon unique to dataset. Pie charts indicate fraction of dataset variance explained in each
correlation category.

Applying the PRECISE-1K knowledge base to new data: a case
study

PRECISE-1K and its associated suite of analyses are designed to be applicable to new
E. coli RNA-seq datasets. We demonstrate this capability for one project from the public K-12
dataset. This project - called AAT for anaerobic-aerobic transition - captured six time-points in
triplicate from 0 to 10 minutes after aeration of a previously anaerobic chemostat culture of E.
coli K-12 W3110 (Bui and Selvarajoo, 2020). PRECISE-1K iModulon activities for the AAT
project can be inferred without necessitating full re-processing through the entire workflow.
These inferred activities in turn enable analysis of AAT’s samples both within the project and
within the context of all PRECISE-1K’s samples. The Jupyter notebook used for this case study
is available at https://github.com/SBRG/precise1k and is set up to be used for analysis of any
new data.

We identified the iModulons with unusually divergent activities in AAT compared to the
rest of PRECISE-1K (Figure 5A). iModulons related to energy metabolism featured prominently;
for example, the formate hydrogen lyase (FHL) iModulon had a maximum absolute activity in
AAT six standard deviations off the PRECISE-1K average. FHL is known to be active under
anaerobiosis during glucose fermentation. An activity histogram further contextualizes these
observations: while aerobic metabolism regulator ArcA is over three standard deviations away
from the PRECISE-1K average at maximum in AAT, other AAT samples are closer to the
PRECISE-1K median (Figure 5B). To further characterize iModulon activity changes within AAT,
DIMA analysis can identify iModulons that change significantly between any two sets of
samples. Comparing aeration onset to 10 minutes post-aeration highlights the roles of key
energy metabolism global regulators in facilitating this transition (Figure 5C). Anaerobic
metabolism global regulator Fnr is more active at onset, while aerobic metabolism regulator
ArcA and global iron regulator Fur increase in activity 10 minutes after aeration. Fnr’s activity
decreases nonlinearly following aeration of the culture, reducing its reference level in aerobic
culture within 5 minutes (Figure 5D). Activity clustering highlights increased activity of the
anaerobic stimulon at aeration onset, followed by increased activation of the iron stimulon 10
minutes post-aeration (Supplemental Figure 7).

Activity phase planes are another key tool for analyzing new data. The “fear vs greed”
phase plane, first introduced in (Sastry et al., 2019), enables assessment of the balance of
growth opportunities (underpinned by the Translation iModulon) and stresses (represented by
global stress sigma factor RpoS [σ38]) felt by the cell in a given sample. For AAT, the aerobic
transition appears to facilitate a modest increase in both fear and greed (Figure 5E).
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The dynamic transcriptomic changes in the AAT project are more pronounced in the Fur-1/Fur-2
(Figure 5F) and Fnr/ArcA (Figure 5G) tradeoffs. As aerobic metabolism takes over, iron-related
genes repressed by Fur increase in activity, as evidenced by movement of AAT samples along
the Fur-1/Fur-2 axis towards the extreme activity point indicated by fur deletion samples. Iron is
an essential component of iron-sulfur clusters that feature in many aerobic metabolism
enzymes. Similarly, the Fnr/ArcA tradeoff captures the anaerobic/aerobic transition very directly.
Activity of global anaerobic regulator Fnr decreases as aerobic regulator ArcA’s activity
increases, with both arriving near the activity levels of PRECISE-1K’s aerobic growth control
condition 10 minutes after aeration. Another viewpoint for this transition comes from a principal
component analysis of PRECISE-1K and AAT conditions based on iModulon activities. Again,
as time from aeration increases, samples move downward in principal component 2 (which has
high weights for anaerobic metabolism iModulons) (Figure 5H).

Taken together, these observations highlight the essential systems-level changes occurring
during aerobic transition while exemplifying PRECISE-1K’s function as an analysis resource.
Further, they show the deep interpretation of TRN functions achieved through the use of
iModulon activity phase planes.
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Figure 5: PRECISE-1K and iModulons provide key insight for assessing systems-level transcriptome
changes for new data. For all panels in this figure, the example new data comes from the public K-12
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dataset “aat” (anaerobic-aerobic transition) (not in PRECISE-1K, but in public K-12 metadata) which took
6 time-point samples of E. coli from 0 to 10 minutes after aeration of a previously anaerobic chemostat
culture. A) Top 10 iModulons by maximum difference between within-aat and PRECISE-1K activity
(z-scored). For example, z-score of 5 for “Microaerobic” iModulon indicates that the maximum activity of
this iModulon amongst aat samples was 5 standard deviations from the mean activity of this iModulon in
PRECISE-1K. B) Histogram of iModulon activity across all PRECISE-1K samples and in new aat project
(ArcA as example). C) Differential iModulon activity (DIMA) plot comparing iModulon activities at aeration
onset and 10 minutes after aeration. iModulons with significant activity differences between the two time
points are in blue and labeled (see Methods for DIMA details). D) iModulon activity by time from aeration
(Fnr-2 as example). E) “Fear vs. greed” tradeoff comparing activities of RpoS (fear) and Translation
(Greed) iModulons for all PRECISE-1K samples (gray) and aat samples (colored; legend in panel F). F)
Tradeoff comparing activities of Fur iModulons for all PRECISE-1K samples (gray) and aat samples
(colored). Black dots indicate PRECISE-1K samples with fur knocked out. G) Tradeoff comparing
activities of Fnr-2 and ArcA iModulons, with anaerobic growth conditions from PRECISE-1K in black. aat
color scheme same as F. H) Principal component plot of PRECISE-1K (gray) and aat (colored; same as
F) samples. Principal component analysis performed on iModulon activity matrix condition-wise.

Discussion
In this work, we establish PRECISE-1K, a large, high-fidelity E. coli RNA-seq

compendium that enables top-down transcriptional regulatory network discovery and analysis.
PRECISE-1K delivers insights into the regulatory dynamics of E. coli at multiple scales. First, we
find that gene expression levels and variance across the dataset are differentiated by factors
such as core genome membership and gene function. We then present 117 regulatory modules
(iModulons) that explain 56% of the total variance in the compendium and reconstitute 86% of
known regulatory interactions. Thus, PRECISE-1K and its iModulons constitute the most
complete top-down, computational TRN reconstruction yet generated for a microorganism.
iModulons derived from PRECISE-1K cover the full range of cellular processes, from sensory
two-component systems to core metabolic pathways to translation to stress responses. Thus,
we demonstrate the stability, scalability, and completeness of this method for regulatory network
characterization.

PRECISE-1K retains nearly all of the regulatory iModulons extracted from its
predecessor PRECISE. Thus, iModulons capture fundamental regulatory modes, not
dataset-specific artifacts. Increasing the dataset size nearly four-fold does not hinder regulatory
network discovery; in fact, we have more than doubled the number of discovered regulatory
iModulons. Taken together, PRECISE-1K and iModulons extracted from it highlight the central
role that top-down, data-driven methods must take in transcriptional regulatory network
discovery across organisms. Indeed, iModulons have already successfully generated top-down
regulatory networks for other organisms (Chauhan et al., 2021; Lim et al., 2022; Poudel et al.,
2020; Rajput et al., 2022; Rychel et al., 2020; Sastry et al., 2019; Yoo et al., 2022). The success
of PRECISE-1K serves to further cement both the importance of pursuing such efforts and the
reliability of the results.
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Further expansion of dataset size beyond PRECISE-1K yields diminishing returns. When
we added all high-quality public K-12 data to PRECISE-1K, the iModulon structure remained
quite similar, with the K-12 dataset’s 124 regulatory iModulons accounting for 88% of known
TRN interactions. This result highlights a key value of PRECISE-1K: this single-laboratory
dataset has sufficient scale to identify stable regulatory components with robust coverage of the
TRN while avoiding noise introduced by combination of data from multiple sources. As a result,
we recommend usage of PRECISE-1K itself for analysis of new RNA-seq data, despite the K-12
dataset’s significantly larger scale. The lack of increase in regulatory coverage with the K-12
dataset likely reflects the need to select growth conditions that activate niche transcriptional
regulators with small regulons, rather than a limitation of the top-down TRN inference method
itself.

Beyond their ability to systematically characterize a TRN, iModulons have a key
characteristic that bottom-up regulons lack: activity levels. This quantitative aspect of iModulons
enables analysis of the functional transcriptome under specific environmental or genetic
conditions. We demonstrate this capability by capturing two different functional regulatory
modes of the Crp regulon based on binding site location. Differential iModulon activity (DIMA)
analysis also greatly simplifies differential expression analysis; with an average of nearly twenty
times fewer significantly differential variables to analyze, DIMA analysis empowers
systems-level analysis of transcriptomic changes, as demonstrated in the AAT case study.

Critically, PRECISE-1K and iModulon activities enable us to discover and partially
characterize putative regulons for predicted transcription factors. We demonstrate this capability
by assigning a putative function in ethanol stress tolerance related to nucleotide metabolism to
the YgeV regulon, based on the YgeV iModulon activation pattern. In particular, this activation
coincides with knockouts of two-component system response regulators BaeR and CpxR; thus,
YgeV’s role in nucleotide metabolism upon ethanol stress response may arise as a
compensatory mechanism following inactivation of these more prominent TCS regulators. The
specificity of this activating condition may play a role in explaining why the functions of this
regulator and the genes in its regulon remain unknown. Indeed, iModulons have already proven
useful in studies to characterize regulators and their regulons (Rodionova et al., 2021).
PRECISE-1K likely contains other instances of untapped insights into specific regulons or
regulatory dynamics, and should continue to be mined for such discoveries.

PRECISE-1K and iModulons inform experimental design beyond regulon discovery. For
example, proteomics data acquisition remains more cost, labor, and time intensive than
transcriptomics. Thus, it is key to identify parsimonious sets of growth conditions likely to
produce the most variation in the proteome. iModulon activities can highlight growth conditions
that differentially activate systems of interest, enabling judicious selection. Our knowledge base
provides a centralized reference for assessment of gene expression across conditions,
empowering study designs intended to perturb, modify, or delete genes.

Our example analysis of the AAT project from the K-12 dataset demonstrates perhaps
the most exciting application of PRECISE-1K: analysis and contextualization of new RNA-seq
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datasets. PRECISE-1K’s iModulons clearly capture and summarize the regulatory dynamics at
play during aerobic metabolism transition. We provide a variety of tools, both here and in our
previously published code package (Sastry et al., 2021b) that will easily facilitate similar
analyses for any other dataset. In this way, PRECISE-1K is not just useful in and of itself but as
a backdrop for deriving regulatory insight from new data. Our example workflow for analyzing
new data with PRECISE-1K - along with all other analyses from this paper - is available for use
at https://github.com/SBRG/precise1k. These analyses have already enriched multi-omic
studies of the aerobic respiration system (Anand et al., 2022), the adaptation of different E. coli
strains (Kavvas et al., 2022), and the response of E. coli to antibiotics (Sastry et al., 2020).

Overall, PRECISE-1K and iModulons represent a critical resource for studying the
transcriptional regulatory network of E. coli. We believe PRECISE-1K should be a standard tool
for systems-level analysis of E. coli RNA-seq data from all sources. As the number of publicly
available datasets increases for other microorganisms, this study serves as a roadmap for
interrogating similar datasets for less characterized organisms, with the potential to yield equally
impactful insights into those organisms’ regulatory network structures.

Methods

RNA-seq processing and quality control
PRECISE-1K consists of all data in PRECISE (Sastry et al., 2019), along with additional data
generated in the Palsson Lab, some previously published and some published for the first time
here.

Starting from 1055 candidate samples, data was processed using a Nextflow (Di Tommaso et
al., 2017) pipeline designed for processing microbial RNA-seq datasets (Sastry et al., 2021b),
and run on Amazon Web Services (AWS) Batch.

First, raw read trimming was performed using Trim Galore with the default options, followed by
FastQC on the trimmed reads. Next, reads were aligned to the E. coli K-12 MG1655 reference
genome (RefSeq accession number NC_000913.3) using Bowtie (Langmead et al., 2009). The
read direction was inferred using RSEQC (Wang et al., 2012) before generating read counts
using featureCounts (Liao et al., 2014). Finally, all quality control metrics were compiled using
MultiQC (Ewels et al., 2016) and the final expression dataset was reported in units of
log-transformed Transcripts Per Million (log-TPM).

Samples were considered “high-quality” if they met all of the following criteria:
- “Pass” on the all of the following FastQC checks: per_base_sequence_quality,

per_sequence_quality_scores, per_base_n_content, adapter_content
- At least 500,000 reads mapped to coding sequences (CDS) from the reference genome

(NC_000913.3)
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- Not an outlier in hierarchical clustering based on pairwise Pearson correlation between
all samples (outlier defined as cluster with number of samples <1% of the total number
of samples)

- Minimum Pearson correlation with biological replicates (if any) 0.95 (if more than 2
biological replicates, keep samples with high correlation in “greedy” manner, dropping
samples that have at least one sub-threshold correlation with all other replicates)

Following this processing and QC workflow, 1035 high-quality RNA-seq samples remained.
These samples and their metadata define PRECISE-1K. log-TPM, raw read count, QC data
files, and sample metadata for all 1055 original samples are included in the supplementary data.
These files may also be found in the data directory of this project’s GitHub repository.

Differentially expressed gene (DEG) computation
Differentially expressed genes (DEGs) were identified using the DESeq2 package (Love et al.,
2014) on the PRECISE-1K RNA-seq dataset. Genes with a log2 fold change greater than 1.5
and a false discovery rate (FDR) value less than 0.05 were considered to be differentially
expressed genes. Genes with p-values assigned “NA” based on extreme count outlier detection
were not considered as potential DEGs. The number of DEGs was computed for each unique
pair of conditions within each project in PRECISE-1K, for a total of 6104 pairwise computations.

iModulon computation
To compute the optimal set of independent components (iModulons), the previously described
OptICA method (McConn et al., 2021) was run on PRECISE-1K. The iModulon matrices M and
A (along with iModulon metadata containing annotation as described below) are available in the
supplementary data files and in this project’s GitHub repository.

Differential iModulon activity (DIMA) computation
Differentially activated iModulons were computed with a similar process as previously detailed
(Sastry et al., 2019). For each iModulon, the average activity of the iModulon between biological
replicates, if available, was computed. Then, the absolute value of the difference in iModulon
activities between the two conditions was compared to the fitted log-normal distribution of all
differences in activity for the iModulon. iModulons that had an absolute value of activity greater
than 5, and an FDR below 0.05 were considered to be significant. The number of DIMAs was
computed for each unique pair of conditions within each project in the PRECISE-1K
compendium, mirroring DEG computation.

iModulon annotation
First, a gold-standard TRN reference annotation was downloaded from RegulonDB v10.5
(Santos-Zavaleta et al., 2019). For each iModulon, enrichment of the set of genes in the
iModulon against known RegulonDB regulons was computed using Fisher’s Exact Test, with
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false discovery rate controlled at 10-5 using the Benjamini-Hochberg correction. By default,
iModulons were compared to all possible single regulons and all possible combinations of two
regulons (intersection only). The regulons used by default consisted of only strong and
confirmed evidence regulatory interactions, per RegulonDB. When multiple significant
enrichments were available, the enrichment with the lowest adjusted P value was used for
annotation. In the event of near equal P values (within an order of magnitude) across multiple
enrichments, the priority was given to intersection regulons, followed by single regulons,
followed by union regulons. If no significant enrichments were available, the following
adjustments were used, in this order: relax evidence requirement to include weak evidence
regulatory interactions; search only for single regulon enrichments; allow up to 3 regulons to be
combined for enrichment; allow regulon unions as well as intersections (with priority given to
intersections). If the iModulon consisted of genes with annotated co-regulation by 4 or more
genes, a specific enrichment calculation was made to determine the enrichment statistics. If
none of these adjustments yielded a significant enrichment, the iModulon was annotated as
non-regulatory. All parameters and statistics related to calculation of TRN enrichments for
regulatory iModulons are recorded in the iModulon metadata table, available in the GitHub
repository.

iModulons were named and annotated according to the following ruleset:

General
- Rule #1: iModulon names must be fewer than ~15 characters
- Rule #2: iModulon names must be unique. If iModulons would otherwise have the same

name, append “-1”, “-2”, etc., as needed to disambiguate. By default, order the suffixes
by decreasing explained variance, unless another numbering is specifically preferred
(e.g. aligning Crp-1 and Crp-2 with Crp binding site classes).

Case 1 - Regulatory
The iModulon has a significant regulon enrichment chosen as described above:

- Rule #1: Name the iModulon after the primary function of the associated regulon(s) (e.g.
the iModulon enriched for the CdaR regulon is named “Sugar Diacid”)

- Rule #2: If no clear primary function is available for the iModulon, name the iModulon
directly after the enriched regulon (e.g. the iModulon enriched for the CpxR regulon is
named “CpxR”, as CpxR controls a diverse set of functions).

- Exception #1: if the enriched regulon corresponds to a well-known global regulator (i.e.
Fur, CRP, RpoS), name the iModulon after that regulator.

- Exception #2: if the name per Rule #1 would violate General Rule #1, name the
iModulon directly after the enriched regulon (e.g. the iModulon enriched for the union of
the FucR and ExuR regulons is named “FucR/ExuR” instead of
“Fucose/Galacturonate/Glucuronate”)

- Exception #3: if applying Rule #2, and the regulon enrichment involves an intersection
between a global regulator and a local regulator (i.e. cooperative regulation), the global
regulator may be dropped from the name (e.g. “NtrC-1” instead of “RpoN+NtrC-1”, as
RpoN is a larger-regulon sigma factor which co-regulates with the more-specific NtrC).
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Case 2 - Genomic
The iModulon activity profile has a clear correlation with a sample involving a specific genetic or
genomic intervention:

- Rule #1: if the iModulon captures intentional knockout of a gene (e.g. geneA is knocked
out in sampleA, and the iModulon has a large positive gene weight for geneA and a
large negative activity level for sampleA, accounting for the lack of geneA expression in
sampleA), name the iModulon “[gene name] KO” (e.g. baeR KO)

- Rule #2: Similarly, if the iModulon captures intentional overexpression of a particular
gene, name the iModulon “[gene name] OE” (e.g. “malE OE”)

- Rule #3: if the iModulon captures expression changes in relation to evolved samples
(ALE), as determined by comparing the iModulon activities to known ALE samples,
name the iModulon “[name of ALE project] Del” (for deletions), “[name of ALE project]
Amp” (for amplifications), or “name of ALE project] Mut” (for mixed effect mutations) (e.g.
ROS TALE Del-1)

- Rule #4: if the iModulon also has a significant regulon enrichment as described above,
prioritize the specific genetic/genomic change.

Case 3 - Biological
The iModulon does not have a significant regulon enrichment, does not relate to a specific
genetic or genomic change, but the member genes share a clear biological function:

- Rule #1: Name the iModulon after the shared biological function (e.g. the “LPS” iModulon
consists of many genes related to lipopolysaccharide biosynthesis and export, though no
significant regulon enrichment was found for this iModulon’s genes).

Case 4 - Single-Gene Dominant
The iModulon contains one specific gene with a gene weight at least twice as large as the next
closest gene, does not fall into Case 2 - Genomic, and contains only the one highly-weighted
genes, or at most 5 other genes with gene weights very close to the iModulon’s threshold

- Rule #1: Name the iModulon after the dominant gene (e.g. the “ymdG” iModulon consists
solely of the ymdG gene)

Case 5 - Uncharacterized
The iModulon does not meet any of the previous criteria for naming

- Rule #1: Name the iModulon “UC-#” (short for “Uncharacterized”), with the number
incrementing for each uncharacterized iModulon.

Compiling the K-12 public dataset
Data was compiled from NCBI SRA as described previously (Sastry et al., 2021b). Initially, all
data annotated as RNA-seq for E. coli was inspected. RNA-seq samples were discarded if the
strain was not from a K-12 strain, if the strain was missing, or if the type of experiment was not
actually RNA-seq. After initial curation, data was processed and quality controlled as described
previously, and iModulons were computed in the same manner as described above.
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Data and Code Availability
All data and codes are available at https://github.com/SBRG/precise1k.

Supplemental Figures

Supplemental Figure 1: Multi-scale analysis of PRECISE-1K. The levels of analysis approximately
correspond to the definition of an operon and a regulon, and also a quantitative definition of the notion of
a stimulon. The ‘scale’ indicates the reduction of dimensionality over the levels shown.
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Supplemental Figure 2: Breakdown of major growth conditions for PRECISE-1K.

Supplemental Figure 3: Principal component analysis (PCA) of PRECISE-1K. A) First 2 principal
components, colored by project (n=1035 samples). B) First 2 principal components, colored by each of 21
distinct RNA-seq library preparers.
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Supplemental Figure 4: iModulon gene membership breakdown. A) Histogram of iModulon sizes. n=201
iModulons. B) Breakdown of genes by number of iModulons of which they are a member. n=4257 genes.
2485 genes are members of at least 1 iModulon.
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Supplemental Figure 5: Most variant iModulon activities in control conditions across projects. iModulon
activities with the highest median absolute deviation across 20 samples of wild-type growth in M9 medium
with glucose across 8 projects are displayed.
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Supplemental Figure 6: iModulon activity clustering for PRECISE-1K: defining stimulons. (A) Automatic
distance threshold determination. Distance thresholds for determination of optimal clusters after
hierarchical clustering were determined by scanning possible distance thresholds and computing a metric
of cluster distinctness - the silhouette score - at each possible threshold. Black dashed line indicates final
choice of distance threshold (0.725). (B) Clustermap of PRECISE-1K iModulon activities. Colorbar
indicates Spearman’s correlation coefficient, the distance metric used to perform pairwise iModulon
activity comparisons. 16 most distinct clusters - by silhouette score - are labeled with yellow text
corresponding to panel C. (C) 16 most distinct clusters of iModulon activities from PRECISE-1K
(silhouette scores parenthesized).
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Supplemental Figure 7: Differential iModulon activity (DIMA) plot between onset of aeration and 10
minutes post-aeration with activity clusters (stimulons) included (indicated with [Clst] suffix).
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