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Abstract 

We present the pathogenicity prediction models MetaRNN and MetaRNN-indel to help identify 

and prioritize rare nonsynonymous single nucleotide variants (nsSNVs) and non-frameshift 

insertion/deletions (nfINDELs) using deep learning and context annotations. Employing 

independent test datasets, we demonstrate that these new models outperform state-of-the-art 

competitors and achieve a more interpretable score distribution. MetaRNN executables and 

precomputed scores are available at http://www.liulab.science/MetaRNN. 

 

Main Text 

Separating rare pathogenic and rare benign variants is an essential task in exome-sequencing-

based Mendelian disease studies. This task is especially challenging for mutations that can cause 

changes in amino acid (AA) sequences, namely, nonsynonymous single nucleotide mutations 

(nsSNVs) and non-frameshift insertion/deletions (nfINDELs), while being exempt from definite 

and severe consequences, such as stop-gain mutations. Because experimentally validating the 

effects of these mutations is time-consuming and costly, computational predictive methods have 
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been developed for this purpose1–10. However, these methods generally suffer from two major 

limitations. First, most of these methods employ models trained with rare pathogenic variants 

and common benign variants, which cause them to be less optimized for separating rare 

pathogenic and rare benign variants. Second, most of the methods provide prediction scores for 

only nsSNVs or incomparable scores for nsSNVs and nfINDELs separately, making it infeasible 

to use these scores as weights in an integrated (nsSNV+nfINDELs) burden test for genotype-

phenotype association analysis. To overcome these limitations, we developed the MetaRNN and 

MetaRNN-indel models, which enable users to easily annotate both nsSNVs and nfINDELs. 

MetaRNN and MetaRNN-indel integrated information from 16 high-level pathogenicity 

prediction scores, such as CADD1 and M-CAP5, 8 conservation scores and allele frequency 

information from the 1000 Genomes Project (1000GP)11, ExAC12, and gnomAD13 (full list in 

Supplementary Note). The integrated information for all target mutations and their flanking 

base pairs, defined as a ±1 AA window, was extracted by a deep recurrent neural network (RNN) 

with multiple stacked bidirectional gated recurrent units14 (GRUs) (Supplementary Note). We 

trained the RNN model with 26,517 rare nsSNVs and 2,057 rare nfINDELs from ClinVar15 up to 

release 20190102 (Supplementary Note). The final prediction is the likelihood of a mutation 

being pathogenic. The model structure enabled us to employ flanking sequence annotations to 

improve target variant prediction. We found that the GRU-based models consistently 

outperformed models using only annotations of target mutations (S. Figure 3). The final output 

scores of both MetaRNN and MetaRNN-indel range from 0 to 1, and the score can be interpreted 

as the probability of the observed mutation being pathogenic. Since the prediction scores from 

MetaRNN and MetaRNN-indel share the same range and were constructed using the ClinVar 

dataset, predictions from these two models are comparable with their pathogenicity.  
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To evaluate the performance of the proposed models, we compared multiple state-of-the-art 

computational methods in the interpretation of sequence variants using independent test datasets. 

We observed that MetaRNN outperformed other competitors across all the test datasets, 

including two rare nsSNV test sets (RNTS) that was composed of rare pathogenic ClinVar 

nsSNVs after release 20190102 and location-matched rare nsSNVs from gnomAD, ExAC and 

the 1000 Genomes Project (n = 12,406 and n = 11,540) (selected comparisons with 8 tools in 

Figure 1A; all comparisons with 24 tools in S. Figure 5 and S. Figure 6), two ClinVar only test 

sets composed of  rare ClinVar pathogenic and rare benign nsSNVs after release 20190102 (n = 

3,917 and n = 9,285) (S. Figure 7 and S. Figure 8),  an all-allele-frequency test dataset 

composed of both rare and common ClinVar nsSNVs after release 20190102 (n = 29,924) (S. 

Figure 9), and a functional test dataset for TP53 mutations (n = 824) (S. Figure 10). The results 

highlighted MetaRNN's increased ability relative to those of the other methods to separate not 

only rare pathogenic mutations from rare benign ones but also mutations with various degrees of 

A                   B 

 
Figure 1. Comparisons of MetaRNN and MetaRNN-indel with other prediction tools. A: 

Performance comparison of MetaRNN and 8 other nsSNV prediction tools using the rare 

nsSNV test set (RNTS). B: Performance comparison of MetaRNN-indel and other 

nfINDEL prediction tools using ClinVar nfINDELs. 
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functional importance. With a test dataset that was composed of rare pathogenic ClinVar 

nfINDELs after release 20190102 (n = 989), MetaRNN-indel outperformed all competitors in 

ranking nfINDELs (Figure 1B), including two methods, VEST10 and CADD, that showed good 

performance for nsSNVs. These results indicate that our training framework for MetaRNN and 

MetaRNN-indel consistently outperforms other methods concerning both nsSNVs and 

nfINDELs.  

To explore the interpretability and usability of the proposed models, we first predicted scores for 

all nsSNVs in ClinVar that showed conflicting clinical interpretations (n = 20,337). These 

nsSNVs represent an important class, that is, variant of unknown significance (VUS) according 

to the ACMG-AMP guidelines16, and the ability to distinguish and interpret VUSs is important to 

the clinical application of the proposed score to help improve the diagnostic rate. A score that 

shows sufficient dispersion enables further identification of relevant candidate variants. 

Additionally, these conflicting VUS variants are variants of interest with some evidence of being 

either pathogenic or benign. Among these variants, 15,788 (77.6%) showed conflicting 

interpretations between benign/likely benign and unknown significance (benign conflict group), 

whereas 4,110 (20.2%) showed conflicting interpretations between pathogenic/likely pathogenic 

and unknown significance (pathogenic conflict group). Based on the fact that the benign conflict 

group had approximately 4 times more variants than the pathogenic conflict group, we expect 

that variant prediction tools should be able to reflect this observation. MetaRNN's predictions 

showed a score distribution that fit these assumptions (Figure 2A), which peaked at the extremes 

of its score range and had approximately 4 times more extreme benign predictions than extreme 

pathogenic predictions. Compared with other scores, which either showed little change in the 

distribution across their predictions (e.g. CADD, VEST17, REVEL4) or potentially 
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underestimated the proportion of VUSs at the extremes (BayesDel9), the proposed MetaRNN 

scores exhibited greater interpretability for sequencing data and VUSs. Additionally, we 

obtained nsSNVs observed in three large-scale population studies, namely, 1000GP, gnomAD, 

and ExAC, with at least two observed minor allele counts to remove the majority of potentially 

pathogenic variants. The distributions of the predicted scores are shown in Figure 2B. As 

expected, all methods showed a decreasing proportion of pathogenic variants. However, 

MetaRNN had a substantially lower proportion of variants predicted to be not benign (score > 

0.5). This feature of MetaRNN can increase the power of genome-wide association studies by 

removing more genuinely benign variants. The proposed models are expected to be useful across 

various settings, ranging from filtering candidate SNVs for rare-variant association analysis to 

supporting disease gene identification with increased accuracy and interpretability. For example, 

MetaRNN and MetaRNN-indel scores are well calibrated to be combined for an integrated 

(nsSNV+nfINDELs) rare-variant burden test for genotype-phenotype association.  

A          B 

     
Figure 2. MetaRNN score distributions. A: Score distribution for ClinVar variants of unknown 

significance (VUSs). B: Score distribution for nsSNVs observed in the 1000 Genomes Project, 

gnomAD and ExAC with allele count > 1. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.09.438706doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.438706


We provide predictions for all potential nsSNVs (~86 million) in the dbNSFP18,19 database for 

rapid and user-friendly analysis. We provide a stand-alone Linux executable for the Linux 

environment for nfINDEL (and nsSNV) predictions. The executable takes a standard VCF file as 

input and provides variant pathogenicity scores in a transcript-specific manner as output 

(supported by ANNOVAR20). The average prediction time for a single insertion/deletion is 

approximately 0.2 seconds, which can support timely large-scale predictions. 

We believe that with the improvements in prediction accuracy, score interpretability, and 

usability exhibited by our new method, it may provide more accessible and accurate annotation 

of rare VUSs in exome-sequencing-based Mendelian disease studies and integrated 

(nsSNV+nfINDELs) burden tests for common disease studies. 
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